POLITECNICO DI TORINO

Repository ISTITUZIONALE

Erratum: Fluctuation relations for systems in a constant magnetic field (Physical Review E (2020) 102

 (030101R) DOI: 10.1103/PhysRevE.102.030101)Original
Erratum: Fluctuation relations for systems in a constant magnetic field (Physical Review E (2020) 102 (030101R) DOI: 10.1103/PhysRevE.102.030101) / Coretti, A.; Rondoni, L.; Bonella, S.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. STAMPA. - 103:029902(2021), pp. 1-1. [10.1103/PhysRevE.103.029902]

Availability:
This version is available at: 11583/2875984 since: 2021-03-23T16:43:43Z

Publisher:
American Physical Society

Published
DOI:10.1103/PhysRevE.103.029902

Terms of use.

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

Erratum: Fluctuation relations for systems in constant magnetic field

Alessandro Coretti
ORCID: 0000-0002-7131-3210
Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy and
Centre Européen de Calcul Atomique et Moléculaire (CECAM), École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
Lamberto Rondoni
ORCID: 0000-0002-4223-6279
Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giura 1, I-10125 Torino, Italy
Sara Bonella*
ORCID: 0000-0003-4131-2513
Centre Européen de Calcul Atomique et Moléculaire (CECAM),
École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
(Dated: April 19, 2021)

After the publication of the paper [1] we found an inconsequential mistake in the derivation of the dissipation function for the Nosé-Hoover thermostatted system Eq. (17) of the original manuscript. A complete and correct derivation for $\Omega^{(0)}(X)$ is now reported in the Appendix B of Ref. [2], where, in particular, it is shown that

$$
\nabla_{X} \ln f_{0} \cdot \dot{X}=\beta 2 K(\Gamma) \xi-\beta \sum_{i=1}^{N} q_{i} \dot{\boldsymbol{r}}_{i} \cdot \boldsymbol{E}-2 \beta K^{*} \xi \delta K(\Gamma)
$$

while the compressibility of the (extended) phase space is given by $\Lambda=-\beta 2 K^{*} \xi$. Therefore, Eq. (20) in Ref. [1] should have been written as:

$$
\begin{equation*}
\Omega^{(0)}(X)=\beta \mathcal{V} \boldsymbol{J}(\Gamma) \cdot \boldsymbol{E} \tag{1}
\end{equation*}
$$

where $\boldsymbol{J}(\Gamma)=\mathcal{V}^{-1} \sum_{i=1}^{N} q_{i} \dot{\boldsymbol{r}}_{i}$ is the microscopic estimator of the current and \mathcal{V} is the volume of the system.
The expression of $\Omega^{(0)}$ for isokinetic systems in a magnetic field, also discussed in Ref. [1], equals Eq. (1). Due to the incorrect expression originally presented, Ref. [1] argued that averages taken over long times, which are conceptually acceptable, would be needed to make the dissipation function of isokinetic and Nosé-Hoover systems agree. The correct calculation reported in Ref. [2] shows, instead, that the expressions for the dissipation functions for the two thermostatted systems are equal not only on average and for $\tau \gg \tau_{\mathrm{NH}}$, but also instantaneously. The new expression for the dissipation function given in Eq. (1) does not change the behavior, and in particular the odd signature, of $\Omega^{(0)}(X)$ under the time-reversal operations mentioned in the original manuscript, as shown in Figure 1. This shows that the mistake does not modify any of the conclusions discussed in Ref. [1], with the exception of the already mentioned need of analyzing the long time properties of $\Omega^{(0)}(X)$ to interpret the physical origin and consequences of the two terms dissipation. In fact, this result strengthens the view that $\Omega^{(0)}$, and not other quantities, plays the role of the energy dissipation of nonequilibrium particle systems.
[1] A. Coretti, L. Rondoni, and S. Bonella, Physical Review E 102, 030101 (2020), ISSN 2470-0045, 2470-0053.
[2] A. Coretti, L. Rondoni, and S. Bonella, Entropy 23 (2021), ISSN 1099-4300, URL https://www.mdpi.com/1099-4300/23/ 2/146.

[^0]

FIG. 1: Same as Figure 1 of the original manuscript, now produced with the corrected expression for $\Omega^{(0)}(X)$ from Eq. (1).

[^0]: *Electronic address: sara.bonella@epfl.ch

