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Summary

In recent years, the words machine learning and artificial intelligence have be-
come common words in news and pop culture.

Although the field traces back its origins into the 50’s of past century, the re-
search area has seen highs and lows, the latter colloquially referred as AI winter.
Experts and researchers in the field have partially attributed the recent renaissance
to the increase of computational power that has unlocked the possibility of perform-
ing large scale experiments and consider more complex models. Recently, however,
researchers has started to warn that the trend of simply throwing more computa-
tional power to be able to achieve better results is no longer sustainable both from
a computational [89] and an environmental point of view [88]. In this work we
focus in particular on a usually neglected aspect of the computational cost balance:
the hyperparameters and hardware topology optimization loop. We do argue, in
fact, that comparing efficiency of methods as, for example, training time required
to reach a target accuracy is not a completely correct procedure. Actually, in fact,
the training/design complexity should be computed as the cost of training a given
model with a given topology times the number of different trials that are necessary
to choose a good performing training scheme. This multiplicative factor, seldom
reported in scientific publications, can easily be in the order of the hundreds, if
not more. Experience and the access to automatic searching tools can lessen the
burden of the number of different trials one has to do, but the current status is far
from being solved.

We argue that an interesting direction, from a practical point of view, is the
one in which we potentially sacrifice optimality of performance in favour of more
efficient schemes. In the first part of the thesis, we focus on the large domain of
stochastic gradient Markov Chain Montecarlo methods (sg-mcmc), a class of algo-
rithms designed to collect samples from complex probability distributions, in which
many hyperparameters need to be selected. We consider an alternative algorithm
that, on a sound theoretical basis, lessens the burden of the need to find accurate
schedules for learning rates. In the second part of the thesis, we explore instead the
realm of classification trees and consider a novel algorithm that builds "reversed
trees" based on the information theoretic concept of Information Bottleneck. The
proposed algorithm is extremely simple, robust to architectural choices and built
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using modular, parallelizable and easy to scale basic blocks.
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Chapter 1

Introduction

This manuscript is focused on contributions to efficient Machine Learning. We
could define Machine learning as the process of computers changing the way they
perform tasks of interest by learning from data without the need for a human to give
direct instructions. Usually the comparison, and thus the selection, among different
algorithms is performed in terms of performance for the considered task and time
and complexity of computations required to reach such performance. However,
comparing different methods only on such bases, does not provide the full picture
of the true cost of an algorithm. In fact almost never in realistic deployment of
machine learning algorithms a unique trial is performed, but several nested loops
across system design choices are performed, greatly increasing the effective overall
cost. Our goal in this dissertation will be the one of describing and proposing
efficient algorithms, basing our exploration on sound theoretical foundations.

We will explore methods that are suited for different types of data. This term,
that refers generically to any kind of information stored on a computer, is the core
of all machine learning algorithms. The class of machine learning problems can be
divided into two broad classes based on the kind of data on which they operate.
The first class is the one in which models are built to work considering continuous
inputs, that is, belonging to the space of real numbers, and models that are specific
for discrete inputs. In this dissertation we consider and discuss about efficiency
problems concerning both classes. We focus for the two class of methods, based
on continuous and discrete data, on two distinct problems: quantification of uncer-
tainty and hardware topology design and optimization respectively. In particular,
we study the efficiency of various methods considering the difficulty of finding good
hyperparameters for the first class of problems and the simplicity of implementation
for the second class. The document is divided into two distinct parts, Part I and
Part II respectively, that can be read independently. The theoretical foundation
for the two modules is self contained in the respective parts.

The first part is focused on the analysis of methods tailored for machine learning
models based on continuous inputs. This class of parametric models, of which
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Introduction

neural networks are currently the most famous example, currently lacks efficient,
robust and scalable methodologies for the estimation of uncertainty linked to the
parameters of interest. While many methods exist and have been proposed, the
problem is far from being solved. In particular, one of the major drawback of
current methodologies is that most of the best performing methods need careful
hand tuning of important hyperparameters. Without computationally scalable and
easy methodologies for uncertainty estimation, it won’t be possible to extend the
usage of these models to scenarios in which uncertainty estimation is of fundamental
importance, such as self driving cars, aided medical diagnosis and many others. We
present a new algorithm, that we call Isotropic Stochastic Gradient Descent (i-sgd),
and explore carefully how the proposed method lessen the burden of finding such
hyperparameters. We first present an idealised version, with theoretical guarantees,
that shed light on the working principle of the proposed method and allows to draw
important comparisons with respect to other concurrent methods. Then we leave
the idealised world and present a practical implementation, performing an empirical
analysis of the performance of the method, showing that the proposed method is
competitive with the state of the art.

The second part of the thesis is concerned with the study of classification meth-
ods for discrete datasets. The most widely adopted class of algorithms to perform
classification in these settings is the class of decision trees. As far as efficiency is
concerned, in classical decision trees, nodes utilization depend on the single input,
forcing us to make system design choices calibrated for the worst case scenario. Most
of the time, a good portion of the nodes are not used, providing a clear example of
inefficiency. In this second part of the thesis, we propose a novel classification algo-
rithm, called Deep Information Networks (DIN), that is based on the Information
Bottleneck principle. The considered principle is essentially a variational frame-
work for the study of interplay between generalization and approximation from an
Information theoretic perspective. We investigate a first variant of the proposed
method, based on hardware capable generating discrete random variables. The
main building blocks are discussed, and their possible hardware implementation is
considered. We then consider a variant of the proposed method, that we call Prob-
abilistic DIN. Probabilistic DIN extend the DIN framework considering ensembles
of multiple networks and a modification of the random variable generation process.
Both variants are carefully explored, providing theoretical insights and performing
numerous experimental validations. Differently from classical decision trees, the
total computational time and cost for all branches is fixed per input and known
in advance. This knowledge, combined with the flexibility and modularity of the
method, can help in taking system design choices. The experimental campaigns
suggest that the considered algorithm is a good alternative to current solution and
worthy of further exploration.

Both parts of the thesis are built on top of sound theoretical bases, that we
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Introduction

present in a didactic way by reducing, as much as possible, the previous knowl-
edge requirements. In particular, the reader familiar with the basic knowledge of
multivariate calculus and probability should be able, by the end of the thesis, to
read and comprehend the formalism for the areas of Langevin Dynamics, Stochas-
tic Integrals, Fokker Planck equations, Montecarlo Integration, Stochastic Gradient
methods, Information Theory, Data compression, Information Bottleneck and Min-
imal Statistical Sufficiency.
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Part I

Stochastic Gradient MonteCarlo
integration
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Chapter 2

Introduction to Part I

In recent years, complex, large scale machine learning models have seen a rapid
expansion thanks to the widespread availability of performing hardware and the
growing capabilities of collecting enormous datasets. In particular, the class of
parametric models, that covers from the simple linear model to the extremely
deep neural network, is currently used for many real world applications both in
academic research and industry. The community has acknowledged as one of the
biggest drawback of current deployment the unavailability of robust, easy to deploy
mechanisms for uncertainty quantification at inference time of such models. This
first part of the thesis is focused exactly on this problem and covers an extremely
popular approach to solve such problems, namely stochastic gradient (sg) based
sampling methods.

The contribution of this first part is twofold: on one side we present a novel
practical algorithm (i-sgd) that allows to collect samples from desired probability
distributions, and on the other we provide a complete tutorial of the stochastic
gradient based sampling methods, trying to use a unified notation that is as sim-
ple as possible. As will be clear after having read the thesis, in fact, sg sampling
methods are techniques that have their roots at the fringe between Stochastic cal-
culus, being based on Stochastic Differential Equations, Statistical Physics and
Chemistry, being Langevin dynamics originally a purely physical phenomenologi-
cal description of certain relaxation processes, and (scalable) Optimization Theory,
being the success of the methods due to the usage of modified (stochastic) gradient
descent. While experts on these subjects easily fill the gaps in their knowledge and
quickly become proficient when attacking the research problems linked to sg-mcmc
methods, novice students can encounter some difficulties in understanding the fine
differences in terms of notations and perspective that emerge across the different
disciplines, such as the choice of discretisation scheme, the (unusual) role of implicit
noise and many others. The humble target of this first part of the thesis is then also
to provide a solid theoretical introduction to the topic, while requiring the minimal
amount of background knowledge.

7



Introduction to Part I

2.1 Overview of Part I
We start our discussion by providing a pictorial representation of the thesis by

using the mindmap depicted in Figure 2.1. The four fundamental concepts treated
in the various chapters can be summarised as follows:

• Chapter 3 provides the theoretical background on Langevin Dynamics, Stochas-
tic Integrals and Fokker Planck equations.

• Chapter 4 treats the problem of Montecarlo integration and its important
application to the computation of integrals in the Bayesian Machine Learning
Framework.

• Chapter 5 is built on top of the link drawn between Langevin Dynamics and
computational efficiency of Gradient Descent. A full overview of the literature
is presented and new light is shed on different tradeoffs.

• Chapter 6 contains a new proposed sampling algorithm called Isotropic SGD,
built considering the theory of Chapter 3 and competitive with many state
of the art competitors.

The gluing element of all chapters is the study of Langevin Dynamics 3.1, grey in
the mindmap of Figure 2.1, and their statistical properties. They can be understood
as a Stochastic generalization of differential equations. Their precise definition
requires particular care and the cleanest way to introduce the problem is through
Stochastic Integrals 3.1.1. The definition of Stochastic Integrals allows to study
the Fokker Planck equations, 3.2,3.2.3, that describe the time evolution of the
probability density functions of the Langevin Dynamics. The chapter is written
such that it is self contained and any reader with basic knowledge of probability
theory and signal processing can understand it. Of particular interest for the reader
whose background is a discipline different from Machine Learning such as physics
or chemistry, is section 3.3. The focus is on the difference between Ito discretisation
(the one used in this thesis) and Stratonivich one (the one common for example
in physics). Using the two conventions provides different results and one cannot
blindly apply approaches derived with one discretisation and apply it to the other
without incurring in errors. Finally section 3.3.1 underlines some particular cases
of Stochastic Differential Equations that will be useful for the rest of the thesis.

The motivating problem of the thesis is presented in Section 4.3, where the
Bayesian approach to Machine Learning is described. The main idea is to con-
sider parametric machine learning models and the Bayesian a posteriori probability
of the parameters given an observation dataset to enhance the uncertainty quan-
tification capabilities of the considered models with respect to the classical ML
approach. While intriguing and elegant, the main drawback of this approach is the
(usual) analytical insolvability of probability integrals of interest. In Section 4.2,

8



2.2 – Notation and Calculations (informal)

Montecarlo integration techniques are introduced, whose main idea is to estimate,
instead of exactly computing, integrals by averaging functions over samples drawn
from particular distributions. Section 4.4 explains how to get samples to be used
for the aforementioned technique, and the particular case of algorithm based on
Langevin Dynamics is introduced.

Langevin dynamics are defined as a continuous time random processes, thus
any attempt of exact simulation on a digital computer must rely on some form
of discretisation. Interestingly, it turns out that for the subclass of dynamics of
interest there is a strong duality between the Euler-Maryama discretisation scheme
for Stochastic Differential Equations and a variant of Gradient Descent Algorithm.
In an infinite computational power world, a straightforward modification of gradi-
ent descent would allow to solve the problem on a sound theoretical basis. How-
ever, obviously, since scalability is an important practical issue with modern large
scale problems we describe (Section 5.2) variants of the discretisation scheme based
on mini-batch (i.e. random subsampling of the whole dataset) gradient methods,
called Stochastic Gradient Descent sgd. Sections 5.3 and 5.4 contain an exhaus-
tive overview of the methods based on variants of sgd and sgd with momentum.
Thanks to our unified notation it is possible to fully appreciate the various assump-
tions and tradeoffs of the various methods by investigating the link between noise,
learning rates and preconditioning matrices.

The whole Chapter 6 is devoted to Isotropic SGD, a simple and scalable variant
of SGD that we propose. Our main objective is to derive a simple, scalable and
easy to tune algorithm. We describe an idealised version of the proposed algorithm
in Section 6.3. By leveraging the theory described in Chapter 3 it is possible to
prove that the proposed algorithm guarantees to obtain samples from the true pos-
terior. We then carefully analyse a practical version in Section 6.4, based on a well
grounded set of assumptions. Finally, a large experimental campaign comparing
the proposed method and many competitors is presented in Section 6.6.

Conclusions are presented in Chapter 7, where the summary of the whole work
is presented.

2.2 Notation and Calculations (informal)
In this brief section we introduce the necessary notations and calculations.
We will often work with systems of equations, that we describe using matricial

notation. We indicate scalars with lowercase symbols, e.g. a , vectors (always
inteded column) with bold lowercase symbols, a. When considering the single jth

element of the vector a, we use the notation (a)j = aj. Transposition is indicated
with the symbol ⊤. Matrices are indicated with bold, uppercase letters, A.

We indicate with p the probability density function (p.d.f.), of a real random
variable x, i.e. x ∼ px(x̂). Some text refer to the random density of the random

9
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2.2 – Notation and Calculations (informal)

variable x simply as p(x). While this is a commonly adopted choice in many disci-
plines, we do choose the extended notation to avoid ambiguities in distinguishing
between the random variable and a value assumed by the variable. To help the
reader throughout the text, we usually choose as the arbitrary variable inside the
density function the same symbol as the corresponding random variable with an
hat (ˆ) symbol on top.

When dealing with random quantities, we indicate the expected value using the
symbol E(·). If the considered quantity is multivariate, i.e. the object is determined
by multiple random variables, and there is the need to average out only some of the
components, we append the subscript corresponding to the averaged out variable.
We make the concept clearer with an example

z = [x, y] ∼ px,y(x̂, ŷ)

y = Ex(z) ∼
∫︂

px,y(x̂, ŷ)dx̂.

We indicate the multivariate Gaussian probability density function using the fol-
lowing notation

log (p(x̂)) = −1
2
(︂
log (|Det(2πΣ)) |+ (x̂− µ)⊤Σ(x̂− µ)

)︂
⇐⇒ x ∼ N (µ, Σ)

The indicator function 1(·) is a non differentiable, piecewise constant function
that maps events into {0,1}. It takes value 1 if the considered event is verified and
0 otherwise. For example

1(exp(x) < 1) =
⎧⎨⎩1 if exp(x) < 1

0 if exp(x) ≥ 1
=
⎧⎨⎩1 if x < 0

0 if x ≥ 0

The Dirac delta is a generalized function. If one desires to be formally com-
pletely correct, the Dirac delta is an object that can used (and makes sense) only
inside an integral. In the general literature of signal processing and physics however
the usage is relaxed and it is considered as a valid object even when existing alone.
There are several different ways of defining the Dirac delta as limit of classical
functions, two of the most common being

δ(x) = lim
h→0

1√︂
π|h|

exp
(︄
−x2

h2

)︄

and
δ(x) = lim

h→0

1
h
1

(︄
−h

2 ≤ x ≤ h

2

)︄
The multidimensional Dirac delta can be defined as δ(x) = ∏︁

i δ(xi).
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Introduction to Part I

We often deal with time varying quantities (signals). We distinguish between
continuous time signals, i.e. signals whose domain is the real axis, and discrete
time ones, signals whose domain is the set of integers. We indicate continuous time
signal arguments with the classical round parentheses as x(t), while discrete time
ones using the square brakets as x[n].

Throughout the work we make heavy use of differential operators. In the follow-
ing we define their properties and some useful equalities when dealing with linear
algebra-like operations. Notice that this presentation is carried at an informal level,
it is assumed that the reader is robustly familiar with all the described concepts
and thus the main purpose of the chapter is to set a common notation to lighten
the reading of the thesis. It is not then, by any means, a complete and correct
presentation, and the interested reader is referred to [12] for a complete and precise
discussion.

Consider an open subset of RN . The partial differential operator ∂
∂xi

, sometimes
simply ∂i, maps every smooth function f(·), in the usual sense of parial derivative
∂f(x)
∂xi

, i.e. ∂
∂xi

: f → R.
The ∇ operator is simply an N × 1 vector containing all partial derivatives, i.e.

∇ = [∂0, ∂1, . . . , ∂N−1]⊤ (2.1)

When applied to a function, it produces a vector field

∇f(x) = [∂0f, ∂1f, . . . , ∂N−1f ]⊤ (2.2)

The first important property we notice is that the ∇ operator is not commutative,
∇f /= f∇.

When applied to a multivariate function a(x) ∈ RN , the linear algebra rules for
the dimensions must be respected, i.e. ∇a⊤ is valid, ∇⊤a is valid, while ∇a,∇⊤a⊤

are not. The explicit form can be expressed as

(∇a⊤)i,j = ∂iaj, ∇⊤a =
∑︂

i

∂iai. (2.3)

We define moreover the ∆ operator as ∆i,j = ∂i∂j, or in vectorial form ∆ =
∇∇⊤. All the properties needed in this thesis during calculations can be obtained
as particular cases of the following following quantity: ∇⊤(fMa), where M ∈
RN×M , a ∈ RM , f ∈ R, from which other particular cases are easily derived:

∇⊤(fMa) =
∑︂
i,j

∂i(fMi,jaj) =
∑︂
i,j

∂i(f)Mi,jaj + f∂i(Mi,j)aj + fMi,j∂i(aj) =

∇⊤(f)Ma + f∇⊤(M)a + fTr(M⊤∇a⊤)

Finally, whenever the quantieties a and b belong to a space S where scalar
product is defined, we indicate their scalar product as ⟨a, b⟩.

12



Chapter 3

Langevin Dynamics and Fokker
Planck equations

In this chapter, we build the mathematical tools that are needed to understand
the basic idea behind stochastic dynamics simulations for Montecarlo integration.
To generate samples from a given probability distribution, simulate a stochastic
system whose stationary distribution is the desired probability, collect samples in
the stationary regime and use them to compute the Montecarlo integrals of interest.
The most important mathematical tool we will develop in this chapter is the Fokker
Planck equation (fpe). Named after Adriaan Fokker [24] and Max Planck [68] , it
is a partial differential equation that describes the time evolution of the first order
probability distribution for a large class of random processes. Having its roots in
physics, it describes the velocity of a particle under the influence of drag forces and
stochastic forces, but can be easily conceptually generalized to different settings.

We introduce in Section 3.1 the concepts of Wiener process, white noise and
Langevin dynamics, the central topic of the thesis. Being stochastic generalizations
of classical differential equations, their formal definition is tricky. We propose to
introduce the reader to the general topic through Stochastic Integrals, described
in Section 3.1.1. Having set the roots, we can expand the discussion and present
the mathematical workhorse of the thesis, the Fokker Planck equations, Sections
3.2,3.2.3, that allow to study the time evolution of the probability density functions
of the Langevin Dynamics. Since the target audience of this thesis is broader
than the machine learning community, we include a whole section dedicated to
the technicalities linked to different discretisation schemes that appear in different
scientific fields such as physics or chemistry. Indeed, in section 3.3, the focus
is on the difference between Ito discretisation (the one used in this thesis) and
Stratonivich one (the one common for example in physics). It is not possible,
besides from special cases, to blindly convert between the two notations without
incurring in some form of error, and thus a precise set of conversion rules are

13



Langevin Dynamics and Fokker Planck equations

presented. Finally, in Section 3.3.1, we present some of the particular cases of
Stochastic Differential Equations that will be useful for the rest of the thesis.

3.1 Wiener process, white noise, and Langevin
dynamics

The Wiener process [22] is the stochastic process w(t) that satisfies the following
properties:

• w(0) = 0

• w(t) is composed of independent increments. The increment of the stochastic
process from t ≥ 0 to t + u ≥ t, i.e. δw = w(t + u) − w(t) is statistically
independent from all the past of w(t). Formally, the following property holds:

pw(t+u)−w(t)|w(s)(ŵ1|ŵ0) = pw(t+u)−w(t)(ŵ1) ∀t ≥ 0, u ≥ 0, s < t (3.1)

• w(t) is composed of Gaussian increments. In particular w(t + u) − w(t) ∼
N (0, uI)

Of particular interest are the infinitesimal increments dw(t) = w(t + dt) − w(t).
Considering the aforementioned properties, it is easy to show that dw(t) ∼ N (0, dtI).
Some readers, whose background is stronger in engineering or physics than math-
ematics, will be more familiar with the concept of white noise instead of Wiener
process. Formally it is possible to obtain a Gaussian white noise process n(t) as

n(t) = dw(t)
dt

(3.2)

A Gaussian process n(t) is defined as white if its autocorrelation function is the
Dirac delta,

E[n(t)n⊤(t + τ)] = Iδ(τ). (3.3)
From (3.2) we notice that n(t) ∼ N (0, 1

dt
I). Moreover, due to the independence of

increments property, we have that, for any τ > 0, n(t+τ) and n(t) are independent.
Combining together we can write that

E[n(t)n⊤(t + τ)] =
⎧⎨⎩

1
dt

I if τ = 0
0 if τ /= 0

(3.4)

At least informally, we can then state the equivalence between (3.3) and (3.4). In
fact, one of the possible representations of the Dirac delta is

δ(z) = lim
h→0

1
h
1

(︄
−h

2 ≤ z ≤ h

2

)︄
(3.5)
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3.1 – Wiener process, white noise, and Langevin dynamics

from which the informal equivalence is evident. In the applied mathematics liter-
ature the Wiener process formalism is preferred to the white noise one, but often
in other fields of engineering or physics both approaches are considered, depending
on which object is simpler to treat [45].

