POLITECNICO DI TORINO Repository ISTITUZIONALE

CO2 valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives

Original

CO2 valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives / Hilmar, Guzman; Russo, Nunzio; Simelys, Hernandez. - In: GREEN CHEMISTRY. - ISSN 1463-9262. - ELETTRONICO. - 23:5(2021), pp. 1896-1920. [10.1039/d0gc03334k]

Availability: This version is available at: 11583/2875982 since: 2021-03-23T16:43:06Z

Publisher: RSC

Published DOI:10.1039/d0gc03334k

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

CO₂ valorisation towards alcohols by Cu-based electrocatalysts: Challenges and perspectives

Hilmar Guzmán,^{a,b} Nunzio Russo ^a and Simelys Hernández ^{a,b,*}

^a CREST group, Department of Applied Science and Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129, Turin, Italy.

^b IIT – Istituto Italiano di Tecnologia, Via Livorno, 60, 10144, Turin, Italy.

* Corresponding author. E-mail address: simelys.hernandez@polito.it

Supporting Information

Summary

S1.	CO ₂ -to-methanol via thermochemical route
S2.	CO ₂ -to-methanol via liquid phase electrochemical route
S3.	Total Faradaic efficiencies of the best liquid-phase EC CO ₂ R electrocatalysts4
S4.	Ethanol and n-propanol production from CO ₂ via liquid-phase
el	ectrochemical route
S5.	CO₂-to-alcohols via catholyte-free electrochemical route. 7
S6.	Total Faradaic efficiencies of the best catholyte-free EC CO ₂ R
el	ectrocatalysts9
S7.	References

S1. CO₂-to-methanol via thermochemical route

Outstanding results following TC reactions for methanol production from our work1 with data taken from references2–^{6.} Table S1 shows the best results following thermochemical reactions for methanol production.

Catalysts	CO ₂ conversion, %	Selectivity Methanol, %	Temperature, °C	Pressure, MPa	Ref.
Cu/ZnO	5.5	50	240	2	3
Cu/ZrO ₂	2.5	78	240	2	3
Cu/ZnO/Ga	6	88	270	2	5
Cu/ZrO ₂ /Ga	13.7	75.5	250	2	5
Cu/ZnO/ZrO ₂	13	32	240	2	3
Cu/ZnO/ZrO ₂ /SiO ₂	13.9	36	240	2	4
Cu/ZnO/ZrO ₂ /TiO ₂	17.4	43.8	240	3	2
Cu/ZnO/ZrO ₂ /Al ₂ O ₃ /SiO ₂	11.7	99.7	250	5	6

Table S1. Outstanding results following TC reactions for methanol production from our work¹ with data taken from references^{2–6}.

S2. CO₂-to-methanol via liquid phase electrochemical route

Electrocatalysts	Faradaic efficiency to Methanol %	Total current density, mA	Cell configuration	Ref.
Cu _{63 9} Au _{36 1} /NCF	15.9	-	H-type cell (Nafion 117)	7
Anodiz. Cu foils	100.0	1.4	Traditional undivided 3 electrode cell	
Electroch. Anodiz. Cu foils	20.0	5.0	Traditional undivided 3 electrode cell	
Cu ₂ O/stainless steel	38.0	5.0	Traditional undivided 3 electrode cell	
$Cu_{88}Sn_6Pb_6$ alloy foil	34.0	0.6	Two compartmentss (Nafion 117)	
Cu/Carbon paper	0.4	8.9	Two compartmentss (SPEEK)	
Electropolished Cu	0.1	10.0	Two compartmentss (AMV Selemion)	8
Cu/ZnO	2.8	12.0	Two compartmentss (Nafion 117)	
Cu ₂ O /Carbon paper	20.0	2.4	Two compartmentss SPE (AMI-7001/ MEA)	
Cu/CuO	2.5	17.3	Two compartmentss (Nafion 117)	
Ru/Cu	42.0	0.1	Two compartmentss (agar bridge)	
Mo/Cu	84.0	0.8	Traditional undivided 3 electrode cell	
Cu ₂ O/ZnO	17.7	10.6	Two compartmentss (Nafion 117)	9
Cu-10-CNT/C	8.3	16.7	Two compartmentss (Nafion 117)	10
Cu ₂ O-MWCNTs	38.0	7.5	Two compartmentss (Nafion 117)	11
Oxide-der, Cu/ C (MOF)	18.0	1.0	Two compartmentss (Nafion 117)	12
CuO _x /ZnO	34.0	2.7	Traditional undivided 3 electrode cell	13
CuCNT-nanowires	47.4	0.9	Traditional undivided 3 electrode cell	14
CuCNT-Impregnation	23.3	0.9	Two compartmentss (Nafion 117)	14
Cu/Graphene	12.7	0.3	Two compartmentss (Nafion 117)	15
Cu/TiO ₂ /Graphene	19.5	0.3	Two compartmentss (Nafion 117)	15
Cu/Cu ₂ O	47.5	7.8	Two compartmentss (Nafion 117)	16
Cu-Y/CS:PVA MCE	68.0	0.3	Membrane coated electrode (MCE)	17
Pd ₈₃ Cu ₁₇ Aerogels	80.0	31.8	H-type cell (Nafion 117)	18
Cu _{1,63} Se _{1/3}	77.6	41.5	H-type cell (Nafion 117)	19
CuSAs/TCNFs	44.0	93.0	H-type cell (Nafion 117)	20