Having introduced the concept of Wiener process, we are able to define the
concept of Langevin dynamic. It is best understood using physical analogies.
Consider a system whose internal state at time instant t can be described by an
N−dimensional random variable x(t). We say that the time evolution of the ran-
dom variable x(t) is ruled by an over-damped Langevin dynamic if the infinitesimal
increments of system state, dx(t) = x(t + dt)−x(t), are described by the following
stochastic differential equation (Ito’s convention, more on that in section 3.1.1)

dx(t) = s(x(t))dt +
√

2D(x(t))dw(t) (3.6)

where s(·) : RN → RN is the so called drift or driving force, while D(·) : RN →
RN×M is called diffusion matrix. The quantity w(t) is an M−dimensional Wiener
process. The equation can be understood as a generalization of a classical deter-
ministic differential equation dx(t)

dt
= s(x(t)) for the time evolution of a physical

system, to the case where external, random forces acts as well. The role of random
forces is taken by the Wiener process and the diffusion matrix D(x(t)) describes
the (possible) dependence of the random forces strength and correlations on the
system internal state x(t).

3.1.1 Stochastic integral: (informal) introduction
Introducing correctly from a formal point of view the formulation of an sde

(Stochastic Differential Equation) is a topic worth by itself a dissertation. In the
spirit of practicality, we simply underline that one of the key elements is the defini-
tion of the stochastic integral. discretisation, or the infinitesimal time grid spacing
that is selected to build the sde (and the corresponding integral), has an impact on
the result. Starting from a generic sde without discretisation prescription specified
(also called pre-equation)

dx = sdt +
√

2Ddw (3.7)
we can naively write the corresponding integral equation as

x(T )− x(0) =
T∫︂

0

s(x(t))dt +
√

2
T∫︂

0

D(x(t))dw(t) (3.8)

and consider the matter solved. Actually, we are missing an extremely important
piece of information: how to compute

T∫︁
0

D(x(t))dw(t)?
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Langevin Dynamics and Fokker Planck equations

The problem is better explained in terms of the classical Riemann-Stieltjes in-
tegral (1-d for simplicity of exposition). Consider two functions f, g, defined on the
interval [a, b], and define the integral

b∫︂
a

f(t)dg(t) = lim
||P||→0

n−1∑︂
i=0

f(τi)(g(ti)− g(ti−1)), (3.9)

where P = {t0 = a, t1, . . . tn = b}, ti+1 > ti, ||P|| = maxi |ti+1 − ti| and
τi ∈ [ti, ti+1]. A fundamental result [46] states that if f, g have bounded vari-
ation1 then the integral exists and does not depend on the choice of the τi. When
computing

∫︁
D(x(t))dw(t), however, the quantity w(t) does not have bounded vari-

ation. The idea is that if a function has bounded variation, then it is everywhere
differentiable. Since the Wiener process w(t) (whose derivative is white noise) is
almost surely nowhere differentiable, then w(t) does not have bounded variation.
This is fundamentally, the reason why the choice of the τi influences the result.

Implicitly and without being rigorous, when we introduced Langevin dynamics
in equation (3.6) we chose the following discretisation scheme:

tn = ndt τn = tn. (3.10)

This choice, called Ito discretisation, is however, up to this point, arbitrary, and
different choices with different resulting dynamics are possible.

This apparent paradox and the problem of choosing different discretisation
schemes starting from a mathematical model, have been the subject of an intense
academical discussion [84],[72]. In the realm of pure mathematics the problem is
unsolved, since there is no reason to favour one definition against others, as long
as the built stochastic calculus is consistent. When dealing with real modelling
problems, in applied sciences, the consensus is that depending on the considered
scenario, some discretisations are more natural than others.

Luckily for us, we do not need to consider this problem: the discretisation
scheme is in fact imposed by the nature of gradient algorithms considered in this
thesis. With respect to a physical, chemical or economical modelling problem
in which the correct discretisation scheme has to be chosen to avoid producing
wrong results, we here face the backward problem: we start from a discretisation
scheme (corresponding to gradient descent and variants) and describe its properties
using the continuous time limit. It is important however, to take particular care
when manipulating the quantities of interest, since in the considered formalism
unintuitive rules of calculus hold (the classical chain rule is not valid).

1The total variation of a function f is defined as TV (f) = supP
n−1∑︁
i=0
|f(ti+1)−f(ti)|, a function

is said to have bounded variation if its total variation is finite.
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3.2 – Fokker Planck equations associated to Langevin dynamics

3.2 Fokker Planck equations associated to Langevin
dynamics

The knowledge of the probability density function distribution px(t)(x̂, t) for the
random process x(t) governed by the a Langevin dynamic is obviously of paramount
importance2. There are multiple possibilities for deriving the considered probabil-
ity distribution, from path integral formulations to particular techniques for simple
systems, such as ones driven by linear forces and whose diffusion is state indepen-
dent. In this work, we do consider the Fokker Planck formalism. Our aim is to
prove that for a stochastic system ruled by an equation of the form (3.6), the Fokker
Planck equation

∂px(t)(x̂, t)
∂t

= Tr
{︂
∇
[︂
−s(x̂)⊤px(t)(x̂, t) +∇⊤

(︂
Σ(x̂)px(t)(x̂, t)

)︂]︂}︂
(3.11)

describes the time evolution for the probability distribution of system state, where
Σ(x̂) = D(x̂)D(x̂)⊤. We will give particular attention to the stationary distribu-
tion, that is ρss(x̂) = lim

t→∞
px(t)(x̂, t), that satisfies the following:

0 = Tr
{︂
∇
[︂
−s(x̂)⊤ρss(x̂) +∇⊤ (Σ(x̂)ρss(x̂))

]︂}︂
. (3.12)

An extremely important property that will be useful in next chatpers is that an
sde with s(x̂) = −∇f(x̂) and Σ(x̂) = I, has stationary distribution that satisfies:

ρss(x̂) ∝ exp(−f(x̂)). (3.13)

as is easily checked by substitution in (3.12):

0 = Tr
{︂
∇
[︂
∇⊤f(x̂)ρss(x̂) +∇⊤ (ρss(x̂))

]︂}︂
0 = Tr

{︂
∇
[︂
∇⊤f(x̂) exp(−f(x̂)) +∇⊤ (exp(−f(x̂)))

]︂}︂
0 = Tr

{︂
∇
[︂
∇⊤f(x̂) exp(−f(x̂))− exp(−f(x̂))∇⊤f(x̂)

]︂}︂
0 = 0

Similarly, if s(x̂) = ∇f(x̂), then

ρss(x̂) ∝ exp(f(x̂)). (3.14)

2With a slight abuse of notation we write the density function as px(t)(x̂, t) instead of simply
px(t)(x̂). The time variable t is not random and thus is not necessary to write it twice. However,
we choose this convention to be more uniform w.r.t. the literature on applied Fokker Planck
equations.
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Langevin Dynamics and Fokker Planck equations

3.2.1 Ito’s Lemma
Starting from a generic Langevin dynamic (3.6):

dx(t) = s(x(t))dt +
√

2D(x(t))dw(t),

the stochastic process x(t) is implicitely defined. The first fundamental type of
investigation we need to perform in order to characterize and understand this class
of processes is the study of the behaviour of a generic function h : RN → R
applied to the stochastic process x(t). The study of this transformation will be
instrumental to understand the new rules of calculus that are valid when using the
Ito prescription for sde and later used as building tool for the proof of the Fokker
Planck equation.

A naive application of chain rule would suggest the following:

dh(t) = ∇⊤
x̂ h(x̂)|x̂=x(t)dx(t) = ∇⊤h(x(t))dx(t), (3.15)

where the second equality is used to introduce a simpler abuse of notation. It turns
out that (3.15) is wrong, and needs to be adjusted with second order derivatives.
As discussed previously, due to the unbounded nature of Wiener processes, strange
phenomena can happen. The correct equality is usually called Ito’s Lemma [44],
and describes the main difference between ordinary and (Ito) stochastic calculus.

We start by considering the differential of the new function

dh(t) = h(x(t + dt))− h(x(t)) (3.16)

The first term on the right of (3.16) can be expanded as

h(x(t + dt)) = h(x(t) + dx(t)) = h(x(t)) +∇⊤h(x(t))dx(t)+
1
2dx(t)⊤∆h(x(t))dx(t) + . . . (3.17)

and consequently

dh(t) = ∇⊤h(x(t))dx(t) + 1
2dx(t)⊤∆h(x(t))dx(t) + . . . (3.18)

To avoid clutter, in this section, whenever unanbiguous, we remove the explicit
dependencies of the considered quantities (for example dx(t)→ dx or ∆h(x(t))→
∆h).

Since we are working with infinitesimals, and from (3.6) it is clear that dx is of
order O(dt), normally one would truncate (3.18) at the first term. We show instead
that, counterintutively, the second term is a quantity of order O(dt) and needs thus
to be kept. Focusing on the second term, in fact

dx⊤∆hdx = Tr
(︂
∆hdxdx⊤

)︂
=

Tr(∆hss⊤dt2) + 2
√

2Tr(∆hsdw⊤D⊤dt) + 2Tr(∆hDdwdw⊤D⊤) (3.19)
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3.2 – Fokker Planck equations associated to Langevin dynamics

The first term, Tr(∆hss⊤dt2) = s⊤∆hsdt2, is a quantity of order O(dt2) and can
thus be safely neglected. The second term, Tr(∆hsdw⊤D⊤dt), is a zero mean
Gaussian random variable with variance O(dt3) (due to dwdt), and thus in the
order dt any fluctuation from the expected value can be neglected, considering de
facto the term equal to zero. Finally the last term,Tr(∆hDdwdw⊤D⊤), is instead
surprisingly of order O(dt).

Consider in fact the random matrix M, Mi,j = dwidwj. When i /= j it is
easy to show that E[Mi,j] = 0, var(Mi,j) = dt2. This implies that Mi,j is a zero
mean random variable with variance quadratic in dt. Since dt is an infinitesimal,
and we are considering perturbation up to order O(dt) we can safely consider to
be deterministically determined as Mi,j = 0. When i = j, instead the expected
value is E[Mi,i] = dt and the variance is var(Mi,j) = E[(dw2

i )2] − E[(dw2
i )]2 =

3dt2 − dt2 = 2dt2. Again, we can interpret Mi,i as the determinstic quantity dt
perturbed by a random variable whose variance is order dt2 (thus the perturbation
is negligible). Loosely speaking we thus have the following equality: Mi,j = δi,jdt.
Consequently, we can substitute in the third term of (3.19) dwdw⊤ = dtI, and
obtain dtTr(∆hDD⊤) = dtTr(∆hΣ). The full differential is then

dh = ∇⊤hdx + Tr(∆hΣ)dt

and since dx = sdt +
√

2Ddw, we can write

dh = ∇⊤hsdt +
√

2∇⊤hDdw + Tr(∆hΣ)dt

Rearranging, and reintroducing the explicit dependencies, we have

dh(t) =
(︂
∇⊤h(x(t))s(x(t)) + Tr(∆h(x(t))Σ(x(t))

)︂
dt

+
√

2∇⊤h(x(t))D(x(t))dw(t). (3.20)

The result (3.20) is usually called Ito’s Lemma. The expected value of dh(t) con-
ditioned on x(t) = x̂ is

E[dh(t)|x(t) = x̂] =
(︂
∇⊤h(x̂)s(x̂) + Tr(∆h(x̂)Σ(x̂)

)︂
dt (3.21)

Notice that other conventions for sde are possible, such as the Stratonovich one
[72], for which different calculus rules hold. On one side, the Ito’s convention
explicitely describes the time evolution of the stochastic process and many results
are easily proven thanks to the Markov propery of the sde. On the other side, the
Stratonovich one has a more natural interpretation in physical applications and
the usual rule of calculus are valid. In this work, we present results in terms of
Ito’s convention, mainly due to this discretisation scheme and the classical gradient
descent training methods used in machine learning. However, as we will show in
Section 3.3, it is always possible to translate between the two conventions. This is
useful, in particular, in understanding peculiar effects such as noise induced drifts.
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Langevin Dynamics and Fokker Planck equations

3.2.2 Infinitesimal generator
In the theory of stochastic processes, the quantity described by (3.21) is linked

to the so called infinitesimal generator. Many important properties of the stochastic
system can be described having just the knowledge of the infinitesimal generator,
and it is thus of fundamental importance.

The infinitesimal generator is an operator A that acts on continuous, vanishing
at infinity set of functions h : RN → R, as follows

Ah(x̂) = lim
δt→0

E(h(x(δt))|x(0) = x̂)− h(x̂)
δt

(3.22)

If we restrict ourselves to Markov processes, we can rewrite the previous defini-
tion as

Ah(x̂) = lim
δt→0

E(h(x(t + δt))|x(t) = x̂)− h(x̂)
δt

. (3.23)

We recast the definition of infinitesimal generator into the following equivalent,
but easier to be treated, form:

lim
δt→0

[δtAh(x̂)− (E(h(x(t + δt))|x(t) = x̂)− h(x̂))] = 0, (3.24)

and since h(x̂) = E(h(x(t))|x(t) = x̂), we can further manipulate the expression as

lim
δt→0

[δtAh(x̂)− E(h(x(t + δt)− h(x(t))|x(t) = x̂)] = 0. (3.25)

We recognize, in the second term of (3.25), the expected value of the differential
described by (3.21). We then write, by substituting δt→ dt,

dtAh(x̂)− E(dh(x(t)|x(t) = x̂) =
dtAh(x̂)− dt

(︂
∇⊤h(x̂)s(x̂) + Tr(∆h(x̂)Σ(x̂)

)︂
= 0.

We thus derive that

Ah(x̂) =
(︂
∇⊤h(x̂)s(x̂) + Tr(∆h(x̂)Σ(x̂))

)︂
, (3.26)

Notice that A is clearly a linear (in the function h) differential operator:

Ah(x̂) =
∑︂

i

si(x) ∂

∂x̂i

h(x̂) +
∑︂
i,j

Σi,j(x̂) ∂2

∂x̂i∂x̂j

h(x̂) (3.27)

Having defined the infinitesimal generator A, it is possible to derive its adjoint,
i.e, the operator A† acting on the same set of functions for which ⟨Ah(x̂), g(x̂)⟩ =
⟨A†g(x̂), h(x̂)⟩, where g(x̂) is again in the set of continuous functions vanishing
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3.2 – Fokker Planck equations associated to Langevin dynamics

at infinity. The adjoint of a linear differential A† operator is linear in the various
components of A, i.e. if A = ∑︁

k
A(k), then A† = ∑︁

k
A†

(k). In fact

⟨Ah(x̂), g(x̂)⟩ = ⟨
∑︂

k

A(k)h(x̂), g(x̂)⟩ =
∑︂

k

⟨A(k)h(x̂), g(x̂)⟩ =∑︂
k

⟨A†
(k)g(x̂), h(x̂)⟩ = ⟨

∑︂
k

A†
(k)g(x̂), h(x̂)⟩ = ⟨A†g(x̂), h(x̂)⟩,

and clearly from the last equality A† = ∑︁
k
A†

(k). To find the adjoint of a generic
operator, it is sufficient then to find the adjoint of the various components. Consider

Dh(x̂) = q(x̂) ∂N

∂x̂i0 , ∂x̂i1 , . . . , ∂x̂iN−1

h(x̂). (3.28)

The inner product ⟨Dh(x̂), g(x̂)⟩ is then written as∫︂
g(x̂)Dh(x̂)dx̂ =

∫︂
g(x̂)q(x̂) ∂N

∂x̂i0 , ∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂ =
∫︂ (︄∫︂

g(x̂)q(x̂) ∂

∂x̂i0

∂N−1

∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂i0

)︄
dx̂/i0

where all the integration limits are ±∞. If we focus on the inner integral, and
thanks to integration by parts

I(x̂/i0) =
∫︂

g(x̂)q(x̂) ∂

∂x̂i0

∂N−1

∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂i0 =

g(x̂/i0 , xi0)q(x/i0 , xi0) ∂N−1

∂x̂i1 , . . . , ∂x̂iN−1

h(x̂/i0 , xi0)
⃓⃓⃓⃓
⃓
xi0 =+∞

xi0 =−∞
−

∫︂ ∂

∂x̂i0

(g(x̂)q(x̂)) ∂N−1

∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂i0 .

Since we are considerying vanishing functions, g(x̂/i0 , +∞) = g(x̂/i0 ,−∞) = 0 and
thus

I(x̂/i0) = −
∫︂ ∂

∂x̂i0

(g(x̂)q(x̂)) ∂N−1

∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂i0 . (3.29)

Consequently, we can rewrite the inner product as∫︂
g(x̂)q(x̂) ∂N

∂x̂i0 , ∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂ = −
∫︂ ∂

∂x̂i0

(g(x̂)q(x̂)) ∂N−1

∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂.

Repeating the same procedure Ntimes, by induction, we write that∫︂
g(x̂)q(x̂) ∂N

∂x̂i0 , ∂x̂i1 , . . . , ∂x̂iN−1

h(x̂)dx̂ = (−1)N
∫︂ ∂N

∂x̂i0 , ∂x̂i1 , . . . , ∂x̂iN−1

(g(x̂)q(x̂))h(x̂)dx̂.

(3.30)
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By looking at (3.30), it is easy to derive that the adjoint of the considered operator
(3.28) is

D†(x̂) = (−1)N ∂N

∂x̂i0 , ∂x̂i1 , . . . , ∂x̂iN−1

(q(x̂)h(x̂)). (3.31)

Due to linearity properties, we can then derive the adjoint of the infinitesimal
generator (written as in form (3.26), or (3.27)):

A†h(x̂) = −
∑︂

i

∂

∂x̂i

si(x̂)h(x̂) +
∑︂
i,j

∂2

∂x̂i∂x̂j

Σi,j(x̂)h(x̂) (3.32)

or
A†h(x̂) = −∇⊤(s(x̂)h(x̂)) + Tr(∇∇⊤(Σ(x̂)h(x̂))) (3.33)

3.2.3 Proof of Fokker Planck Equations
We present here a proof of Fokker Planck equations based on the adjoint of

infinitesimal generator.
Consider again a smooth, vanishing at infinity function h(x̂). The expected

value of h(x(t)) conditioned on initial conditions can be written as

E[h(x(t))|x(0) = x̂0] =
∫︂

h(x̂)px(t)|x(0)(x̂, t|x̂0,0)dx̂. (3.34)

The expected value of the differential dh(x(t)) can be written, if we consider
(3.34), as

E[dh(x(t))|x(0) = x̂0] =
∫︂

h(x̂)dpx(t)|x(0)(x̂, t|x̂0,0)dx̂, (3.35)

where we defined dpx(t)|x(0)(x̂, t|x̂0,0) = px(t+dt)|x(0)(x̂, t+dt|x̂0,0)−px(t)|x(0)(x̂, t|x̂0,0).
It also holds that, due to the Markovian nature of the process,

E[dh(x(t))|x(0) = x̂0] =
∫︂

E[dh(x(t))|x(t) = x̂]px(t)|x(0)(x̂, t|x̂0,0)dx̂. (3.36)

It holds, combining (3.35),(3.36) and (3.26), that∫︂
h(x̂)dpx(t)|x(0)(x̂, t|x̂0,0)dx̂ = dt

∫︂
Ah(x̂)px(t)|x(0)(x̂, t|x̂0,0)dx̂ =

dt
∫︂

h(x̂)A†px(t)|x(0)(x̂, t|x̂0,0)dx̂ (3.37)

Since (3.37) must hold for all smooth, vanishing functions h, it is evident that

dpx(t)|x(0)(x̂, t|x̂0,0) = dtA†px(t)|x(0)(x̂, t|x̂0,0). (3.38)
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Consequently, recognizing the time derivative of the density function in the previous
expression

∂px(t)|x(0)(x̂, t|x̂0,0)
∂t

= A†px(t)|x(0)(x̂, t|x̂0,0) =

Tr
{︂
∇
[︂
−s(x̂)⊤px(t)|x(0)(x̂, t|x̂0,0) +∇⊤

(︂
Σ(x̂)px(t)|x(0)(x̂, t|x̂0,0)

)︂]︂}︂
(3.39)

where we used (3.33). Dependence on initial conditions is usually omitted from the
notation and thus (3.39) is completely equivalent to (3.11).

3.3 Ito vs Stratonovich: discretisation choice, noise
induced drift and conversion between the two

As anticipated in the previous Sections, many different discretisation schemes
are possible. Toghether with Ito sde, a Stratonovich sde, whose expression is

dx(t) = s(x(t))dt +
√

2D(x(t)) ◦ dw(t), (3.40)

are the most common discretisation schemes. Notice the usage of symbol ◦ to
distinguish from other discretisations. Functionally, the above Stratonovich sde
corresponds to an Ito sde of the following form

dx(t) = s
(︄

x(t) + x(t + dt)
2

)︄
dt +

√
2D

(︄
x(t) + x(t + dt)

2

)︄
dw(t), (3.41)

or, since x(t) + dx(t)
2 = x(t)+x(t+dt)

2 , to

dx(t) = s(x(t) + dx(t)
2 )dt +

√
2D(x(t) + dx(t)

2 )dw(t). (3.42)

Sligthly modifying the results of the previous section, it is trivial to prove that, for
an usual smooth bounded function h,

h(x(t) + αdx(t)) = h(x(t)) +
(︂
α∇⊤h(x(t))s(x(t)) + α2Tr(∆h(x(t))Σ(x(t))

)︂
dt

+ α
√

2∇⊤h(x(t))D(x(t))dw(t) (3.43)

Using this property, our goal is to derive the needed adjustments to an equation in
the form of (3.42) to write it again as an equivalent Ito sde. The first equality we
need to derive is the expression for the p-th element of the new drift,

sp(x(t) + αdx(t))dt = sp(x(t))dt +
(︂
α∇⊤sp(x(t))s(x(t)) + α2Tr(∆sp(x(t))Σ(x(t))

)︂
dt2

+ α
√

2∇⊤sp(x(t))D(x(t))dw(t)dt = sp(x(t))dt +O(dt2), (3.44)
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where the last equality is derived with similar arguments to the previous sec-
tion. Switching our attention to the p−th element of the noise component, i.e.√

2∑︁
q

Dp,q(x(t) + αdx(t))dwq(t), the single term of the sum is expanded as

Dp,q(x(t) + αdx(t))dwq(t) = Dp,q(x(t))dwq(t) + (· · · ) dtdwq(t)+
α
√

2∇⊤Dp,q(x(t))D(x(t))dw(t)dwq(t) = Dp,q(x(t))dwq(t)+
α
√

2
∑︂

i

∂i(Dp,q(x(t)))
∑︂

r

Di,r(x(t))dwr(t)dwq(t) =

Dp,q(x(t))dwq(t) + α
√

2
∑︂
i,r

∂i(Dp,q(x(t)))Di,r(x(t))δr,qdt =

Dp,q(x(t))dwq(t) + α
√

2
∑︂

i

∂i(Dp,q(x(t)))Di,q(x(t))dt (3.45)

It is then possible to write
√

2
∑︂

q

Dp,q(x(t) + αdx(t))dwq(t) =
√

2
∑︂

q

Dp,q(x(t))dwq(t) + 2αdt
∑︂
i,q

∂i(Dp,q(x(t)))Di,q(x(t)). (3.46)

A more compact form in vectorial notation can be obtained by manipulating
the second term of the above equation. We omit for simplicity the dependency on
x(t). Starting with the basic application of chain rule∑︂

i,q

∂i(Dp,q)Di,q =
∑︂
i,q

∂i(Dp,qDi,q)−
∑︂
i,q

∂i(Di,q)Dp,q (3.47)

Since (DD⊤)i,p = ∑︁
q

Di,qDp,q, then (∇⊤(DD⊤))p = ∑︁
i

∂i(DD⊤)i,p = ∑︁
i,q

∂i(Di,qDp,q).

Similarly, (∇⊤D)q = ∑︁
i

∂iDi,q, then (∇⊤(D)D⊤)p = ∑︁
i,q

∂iDi,qDp,q. We can then

write in vectorized form the term in (3.47) as∑︂
i,q

∂i(Dp,q)Di,q = (∇⊤(DD⊤))p − (∇⊤(D)D⊤)p (3.48)

Finally, we have from (3.44) that s(x(t) + dx(t)
2 )dt = s(x(t))dt. From (3.46),(3.48)

and since α = 1
2 we instead have that

√
2D(x(t)+ dx(t)

2 )dw(t) =
√

2D(x(t))dw(t)+
((∇⊤(DD⊤)) − (∇⊤(D)D⊤))⊤dt. We can thus recast a Stratonovich sde into Ito
form as follows

dx(t) = s(x(t))dt+
√

2D(x(t)) ◦ dw(t)
⇕

dx(t) = [s(x(t)) + ((∇⊤(DD⊤))− (∇⊤(D)D⊤))⊤]dt +
√

2D(x(t))dw(t). (3.49)
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It is easily show, just by reversing the order of argumentations, that the converse
holds: starting from an Ito sde, by correcting the dynamics we can find the equiv-
alent Stratonovich sde

dx(t) = s(x(t))dt+
√

2D(x(t))dw(t)
⇕

dx(t) = [s(x(t))− ((∇⊤(DD⊤))− (∇⊤(D)D⊤))⊤]dt +
√

2D(x(t)) ◦ dw(t).
(3.50)

It has been argued that for several physical models the Stratonivich interpretation
of the sde is the correct one: arguments range from the celebrated Wong-Zakai the-
orem [96], that roughly speaking argues in favour of Stratonovich integral whenever
the white noise in the physical system is an idealisation of a real, bandlimited noise
process, to the Stratanovich integral being more natural since (as we will show
shortly after) the classical rules of calculus hold. In our case it is not, strictly
speaking, possible to argue similarly since as already mentioned before, we start
from a discretisation scheme and study its properties in continuous time. Some
of the strange effects, as the so called noise induced drift, can be interpreted by
thinking of the Ito discretisation as a wrong model for a real physical system. It is
fundamental to stress that this is just an interpretation.

In the remainder of this section, we skim through technical details to show that
for Stratonovich discretisation the classical chain rule holds. We proceed as follows:

• we start from a generic Stratonovich sde

dx(t) = s(x(t))dt+
√

2D(x(t)) ◦ dw(t)

• we write the equivalent Ito sde

dx(t) = [s(x(t)) + ((∇⊤(DD⊤))− (∇⊤(D)D⊤))⊤]dt +
√

2D(x(t))dw(t)

• we write the differential of a generic function for the Ito sde

dh = (∇⊤hs +∇⊤(Σ)∇h−∇⊤(D)D⊤∇h + Tr(∆hΣ))dt +
√

2∇⊤hDdw

• show the equivalence

Tr(∆hΣ) +∇⊤(Σ)∇h−∇⊤(D)D⊤∇h =
∂h(∇⊤hΣ∇h)− ∂h(∇⊤hD)D⊤∇h

• rewrite the Ito sde as

dh = (∇⊤hsdt + ∂h(∇⊤hΣ∇h)− ∂h(∇⊤hD)D⊤∇h)dt +
√

2∇⊤hDdw
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• Switch back to a Stratonovich sde

dh = (∇⊤hsdt)dt +
√

2∇⊤hD ◦ dw,

that is dh = ∇⊤hdx, i.e. chain rule holds for Stratonovich

We start with a couple of equalities, easily derived using the chain rule: ∂h
∂h

=
1 = ∑︁

i

∂x̂i

∂h
∂h
∂xi

, δij = ∂x̂i

∂h
∂h
∂xj

, ∂
∂h

∂h
∂x̂i

= ∑︁
j

∂x̂j

∂h
∂2h

∂xi∂xj
, and for a generic function Dp,q,

∂Dp,q

∂h
= ∑︁

j

∂x̂j

∂h
∂Dp,q

∂xj
.

We rewrite in index form ∇⊤hΣ∇h = ∑︁
i,j

∂h
∂x̂i

∂h
∂x̂j

Σi,j. Consequently

∂

∂h

∑︂
i,j

( ∂h

∂x̂i

∂h

∂x̂j

Σi,j) =
∑︂
i,j

∂

∂h
( ∂h

∂x̂i

) ∂h

∂x̂j

Σi,j +
∑︂
i,j

∂

∂h
( ∂h

∂x̂j

) ∂h

∂x̂i

Σij +
∑︂
i,j

∂

∂h
(Σij)

∂h

∂x̂i

∂h

∂x̂j

=

∑︂
i,j,p

∂h

∂x̂j

∂x̂p

∂h

∂2h

∂xp∂xi

Σi,j +
∑︂
i,j,p

∂h

∂x̂i

∂x̂p

∂h

∂2h

∂xp∂xj

Σi,j +
∑︂
i,j,p

∂x̂p

∂h

∂Σi,j

∂xp

∂h

∂x̂i

∂h

∂x̂j

=

∑︂
i,j,p

δjp
∂2h

∂xp∂xi

Σi,j +
∑︂
i,j,p

δip
∂2h

∂xp∂xj

Σi,j +
∑︂
i,j,p

δip
∂Σi,j

∂xp

∂h

∂x̂j

=

2
∑︂
i,j

∂2h

∂xi∂xj

Σi,j +
∑︂
i,j

∂Σi,j

∂xi

∂h

∂x̂j

=

2Tr(∆hΣ) +∇⊤(Σ)∇h

Similarly, we compute ∂h(∇⊤hD)D⊤∇h as

∑︂
i,r,q

∂

∂h
( ∂h

∂x̂i

Diq)
∂h

∂x̂r

Drq =
∑︂

i,r,q,p

∂x̂p

∂h

∂2h

∂x̂i∂x̂p

Diq
∂h

∂x̂r

Drq +
∑︂

i,r,q,p

∂h

∂x̂i

∂x̂p

∂h

∂Diq

∂x̂p

∂h

∂x̂r

Drq =

∑︂
i,r,q,p

δpr
∂2h

∂x̂i∂x̂p

DiqDrq +
∑︂

i,r,q,p

δpi
∂Diq

∂x̂p

∂h

∂x̂r

Drq =

∑︂
i,r,q

∂2h

∂x̂i∂x̂r

DiqDrq +
∑︂
i,r,q

∂h

∂x̂r

∂Diq

∂x̂i

Drq = Tr(∆hΣ) +∇⊤(D)D⊤∇h

We can then finally show that

∂h(∇⊤hΣ∇h)− ∂h(∇⊤hD)D⊤∇h = 2Tr(∆hΣ) +∇⊤(Σ)∇h− Tr(∆hΣ)−
∇⊤(D)D⊤∇h = Tr(∆hΣ) +∇⊤(Σ)∇h−∇⊤(D)D⊤∇h,

q.e.d.
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3.3.1 Equivalence conditions
Studying under which conditions the Stratonovich and Ito discretisation coin-

cide is particularly interesting from both a theoretical and practical point of view.
As stated before, in this thesis we will consider only the Ito formalism. Nevertheless
we do include this brief and self contained subsection as a starting point for the
reader interested in exploring different discretisation schemes.

The reasons for exploring such a connection are multiple. For the reader that is
familiar with a literature in which one of the two formalism is used, it is helpful to
understand under which circumstances the two formalisms coincide. In particular,
this could unleash ideas and techniques for accurate simulation of the stochastic
dynamics whose roots are discipline specific, as is for example the case of [16] (we
will explore more about this in Chapter 5). Moreover, since there are many hand
crafted methods for the accurate numerical simulation of sde s that are valid only
for one of the two formalism [45], it is useful to know when the techniques tailored
for one of the two discretisations can be blindly applied to the problem of interest
since the formalisms coincide. Formally if ∇⊤Σ = 0 and ∇⊤D = 0 then

• from (3.48), ∑︁
i,q

∂i(Dp,q)Di,q = (∇⊤(DD⊤))p − (∇⊤(D)D⊤)p = 0, the noise
induced drift is zero and there is no difference between Ito and Stratonovich
sde

• since ∇⊤Σ = 0, the fpe considerably simplify as

∂px(t)(x̂, t)
∂t

= Tr
{︂
∇
[︂
−s(x̂)⊤px(t)(x̂, t) +∇⊤

(︂
px(t)(x̂, t)

)︂
Σ(x̂)

]︂}︂
(3.51)

We analyse in details two important cases: the case of second order (momentum)
differential equation, in Section 3.3.1, that will be extremely important for under-
standing the results presented in Section 5.4, and the case of time correlated noise,
in Section 3.3.1, a case unexplored to the best of our knowledge in the Bayesian
sampling literature.

Second order differential equation

The first considered case in which the two aforementioned conditions hold is
the case in which a second order differential equation based model is considered.
To avoid clutter we keep the notation simple and do not consider the most gen-
eral case. It will be straightforward (see Section 5.4) to formalize an equivalence
between second order systems and gradient flows with momentum. We start with
the following sde (without prescription of the discretisation), derived from a given
physical model

d2x(t)
dt2 + γ

dx(t)
dt
− s(x(t))−

√
2D(x(t))dw(t)

dt
= 0. (3.52)
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Define the velocity variable as v(t) = dx(t)
dt

. It is then straightforward to rewrite
(3.52) as a system of first order differential equations⎧⎨⎩v(t) = dx(t)

dt
dv(t)

dt
= −γv(t) + s(x(t)) +

√
2D(x(t))dw(t)

dt
,

(3.53)

or, in differential form⎧⎨⎩dx(t) = v(t)dt

dv(t) = −γv(t)dt + s(x(t))dt +
√

2D(x(t))dw(t).
(3.54)

Defining the super variable z(t) = [x(t), v(t)]⊤ the system can be further rewritten
as

dz(t) =
[︄
0 −I
0 −γI

]︄
z(t)dt + [0, s⊤(x(t))]⊤dt +

√
2[0, D⊤(x(t))]⊤dk(t), (3.55)

where dk(t) is a 2N−dimensional Wiener process. The equation can be further
modified as

dz(t) =
[︄
0 −I
I −γI

]︄
q(z(t))dt +

√
2DE(z(t))dk(t), (3.56)

where q(z(t)) = [s⊤(x(t)), v(t)] and DE(z(t)) = [0, D⊤(x(t))]⊤. Since for the new
system we have ∇ = ∇ẑ = [∇⊤

x̂ ,∇⊤
v̂ ]⊤, then

∇⊤DE(z(t)) = [∇⊤
x 0,∇⊤

v D(x(t))]⊤ = [0⊤, 0⊤] = 0⊤.

Similarly, since

ΣE(z(t)) = DE(z(t))DE(z(t))⊤ =
[︄
0 0
0 D(x(t))D⊤(x(t))

]︄
=
[︄
0 0
0 Σ(x(t))

]︄
,

it is shown that ∇⊤ΣE(z(t)) = 0

Time colored noise

In general, when dealing with time colored noise, the Fokker-Planck theory
breaks down. Alternatives, such as path integral methods, can provide cleaner and
faster results.

One particular subcase, for which it is possible to state that the divergence term
of the diffusion is zero is the exponentially (in time) colored noise. Formally, the
noise process z(t), instead of being white Gaussian noise (3.3)

E[z(t)z⊤(t + τ)] = Iδ(τ),
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is a time correlated noise

E[z(t)z⊤(t + τ)] = I
T0

2 exp(−|τ |
T0

),

notice that as T0 → 0, T0
2 exp(− |τ |

T0
)→ δ(τ). It is a well known fact in the signal the-

ory community that any time colored Gaussian noise process, i.e. a process whose
autocorrelation Rz(τ) = E[z(t)z(t + τ)] is not a Dirac delta, can be equivalently
rewritten as the convolution of a white Gaussian process n(t) and a filter h(t) as
follows ⎧⎨⎩z(t) = h(t) ∗ n(t)

Rz(τ) = h(τ) ∗ h(−τ)
(3.57)

In the considered case, Rz(τ) = T0
2 exp(− |τ |

T0
), it is easy to show that h(t) =

exp(− t
T0

)u(t), being u(t) the Heaviside step function. If we are interested in the
time derivative of the process, we can write

dz(t)
dt

= dh(t)
dt
∗ n(t), (3.58)

and since dh(t)
dt

= − 1
T0

exp(− t
T0

)u(t)+exp(− t
T0

)δ(t) = − 1
T0

h(t)+δ(t), we equivalently
have

dz(t)
dt

= − 1
T0

z(t) + n(t). (3.59)

We can rearrange in differential form

dz(t) = − 1
T0

z(t)dt + dw(t) (3.60)

where dw(t) is the usual Wiener process. The result of (3.60) is particularly im-
portant if we want to transform a first order Langevin equation with time colored
noise

dx(t)
dt

= s(x(t)) +
√

2D(x(t))z(t) (3.61)

into a system of differenatial equations with white noise⎧⎨⎩
dx(t)

dt
= s(x(t)) +

√
2D(x(t))z(t)

dz(t)
dt

= − 1
T0

z(t) + n(t)
→

⎧⎨⎩dx(t) = (s(x(t)) +
√

2D(x(t))z(t))dt

dz(t) = − 1
T0

z(t)dt + dw(t)
(3.62)

As in the previous case, define a super variable y(t)⊤ = [x(t)⊤, z(t)⊤], and rewrite
the system of equations as

dy(t) =
[︄
s(x(t)) +

√
2D(x(t))z(t)

− 1
T0

z(t)

]︄
dt +

[︄
0
I

]︄
dh (3.63)

where dh is a Wiener process.
It is then trivial to understand that both desired conditions, ∇⊤Σ = 0,∇⊤D =

0, hold.
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Chapter 4

Bayesian Machine Learning: the
Montecarlo Integration approach

In this chapter we treat the motivating problem that has triggered during last
years the exploration of connections between gradient algorithms and stochastic
processes: the need for estimating high dimensional probability integrals without
analytical tools.

In section 4.2 we present the general problem of Montecarlo integration: a
sample based stochastic approximation of a certain class of integrals by means of
statistical averages of functions evaluated at random points. In section 4.3 we treat
the particular case (although central to the thesis) of Bayesian Machine Learning
and distinguish between pointwise estimates of parametric models versus distribu-
tional one. Important quantities linked to uncertainty quantification are casted
as particular problems of the integrals of interest. Section 4.4 draws the link be-
tween Montecarlo integration and gradient methods: by leveraging on the theory
of Chapter 3 we show that variants of gradient descent can be used to collect
samples drawn from specific probability distributions usueful for the estimation of
Montecarlo integrals.

4.1 Overview
High dimensional, integrals, arise naturally in a wide range of applications in

engineering, physics, biology. Unluckily, besides from simple cases no closed form
solution is available.

The fundamental problem we will analyse in this chapter is the usage of Mon-
tecarlo methods for the computation of integrals of the form

I =
∫︂
RN

m(x̂)p(x̂)dx̂ (4.1)
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where m(x) : RN → RD is a generic D−dimensional vector function and p(x) :
RN → R+ is a positive, unit integral, weight function, i.e.⎧⎨⎩

∫︁
RN p(x̂)dx̂ = 1

p(x̂) ≥ 0 ∀x̂ ∈ RN
(4.2)

During this dissertation we will often need to work with the logarithm of p(x̂). It
is then better to rewrite equivalently the integral as⎧⎪⎪⎨⎪⎪⎩

I =
∫︁

S m(x̂)p(x̂)dx̂∫︁
S p(x̂)dx̂ = 1

p(x̂) > 0 ∀x̂ ∈ S
(4.3)

where S ⊆ RN , and the strong positivity condition on p(x̂) is enforced (> 0 instead
of ≥ 0).

It is easy to notice that we can conceptually link p(x̂) to a probability density
function and interpret (4.3) as the expected value of the function m of a random
variable x distributed according to px(x̂), i.e I = E[m(x)].

In this exposition we write, when necessary and without losing generality,
px(x̂) = exp(−f(x̂)) where, obviously, f(x̂) is implicitely defined as f(x̂) = log(px(x̂)).
We can then rewrite (4.1) as

I =
∫︂

S
m(x̂) exp(−f(x̂))dx̂ (4.4)

4.2 Montecarlo integration
Knowing the analytic expression for both the functions m, f does not guarantee

of being able to analytically compute the integral (4.4). This consideration led alone
to the study and development of Montecarlo integrations techniques. Montecarlo
methods have their roots in the first half of the last century, dating at least back
to unpublished experiments of Enrico Fermi in the 30’s [59] while studying neutron
diffusion. Several references are available for the general topic, some possibilities
being [63],[35],[73], although the list is far from complete.