Table S2. State-of-the-art performance of the best catalysts to produce methanol from liquid-phase electrochemical CO₂ conversion.

	Faradaic efficiency, % *											
Electrocatalysts	H ₂	СО	C ₂ H ₄	HCOO ⁻ /HCOOH	CH ₃ OH	C ₂ H ₅ OH	C ₃ H ₈ O	C_2H_6	CH ₃ COO-	CH_4	J _{total} , mA cm ⁻²	Ref.
Pd ₈₃ Cu ₁₇ Aerogels		<1.0			80.0						31.8	18
Cu _{1.63} Se1/3	<1.0	2.0	-	22.0	77.6	-	-	-	-	-	41.5	19
CuSAs/TCNFs	<1.0	54.0	-	-	44.0	-	-	-	-	-	93.0	20
Cu ₂ O					42.3	10.1	2.4				10.0	43
Cu ₂ O/ZnO					27.5	3.9	-				10.0	43
CuB ₉ MOF	34.0	11.0	6.0	13.0	10.0	17.0	-	-	-	-	20.0	33
CuBi ₁₂ MOF	30.0	9.0	7.0	16.0	9.0	28.0	-	-	-	-	20.0	33
B-OD-Cu	45.0	<1.0	20.0	5.0	-	20.0	-	8.0	-	-	33.4	44
Cu 25nm thickness	5.0	5.0	70.0	1.0	-	11.0	-	-	5.0	-	275.0	35
Ag _{0.14} /Cu _{0.86} /PTFE	10.0	3.0	31.0	-	-	41.0	-	-	10.0	5.0	250.0	36
Electrodeposited CuAg alloy	9.8	6.5	55.2	3.0	-	25.9	2.4	-	1.6	1.6	300.0	37
Nanoporous Cu	7.6	14.7	38.6	1.9	-	16.6	4.5	-	2.2	-	653.0	34
Cu Nps/Carbon paper	10.6	38.9	35.0	7.6	-	11.2	2.1	-	0.4	-	430.0	38
Cu ₂ S–Cu-V	12.6	5.5	21.2	15.4	-	25.0	7.0	-	3.0	1.1	400.0	39
Ce(OH)x/Cu/PTFE	14.2	0.5	33.8	1.1	-	42.6	0.6	-	3.3	2.9	300.0	45
NGQ/Cu-nr	10.0	5.0	23.0	5.0	-	45.0	7.0	-	4.0	-	282.0	46
34% N-C/Cu/PTFE	7.4	0.3	37.5	1.7	-	52.3	1.4	-	2.3	1.2	300.0	40
La _{1.8} SrO _{0.2} CuO ₄					2.0	30.5	10.0				180.0	41
Porous copper foam	69.2	4.6	4.0	5.9	-	3.2	4.9	2.8	0.7	-	37.5	42

S3. Faradaic efficiencies for different CO_2R products of the best liquid-phase electrocatalysts.

Empty cells: no information available. (-) These products were not detected. * All values were approximated from the reported literature data.