As discussed before, px(x̂) can be thought as a probability density function.
If we are able to draw statistically independent samples xi from this distribution
(that is, xi ∼ px(x̂)), it is easy to show that the random variable

Ī(NMC) = 1
NMC

NMC−1∑︂
i=0

m(xi), (4.5)

provides, in the large samples limit, where the number of samples is NMC , a good
approximation to (4.4).
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Informally, the following holds⃓⃓⃓⃓
lim

NMC→∞

(︂
Ī(NMC)− I

)︂⃓⃓⃓⃓
→ 0 almost surely (4.6)

An extremely simple example is the problem of estimation of π. We start by writing
π as the area of a circle with radius r = 1. Trivial calculations show that we can
equivalently write, by integrating over S = {x̂2+ŷ2 < 1, 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ 1},
the following equality

π = 4
∫︂

S
dx̂dŷ =

1∫︂
0

1∫︂
0

4×1
(︂
x̂2 + ŷ2 < 1

)︂
dx̂dŷ =

∫︂
4×1

(︂
x̂2 + ŷ2 < 1

)︂
px,y(x̂, ŷ)dx̂dŷ,

(4.7)
where 1(·) is the indicator function and px,y(x̂, ŷ) is the pdf of two independent ran-
dom variables uniformly distributed between 0 and 1. It is then easy to understand
that we can cast the problem of computing π as a Montecarlo integration

π̄(NMC) = 4
NMC

NMC−1∑︂
i=0

1
(︂
x2

i + y2
i < 1

)︂
(4.8)

where xi, yi are sampled independently from U [0,1]. In figure 4.1 we depict the
result of the Montecarlo integration for NMC = 1000: for the considered experiment
the estimated value of π is 3.187999963760376 . . . .
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0.2

0.4

0.6

0.8

1.0

y

Estimated π= 3.187999963760376

||x2+ y2|| ≥ 1
||x2+ y2|| < 1

Figure 4.1: Montecarlo estimation of π using NMC = 1000
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4.2.1 Montecarlo Integrals are unbiased and consistent
The exact description of the convergence properties of the considered scheme

is out of the scope of this exposition, but we nevertheless underline two important
properties. The first is the following:

Exi∼px(x̂)[m(xi)] =
∫︂

S
m(x̂)px(x̂)dx = I (4.9)

that obviously translates into

E[Ī(NMC)] = I (4.10)

The second important consideration is that, under reasonable conditions, the con-
sidered estimation scheme is consistent, i.e. the estimation error variance goes to
zero as NMC goes to infinity. In fact

E[(Ī − I)2] = E[Ī2]− I2 = E[
⎛⎝ 1

NMC

NMC−1∑︂
i=0

m(xi)
⎞⎠2

]− I2 =

E[ 1
N2

MC

∑︂
i,j

m(xi)m(xj)]− I2 = E[ 1
N2

MC

∑︂
i,j=i

m2(xi)] + E[ 1
N2

MC

∑︂
i,j /=i

m(xi)m(xj)]− I2 =

NMC

N2
MC

E[m2(xi)] +
(︄

NMC(NMC − 1)
N2

MC
− 1

)︄
I2 = 1

NMC
E[(m(xi)− E[m(xi)])2].

Under the mild assumption that σ2 = E[(m(xi)− E[m(xi)])2] is a finite quantity,
it is then evident that as NMC →∞ the estimation error variance goes to zero. We
study, similarly to the previous section, the same Montecarlo integral π̄(NMC) =

4
NMC

NMC−1∑︁
i=0

1 (x2
i + y2

i < 1). We present in figure 4.2 the empirical mean, 5 and 95
percentile values for the estimated value of π as a function of the number of samples
NMC, considering 100 different experiments. As expected the mean is the correct
one and the variance monotonically decreases with the number of samples NMC.

Notice however, that from a practical point of view, σ2 can be extremely large,
especially when the dimensionality of the problem (N) is large.

4.3 Bayesian problems in Machine learning
In this section we build the link between Montecarlo integration and Bayesian

problems in machine learning. The choice of presenting Bayesian problems for ma-
chine learning after the general framework of Montecarlo integration is not casual.
All the methods described in this thesis are valid for estimation of integrals of the
form (4.1). The problem of Bayesian estimation in machine learning is a special
case (although extremely important and worth of particular attention per se) of
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Figure 4.2: Montecarlo estimation of π performing 1000 experiments as a function
of NMC

the general problem of estimation of probability density integrals. The results pre-
sented in this discussion are thus of interest for a broader audience than the one
only interested in Bayesian machine learning.

More or less directly, more or less explicitly, most (if not all) modern (para-
metric) machine learning problems can be cast as optimization problems. Consider
an observed data-set of m−dimensional observations D̂ = {ûi}N

i=1, a realization of
the random variable D = {ui}N

i=1, and an arbitrary complex parametric probabil-
ity density function pD|x(D̂|x̂) (where x is the set of parameters), called likelihood
model. Given prior px(x̂) for the d-dimensional set of parameters, the posterior is
obtained by means of Bayes theorem as follows:

px|D(x̂|D̂) = pD|x(D̂|x̂) px(x̂)
pD(D̂)

(4.11)

where pD(D̂) is also known as the model evidence, defined as the integral pD(D̂) =∫︁
pD|x(D̂|x̂) px(x̂)dx. Except when the prior and the likelihood function are conju-

gate, Eq. (4.11) is analytically intractable [7]. However, the joint likelihood term
in the numerator is typically not hard to compute; this is a key element, since the
normalisation constant pD(D̂) does not affect the shape of the distribution in any
way other than scaling. The common assumption of most modern machine ap-
proaches is that the data-set samples are independent. Consequently, the posterior
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probability of (4.11) can be written as

px|D(x̂|D̂) =
(︄

N∏︂
i=1

pui|x(ûi|x̂)
)︄

px(x̂)
pD(D̂)

(4.12)

The setting described by (4.12), is the most general. We consider in the following
exposition the case of superived classification, i.e. when the observations u are
composed of "inputs" datapoints s and corresponding classes y. Some examples
include

• The problem of supervised classification, in which the dataset is composed
of couples of input data-points si and corresponding classes yi (among Ncl

possible classes). The parametric likelihood is of the following form

psi,yi|x(sî, yî|x̂) = pyi|x,si
(yî|x̂, ŝi)psi

(ŝi) = (hx̂(ŝi))yi
psi

(ŝi) (4.13)

where hx̂(·) is a function that maps ŝi into a point in the Ncl−dimensional
simplex, i.e. C = {ẑ ∈ RNcl : 0 ≤ ẑi ≤ 1,

Ncl∑︁
i=1

ẑi = 1}

• The problem of supervised regression, in which the dataset is composed of
couples of input data-points si and corresponding target values yi ∈ RP , being
P a generic positive integer. The parametric likelihood is of the following form

psi,yi|x(ŝi, ŷi|x̂) = pyi|x,si
(ŷi|x̂, ŝi)psi

(ŝi) = (hx̂(ŝi)) (yî)psi
(ŝi) (4.14)

where hx̂(·) is a function that maps the input datapoint si into a probability
density function with domain RP . To make a concrete example

(hx̂(ŝi)) (·) ∝ exp
(︄
−|| · −µx̂||2

2σ2

)︄
(4.15)

The usual procedure to let the machine learn, and subsequently use it to make
predictions, is the following

• Choose a prior distribution for px(x̂) (possibly also the uniform one). Find,
using any kind of optimization technique, the set of parameters x̂opt as

x̂opt = arg max
x̂

px|D(x̂|D̂) (4.16)

• use the optimized set of parameters to deal with a new previously unseen
observation ŝ∗ and compute py∗|s∗,x(ŷ∗|ŝ∗, x̂opt)
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The afore described technique is called pointwise estimation/optimization. It is
in fact easy to notice that the considered optimization is nothing but the classical
maximum a posteriori (MAP) methodology (notice that the Maximum Likelihood
is trivially recovered as a particular case when the prior distribution for px(x̂) is
uniform). While simple, the usage of pointwise estimation is not, from a theoretical
point of view, completely correct. The true posterior distribution for a new test
observations [ŷ, ŝ∗] is in fact:

py∗|s∗,D(ŷ∗|ŝ∗, D̂) =
∫︂

py∗|s∗,x(ŷ∗|ŝ∗, x̂)px|D(x̂|D̂)dx̂ (4.17)

Integrals of the form (4.17) are generally intractable and will be estimated using
Montecarlo techniques. The point wise estimation induces implicitly the following
approximation px|D(x̂|D̂) ≃ δ(x̂ − x̂opt), where δ(·) is a multidimensional Dirac
delta. This approximation, far from being of interest only for theoretician, has the
serious drawback that we do not have access to the distribution pu∗|D(û∗|D̂) but
only to a single point value. This drawback has been out weighted historically to
the practical benefit of being able to evaluate the integral in (4.17) since, with the
considered approximation,

py∗|s∗,D(ŷ∗|ŝ∗, D̂) ≃
∫︂

py∗|s∗,x(ŷ∗|ŝ∗, x̂)δ(x̂− x̂opt)dx̂ = py∗|s∗,x(ŷ∗|ŝ∗, x̂opt) (4.18)

For modern problems, however, this approximation is not sufficient, as we will
shortly highlight, and the full distribution must be used instead.

We focus for simplicity of exposition in the remaining of this introduction on
the problem of classification. Usually, at test time, we are interested in the class
probability given a new input datapoint,i.e

py∗|s∗,D(ŷ∗|ŝ∗, D̂) =
∫︂

py∗|s∗,x(ŷ∗|ŝ∗, x̂)px|D(x̂|D̂)dx̂ (4.19)

that can be either estimated using the naive approach of (4.18), or by computing
the intractable integral of (4.19) using Montecarlo techniques as

py∗|s∗,D(ŷ∗|ŝ∗, D̂) = 1
NMC

NMC∑︂
i=1

py∗|s∗,xi
(ŷ∗|ŝ∗, xi), (4.20)

where xi ∼ pxi|D(x̂|D̂).
In particular, we focus on the role of having access to the full distribution,

instead of the pointwise estimate, when dealing with large black box models that
are difficult to be inspected, such as deep neural networks. Having access to the
distribution of values is of fundamental importance, especially for critical problems
in which confidence in the predictions needs to be quantified or out of distribution
detection must be performed.
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4.3.1 Confidence characterization
The problem of overconfidence of modern neural network has been intensively

studied [34]. A parametric classifier is an object that given an input, associated to
an unknown true class label y, produces the output tuple ypred, ppred where ypred is
the declared output class and ppred is the associated confidence of the prediction.
A classifier is said to be calibrated if

pypred|ppred
(ŷ|p̂) = p̂. (4.21)

If a model has good calibration, it is possible to decide to discard predictions
that have a low associated confidence and request the intervention of a human
expert. Consider for example the application case of automatized, personalized
health care, such as [41]. It is clear that in such an application having over-confident
wrong predictions is extremely dangerous. Another application domain in which
calibration of confidence is crucial is the field of autonomous driving [9], where
safety [58] is of paramount importance.

4.3.2 Out of distribution detection
Another important practical problem that affects complex models is the detec-

tion of out of distribution inputs in the testing phase. The underlying assumption
of all machine learning models is in fact that new observations are sampled from
the same distribution of the training dataset. Crucially, this is not always the case,
either in a benevolent or malevolent scenario. If a model is trained on thousands of
x-ray images to classify whether cancer is present or not and during testing phase
a picture of a cat is presented to the network, there is not built-in, straightforward
mechanism with which the network can tell us "I don’t know what this is".

The problem has been studied and framed extensively in the subfield of AI that
deals with safety [3], and several practical examples of spectacular failures of deep
models that miss out of distribution inputs are presented in several references such
as [64] or [60].

4.4 The problem of sampling from px|D(x̂|D̂): Markov
Chain Monte Carlo

In the previous section we hid in a simple sentence a fairly complicated opera-
tion: sampling from px|D(x̂|D̂), where, again, D = {U i}N

i=1 is data-set of m−dimensional
observations. While for low dimensional random variable several efficient techniques
exist for generating samples from a given distribution, see for example [18], when the
dimensionality of the problem or the complexity of the probability density function
increase, many of the existing techniques become unusable or extremely unefficient.
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In general, not even a closed analytic form for the expression of px|D(x̂|D̂) is avail-
able. The usage of Markov Chain Monte Carlo (mcmc) techniques for generating
samples drawn from px|D(x̂|D̂) is a general, powerful tool to solve the problem.

The idea, in its general (and simplified) form, is the usage of a generic stochastic
machine/algorithm that, when receiving an input random variable xin, stochasti-
cally produces an output random variable xout according to a conditional probability
density function qxout|xin(x̂out|x̂in). The conditional probability is chosen such that
the desidered probability px|D(x̂|D̂) is an eigenfunction of the Markov transition
kernel, i.e.

px|D(x̂|D̂) =
∫︂

qxout|xin(x̂|x̃)px|D(x̃|D̂)dx̃ (4.22)

The informal idea is the following: we start with samples from a generic distri-
bution (possibly easy to be sampled from) rx0(x̂). We generate a new sample, by
using the stochastic machine, whose distribution is going to be

rx1(x̂) =
∫︂

qxout|xin(x̂|x̃)rx0(x̃)dx̃, (4.23)

then a new sample using as input the generated sample, whose distribution is
r2(x̂) =

∫︁
qxout|xin(x̂|x̃)rx1(x̃)dx̃, and so on iteratively

rxN(x̂) =
∫︂

qxout|xin(x̂|x̃)rxN−1(x̃)dx̃. (4.24)

If the process converges to a stationary regime( lim
N→∞

rxN(x̂)− rxN−1(x̂) = 0), then
asymptotically

lim
N→∞

rxN(x) = px|D(x̂|D̂). (4.25)

There are many possible theoretical ways to build Markov chains with different
properties. A simple and clean mechanism to obtain samples from any given prob-
ability density function px|D(x̂|D̂) (in the limit of η → 0) is to use the following
transition probability

qxout|xin(x̂[n + 1]|x̂[n]) ∝ exp
(︄
− 1

4η

⃦⃦⃦
x̂[n + 1]− (x̂[n] + η∇ log

(︂
px|D(x̂[n]|D̂)

)︂
)
⃦⃦⃦2
)︄

(4.26)
Equation (4.26) corresponds to the transition probability of a discretised approx-
imation of a Langevin dynamic. The reason why this transition kernel provides
useful samples will be clarified in the following subsection.

4.4.1 Simulated Langevin dynamics
From a practical point of view, the stochastic machine that guarantees having

transition probability (4.26), is simply obtained using

x[n]− x[n− 1] = ∇ log
(︂
px|D(x[n− 1]|D̂)

)︂
η +
√

2n[n], (4.27)
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where n[n] ∼ N (0, ηI). In the limit of small η, we can interpret (4.27) as the Euler
discretisation scheme of the following sde

dx(t) = ∇ log
(︂
px|D(x(t)|D̂)

)︂
dt +

√
2dW(t) (4.28)

The usage of simulated Langevin dynamics to collect samples from generic prob-
ability density function stems from the exploitation of the property described by
(3.14). Since the considered sde has identity diffusion matrix Σ(x̂) = I and the
driving force is selected as ∇ log

(︂
px|D(x̂|D̂)

)︂
, the stationary distribution of the

stochastic process x(t) is equal to exp(log
(︂
px|D(x̂|D̂)

)︂
) = px|D(x̂|D̂).

By simulating the sde (4.28) for n0 + NMC time steps ( n0 ≫ 1 to ensure that
the process is in the stationary regime) and storing the samples for n ∈ [n0, n0 +
NMC− 1], it is possible to estimate the integral (4.4) using the scheme described in
(4.5).

If the analogy between (4.27) and (4.28) is intuitive, we should not forget that
a true continuous time simulation of the sde is not doable on a digital computer.
It can be proven that for vanishing discretisation steps η, the probability density
function of the discrete time process described by (4.27) and the probability density
function of the one described by (4.28), sampled with frequency 1

∆t
, will converge:

lim
∆t→0

px[n](x̂)− px(n∆t)(x̂) = 0 (4.29)

For arbitrary small, but finite, η we incur in the discretisation error, i.e. the
discrepancy among densities induced by the fact that arbitrary small but non zero
step sizes are considered. We do not consider such errors in this dissertation.

4.4.2 Gradient descent with noise to sample from posterior
We can safely assert that (4.27) is the bridge between two (seemingly) unrelated

areas: Montecarlo Integration and Optimization. Its role in Montecarlo Integration
has been understood under the lens of Langevin Dynamics. On the other side,(4.27)
can also be understood as a maximization process using gradient ascent with the
injection of noise in the updates.

Since gradient computation through automatic differentiation is already imple-
mented in many modern software packages, it is evident why the usage of (4.27)
for collecting samples has practical advantages: it is sufficient to inject noise while
optimizing using gradient ascent and obtain useful samples for the computation of
Montecarlo integrals. Often minimisation is preferred to maximization, thus it is
practice to consider instead gradient descent on minus the logarithm of probability
density

x[n]− x[n− 1] = −∇(− log
(︂
px|D(x[n]|D̂)

)︂
)η +

√
2n[n], (4.30)
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In the particular case of posterior sampling for machine learning models, it is
then sufficient a likelihood model p(·|x̂), and a prior px(x̂), to implement gradient
descent with gradient equal to

−∇ log(px|D(x̂|D̂)) = −∇ log(pD|x(D̂|x̂) px(x̂)
pD(D̂)

) = −∇ log(pD|x(D̂|x̂) px(x̂))

(4.31)
and inject noise with identity diffusion matrix Σ(x) = I, to produce samples drawn
from px|D(x̂|D̂). Conceptually, we could then consider the problem of obtaining
samples from a given distribution solved. As will be clear in the next Chapter,
however, the computational cost of obtaining such samples rapidly becomes un-
bearable and different solutions must be adopted.
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Chapter 5

SG-MCMC methods

In this chapter we treat the computational problem of full gradient based meth-
ods and their solution with the mini-batches approach (Stochastic Gradient Markov
Chain MonteCarlo, sg-mcmc). In Section 5.1 we explain the unfeasability of the
full gradient approach for modern datasets, in Section 5.2 we introduce the mini-
batch approach, that if on one side solves the computational problem, on the other
introduces additional stochastic noise due to the random subsampling. Sections
5.3 and 5.4 carefully treat the existing landscape of sampling algorithms based on
modifications of gradient descent without and with moment respectively.

5.1 The computational problem
If we look back at (4.30), we can argue that as long as we are able to compute

explicitly the gradient of logarithm of probability density, we should be able to
collect samples from any posterior by simply implementing the iterative scheme. If
we consider the computational complexity we immediately notice that for modern
large scale problems the above mentioned naive approach is unfeasible.

We start our discussion by looking back at (4.31). We develop our work by using
an unnormalized version of the logarithm of the posterior density, by expressing the
negative logarithm of the joint distribution of the data-set D and d−dimensional
parameter vector x as:

− f(x̂) = log(pD|x(D̂|x̂) px(x̂)) =
N∑︂

i=1
log pui|x(ûi|x̂) + log px(x̂). (5.1)

Notice, as already derived, that −∇f(x̂) = ∇ log(px|D(x̂|D̂)) since the probability
density for the dataset pD(D̂) is independent of x̂.

Having expressed the gradient in terms of single datapoints of the dataset, we
notice that unluckily, the computational cost of a single evaluation of the gradient
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∇ log(px|D(x̂|D̂)), scales with the number of datapoints N of the dataset. For
modern applications for which N is in the order of tens of thousands (if not millions
or billions) this cost rapidly becomes unaffordable.

As in the classical optimization literature the problem has been overcomed using
mini-batch apporaches, the same principle can be applied to reduce the computa-
tional cost of the samples generation procedure. While they offer benefits from the
computational point of view, the intrinsic stochasticity generated by subsampling
further introduce noise in the simulation loop. The remaining parts of this the-
sis are focused exactly on quantifying the interaction effect between the minibatch
induced noise and the injected (simulated) noise.

5.2 Stochastic Gradient
For computational efficiency, we use a mini-batch stochastic gradient g(x̂),

which guarantees that the estimated gradient is an unbiased estimate of the true
gradient ∇f(x̂). Starting from the gradient of the logarithm of the posterior den-
sity:

−∇f(x̂) =
N∑︂

i=1
∇ log pui|x(ûi|x̂) +∇ log px(x̂),

it is possible to define its minibatch version by computing the gradient on a random
subset INb

with cardinality Nb of all the indexes. The minibatch gradient g(x̂)
(equivalently called stochastic gradient, sg) is computed as

−g(x̂) = N

Nb

∑︂
i∈INb

∇ log pui|x(ûi|x̂) +∇ log px(x̂),

By simple calculations it is possible to show that the estimation is unbiased. Con-
sider for simplicity the case of sampling with replacement, the case without replace-
ment requires a slightly more technical proof. The expected value, over the indices,
of the stochastic gradient is:

EINb
[−g(x̂)] = EINb

[ N

Nb

∑︂
j∈INb

∇ log puj |x(uj|x̂) +∇ log px(x̂)] =

N

Nb

EINb
[
∑︂

j∈INb

∇ log puj |x(uj|x̂)] +∇ log px(x̂) =

N

Nb

Nb

N

N∑︂
i=1
∇ log pui|x(ûi|x̂) +∇ log px(x̂) = −∇f(x̂)

The estimation error due to the usage of mini batches instead of the full dataset,
i.e. g(x̂)−∇f(x̂), has covariance equal to

E
[︂
(g(x̂)−∇f(x̂)) (g(x̂)−∇f(x̂))⊤

]︂
= 2B(x̂). (5.2)
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An analytical expression of B(x̂) is out of reach for generic parametric models.
This is, both from a theoretical and practical point of view, one of the biggest
problems in stochastic gradient based Montecarlo integrations.

If the minibatch size is large enough, and the variance of the single components is
finite1, invoking the central limit theorem, we can state that the minibatch gradient
is normally distributed:

g(x̂) ∼ N (∇f(x̂), 2B(x̂)). (5.3)

where the matrix B(x̂) denotes the sg noise covariance, which depends on the
parametric model, the data distribution and the mini-batch size.

There are structural similarities between sg-mcmc algorithms and stochastic
optimization methods, and both can be used to draw samples from posterior dis-
tributions. In what follows, we use a unified notation to compare many existing
algorithms in light of the role played by their noise components [15, 57, 55].

Stochastic gradient descent (sgd), with and without momentum, can be studied
through the following stochastic differential equation (sde)[29, 48, 53], when the
learning rate η is small enough:

dz(t) = s(z(t))dt +
√︂

2ηD(z(t))dw(t). (5.4)

We use a generic form of the sde, with variable z instead of x̂, that accommodates
sgd variants, with and without momentum. By doing this, we will be able to easily
cast the expression for the two cases in what follows.

Definition 1. A distribution ρ(ẑ) ∝ exp(−ϕ(ẑ)) is said to be a stationary dis-
tribution for the sde of the form (5.4), if and only if it satisfies the following
Fokker-Planck equation (fpe):

0 = Tr
{︂
∇
[︂
−s(ẑ)⊤ρ(ẑ) +∇⊤ (D (ẑ) ρ(ẑ))

]︂}︂
. (5.5)

Note that in general, the stationary distribution does not converge to the desired
posterior distribution, i.e. ϕ(ẑ) /= f(ẑ), as shown by Chaudhari and Soatto [13].
Additionally, given an initial condition for z(t), its distribution is going to converge
to ρ(ẑ) only for t → ∞. In practice, we observe the sde dynamics for a finite
amount of time: then, we declare that the process is approximately in the stationary
regime once the negative log probability f(x̂) has reached low and stable values. In
this chapter we equivalently refer to f(x̂) as potential, since the gradient dynamics
can be interpreted as the relaxation of a physical system described by coordinates
x̂ in a potential f(x̂).

Next, we briefly overview known approaches to Bayesian posterior sampling,
and interpret them as variants of an sgd process, using the fpe formalism.

1we will actually challenge this assumption in later chapters
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5.3 Gradient methods without momentum
In this section we generalize sgd (withouth momentum), by considering pre-

conditioning matrices and noise injection from the user. The generalized updated
rule of sgd, described as a discrete-time stochastic process x̂[n], writes as:

dx[n] = −ηP (x[n− 1])(g(x[n− 1]) + w[n]), (5.6)

where dx[n] = x[n + 1] − x̂[n],P (x̂) is a user-defined preconditioning matrix,
assumed to be symmetric, and w[n] is a user injected noise term, distributed as
w[n] = w(x[n]) ∼ N (0,2C(x̂)), with a user-defined covariance matrix C(x̂).

The role of the two modifications is easily understood: preconditioning is a well
known method to speed up and stabilize gradient based optimization algorithms,
while the user injected noise is introduced to counteract the fact that sgd, in
general, does not converge to the desired potential due to the non isotropic noise
covariance matrix B(x̂).

Since g(x̂) ∼ N (∇f(x̂),2B(x̂)) we can rewrite (5.6) by collecting toghether the
two noise sources (minibatch and user injected) as:

dx[n] = −ηP (x[n− 1])(∇f(x[n− 1]) + w
′ [n]),

where we defined w
′ [n] ∼ N (0,2Σ(x̂)), with Σ(x̂) = B(x̂) + C(x̂).

Moreover, if we separate deterministic and random components we can equiva-
lently write:

dx[n] = −ηP (x[n− 1])∇f(x[n− 1]) + ηP (x[n− 1])w′ [n] =

− ηP (x[n− 1])∇f(x[n− 1]) +
√︂

2ηP 2(x[n− 1])Σ(x[n− 1])v[n]

where v[n] ∼ N (0, ηI).
When η is small enough ( η → dt) we can interpret the above equation as the

discrete time simulation (Euler discretisation) of the following sde [29]:

dx(t) = −P (x(t))∇f(x(t))dt +
√︂

2ηP (x(t))2Σ(x(t))dw(t). (5.7)

where w(t) is a d−dimensional Brownian motion.
We denote by C(x̂) the covariance of the injected noise and Σ(x̂) the composite

noise covariance. Note that Σ(x̂) = B(x̂)+C(x̂) combines the sg and the injected
noise.

We define the stationary distribution of the sde in Eq. 5.7 as ρ(x̂) ∝ exp(−ϕ(x̂)).
Note that when C = 0, the potential ϕ(x̂) differs from the desired posterior f(x̂)
[13].
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5.3.1 Conditions for convergence to desired potential
The following theorem, which is an adaptation of known results in light of our

formalism, states the conditions for which the noisy sgd converges to the true
posterior distribution.

Theorem 1. Consider dynamics of the form (5.7) and define the stationary dis-
tribution ρ(x̂) ∝ exp(−ϕ(x̂)). If

∇⊤
(︂
Σ(x̂)−1

)︂
= 0⊤ and ηP (x̂) = Σ(x̂)−1, (5.8)

then ϕ(x̂) = f(x̂).

Proof of 1. The stationary distribution of the above sde, ρ(x̂) ∝ exp(−ϕ(x̂)),
satisfies the following fpe:

0 = Tr
{︂
∇
[︂
∇⊤ (f(x̂)) P (x̂)ρ(x̂) + η∇⊤(P (x̂)2Σ(x̂)ρ(x̂))

]︂}︂
,

that we rewrite, since∇⊤(P (x̂)2Σ(x̂)ρ(x̂)) = ∇⊤(P (x̂)2Σ(x̂))ρ(x̂)−∇⊤(ϕ(x̂))P (x̂)2Σ(x̂)ρ(x̂),
as

0 = Tr{∇[∇⊤ (f(x̂)) P (x̂)ρ(x̂)− η∇⊤(ϕ(x̂))P (x̂)2Σ(x̂)ρ(x̂) + η∇⊤(P (x̂)2Σ(x̂))ρ(x̂)]}.

The above equation is verified with ∇f(x̂) = ∇ϕ(x̂) if⎧⎨⎩∇⊤(P (x̂)2Σ(x̂)) = 0
ηP (x̂)2Σ(x̂) = P (x̂)→ ηP (x̂) = Σ(x̂)−1

that proves Theorem 1.

5.3.2 Methods based on SGD
Stochastic Gradient Langevin Dynamics (sgld) [95] is a simple approach to

satisfy Eq. (5.8); it uses no preconditioning, P (x̂) = I, and sets the injected noise
covariance to C(x̂) = η−1I. In the limit for η → 0, it holds that Σ(x̂) = B(x̂) +
η−1I ≃ η−1I. Then, ∇⊤ (Σ(x̂)−1) = η∇⊤I = 0⊤, and ηP (x̂) = Σ(x̂)−1. While
sgld succeeds in (asymptotically) generating samples from the true posterior, its
mixing rate is unnecessarily slow, due to the extremely small learning rate [1].

An extension to sgld is Stochastic Gradient Fisher Scoring (sgfs) [1], which
can be tuned to switch between sampling from an approximate posterior, using a
non-vanishing learning rate, and the true posterior, by annealing the learning rate
to zero. sgfs uses preconditioning, P (x̂) ∝ B(x̂)−1. In practice, however, B(x̂)
is ill conditioned for complex models such as deep neural networks. Then, many
of its eigenvalues are almost zero [13], and computing B(x̂)−1 is problematic. An
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in depth analysis of sgfs reveals that conditions (5.8) would be met with a non-
vanishing learning rate only if, at convergence, ∇⊤(B(x̂)−1) = 0⊤, which would be
trivially true if B(x̂) was constant. However, recent work [19, 30] suggests that
this condition is difficult to justify for deep neural networks.

The Stochastic Gradient Riemannian Langevin Dynamics (sgrld) algorithm
[66] extends sgfs to the setting in which ∇⊤(B(x̂)−1) /= 0⊤. The process dynamic
is adjusted by adding the term ∇⊤(B(x̂)−1). However, the term ∇⊤(B(x̂)−1)
has not a clear estimation procedure, restricting sgrld to cases where it can be
computed analytically.

The work by [57] investigates constant-rate sgd (with no injected noise), and
determines analytically the learning rate and preconditioning that minimise the
Kullback–Leibler (kl) divergence between an approximation and the true posterior.
Moreover, it shows that the preconditioning used in sgfs is optimal, in the sense
that it converges to the true posterior, when B(x̂) is constant and the true posterior
has a quadratic form.

In summary, to claim convergence to the true posterior distribution, existing
approaches require either vanishing learning rates or assumptions on the sg noise
covariance that are difficult to verify in practice, especially when considering deep
models. We instead propose a novel practical method, that induces isotropic sg
noise and thus satisfies Theorem 1. We determine analytically a fixed learning rate
and we require weaker assumptions on the loss shape.

5.4 Gradient methods with momentum
Momentum-corrected methods emerge as a natural extension to sgd approaches.

The general set of update equations for (discrete-time) momentum-based algorithms
is:⎧⎨⎩dx[n] = ηP (x[n− 1])M−1r[n− 1]

dr[n] = −ηA(x[n− 1])M−1r[n− 1]− ηP (x[n− 1])(g(x[n− 1]) + w[n]),

where P (x̂) is a preconditioning matrix, the M is called the mass matrix and
A(x̂) is the friction matrix, as shown by [16, 62]. The matrices M, A are called
respectively mass and friction matrix to underline the formal equivalence between
the described system of equations and the time evolution of the position and velocity
of a point object in a gravitational potential when considering friction. Obviously
it is only an analogy and the reader is not required to have any knowledge of such
systems, the two matrices can be simply understood as further user defined degrees
of freedom. Similarly to the first order counterpart, the noise term is distributed
as w[n] ∼ N (0,2C(x̂))).

Similarly to the case without momentum, we rewrite the second equation of the
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system as

dr[n] = −ηA(x[n− 1])M−1r[n− 1]− ηP (x[n− 1])(g(x[n− 1]) + w[n]) =

− ηA(x[n− 1])M−1r[n− 1]− ηP (x[n− 1])∇f(x[n− 1]) +
√︂

2ηP 2(x[n− 1])Σ(x[n− 1])v[n]

where again v[n] ∼ N (0, ηI). If we define the super-variable z = [x, r]⊤, we can
rewrite the system as:

dz[n] = −η

[︄
0 −P (x[n− 1])

P (x[n− 1]) A(x[n− 1])

]︄
s(z[n− 1]) +

√︂
2ηD(z[n− 1])ν[n]

where s(ẑ) =
[︄
∇f(x̂)
M−1r̂

]︄
, D(ẑ) =

[︄
0 0
0 P (x̂)2Σ(x̂)

]︄
and ν[n] ∼ N (0, ηI).

As the learning rate goes to zero (η → dt), similarly to the previous case, we
can interpret the above difference equation as a discretisation of the following fpe

dz(t) = −
[︄

0 −P (x(t))
P (x(t)) A(x(t))

]︄
s(z(t)) +

√︂
2ηD(z(t))dw(t)

Equivalently, the system of stochastic equations that describe the continuous-time
system dynamics is:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx(t) = P (x(t))M−1r(t)dt

dr(t) = −(A(x(t))M−1r(t) + P (x(t))∇f(x(t)))dt+√︂
2ηP (x(t))2Σ(x(t))dw(t).

(5.9)

where P (x̂)2 = P (x̂)P (x̂) and we assume P (x̂) to be symmetric.

5.4.1 Conditions for convergence to the desired potential
(II)

The theorem hereafter describes the conditions for which noisy sgd with mo-
mentum converges to the true posterior distribution.

Theorem 2. Consider dynamics of the form (5.9) and define the stationary dis-
tribution for x(t) as ρ(x̂) ∝ exp(−ϕ(x̂)). If

∇⊤P (x̂) = 0⊤ and A(x̂) = ηP (x̂)2Σ(x̂), (5.10)

then ϕ(x̂) = f(x̂) .
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Proof of 2. As before we assume that the stationary distribution has form ρ(ẑ) ∝
exp(−ϕ(ẑ)). The corresponding fpe is:

0 = Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ) + η

(︂
∇⊤ (D(ẑ)ρ(ẑ))

)︂)︄)︄
.

Notice that since ∇⊤D (z) = 0 we can rewrite:

0 = Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ) + η∇⊤(ρ(ẑ))D(ẑ)

)︄)︄

= Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ)− η∇⊤(ϕ(ẑ))D(ẑ)ρ(ẑ)

)︄)︄

= Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ)− η∇⊤(ϕ(ẑ))

[︄
0 0
0 P (x̂)2Σ(x̂)

]︄
ρ(ẑ)

)︄)︄

that is verified with ∇ϕ(ẑ) = s(ẑ) if:⎧⎨⎩∇⊤P (x̂) = 0
A(x̂) = ηP (x̂)2Σ(x̂).

If ∇⊤P (x̂) = 0, in fact:

Tr
(︄
∇
(︄
∇⊤(ϕ(ẑ))ρ(ẑ)

[︄
0 −P (x̂)

P (x̂) 0

]︄)︄)︄
= ∇⊤

(︄[︄
0 −P (x̂)

P (x̂) 0

]︄
∇(ϕ(ẑ))ρ(ẑ)

)︄
=

∇⊤
(︄[︄

0 −P (x̂)
P (x̂) 0

]︄)︄
∇(ϕ(ẑ))ρ(ẑ) + Tr

(︄[︄
0 −P (x̂)

P (x̂) 0

]︄
∇
(︂
∇⊤(ϕ(ẑ))ρ(ẑ)

)︂)︄
= 0,

since ∇⊤
[︄

0 −P (x̂)
P (x̂) 0

]︄
= 0 and the second term is zero due to the fact that[︄

0 −P (x̂)
P (x̂) 0

]︄
is anti-symmetric while ∇

(︂
∇⊤(ϕ(ẑ))ρ(ẑ)

)︂
is symmetric.

Thus we can rewrite:

Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ)− η∇⊤(ϕ(ẑ))

[︄
0 0
0 P (x̂)2Σ(x̂)

]︄
ρ(ẑ)

)︄)︄
=

Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ)−∇⊤(ϕ(ẑ))

[︄
0 0
0 ηP (x̂)2Σ(x̂)

]︄
ρ(ẑ)

)︄)︄
=

Tr
(︄
∇
(︄

s(ẑ)⊤
[︄

0 −P (x̂)
P (x̂) A(x̂)

]︄
ρ(ẑ)−∇⊤(ϕ(ẑ))

[︄
0 0
0 A(x̂)

]︄
ρ(ẑ)

)︄)︄
=

Tr
(︄
∇
(︄(︂

s(ẑ)⊤ −∇⊤(ϕ(ẑ))
)︂ [︄ 0 −P (x̂)

P (x̂) A(x̂)

]︄
ρ(ẑ)

)︄)︄
= 0

then, ∇ϕ(ẑ) = s(ẑ), proving Theorem 2.
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5.4.2 Methods based on m-SGD
In the naive case, where P (x̂) = I, A(x̂) = 0, C(x̂) = 0, Eqs. (5.10) are not

satisfied and the stationary distribution does not correspond to the true posterior
[16]. To generate samples from the true posterior it is sufficient to set P (x̂) =
I, A(x̂) = ηB(x̂), C(x̂) = 0 (as in Eq.(9) in [16]).

Stochastic Gradient Hamiltonian Monte Carlo (sghmc) [16] suggests that es-
timating B(x̂) can be costly. Hence, the injected noise C(x̂) is chosen such that
C(x̂) = η−1A(x̂), where A(x̂) is user-defined. When η → 0, the following ap-
proximation holds: Σ(x̂) ≃ C(x̂). It is then trivial to check that conditions (5.10)
hold without the need for explicitly estimating B(x̂). A further practical reason
to avoid setting A(x̂) = ηB(x̂) is that the computational cost for the operation
A(x̂)M−1r has O(D2) complexity, whereas if C(x̂) is diagonal, this is reduced to
O(D). This however, severely slows down the sampling process.

Stochastic Gradient Riemannian Hamiltonian Monte Carlo (sgrhmc) is an ex-
tension to sghmc [55]), which considers a generic, space-varying preconditioning
matrix P (x̂) derived from information geometric arguments [32]. sgrhmc suggests
to set P (x̂) = G(x̂)− 1

2 , where G(x̂) is the Fisher Information matrix. To meet the
requirement ∇⊤P (x̂) = 0⊤, it includes a correction term, −∇⊤P (x̂). The injected
noise is set to C(x̂) = η−1I − B(x̂), consequently Σ = η−1I, and the friction
matrix is set to A(x̂) = P (x̂)2. With all these choices, Theorem 2 is satisfied.
While appealing, the main drawbacks of this method are the need for an analytical
expression of ∇⊤P (x̂), and the assumption for B(x̂) to be known.

From a practical standpoint, momentum-based methods suffer from the require-
ment to tune many hyper-parameters, including the learning rate, and the param-
eters that govern the simulation of a second-order Langevin dynamics.

The method we propose in this work can be applied to momentum-based algo-
rithms; in this case, it could be viewed as an extension of the work in [85], albeit
addressing the complex loss landscapes typical of deep neural networks. However,
we leave this avenue of research for future work.
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Chapter 6

Isotropic SGD: Practical Bayesian
Posterior Sampling

In Chapter 5, we provided an overview of the existing methods based on stochas-
tic gradient. As will be clearer at the end of this Chapter, when needing to im-
plement in practice the sampling methods described, many small practical details,
such as annealing of the various learning rates, or the need to fine tune any of the
hyperparameters, represent the main entry barrier for a wide spread usage of the
methods from practitioners whose background is not Bayesian machine learning.

The goal of the method we propose and describe in this chapter, is to come
up with a simple algorithm that does not need vanishing learning rates and whose
hyperparameters can be theoretically computed, Section 6.2. We first describe its
properties in idealised settings, Section 6.3, for which we can guarantee convergence
in distribution of the stochastic process to the true posterior, and subsequently
propose a simplified, practical method built on top of experimentally validated
assumptions, that we describe in Section 6.4.

Despite being the class of fixed learning rates algorithm contained in the general
class of time varying learning rates, and thus being its optimal algorithm at best
as good (in terms of quality of samples, not sampling efficiency and or convergence
speed) as the best time varying learning rate algorithm, we prove and observe that
the practical algorithm that we propose converges to the true posterior in a broader
range of conditions than other competitors, as discussed in Section 6.5.

The discussion is well complemented by a large scale experimental campaign
(Section 6.6) where different models are tested. The method is shown to be robust
and competitive with respect to many state of the arts alternatives.
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6.1 Multilayer Neural Networks
So far in the thesis, we treated abstractly parametric models, i.e. without

specifying actually how given and input datapoint the output is computed. In
this Chapter, since we perform an experimental validation, we have to specify what
models we are considering. In general, we deal with multi-layer neural networks. Far
from being our aim a careful introduction to such objects (the interested reader is
referred to [33]), it is sufficient to settle down the basic knowledge depicted in Figure
6.1 a schematic representation of a single hidden layer neural network. The initial
inputs of the network (s = [s1, . . . sd]⊤) are linearly combined with a matrix X1,
whose elements are the parameters x1

a,b, i.e. h1 = X1s. The result is transformed
through a given nonlinearity r(·) and the output o1 = r(h1) is multiplied by a
second matrix X2, with (X2)a,b = x2

a,b and the procedure is iterated up to the
last layer. This is an oversimplification, but for the purpose of this chapter it is a
sufficient one. The reader interested in the details of the architectures can look into
the references in the experimental section (Section 6.6). The only important concept
in the practical understanding of the proposed method is the one about different
layers. In this simple example, the overall set of parameters x is represented in its
single components xl

i,j. The layer number is represented with the superscript l.

...
s1

sd

µ

x1
1,1

x1
1,2

x1
2,1

x1
2,2

x2
1,1

x2
2,1

Figure 6.1: Single hidden layer Neural Network

6.2 ISGD
We present a simple and practical approach to inject noise to SGD iterates to

perform Bayesian posterior sampling. Our goal is to sample from the true posterior
distribution (or approximations thereof) using a constant learning rate, and to
rely on more lenient assumptions about the geometry of the loss landscape that
characterize deep models, compared to previous works.