S4. Ethanol and n-propanol production from CO_2 via liquid-phase electrochemical route

Electrocatalysts	Faradaic efficiency to Ethanol, %	Faradaic efficiency to n-Propanol, %	Total current density, mA cm ⁻²	Cell configuration	Ref.
Graphene/Cu ₂ O/Cufoil	9.9	-	5.3	Two compartments 3-electrodes cell separated by a glass frit	21
Cu(100)	9.7	1.5	5.0	Traditional undivided 3 electrode cell	22
Polycrystalline Cu	21.9	-	5.0	Two compartments separated by Selemion	23
3,6 μ m film of Cu ₂ O	16.4	-	35.0	Two compartments separated by Selemion	24
CuO/TiO ₂	37.5	5.6	8.3	H-type cell (Nafion 117)	25
Cu _{63,9} Au _{36,1} /NCF	12.0	-	-	H-type cell (Nafion 117)	7
Cu/N-Graphene	63.0	-	2.8	Two compartments separated by Selemion	26
Graphene/ZnO/Cu ₂ O/Cufoil	-	30.0	8.0	Two compartments cell separated by a glass frit	27
Cu nanocrystals	-	10.6	16.4	Two compartments separated by Selemion	28
Cu Nps/ Carbon paper x22.5 loading	13.3	5.9	12.7	Two compartments separated by Selemion	29
Cu/Graphene	24.1	3.1	1.3	Gas Diffusion electrode (Nafion 117)	30
CuO/TiO ₂ /Graphene	43.6	3.3	1.4	Gas Diffusion electrode (Nafion 117)	30
Cu _{1ML} /THH Pd NCs	20.4	-	0.6	H-type cell (Nafion 115)	31
Electrodeposited Cu onto Cu mesh	10.0	13.0	10.0 (normalized to the ECSA)	H-type cell (Nafion 117)	32
CuBi ₉ MOF	17.0	-	20.0	Two compartmentss (Nafion 117)	33

Table S3. State-of-the-art performance of the production of ethanol and n-propanol from liquid-phase electrochemical CO₂ conversion.

CuBi ₁₂ MOF	28.0	-	20.0	Two compartmentss (Nafion 117)	33
Nanoporous Cu	16.6	4.5	653.0	Gas Diffusion electrode	34
Cu 25nm thickness	11.0	-	275.0	Flow cell reactor	35
Ag _{0,14} /Cu _{0,86} /PTFE	41.0	-	250.0	Gas Diffusion electrode	36
Electrodeposited CuAg alloy	25.0	-	300.0	Flow cell reactor	37
Cu Nps/Carbon paper	11.0	2.1	430.0	Flow cell reactor	38
Cu ₂ S–Cu-V	25.0	7.0	400.0	Gas Diffusion electrode	39
34% N-C/Cu/PTFE	52.0	1.0	300.0	Gas Diffusion electrode	40
$La_{1,8}Sr_{0,2}CuO_4$	30.5	10.0	180.0	H-cell	41
Porous copper foam	-	4.93	37.5	H-cell	42

*S5. CO*₂*-to-alcohols via catholyte-free electrochemical route.*

Electrocatalysts	Relative FE to methanol, %	Relative FE to ethanol, %	Relative FE to n- Propanol, %	Total current density, mA cm ⁻²	Cell configuration	Ref.
Fe ₁₀ -CNTox/GDL	21.7	70.5	3.3	1.4	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	47
Pt ₁₀ -CNTox/GDL	16.1	25.1	34.8	1.4	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	47
Cu-Graphite/C	75.0	-	-	2.4	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	48
Cu-AC/C	45.0	-	-	2.4	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	48
Cu-CNF/C	2.5	2.0	2.5	2.4	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	48
Cu-CNF/C (PBI)	5.0	2.0	0.2	1.6	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	49
Cu powder	92.8	-	-	1.6	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	50
Cu_C powder	14.1	-	-	1.6	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	50
Cu Oxide/ZnO	0.2	0.2		7.5	Continuous gas-phase CO_2 electroreduction. MEA Configuration.	51
Pb/CNT	6.3	-	-	16.0	Continuous gas-phase	52

Table S4. State-of-the-art performance of the production of alcohols from solvent-less electrochemical CO₂ conversion .