From Theorem 1 in Chapter 5, observe that P (x̂), Σ(x̂) are instrumental to
determine the convergence properties of sg methods to the true posterior. We
consider the constructive approach of designing ηP (x̂) to be a constant, diagonal
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matrix, constrained to be layer-wise uniform:

ηP (x̂) = Λ−1 = diag([λ(1), . . . , λ(1)⏞ ⏟⏟ ⏞
layer 1

, . . . , λ(Nl), . . . λ(Nl)⏞ ⏟⏟ ⏞
layer Nl

])−1. (6.1)

Notice that we treat biases and weights of the layers as unique groups of param-
eters. By properly setting parameters λ(l), we achieve the simultaneous result of
a non-vanishing learning rate and a well-conditioned preconditioning matrix. This
implies a layer-wise learning rate η(l) = 1

λ(l) for the l-th layer, without further pre-
conditioning. We can now state, as a corollary to Theorem 1, that our method
guarantees convergence to the true posterior distribution.
Corollary 1. Given the dynamics of Eq. (5.7) and the stationary distribution
ρ(x̂) ∝ exp(−ϕ(x̂)), if ηP (x̂) = Λ−1 as in Eq. (6.1), and C(x̂) = Λ − B(x̂) ≻
0∀x̂, i.e. it is positive definite ,then ϕ(x̂) = f(x̂).

The requirement C(x̂) ≻ 0 ∀x̂, ensures that the injected noise covariance is
valid. The composite noise matrix is equal to Σ(x̂) = Λ. Since ∇⊤Σ(x̂) = ∇⊤Λ =
0 and ηP (x̂) = Λ−1 by construction, then Theorem 1 is satisfied.

If the above conditions hold, it is simple to show that matrices P (x̂) and C(x̂)
satisfy Theorem 1. Then, we say that the composite noise covariance Σ(x̂) =
C(x̂) + B(x̂) = diag

(︂[︂
λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)

]︂)︂
is isotropic within model

layers. We set Λ to be, among all valid matrices satisfying Λ − B(x̂) ≻ 0, the
smallest, i.e., the one with the smallest λ’s. Indeed, larger Λ induces a small
learning rate, thus unnecessarily reducing sampling speed.

6.3 An ideal method.
Now, let’s consider an ideal case, in which we assume the sg noise covariance

B(x̂) and Λ to be known in advance. The procedure described in Algorithm
1 illustrates a naive sg method that uses the injected noise covariance C(x̂) to
sample from the true posterior.

Algorithm 1 idealised posterior sampling
Sample (x̂0, B(x̂), Λ):
x̂← x̂0 ▷ Initialize x̂
loop

g = ∇f̃(x̂)
N

▷ Compute sg
C(x̂) 1

2 ← (Σ−B(x̂)) 1
2

n ∼ N(0, I)
w ← C(x̂) 1

2 n
δx̂← (NΣ)−1(g +

√
2w)

x̂← x̂− δx̂ ▷ Update x̂
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This simple procedure is guaranteed to generate samples from the true posterior,
with a non-vanishing learning rate. Note that instead of computing the gradient
of f(x̂), we compute the (mini-batch) gradient of f(x̂)

N
, similarly to the notation

used in [57], that we indicate with ∇f̃(x̂)
N

. However, it cannot be used in practice as
B(x̂) and Λ are unknown. Also, the algorithm is costly, as it requires computing
(Σ−B(x̂)) 1

2 , which requires O(d3) operations, and C(x̂) 1
2 , which costs O(d2) mul-

tiplications. Next, we describe a practical approach, where we use approximations
at the expense of generating samples from the true posterior distribution. Note
that [57] suggests to explore a related preconditioning, but does not develop the
idea.

6.4 A practical method: Isotropic SGD.
To make the idealised sampling method practical, we require additional assump-

tions which are milder than what is required by current approaches in the literature,
as we explain at the end of this section.

Assumption 1. The sg noise covariance B(x̂) can be approximated with a diago-
nal matrix, i.e., B(x̂) = diag(b(x̂)). Thus, the noise components are independent
[85, 1].

Assumption 2. The signal to noise ratio (SNR) of a gradient is small enough
such that, in the stationary regime, the un-centered variance of the gradient is a
good estimate of the true variance [85, 76]. Hence, combining with assumption 1,
b(x̂) ≃ E[g(x̂)⊙g(x̂)]

2 (being ⊙ the elementwise product of two vectors).

Assumption 3. In the stationary regime, the maximum of the variances of noise
components, layer by layer, are fixed constants (similarly to [100]): β(l) = maxj∈Il

bj(x̂),
where Il is the set of indexes of parameters belonging to lth layer.

Note that Assumptions 2 and 3 must hold only in the stationary regime when
the process reaches the bottom valley of the loss landscape. Concerning Assumption
3, we actually test in practice two variants: the one, described in the text, where we
assume that the maximum of the variances is constant, and a variant in which we
assume that the sum of the variances is constant layerwise. We refer later to these
two variants as the max and sum variant of Assumption 3 respectively. Notice that
a similar assumption is necessary for all sg-mcmc methods. Without assumptions
on the boundedness of the variances, it is not possible to claim convergence to the
true posterior even in the infinitesimal learning rate regime. The proofs in the
text are based on the max variant of the assumption, but the results are trivially
extended to the second case.
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Given our assumptions, and our design choices, it is then possible to show
that the optimal (i.e., the smallest possible) Λ =

[︂
λ(1), . . . , λ(1), . . . , λ(Nl), . . . λ(Nl)

]︂
satisfying Corollary 1 can be obtained as λ(l) = β(l). The proof is reported hereafter.

By the assumptions the matrix B(x̂) is diagonal, and consequently C(x̂) =
Λ − B(x̂) is diagonal as well. The preconditioner Λ must be chosen to satisfy
the positive semi-definite constraint, i.e. C(x̂)ii ≥ 0 ∀i,∀x̂. Equivalently, we
must satisfy λ(l) − bj(x̂) ≥ 0 ∀j ∈ Il,∀l,∀x̂, where Il is the set of indexes of
parameters belonging to lth layer. By assumption 3, i.e. β(l) = maxk∈Il

bk(x̂), to
satisfy the positive semi-definite requirement in all cases the minimum valid set of
λ(l) is determined as λ(l) = β(l).

Since we cannot assume B(x̂) to be known, in what follows we discuss two
approaches to estimate its components. A simple method to estimate B(x̂) is as
follows (see 6.4.1): we compute λ(l) = maxj∈Il

bj(x̂) = 1
2 maxj(gj(x̂)(l))2,where

g(x̂)(l) is the portion of stochastic gradient corresponding to the l-th layer. Our
estimates can be extended to use a moving average approach. Our empirical valida-
tion, however, indicates that this simple method does not produce stable estimates.

Indeed, a shared assumption of sg-mcmc methods is that sg noise is Gaussian.
While this assumption can be justified with the C.L.T. for relatively simple models
(linear models or simple feed-forward networks), its validity has been challenged in
the deep learning domain [81, 80] (see 6.4.1 for a detailed discussion), suggesting
that, for complex architectures, the noise distribution is heavy tailed. Then, the hy-
pothesis is that the various components of sg noise follow an α-stable distribution:
w ∼ pw(ŵ), where

∫︁+∞
−∞ exp (j2πŵt) pw(ŵ)dŵ = exp(−|ct|α), with α ∈ (0,2], where

α, c can vary across different parameters. When α = 2, pw(ŵ) becomes Gaussian,
but for α < 2, its variance goes to infinity, thus estimating the sg noise covariance
is problematic.

Prior works [79], suggest to define a stochastic process governed by an sde
that uses Lévy Noise instead of a Brownian motion. However, this approach
comes with its own challenges, such as the approximation of a fractional deriva-
tive, and the use of full gradients. Instead, we propose the following approximate
method: we consider that the sg noise follows a Gaussian distribution, with pa-
rameters set to minimise the l2-distance between pw(ŵ) = (2πσ̃2)− 1

2 exp
(︂
− ŵ2

2σ̃2

)︂
and

qw(ŵ) =
∫︁+∞

−∞ exp (−j2πŵt) exp(−|ct|α)dt (see 6.4.1 for details). We estimate the
parameters of the α-stable distribution by extending [51] to space varying settings,
and derive the equivalent variances σ̃2 that minimise the l2 distance. Then, the λ(l)

are computed as 1
2 maxj(σ̃j(x̂)(l))2.

Ultimately, the composite noise matrix Σ = Λ is a layer-wise isotropic covari-
ance matrix, which inspires the name of our proposed method as Isotropic SGD
(i-sgd). Once all parameters λ(l) have been estimated, the layer-wise learning rate
is determined: for the l-th layer, the learning rate is η(l) = 1

Nλ(l) .
The practical implementation of i-sgd is shown in Algorithm 2.
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Algorithm 2 i-sgd: practical sampling
Sample (x̂0):
x̂← x̂0 ▷ Initialize x̂t

loop
g = ∇f̃(x̂)

N
▷ Compute sg

C(x̂) 1
2 (l) ← (λ(l) − 1

2(σ̃(x̂)(l))2) 1
2

n ∼ N(0, I)
w ← C(x̂) 1

2 (l)n

δx̂(l) ← (Nλ(l))−1
(︂
g(l) +

√
2w

)︂
x̂← x̂− δx̂ ▷ Update x̂

The computational cost of i-sgd is as follows. Similarly to [16], we define the
cost of computing a gradient mini-batch as Cg(Nb, d), where, as in the previous
Chapter, d is the dimensionality of the parameter vector. Then (see 6.4.1), the
computational cost for estimating the noise covariance scales as O(d) logarithm
computations. The computational cost of generating random samples with the
desired covariance scales asO(d) square roots andO(d) multiplications. The overall
cost of our method is the sum of the above terms. Note that the cost of estimating
the noise covariance does not depend on the mini-batch size. The space complexity
of i-sgd is the same as sghmc and sgfs and variants: it scales as O(NMCd), where
NMC is the number of posterior samples.

6.4.1 Estimation of λ(l)

As briefly introduced in the previous section, we modify the standard assump-
tion of Gaussian noise and generalize it to the case of heavy tailed noise. We
hereafter provide the details needed to build estimators of the variances for the two
considered cases (the standard one and the proposed one).

The case of Gaussian noise.

We here give additional details on the estimation of λ(l). The simple and naive
estimation described in the thesis is the following: λ(l) = maxj∈Il

(gj(x̂)(l))2. For
the Gaussian sg noise case we found however the following (safe) looser estimation
of the maximum noise covariance to be more stable: λ(l) = ∑︁

j∈Il

bj(x̂) = ||g(x̂)(l)||2
2 .

From a practical point of view, we found the following filtering procedure to be
useful and robust:

λ(l) ← µλ(l) + (1− µ) ||g
(l)(x̂)||2

2 (6.2)

where an exponential moving average is performed with estimation momentum
determined by µ. Notice that during sampling, the same smoothing can be applied
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to the tracking of B(x̂). We refer to the variant of i-sgd implemented using this
estimator as i-sgd-G. We also considered the case of having a unique, and not
layerwise, learning rate, that we indicate by juxtaposing the (SLR) acronym to
the right of the methods. In this case, the unique equivalent λ is computed as∑︁
l

λ(l).

The case of Heavy Tailed Noise.

As anticipated, we challenge the assumption that sg noise is Gaussianly dis-
tributed ([81, 80]) and consider instead heavy tailed distributions. In particular,
the hypothesis is that the noise follows and α-stable distribution, i.e.

w ∼ pw(ŵ) = F−1 (exp(−|ct|α)) (6.3)

where α ∈ [0,2]. Notice that except for particular cases, pw(ŵ) cannot be expressed
in closed form. In general, when α < 2 the variance of the distribution goes to
infinity and thus dealing with all methods that require the estimation or the usage
of a covariance is tricky. It is interesting to underline again that for α = 2 the
distribution is the usual Gaussian one.

Having acknowledged that the noise is not Gaussian for deep models (at least)
two possibilities can be considered: the first one is to study the sde with Lèvy
Noise instead of Brownian, using a formalism similar to the one considered in [79],
where fractional fpe have been considered. Several practical difficulties are however
tied to this choice, such as the necessity to numerically approximate the fractional
derivative of order α or the necessity to have full batch evaluations.

The second possibility, that we name i-sgd-α, is to neglect the fact that the
noise is non-Gaussian, treat this as an approximation error, and use for the the-
oretical calculations the Gaussian distribution that is closest to the real noise
distribution. In particular, for the one dimensional case, we minimise the l2-
distance between px(x̂) and qx(x̂), where px(x̂) =

√
2πσ2 exp

(︂
− x̂2

2σ2

)︂
and qx(x̂) =

F−1 (exp(−|ct|α)). As stated above, in general no closed form exists for qx(x̂).
Thanks to Parseval’s equality, however, we can compute the distance in the fre-
quency domain between the two distributions, i.e.

C =
+∞∫︂

−∞

|px(x̂)− qx(x̂)|2dx̂ =
+∞∫︂

−∞

|p(t)− q(t)|2dt (6.4)

where p(t) = exp(−σ2t2

2 ) and q(t) = exp(−|ct|α). Since we are optimizing w.r.t. σ,
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we can write the equivalent cost function

Ceq =
+∞∫︂

−∞

|p(t)|2dt− 2
+∞∫︂

−∞

p(t)q(t)dt =
+∞∫︂

−∞

exp(−σ2t2)dt− 2
+∞∫︂

−∞

exp(−σ2t2

2 ) exp(−|ct|α)dt

√
π

σ
− 2

σ

+∞∫︂
−∞

exp(−τ 2

2 ) exp(−| c
σ

τ |α)dτ =
√

π

σ
− 2
√

2π

σ

+∞∫︂
−∞

1√
2π

exp(−τ 2

2 ) exp(−| c
σ

τ |α)dτ =

1
σ

(︃√
π −
√

2πET ∼N(0,1)[exp
(︃
−| c

σ
T |α

)︃
]
)︃

. (6.5)

Equivalently, we can maximize for r = c
σ
, the following function

r
(︂√

π −
√

2πET ∼N(0,1)[exp (−|rT |α)]
)︂

.

The expected value does not have a closed form solution, but since the integral is
single dimensional, it is possible to integrate numerically and derive the optimal r
for a given tail index, i.e. r̂ = arg min C(r, α) and consequently the optimal σ as
σ̂ = c

r̂
. Notice that even for moderately small values of α (i.e. α > 0.5), the optimal

value is roughly 1√
2 , implying that a matching of the scales is sufficient: σ̃2 = 2c2.

The parameters α, c are estimated (extending the results of [81, 51] to space varying
settings) as described below. Given a sequence of N = N1×N2 samples w[n] from
an alpha-stable distribution, it is possible to estimate α, c using

1
α̂

= 1
log(N1)

⎛⎝ 1
N2

N2−1∑︂
i=0

log
⃓⃓⃓⃓
⃓⃓N1−1∑︂

j=0
w[iN1 + j]

⃓⃓⃓⃓
⃓⃓− 1

N

N−1∑︂
i=0

log |w[i]|
⎞⎠ (6.6)

ĉ = exp( 1
N

N−1∑︂
i=0

log |w[i]| −
(︃ 1

α̂
− 1

)︃
γ) (6.7)

where γ = 0.5772156649015329 . . . is the Euler-Macheroni constant. Notice that
the computational cost for estimation of the two quantities is dominated by the
calculation of logarithms, in fact for a full sequence of N independent samples the
cost is for the estimation of α N + N2 absolute values, N + N2 logarithms, 2N
sums, with a per sample cost roughly equal to the cost of 1 logarithm evaluation,
and for the estimation of c the cost is N logarithms, sums and absolute values
(and thus similarly the cost is dominated by the log evaluation). When considering
vectors of independent d−dimensional samples, the computational cost scales as
O(d) logarithms.

6.4.2 A simple toy example
We consider a simple numerical example whereby it is possible to analytically

compute the true posterior distribution. We define a simple 1-D regression problem,
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in which we have D trigonometric basis functions: f(x) = w⊤ cos(ωx − π/4),
where w ∈ RD×1 contains the weights of D features and ω ∈ RD×1 is a vector of
fixed frequencies. We consider a Gaussian likelihood with variance 0.1 and prior
pw(ŵ) = N (0, ID); the true posterior over w is known to be Gaussian and it can
be calculated analytically.

To assess the quality of the samples from the posterior obtained by i-sgd, in
Fig. 6.2 we show the predictive posterior distribution (estimated using Eq. (4.20))
of i-sgd, in comparison to the “ground truth” posterior. Visual inspection indicates
that there is a good agreement between predictive posterior distributions, especially
in terms of uncertainty quantification for test points far from the input training
distribution.

−10 −5 0 5 10

−2

0

2

True
i-sgd

Figure 6.2: True and i-sgd predictive posterior distributions on a simple example.

6.5 Assumptions and convergence to the true pos-
terior.

Our theory shows that the ideal version of i-sgd (1 holds, and B(x̂) is known)
converges to the true posterior with a constant learning rate. This is not the
case for existing work. Even when B(x̂) is assumed to be known, sgfs requires the
correction term ∇⊤B(x̂)−1 = 0. Also, both sgrld and sgrhmc require computing
∇⊤B(x̂)−1, for which an estimation procedure is elusive. The method in [85]
needs a constant, diagonal B(x̂), a condition that does not necessarily hold for
deep models. Among all the considered variants, i-sgd is the one that can claim
convergence to the true posterior in the broader range of conditions with a constant
learning rate determined according to the theory. Since B(x̂) is estimated, the
practical i-sgd can only approximate the true posterior, but having a consistent
estimator the error can be made arbitrarily small by increasing the amount of data
used for the estimation. All other methods requires either restrictive assumptions
about the loss landscape or learning rate annealing to guarantee convergence to the
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true posterior. Excluding the first case for preserving generality of the discussion,
there is not a clear way of determining the annealing procedure and the tradeoffs are
often chosen based on the designer experience more than on sound theoretical basis.
Often (if not always), in practice, for all the considered methods practitioners stop
the annealing procedure and fix the learning rate. This allows to gather samples in
a finite amount of time but introduces a bias in the approximation of the posterior
that is not reducible by increasing the number of collected samples. As will be clear
from the content of Section 6.6.1, it is not possible to validate the goodness of the
various methods and choices in absolute terms since the true posterior distribution
is not available and only proxy metrics, with limited significance, are available.

6.6 Experimental Results
We first study i-sgd using standard uci data-sets [20] and a fully connected

Multi Layer Perceptron. Then, we focus on classification and use a CNN (Convo-
lutional Neural Network) on mnist [49]. We compare i-sgd (with the Gaussian
approximation to the estimated α-stable distribution) to sghmc [16], sgld [95]
and to alternative approaches to approximate Bayesian inference, including mcd
[28], and swag [56], the variational sgd approach (v-sgd [57]). The code has been
written in python.

6.6.1 A disclaimer on performance characterization
Before diving into the numerical results, the author find of paramount impor-

tance to stress a detail on the analysis of the experimental campaign. The concept
is seldom discussed in the literature, but is important to underline the limitations
of the current scientific status on the subject.

Up to this point, the discussion has been focused on the goodness of the various
methods for representing the true posterior distribution. Different methods can or
cannot claim convergence to the true posterior according to certain assumptions
and the nature of the hyperparameters (annealing learning rate, etc...). When it
comes down to the experimental validation of the results the following fundamental
problem arises: in general we do not have access to the form of the true posterior,
the whole point of sg-mcmc sampling methods is exactly that we are not able to
compute posteriors in general, and thus there is no explicit way of measuring the
goodness of the collected samples. Only in a limited, uninteresting set of cases,
such as the Bayesian linear regression, we can analytically compute the posterior
and measure consequently the performance of the various methods.

In absence of closed form solutions, the usual methodology adopted in the lit-
erature is to adopt sghmc as the golden standard and the various methods are
compared against it. This choice comes however with at least two shortcomings:
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the first one is that in every practical situation we are incurring in a logical loop.
As long as the learning rate is not strictly infinitesimal sghmc does not converge
to the true posterior. In the literature various theoretical rates of convergence have
been presented for these non ideal cases, but usually such rates contains unknown
constants that are either impossible of extremely difficult to be estimated. Any
comparison with sghmc is therefore, at least in line of principle, vacuous.

Even accepting sghmc as the golden standard, with a leap of faith, it still
remains an other important practical problem: having samples from sghmc and
the competitor method that we want to characterize, how to compute the goodness
(distance in probability space)? Choosing any valid probability distance metric,
such as the KL-divergence, there is not an explicit (and unbiased) way of computing
such distance starting from samples. Different techniques are available in literature
but they either rely on parametric assumptions about the generating distributions,
or are not performing when the cardinality of the problem increases.

The final solution adopted is to compare the different methods in terms of proxy
metrics evaluated on the test sets, such as the accuracy, the uncertainty quantifica-
tion performance, the capability of detecting out of distribution samples and many
more. It has to be stressed however that being better in terms of these performance
metrics does not imply that the sampling method is better at approximating the
posterior distribution. The shape of the true posterior distribution is in fact de-
termined by the choice of the likelihood model and the prior for the parameters.
If the likelihood is badly chosen ( known as model misspecification) or the prior is
not representative of our initial knowledge about the problem, then a distribution
that is not the true posterior could have better test performance metrics. It is then
possible that a method is better than an other in terms of test metrics while being
poorer in terms of goodness of the posterior representation.

The two problems should be orthogonal and independent one on the other. In
practice, for the reasons above described they are not. Moreover, the considered
metrics are useful for any realistic implementation in which we care only about the
performance in terms of uncertainty quantification and similar on a test set, albeit
they do not provide information about the intrinsic quality of the sampling scheme.

6.6.2 UCI regression tasks, with a multi layer perceptron.
We use a multi layer perceptron (MLP) with two layers and a relu activation

function; the hidden layer has 50 units. We use the root mean square error (rmse)
for the predictive performance and the mean negative log-likelihood (mnll) for un-
certainty quantification. At test time we use 100 samples to estimate the predictive
posterior distribution, using Eq. (4.20). All our experiments use 10-splits. In this
set of experiments we use for the class of i-sgd variants an estimation momentum
µ = 0.5. We perform a complete analysis of the i-sgd methodology and consider 6
different variants, described in the following.
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• i-sgd-G. The noise is estimated with the Gaussian hypothesis. We use the
max version of Assumption 3. The starting point of the sampling method is
the same as the beginning of sghmc sampling.

• i-sgd-α. It is equal to the previous variant, but the noise is estimated using
the α stable distribution.

• i-sgd-G sum. This variant is again equal to the first variant but we use
instead the sum version of Assumption 3.

• i-sgd-α sum. This variant is again equal to the i-sgd-α variant while using
the sum version of Assumption 3.

• i-sgd-G Ad. As the i-sgd-G variant, but the starting point is a model
trained for 20000 iterations using Adam optimizer [43] and learning rate 0.01.

• i-sgd-α Ad. As i-sgd-α but using as staring point a model trained with
Adam optimizer as the previous case.

We compare ourselves against the following methods:

• sghmc. We use learning rate equal to 0.01 and mdecay 0.01 ( check the
original paper [85] for more details). Notice that the sghmc version we are
using is not the standard one, but an already improved one with respect to
the original [16].

• sgld. We use the annealing procedure described in the original paper [95],
with initial learning rate 10−6 and final learning rate 10−8. The warmup pe-
riod corresponds to 40000 iterations. After the warmup we keep the learning
rate constant, as suggested in both [95] and [1].

• v-sgd C. It is the implementation of the variational scheme described in [57].
The starting point of the sampling method is again a model trained for 20000
iterations using Adam and learning rate 0.01.

• v-sgd. As v-sgd C, with the difference that the variance of the noise is esti-
mated, according to Assumption 2 without removing the mean (i.e. assuming
variance equal to second order moment). This experiment is included to per-
form an ablation study on whether the superior performance of i-sgd with
respect to v-sgd is due to the goodness of the sampling method or simply
due to the stability introduced by Assumption 2.

• Baseline. The single sample result obtained by training the model 20000
iterations using Adam and learning rate 0.01.
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Table 6.1: rmse results for regression on uci data-sets.
Method wine protein kin8nm energy power boston concrete
i-sgd-G 0.640 ± 0.04 4.758 ± 0.03 nan ± nan 0.492 ± 0.06 4.521 ± 0.16 3.651 ± 1.17 5.901 ± 0.16
i-sgd-α 0.640 ± 0.04 4.758 ± 0.03 0.078 ± 0.00 0.496 ± 0.06 4.521 ± 0.16 3.651 ± 1.17 5.895 ± 0.17
i-sgd-G sum 0.637 ± 0.04 4.723 ± 0.03 nan ± nan 0.490 ± 0.06 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
i-sgd-α sum 0.637 ± 0.05 4.723 ± 0.03 0.078 ± 0.00 0.491 ± 0.06 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
i-sgd-G Ad 0.637 ± 0.04 4.723 ± 0.03 nan ± nan 0.490 ± 0.06 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
i-sgd-α Ad 0.637 ± 0.04 4.723 ± 0.03 0.078 ± 0.00 0.490 ± 0.05 4.410 ± 0.15 3.615 ± 1.12 5.871 ± 0.29
sghmc 0.629 ± 0.04 4.721 ± 0.03 0.077 ± 0.00 0.487 ± 0.05 4.309 ± 0.14 3.624 ± 1.22 5.791 ± 0.23
sgld 0.733 ± 0.05 5.602 ± 0.08 nan ± nan 2.862 ± 0.32 10.520 ± 2.24 9.454 ± 1.99 14.084 ± 0.94
v-sgd C 0.633 ± 0.04 4.684 ± 0.02 0.078 ± 0.00 nan ± nan nan ± nan nan ± nan 5.675 ± 0.54
v-sgd 0.636 ± 0.05 4.723 ± 0.03 0.078 ± 0.00 0.504 ± 0.08 6.085 ± 5.23 nan ± nan 5.669 ± 0.26
Baseline 0.635 ± 0.05 4.736 ± 0.03 0.080 ± 0.00 0.497 ± 0.06 4.353 ± 0.12 3.678 ± 1.21 5.544 ± 0.22

If not stated differently for the single methods, we consider a warmup period of
10000 and we do store a sample every 1000 iterations (the technical name in the
sg-mcmc community is keepevery, whose value in this case is 1000) for all methods.
In this set of experiments we omit results for swag and mcd, which we keep for
more involved scenarios.

Tabs. 6.1,6.2 present an overview of our results. The two metrics considered
are the root mean squared error (RMSE) and the mean negative log likelihood
(MNLL) (in both cases the lower, the better). As anticipated, all experiments
are performed over 10 random splits. If any of the runs over the splits for a
particular algorithm did diverged we indicate it with a nan (this is useful to assess
robustness of the various methods). The sheer observation of the best performing
algorithm would indicate that, not differently from the literature expectations,
sghmc is the best performing algorithm. We would like to underline however that
in most cases i-sgd variants are very close, especially if considering the standard
deviations of the performance and the improvements with respect to the baseline.
All i-sgd methods perform essentially on par, outperforming alternatives in some
cases. For this set of experiments we had no luck in obtaining good results with
sgld. The two considered variants of v-sgd are generally slightly worse than the
i-sgd family. However in most cases they still improve the results with respect to
the naive baseline. As a general comment, the difference between the baseline and
the different sampling schemes is more evident in terms of MNLL, a metric more
linked to uncertainty quantification than the basic RMSE.

We moreover include an analysis of the speed of convergence for i-sgd-α, i-
sgd-G compared with sghmc for the WINE dataset by continuing the sampling
collecting 1000 samples (Figure 6.3). For this first set of experiments it seems that
the presence of momentum do help sghmc converging faster.

6.6.3 Classification tasks, with deeper models.
In this set of experiments we use a LeNet-5 (Convolutional Neural Network)

on the mnist dataset [49] to perform classification.
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Table 6.2: mnll results for regression on uci data-sets
Method wine protein kin8nm energy power boston concrete
i-sgd-G 1.095 ± 0.12 4.396 ± 0.03 nan ± nan 0.711 ± 0.14 3.095 ± 0.06 3.141 ± 0.77 6.627 ± 0.54
i-sgd-α 1.095 ± 0.12 4.396 ± 0.03 -0.499 ± 0.65 0.737 ± 0.14 3.095 ± 0.06 3.140 ± 0.77 6.621 ± 0.53
i-sgd-G sum 1.085 ± 0.12 4.349 ± 0.03 nan ± nan 0.710 ± 0.13 3.083 ± 0.07 3.227 ± 0.88 6.384 ± 0.55
i-sgd-α sum 1.094 ± 0.13 4.349 ± 0.03 -0.508 ± 0.64 0.811 ± 0.21 3.083 ± 0.07 3.227 ± 0.88 6.385 ± 0.56
i-sgd-G Ad 1.085 ± 0.12 4.349 ± 0.03 nan ± nan 0.710 ± 0.13 3.083 ± 0.07 3.227 ± 0.88 6.384 ± 0.55
i-sgd-α Ad 1.085 ± 0.12 4.349 ± 0.03 -0.511 ± 0.65 0.716 ± 0.13 3.083 ± 0.07 3.227 ± 0.88 6.385 ± 0.56
sghmc 1.044 ± 0.12 4.150 ± 0.02 -0.785 ± 0.38 0.927 ± 0.27 2.932 ± 0.04 3.074 ± 0.84 5.601 ± 0.43
sgld 1.452 ± 0.18 5.496 ± 0.10 nan ± nan 99.089 ± 41.12 7.648 ± 2.24 35.004 ± 16.58 114.546 ± 38.16
v-sgd C 1.122 ± 0.14 4.347 ± 0.03 -0.506 ± 0.64 nan ± nan nan ± nan nan ± nan 39.396 ± 23.68
v-sgd 1.130 ± 0.14 4.393 ± 0.04 -0.497 ± 0.65 5.885 ± 2.69 3.685 ± 1.98 nan ± nan 41.911 ± 8.30
Baseline 1.179 ± 0.02 3.967 ± 0.03 0.924 ± 0.00 1.048 ± 0.03 3.071 ± 0.06 5.376 ± 2.79 13.838 ± 1.03
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Figure 6.3: Convergence speed of sghmc and i-sgd for the WINE dataset. To
improve readability the metrics are shifted vertically with respect to the value of
the sghmc method at time instant 0.

We compare different methods in terms of

• Accuracy (acc). The percentage of correctly classified samples (the higher,
the better)

• Mean negative log likelihood mnll (the lower, the better).

• Mean entropy for the test dataset. More details on the concept of entropy
are also discussed in Chapter 9 (the lower, the better). The entropy of the
output of an Ncl classes classifier, represented by the vector p, is defined as
−

Ncl∑︁
i=1

pi log pi.

• Expected calibration error (ece). It is the average, across all values of p ∈
[0,1], of the difference between the confidence of the model and its actual
precision. Referring to Equation (4.21), the difference is calculated as
P (ŷ = y|p̂ = p) − p. Zero is a perfect value. A value greater than zero
indicates an overconfident model and viceversa for a value smaller than zero.
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• Mean entropy for the NotMnist dataset. It is the entropy at the output of
the classifier when the input is taken from a different dataset. It is a test of
detection capability of out of distribution samples (the higher, the better).

Also in this set of experiments we consider different variants of i-sgd:

• i-sgd-G. Noise is estimated under the Gaussian hypothesis. The version of
Assumption 3 is the max one. The starting point of the sampling scheme is
a model pretrained for 20000 iterations using Adam with learning rate 0.01.

• i-sgd-α. As the previous version but using alpha stable noise estimation
procedure.

• i-sgd-G sum. As the first version but using the sum version of Assumption
3.

• i-sgd-α sum. As the second version but using the sum version of Assumption
3.

We compare our method against the following competitors:

• sghmc. The learning rate is 0.01 and the mdecay is 0.01. The warmup period
is 10000 iterations.

• sgld. The initial learning rate is set to 10−5 while the final one is 10−3. The
warmup period is 40000 iterations.

• v-sgd. and v-sgd C. The two variants of the sampling scheme are initialized
with a model pretrained using the same procedure as the i-sgd family.

• swag. The initial pretraining is again the same as the i-sgd cases. The
measurements are collected every epoch for 100 epochs.

• mcd. The pretraining is done for 20000 iterations using sgd with learning
rate 0.001 and momentum 0.5. The model is modified to include learnable
dropout rates for all the parameters. Differently from the other schemes, at
test time we use 1000 samples.

We stress the fact that neither swag or mcd are sg-mcmc methods. For all the
sg-mcmc methods, including v-sgd and variant, we collect 100 samples every
10000 iterations. The considered batch size for all methods is 128. The estimation
momentum for i-sgd is again 0.9 for all variants.

Results, obtained by averaging over three random seeds, are presented in Table
6.3. For this set of experiments, v-sgd C is the best performing algorithm for most
of the metrics, besides from the out of distribution entropy where it fails. The i-sgd
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Table 6.3: Results for classification on mnist data-set.

Method acc mnll mean H0 ece mean H1
i-sgd-α 9926.3333 ± 1.8856 244.7462 ± 2.3174 0.0413 ± 0.0007 0.0512 ± 0.0002 0.8268 ± 0.0420
i-sgd-G 9924.6667 ± 2.6247 239.2841 ± 1.8637 0.0414 ± 0.0007 0.0509 ± 0.0004 0.7937 ± 0.0268
i-sgd-α sum 9922.0000 ± 1.4142 245.4821 ± 2.2720 0.0415 ± 0.0004 0.0506 ± 0.0001 0.8237 ± 0.0085
i-sgd-G sum 9924.3333 ± 0.9428 244.1239 ± 1.7034 0.0415 ± 0.0006 0.0508 ± 0.0002 0.8367 ± 0.0448
sghmc 9932.3333 ± 3.6818 259.7695 ± 11.2759 0.0584 ± 0.0016 0.0532 ± 0.0005 1.1733 ± 0.0596
sgld 9931.0000 ± 2.9439 240.1740 ± 5.5880 0.0485 ± 0.0008 0.0523 ± 0.0003 1.1940 ± 0.0664
v-sgd 9922.3333 ± 5.2493 229.5869 ± 5.9108 0.0288 ± 0.0003 0.0486 ± 0.0002 0.0619 ± 0.0066
v-sgd C 9922.6667 ± 4.7842 223.7863 ± 4.1745 0.0287 ± 0.0003 0.0485 ± 0.0001 0.0792 ± 0.0231
mcd 9923.0000 ± 4.9666 331.6276 ± 11.3830 0.0910 ± 0.0014 0.0543 ± 0.0003 0.6179 ± 0.0831
swag 9916.3333 ± 2.4944 282.0489 ± 6.1477 0.0524 ± 0.0018 0.0517 ± 0.0003 0.4667 ± 0.0562

variants perform similarly to sgld and in general they outperform sghmc. How-
ever, in general, the sampling methods perform similarly. It is interesting to notice
the difference between the two non sg-mcmc methods (mcd and swag) for which
the performances are generally poorer than the cluster represented by sg-mcmc
methods. We stress that also this set of results confirms the desired behaviour: to
be able to obtain competitive results with a possibly simpler algorithm.
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Chapter 7

Conclusions of Part I

High performing hardware and growing capabilities of large scale collection of
data has pushed the development of complex machine learning models. Concur-
rent to such expansion has grown the request, both from academic and industrial
community, to deploy efficient and robust mechanisms for quantification of uncer-
tainty of the considered models. In this first part of the thesis we explored a topic,
Stochastic Gradient Montecarlo Methods sg-mcmc, that find its roots in the inter-
section of Statistical Physics, Stochastic Optimization and Montecarlo Integration.
We provided a clean theoretical basis for all the considered topics in a tutorial
fashion. The goal was to provide a solid reference for anyone interested in the topic
that is formally correct but still easy to understand. As highlighted in the text,
many different references are available. To the best of our knowledge, there does
not exist a book or thesis whose goal is to present with a unified notation all these
topics.

As mentioned in Chapter 5, sg methods allowed Bayesian posterior sampling al-
gorithms, such as mcmc, to regain relevance in an age when data-sets have reached
extremely large sizes, drastically reducing the computational costs. However, de-
spite mathematical elegance and promising results, standard approaches from the
literature are restricted to simple models. As explained, in fact, the noise induced
by the random subsampling destroys, in general, the convergence guarantees of the
methods.

The sampling properties of these algorithms are determined by simplifying as-
sumptions on the loss landscape, which do not hold in general.

By leveraging the presented theoretical basis, the sampling properties of these
algorithms are determined. To obtain useful results simplifying assumptions on
the loss landscape, which do not hold for very large deep models, must be taken.
sg-mcmc algorithms require vanishing learning rates, which force practitioners to
develop creative annealing schedules that are often model specific and difficult to
justify. The current state is thus that besides from idealistic scenarios or when con-
sidering extremely large sampling times (to collect samples with vanishing learning
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rates) there is not the possibility of guaranteeing convergence to the desired pos-
terior. In fact sg-mcmc algorithms produce samples from the desired posterior
only in the limit of learning rates going to zero. This impractical requirement force
practitioners to create learning rate schedules that are model specific and, more
importantly, difficult to justify (the optimal parameters are often found by brute
force grid search).

We have attempted to target these weaknesses by suggesting a simpler algorithm
that relies on fewer parameters and mild assumptions compared to the literature.
We introduced a unified mathematical notation to deepen our understanding of the
role of the sg noise and learning rate on the behaviour of sg-mcmc algorithms. We
presented a practical variant of the sgd algorithm, which uses a constant learning
rate, and an additional noise term to perform Bayesian posterior sampling. Our
proposal is derived from an ideal method, which guarantees that samples are gen-
erated from the true posterior. In the presence of an Oracle, in fact, it is possible to
inject noise with a covariance such that, when combined with the subsampling in-
duced noise, the resulting covariance is an identity matrix. The condition is referred
to as noise covariance isotropy, we call the method Isotropic Stochastic Gradient
Descent ( i-sgd). When the noise terms are empirically estimated, the theoretical
properties cannot be guaranteed anymore. In accordance with the recent literature
we consider also the case in which the sg noise is not assumed to be Gaussian,
but, more generally, α−stable. Our method determines the learning rate, and it
offers a very good approximation to the posterior, as demonstrated by our exper-
imental campaign in which we show that the proposed algorithm is competitive
with the others, extensively analysing different variants of the proposed method.
Future research will be focused on a deeper understanding of the interplay between
statistical properties of the sg noise and sde simulation goodness.
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Deep Information Networks
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Chapter 8

Introduction to Part II

The first part of the thesis has focused on sampling methods to be applied on
parametric models with the implicit assumption of considering scenarios where the
algorithms have continuous parameters. Continuous parameters algorithms have
been specifically designed for continuous input datasets. While it could be possible
to apply discrete parameters algorithms to inputs such as images, here assumed to
belong to some high dimensional continuous space, it is natural to understand why
continuous parameters algorithms are preferred.

However, in the real world, many datasets are discrete (categorical) in nature.
The simplest example is the case of natural language, where the dataset is composed
by the set of words. Another example could be a dataset that provides information
about whether a given device is susceptible to malicious attacks or not. Some of
the features, such as the type of operating system (OS), will be non ordinable and
categorical in nature.

The distinction between the two types of data, continuous or categorical, has
even deeper roots in the field of machine learning and artificial intelligence. It
traces back to the old dichotomy [83] that has emerged between the symbolic ap-
proaches to artificial intelligence, and the computational connectionist approaches.
To determine whether the first or second approach is the correct one is outside
the scope of this dissertation, and we simply accept that in real world it could be
useful as well to be proficient at designing and tuning algorithms that work well
with catagorical datasets.

In this second part of the thesis we propose a novel machine learning algorithm
specifically designed for classification on categorical datasets. We name this algo-
rithm Deep Information Networks (DIN), [25, 26]. The scheme we propose is based
on information theoretic concepts, specifically the information bottleneck criterion.
Differently from the first part of the thesis we do not aim at presenting the family
of classification algorithms for categorical variables in its entirety, whereas we focus
mainly on the proposed algorithm and on its closest relative (decision trees). We
put an accent in the discussion on possible dedicated hardware implementations of
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the considered method. Again we investigated a new algorithm having the target
of practicality in mind: in this case the practicality metric we consider is the hard-
ware implementation easiness. Despite being the discussion on implementations at
an extremely high level we stress important concepts like modularity, locality of
the computations and parallelizability of the pipelines. In summary, the algorithm
we propose, is specifically designed to perform classification on categorical datasets
and it is easily deployable in hardware.

8.1 Overview
This second part of the thesis will follow a natural path in the presentation of

the topics: it will be easy to directly understand why the theoretical foundations, in
this case Information Theory, are needed for the development of the implementation
part of the discussion.

This second part is composed as follows:

• Chapter 9 is focused on the introduction of the Information Theory concepts
that are needed for the understanding of the proposed method (including
the Information Bottleneck and Statistical Sufficiency) and gives a general
introduction to decision trees.

• Chapter 10 presents the first version of the proposed DIN algorithm, based
on the Information Bottleneck principle.

• Chapter 11 treats an extension and modification of the proposed algorithm,
that we name Probabilistic DIN and extend the DIN framework to ensemble
methods.

• Chapter 12 draws conclusions about the proposed method.