					CO ₂ electroreduction. MEA	
					Configuration.	
Cu(250nm)-C-G/PTFE	-	20.3	5.4	150.0	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	53
Cu/TiO ₂ NTs	23.5	-	-	120.0	Continuous Solid Polymer Electrolyte Membrane (SPE) Reactor	54
34% N-C/Cu/PTFE	-	56.5	2.7	160.0	Continuous gas-phase CO ₂ electroreduction. MEA Configuration.	40
Commercial Cu ₂ O (solid- state electrolyte)	-	7.0	7.0	90.0	CO ₂ electroreduction. MEA Configuration.	55

	Relative Faradaic efficiency, %												
Electrocatalysts	CH ₃ OH	C ₂ H ₄ O	C ₂ H ₅ OH	C ₃ H ₆ O	C ₃ H ₈ O	CH ₃ COOH	CH ₄	C ₂ H ₄ O ₂	СО	C_2H_4	HCOO- /HCOOH	J _{total} , mA cm ⁻²	Ref
Fe ₁₀ - CNTox/GDL	21.7	2.0	70.5	0.1	3.3	2.53	-	-	-	-	-	1.4	47
Pt ₁₀ - CNTox/GDL	16.1	19.8	25.1	0.2	34.8	4.1	-	-	-	-	-	1.4	47
Cu-Graphite/C	75.0	8.0	-	12.0	-	-	2.5	2.5	-	-	-	2.4	48
Cu-AC/C	45.0	48.0	-	5.0	-	-	1.0	1.0	-	-	-	2.4	48
Cu-CNF/C	2.5	70.0	2.0	-	2.5	-	5.0	12.0	10.0	-	-	2.4	48
Cu-CNF/C (PBI)	5.0	68.0	2.0	-	0.2	-	0.6	19.0	5.0	-	-	1.6	49
Cu_25nm powder	-	-	-	-	-	-	2.1	-	0.1	97.8	-	7.5	56
Cu powder	92.7	1.9	-	-	-	-	5.3	-	-	-	-	1.6	50
Cu_C powder	14.1	60.7	-	-	-	-	25.8	-	-	-	-	1.6	50
Cu Oxide/ZnO	0.2	-	0.2	0.2	-	-	0.5	-	0.3	98.5	-	7.5	51
Pb/CNT	6.3	-	-	-	-	-	34.4	-	9.4	-	50.0	16.0	52
Cu(250nm)-C- G/PTFE	-	-	20.3	-	5.4	6.7	-	-	13.5	54.1	-	150.0	53
Cu/TiO ₂ NTs	23.5	-	-	-	-	-	17.6	-	58.8	-	-	120.0	54
34% N- C/Cu/PTFE	-	-	56.5	-	2.7	2.7	-	-	-	38.0	-	160.0	40
Commercial Cu ₂ O (solid- state electrolyte)	-	-	7.0	-	7.0	1.4	-	-	35.2	28.2	21.1	90.0	55

S6. Total Faradaic efficiencies of the best catholyte-free EC CO₂R electrocatalysts

(-) These products were not detected.

S7. References

- H. Guzmán, M. A. Farkhondehfal, K. Rodulfo Tolod, N. Russo and S. Hernández, in Solar Hydrogen Production Processes, Systems and Technologies, Elsevier Inc., 2019, p. 560.
- 2 J. Xiao, D. Mao, X. Guo and J. Yu, *Appl. Surf. Sci.*, 2015, **338**, 146–153.
- 3 T. Witoon, N. Kachaban, W. Donphai, P. Kidkhunthod, K. Faungnawakij, M. Chareonpanich and J. Limtrakul, *Energy Convers. Manag.*, 2016, **118**, 21–31.
- T. Phongamwong, U. Chantaprasertporn, T. Witoon, T. Numpilai, Y. Poo-arporn, W. Limphirat, W. Donphai, P. Dittanet, M. Chareonpanich and J. Limtrakul, *Chem. Eng. J.*, 2017, 316, 692–703.
- 5 S. Saeidi, N. A. S. Amin and M. R. Rahimpour, J. CO2 Util., 2014, 5, 66–81.
- 6 J. Toyir, R. Miloua, N. E. Elkadri, M. Nawdali, H. Toufik, F. Miloua and M. Saito, *Phys. Procedia*, 2009, 2, 1075–1079.
- 7 F. Jia, X. Yu and L. Zhang, J. Power Sources, 2014, 252, 85–89.
- J. Albo, M. Alvarez-Guerra, P. Castaño and A. Irabien, *Green Chem.*, 2015, 17, 2304– 2324.
- J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel and A. Irabien, *Appl. Catal. B Environ.*, 2015, 176–177, 709–717.
- C. Genovese, C. Ampelli, S. Perathoner and G. Centi, *Green Chem.*, 2017, 19, 2406–2415.
- M. Irfan Malik, Z. O. Malaibari, M. Atieh and B. Abussaud, *Chem. Eng. Sci.*, 2016, **152**, 468–477.
- K. Zhao, Y. Liu, X. Quan, S. Chen and H. Yu, ACS Appl. Mater. Interfaces, 2017, 9, 5302–5311.
- 13 M. T. H. Le, Louisiana State University and Agricultural and Mechanical College, 2011.
- B. C. Marepally, C. Ampelli, C. Genovese, F. Tavella, L. Veyre, E. A. Quadrelli, S. Perathoner and G. Centi, *J. CO2 Util.*, 2017, 21, 534–542.
- J. Yuan, M. P. Yang, Q. L. Hu, S. M. Li, H. Wang and J. X. Lu, *J. CO2 Util.*, 2018, 24, 334–340.
- 16 J. Hazarika and M. S. Manna, *Electrochim. Acta*, 2019, **328**, 135053.
- A. Marcos-Madrazo, C. Casado-Coterillo and Á. Irabien, *ChemElectroChem*, 2019, 6, 5273–5282.

- L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang and B. Han, *Angew. Chemie Int. Ed.*, 2018, 57, 14149–14153.
- 19 D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu and B. Han, *Nat. Commun.*, 2019, **10**, 1–9.
- H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu and C. He, J. Am. Chem. Soc.,
 2019, 141, 12717–12723.
- R. A. Geioushy, M. M. Khaled, A. S. Hakeem, K. Alhooshani and C. Basheer, 2017, 785, 138–143.
- 22 Y. Hori, I. Takahashi, O. Koga and N. Hoshi, J. Mol. Catal. A Chem., 2003, 199, 39–47.
- 23 Y. Hori and R. Takahashi, 1989, **85**, 2309–2326.
- D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi and B. S. Yeo, ACS Catal.,
 2015, 5, 2814–2821.
- J. Yuan, J. J. Zhang, M. P. Yang, W. J. Meng, H. Wang and J. X. Lu, *Catalysts*, 2018, 8, 171.
- 26 Y. Song, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, Z. Wu, H. M. Meyer, M. Chi, C. Ma, B. G. Sumpter and A. J. Rondinone, *ChemistrySelect*, 2016, 1, 6055–6061.
- 27 R. A. Geioushy, M. M. Khaled, K. Alhooshani, A. S. Hakeem and A. Rinaldi, *Electrochim. Acta*, 2017, 245, 456–462.
- D. Ren, N. T. Wong, A. D. Handoko, Y. Huang and B. S. Yeo, *J. Phys. Chem. Lett.*, 2016, 7, 20–24.
- 29 D. Kim, C. S. Kley, Y. Li and P. Yang, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 10560– 10565.
- 30 J. Yuan, M. P. Yang, Q. L. Hu, S. M. Li, H. Wang and J. X. Lu, J. CO2 Util., 2018, 24, 334–340.
- F. Y. Zhang, T. Sheng, N. Tian, L. Liu, C. Xiao, B. A. Lu, B. Bin Xu, Z. Y. Zhou and S. G. Sun, *Chem. Commun.*, 2017, 53, 8085–8088.
- 32 M. Rahaman, A. Dutta, A. Zanetti and P. Broekmann, ACS Catal., 2017, 7, 7946–7956.
- J. Albo, M. Perfecto-Irigaray, G. Beobide and A. Irabien, J. CO2 Util., 2019, 33, 157–165.
- 34 J. J. Lv, M. Jouny, W. Luc, W. Zhu, J. J. Zhu and F. Jiao, *Adv. Mater.*, 2018, **30**, 1–8.
- 35 C. T. Dinh, T. Burdyny, G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. Pelayo García De Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton and E. H. Sargent, *Science (80-.).*, 2018, **360**, 783–787.
- 36 Y. C. Li, Z. Wang, T. Yuan, D. H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G.

De Arquer, Y. Wang, C. T. Dinh, O. Voznyy, D. Sinton and E. H. Sargent, *J. Am. Chem. Soc.*, 2019, **141**, 8584–8591.

- 37 T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis and A. A. Gewirth, *J. Am. Chem. Soc.*, 2018, **140**, 5791–5797.
- 38 S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi and P. J. A. Kenis, *J. Power Sources*, 2016, **301**, 219–228.
- T. Zhuang, Z. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng,
 Y. Min, R. Quintero-bermudez, C. T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P. Chen,
 X. Zheng, H. Liang, W. Ge, B. Ye, D. Sinton, S. Yu and E. H. Sargent, *Nat. Catal.*,
 2018, 1, 421–428.
- X. Wang, Z. Wang, F. P. G. De Arquer, C. Dinh, A. Ozden, Y. C. Li, D. Nam, J. Li, Y. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. Mccallum, S. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O. Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton and E. H. Sargent, *Nat. Energy*, 2020, 5, 478–486.
- 41 M. Schwartz, R. L. Cook, K. Victoria M., R. C. MacDuff, J. Patel and A. F. Sammells, J. *Electrochem. Soc.*, 1993, 140, 614.
- 42 J. A. Rudd, E. Kazimierska, L. B. Hamdy, O. J. E. Bain, S. Ahn, A. R. Barron and E. Andreoli, *ChemRxiv*, DOI:10.26434/chemrxiv.12022623.v1.
- 43 J. Albo and A. Irabien, J. Catal., 2016, **343**, 232–239.
- C. Chen, X. Sun, L. Lu, D. Yang, J. Ma, Q. Zhu, Q. Qian and B. Han, *Green Chem.*, 2018, 20, 4579–4583.
- 45 M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton and E. H. Sargent, *Nat. Commun.*, 2019, 10, 1–7.
- 46 C. Chen, X. Yan, S. Liu, Y. Wu, Q. Wan, X. Sun, Q. Zhu, H. Liu, J. Ma, L. Zheng, H. Wu and B. Han, *Angew. Chemie*, 2020, **100049**, 16601–16606.
- 47 C. Genovese, C. Ampelli, S. Perathoner and G. Centi, J. Catal., 2013, 308, 237–249.
- 48 N. Gutiérrez-Guerra, L. Moreno-López, J. C. Serrano-Ruiz, J. L. Valverde and A. de Lucas-Consuegra, *Appl. Catal. B Environ.*, 2016, **188**, 272–282.
- 49 N. Gutiérrez-Guerra, J. L. Valverde, A. Romero, J. C. Serrano-Ruiz and A. de Lucas-Consuegra, *Electrochem. commun.*, 2017, 81, 128–131.
- 50 N. Gutiérrez-Guerra, J. A. González, J. C. Serrano-Ruiz, E. López-Fernández, J. L. Valverde and A. de Lucas-Consuegra, J. Energy Chem., 2019, 46–53.

- 51 I. Merino-Garcia, J. Albo, J. Solla-Gullón, V. Montiel and A. Irabien, J. CO2 Util., 2019,
 31, 135–142.
- J. García, C. Jiménez, F. Martínez, R. Camarillo and J. Rincón, *J. Catal.*, 2018, 367, 72–80.
- 53 C. M. Gabardo, P. Colin, O. Brien, P. Jonathan, J. Li, H. Edward, D. Sinton, C. P. O. Brien, J. P. Edwards, C. Mccallum, Y. Xu, C. Dinh, J. Li, E. H. Sargent and D. Sinton, *Joule*, 2019, 3, 2777–2791.
- 54 S. K. S. Hossain, J. Saleem, S. U. Rahman, S. M. J. Zaidi, G. McKay and C. K. Cheng, *Catalysts*, 2019, 9, 1–19.
- 55 C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitsk, H. N. Alshareef and H. Wang, *Nat. Energy*, 2019, 4, 776–785.
- 56 I. Merino-Garcia, J. Albo and A. Irabien, *Nanotechnology*, 2018, **29**, 14001.