We hereafter expand briefly the highlight of the thesis above mentioned. Chap-
ter 9 builds the theoretical foundations for the rest of the thesis. In particular,
in Section 9.1 the main concepts of Information Theory are presented. The con-
cept of Entropy and conditional entropy is introduced, explaining them under the
perspective of average ignorance that an omniscient daemon (Maxwell’s daemon)
has to fill for us. Built on top of this theoretical foundation we find in Section 9.2
the concept of Information Bottleneck, the most important element of this second
part of the thesis. A careful comparison with the concept of (minimal) sufficient
statistic is then proposed. Then in Section 9.3 we concentrate on the the problem
of designing and studying classification algorithms when dealing with categorical
datasets, as mentioned in the Introduction (Chapter 8). It would be a mistake to
interpret our proposed algorithm, the DIN, as a particular instance of a decision
tree, since the differences, both structural and conceptual, are not negligible. To
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fully understand such differences, however, it is evident that it is necessary to have
at least the basic knowledge of what decision trees are and their basic working
mechanisms ( respectively Section 9.3.1, Section 9.3.2). Finally, since the DIN al-
gorithm will be extended to the ensemble case, the concept of random forests, is
presented in Section 9.3.3.

We describe in Chapter 10 the first version of the proposed DIN algorithm,
built using the Information Bottleneck principle. The overall architecture and its
building components are carefully described in Section 10.2, where the concept of
Information node and Mixers are presented. In this section in particular it can
be understood the structural difference between the DIN and a decision tree. By
making use of well known information theoretic inequalities, section 10.3 gives some
insight on the theoretical properties of the proposed algorithm and gives an hint
about its working principle (the concept of sifting information). A first set of
experimental results is presented in Section 10.4.

As mentioned before, the DIN concept is extended by considering ensemble
methods with the so called Probabilistic DIN. Chapter 11 is exactly focused on
this topic. The different assumption about statistical independence of the features
is discussed in Section 11.1.3, where a new version of the combiner is described.
Many different, independent networks are trained and combined, as described in
Section 11.2.1. Sections 11.1 and 11.2 investigate the architecture and the working
mechanism of the new Probabilistic DIN (with a special focus on differences w.r.t.
the previous version, Chapter 11). In Section 11.3 the theoretical properties of the
method are discussed while a large experimental campaign is reported in Section
11.4.

8.2 Notations
Similarly to the first part of the thesis, we here briefly introduce the necessary

notations. Some differences with respect to the first part are necessary to be con-
sistent with the related literature. As for the first part, when dealing with system
of equations we use matricial notation. We indicate scalar with lowercase symbols,
e.g. a , vectors (always column) with bold lowercase symbols, a. When considering
the single jth element of the vector a, we use the following notation (a)j = aj. The
transposition operation is indicated with the symbol ⊤. Matrices are indicated with
bold, uppercase letters, A. Differently from the first part, we slightly modify the
notation to help the reader and indicate scalar random variables with uppercase
(non bold) symbols, e.g. A. This will be hopefully helpful in distinguishing between
the random variables and their realization. This notation is consistent with many
standard Information Theory textbooks [23].

In this second part of the thesis we deal only with categorical random variables.
A discrete (categorical) random variable X is an element of the finite set X with
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cardinality |X |. We indicate again the probability distribution using the symbol p.
The probability distribution must be valid. This requirement corresponds to having
a function p : X → [0,1] that jointly satisfies p(X = x) = pX(x) ≥ 0 ∀x ∈ X
and ∑︁

x∈X
pX(x) = 1. When useful in solving ambiguities we add a pedix correspond-

ing to the considered random variable(s) to the probability distribution symbol p,
i.e. pX,Y (x, y) corresponds to the joint distribution of two random variables X, Y
whereas pX|Y (x|y) to the conditional. Simply indicating p(x, y) could introduce
ambiguities. Notice, that differently from the first part of the thesis, and consis-
tently with many Information Theory texts, the letter X will usually indicate the
input datapoints and not the parameters of the considered algorithms.

The indicator function 1(·), already defined, is easily extendible to discrete
(categorical) domains. The behaviour of the function is the same as for the one
defined with continuous domains: it takes value 1 if the considered event is verified
and 0 otherwise.

The Dirac delta finds its counterpart in the discrete domain with the Kronecker
delta. It is usually considerated a function of two integers p, q, with codomain
{0,1}. Classical notations include: δ[p − q], δ[p, q], δp,q. In this thesis we use the
latter. Specifically we define

δp,q =
⎧⎨⎩1 if p = q

0 if p /= q

The last useful quantity of interest is the Kronecker product between two ma-
trices A, B, indicated with the symbol ⊗ and defined as:

A⊗B =

⎡⎢⎢⎣
a11B · · · a1nB

... . . . ...
am1B · · · amnB

⎤⎥⎥⎦
The same can be written in explicit form as

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
... ... . . . ... ... ... . . . ...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
... ... ... . . . ... ... ...
... ... ... . . . ... ... ...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
... ... . . . ... ... ... . . . ...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Chapter 9

Information Theory and Decision
Trees

In this chapter we provide a generic introduction to Information Theory and
Decision Trees. The first Section in this introduction, 9.1, presents briefly the main
concepts of Information Theory. Almost single handedly founded by Claude Shan-
non, with a seminal paper in 1948 ( a recent reprint of the original paper is available
as [78]), it is the theory that deals with the amount of information that multiple
random variables contains one about the other. As to what exactly is information,
the answer is extremely difficult from a practical, and even philosophical, point of
view. Being outside the aim of this thesis to give a through introduction to Infor-
mation Theory, we will give only the highlights under a lens that is particularly
useful for the understanding of the new classification algorithm proposed in this
thesis.

In Section 9.2 we present the Information Bottleneck principle [92, 91]. It is pos-
sible the single most important concept for this thesis. It is the framework in which
random variables are stochastically transformed according to a well defined princi-
ple of compression and information preservation. The reader more acquainted with
the Signal Processing literature, will find interesting the presentation of the link of
the IB principle with the concept of Minimal Sufficient Statistic. The connection
is presented in Section 9.2.1 where we give a proof slightly different than the one
presented in [77]. The technical proof concerning the IB framework is presented in
Section 9.2.2.

In Section 9.3 we explain the problem of building classifiers when the underlying
dataset is composed by discrete (categorical) random variables. The general, black
box methods that have been described in the first part of the thesis, are in fact
better suited for dataset composed by continuous attributes, and an overview of
the possibilities that we have when dealing with categorical random variables is
presented. Among the many possibilities, two different schools of thought are the
basis for the biggest branches: transform the categorical variables into continuous
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ones according to some procedure, and use the methods that are known to work
with continuous variables, or devise new algorithms that are specifically tailored to
categorical datasets. In this second part of the thesis we consider the latter option.

A synthetic presentation of decision trees is then provided in Section 9.3.1 where
the basic topological features of trees are discussed. Of particular interest is then
Section 9.3.2 in which the general form algorithm for learning (a.k.a. growing) a
decision tree is presented, and the basic information theoretic concepts introduced
in Section 9.1 are used in the construction of the tree. Finally, in Section 9.3.3
the concept of random forests, the union of many different (randomly generated)
decision trees is presented.

9.1 Information Theory
A discrete (categorical) random variable X is an element of the finite set X

with cardinality |X |. It has probability distribution fully determined by a function
p : X → [0,1], where p(X = x) = pX(x) ≥ 0 ∀x ∈ X and ∑︁

x∈X
p(x) = 1.

The entropy of a random variable X, measured in bits, is defined as

H(X) = −
∑︂
x∈X

pX(x) log2 pX(x). (9.1)

Entire books cover in detail how to interpret the concept of entropy, a notable
example being [23], but being a full exposition outside the scope of this thesis, we
simply state that entropy is a measure of the uncertainty linked to a given random
variable. In particular it is possible to show [23], that the concept of entropy can
be understood through the following mental experiment:

Suppose that a random variable X is extracted according to a given probability
distribution pX(x). The entropy of the random variable is the average (over the dis-
tribution pX(x)) number of questions with a binary (yes/no) answer that we have to
ask an omniscient demon, a.k.a. Maxwell’s daemon, to be able to determine what
is the extracted random variable. It is assumed that we do have knowledge about
the distribution pX(x) and that we are able to construct, based on this knowledge,
an optimal policy for question posing.

The statement is not completely correct. To be true we must have that for all
elements x of the set X , the probability of x can be expressed exactly as a negative
power of 2, i.e. − log2(pX(x)) = n, n ∈ N. If this is not the case however, it can
be shown [23], that if we group together N → ∞ symbols, the average number of
questions we have to ask the omniscient daemon converges to NH(X), and thus
the average per symbol number of questions is again H(X). The entropy is always
non negative, i.e. H(X) ≥ 0, for any valid probability distribution pX(x). The
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proof is simple from (9.1) by noticing that being pX(x) ≤ 1 for any distribution,
log2 (pX(x)) ≤ 0. In according to the relationship between entropy and number
of questions it makes sense that a negative number of questions is an unphysical
concept. We stress that this line of reasoning and all the following properties we
will list are only valid for discrete random variables, since for continuous random
variables completely different bounds and lines of reasoning are necessary.

For a couple of random variables X ∈ X , Y ∈ Y , with probability defined by
p(X = x, Y = y) = pX,Y (x, y), the joint entropy is defined as

H(X, Y ) = −
∑︂

x∈X ,y∈Y
pX,Y (x, y) log2 pX,Y (x, y). (9.2)

An easy way to interpret the joint entropy is to simply promote the couple of
random variables X, Y to a vector Z = (X, Y ) ∈ X × Y and consider the entropy
of the vector Z.

H(X, Y ) = H(Z) = −
∑︂

z∈∈X ×Y
pZ(z) log2 pZ(z). (9.3)

Similarly the conditional entropy of X given Y is

H(X|Y ) = −
∑︂

x∈X ,y∈Y
pX,Y (x, y) log2 pX|Y (x, y), (9.4)

and can be understood as the uncertainty about the random variable X if we are
able to observe Y , the average number of questions we have to ask to guess X given
that we observed Y . The same holds for the inverse direction,

H(Y |X) = −
∑︂

x∈X ,y∈Y
pX,Y (x, y) log pY |X(x, y). (9.5)

Fundamental to the understanding of the rest of the thesis is the concept of
mutual information between the two variables X and Y . Suppose that we are only
observing the variable Y but not the variable X. Mutual information is defined as
the average number of questions that we are saving to determine the variable X by
asking the daemon with respect to the case in which Y is not observed. Formally

I(X; Y ) = H(X)−H(X|Y ). (9.6)

It is easy to prove that an equivalent definition is I(X; Y ) = H(Y )−H(Y |X). We
want to stop for a moment and explain why the concept of mutual information is
of paramount importance when dealing with classification problems on categorical
datasets. We propose an example tailored to the classification settings, although
with little effort the same example can be adapted to a classical telecommunication
coding scenario. Consider the case in which a random variable of interest, X
generate a second random variable Y , in graphic language

X → Y, (9.7)
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and while our interest lies in the variable X we are only able to observe Y . It is
obvious that we do not have access to a Maxwell daemon and thus all information
that is lost is not recoverable. However, and this is particularly clear by rewriting

H(X) = I(X; Y ) + H(X|Y ), (9.8)

out of the H(X) questions we would have to ask to the daemon, I(X; Y ) are
saved by observing Y , while H(X|Y ) will remain unanswered and their information
content forever lost and contribute to the uncertainty that we have about X for the
classification problem. It is then trivial to understand why the higher the mutual
information, the better.

The mutual information can be expressed as the KL−divergence between the
joint and the marginal probabilities

I(X; Y ) = KL(pX,Y (x, y)||pX(x)pY (y)) =
∑︂

(x,y)∈X ×Y
pX,Y (x, y) log2

(︄
pX,Y (x, y)

pX(x)pY (y)

)︄
.

(9.9)
Usually the KL−divergence is expressed using the natural logarithm base, but
the conversion between the two definitions is simply achieved by a multiplicative
constant. From (9.9) we can observe important properties, the first one being
that mutual information, being expressible as a KL−divergence, is always positive.
Since we are interpreting mutual information as the average number of questions
we are saving, it is reasonable to observe that the quantity is positive. Having a
negative number of average saved questions would imply that knowledge of Y would
confuse us more about the variable X. Non negativity of mutual information implies
the important property that knowledge cannot hurt. Equivalently, we can look at
the derived inequality

− I(X; Y ) = −H(X) + H(X|Y ) ≤ 0→ H(X|Y ) ≤ H(X) (9.10)

that once again tells us: knowing Y cannot increase the average number of questions
we have to make to determine X with respect to the case in which Y is not observed.
It can be trivially proved moreover that

I(X; Y ) ≤ min (H(X),H(Y )) (9.11)

It is useful to introduce the so called Information Processing Inequality and its
relationship with Markov chains. Suppose that X, Y, Z form a Markov chain

X → Y → Z, pZ|X,Y = pZ|Y (9.12)

The Data Processing Inequality states that the mutual information between the two
ends of a Markov chain can only decrease as the length of the chain is increased

I(X, Z) = H(X)−H(X|Z) ≤ H(X)−H(X|Y, Z) = H(X)−H(X|Y ) = I(X, Y )
(9.13)
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where the first inequality is due to the fact that the entropy of X knowing Z, Y
is smaller or equal to the entropy of X when just Z is known, and the second
equality (H(X|Y, Z) = H(X|Y )) is easily shown thanks to the Markovian nature
of the chain. For the interested reader, it is possible to draw an analogy between
this inequality and the thermodynamic principle that states that for every physical
system, every time something is done, the total entropy can only increase (at best
remain the same).

9.2 Information Bottleneck (IB)
In this thesis, we make heavy use of the so-called “information bottleneck”

principle [92, 91]. The formal setting is the following: suppose that a random
variable (a source) Xin, is probabilistically linked to another target random variable
Y according to some probability pY |Xin

. Our goal is, given the observation of
the random variable Xin, to produce another random variable Xout according to
some conditional probability p(Xout = j|Xin = i). The conditional probability is
chosen such that minimises the mutual information I(Xin; Xout) between its input
Xin and output Xout for a given mutual information between its output and the
target I(Xout; Y ). In other terms, compresses as much as possible and throws
away irrelevant information, while saving the information about the desired random
variable Y .

The principle can be cast in the form of an optimization problem, as the min-
imisation of the following Lagrangian

L{p(Xout = j|Xin = i)} = I(Xin; Xout)− βI(Y ; Xout), (9.14)

where β is a Lagrangian coefficient that implicitely determines the target mutual
information between Y and Xout. The idea is that in the following chain

Y → Xin → Xout (9.15)

we have from the data processing inequality that I(Xout; Y ) ≤ I(Xin; Y ). Trans-
forming Xin then reduces the amount of information that we have about Y . The
concept is however to build the conditional probability p(Xout = j|Xin = i) in such
a way that the information about Y is preserved (totally or not) while the irrelevant
information contained in Xin, that is useless from a classification point of view and
increase the probability of overfitting, is removed.

It can be proved ([92], also Section 9.2.2) that the probabilistic mapping between
Xin and Xout that maximizes the Lagrangian is given by

p(Xout = j|Xin = i) = 1
Z(i; β)p(Xout = j)e−βd(i,j), i = 0, . . . , Nin−1, j = 0, . . . , Nout−1

(9.16)
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where d(i, j) is the Kullback-Leibler divergence

d(i, j) =
Nclass−1∑︂

m=0
p(Y = m|Xin = i) log2

p(Y = m|Xin = i)
p(Y = m|Xout = j)

= KL(p(Y |Xin = i)||p(Y |Xout = j)) (9.17)

and Z(i; β) is a normalizing coefficient that allows to get

Nout−1∑︂
j=1

p(Xout = j|Xin = i) = 1 (9.18)

The probabilities p(Xout = j|Xin = i) can be iteratively found using the Blahut-
Arimoto algorithm [92].

9.2.1 Sufficient Statistic
This section is intended to be useful as guide for the understanding of the main

idea behind the algorithm we will describe in Chapters 10,11.
Consider again the case in which the probabilistic link between two random

variables Xin, Y is
Y → Xin.

If we observe Xin but are only interested in Y it is not necessary to store Xin

in its entirety. This concept is formalized (usually with a frequentist and not
Bayesian approach) by means of sufficient statistic [42]. There are many possible,
equivalent ways of definining such a concept [42],[23]. We here present the one based
on information theory. Since we are not interested in Xin in its entirety, it is possible
to consider a transformed (possibly stochastic) version of it. Formally, we say that
we generate Xout = T (Xin), where the mapping T (·) can be either stochastic or
deterministic. In graphical terms we extend the chain as

Y → Xin → Xout = T (Xin)

The data processing inequality (9.13) immediately tells us that I(Xout; Y ) ≤ I(Xin; Y ).

Definition 2. The variable Xout is said to be sufficient statistic about Y iff I(Xout; Y ) =
I(Xin; Y )

Equivalently, all the relevant information that Xin contains about Y is conserved
and the data processing inequality is attained with equality. It seems reasonable,
at least in an ideal world, that no matter what we choose for transforming the
variable Xin we should always aim at conserving all the relevant information about
Y and thus build a sufficient statistic. Among all sufficient statistics, of particular
interest is the subclass of minimal sufficient statistics:
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Definition 3. Xout is said to be a minimal sufficient statistic about Y iff it is a suf-
ficient statistic and for every other sufficient statistic P there exists a deterministic
function f(·) such that Xout = f(P ).

Among all sufficient statistics, the "smallest" ones are of particular interest both
for theorical and practical reasons.

Assuming to have knowledge of the quantity I(Xin; Y ), the problem of finding
the minimal sufficient statistic can be solved by means of the Information Bottleneck
criterion [77]. Remember that the value of β of the Lagrangian implicitely defines a
target mutual information I(Y ; Xout). Given the target I(Xout; Y ) = I(Xin; Y ) ↔
β = β̄, finding a minimal sufficient statistic is equivalent to solving the Lagrangian

L = I(Xin; Xout)− β̄I(Y ; Xout), (9.19)

or, equivalently

min I(Xin; Xout) s.t.I(Y ; Xout) = I(Y ; Xin), (9.20)

We hereafter present a proof (slightly different from the one in [77]) to show
that (9.20) provides us with a minimal sufficient statistic. We start by rewriting
(9.20) as

min I(Xin; Xout) s.t. Xout is a sufficient statistic for Y (9.21)
or

min
Xout∈S(Y )

I(Xin; Xout) (9.22)

where the set S(Y ) is the set of sufficient statistics for Y . We here show that
Xout ∈MS(Y ) (the set of minimal sufficient statistics) iff

I(Xin; Xout) = min
P ∈S(Y )

I(Xin; P ). (9.23)

in fact, from Definition 3, if Xout ∈ MS(Y ) then ∀P ∈ S(Y ),∃f(·) : Xout = f(P ).
By data processing inequality I(Xin; Xout) = I(Xin; f(P )) ≤ I(Xin; P ), that is
thus equivalent to say that I(Xin; Xout) = minP ∈S(Y ) I(Xin; P ). It remains to
be shown that also the converse holds: if I(Xin; Xout) = minP ∈S(Y ) I(Xin; P ),
then Xout ∈ MS(Y ). We proceed by absurd by assuming that I(Xin; Xout) =
minP ∈S(Y ) I(Xin; P ) and Xout /∈ MS(Y ). Since Xout /∈ MS(Y ) it exists a trans-
formation f(·) that produces a minimal sufficient statistic: Z = f(Xout), f ∈
MS(Y ). By data processing inequality we immediately see that I(Z; Xin) ≤
I(Xin; Xout). We split the ≤ into its <, = components. If I(Z; Xin) < I(Xin; Xout)
then the assumption I(Xin; Xout) = minP ∈S(Y ) I(Xin; P ) is violated sinceMS(Y ) ⊂
S(Y ). Considering instead I(Z; Xin) = I(Xin; Xout) to be true, this implies that
also Xin → Z → Xout forms a Markov Chain. Since moreover, by construction,
from Xout we can re-obtain deterministically Z through the function f(·) the fol-
lowing holds Xin → Z → Xout → Z. We can then say that it exists a deterministic

83



Information Theory and Decision Trees

function g(·) that maps Z into Xout. This implies however that Xout ∈ MS(Y ).
in fact: Xout is a sufficient statistic and for every sufficient statistic P it exists a
deterministic function h, we can choose h = g ◦ f , such that Xout = h(P ). We then
proved by absurd also the converse of (9.23).

Summarising, the following concept is the key of this discussion: provided knowl-
edge of I(Y ; Xin) and of the corresponding β̄, solving the Information bottleneck
with β = β̄, or finding a minimal sufficient statistic are equivalent problems. Find-
ing a minimal sufficient statistic allows to compress as much as possible an ob-
served random variable Xin while saving all the information about Y . Information
theoretic compression can be easily translated into physically required memory to
store a given random variable. The fundamental idea of this work is to hierarchi-
cally combine compressed versions of random variables while saving all the relevant
information. On one side, combining different random variables increases the di-
mensionality of the problem, on the other, the performed compression reduces it.
By balancing these opposing forces we will be able, Chapter 10,11, to design a new
classification algorithm.

Two important details must be highlighted: first, the mutual information I(Y ; Xin)
is unknown ( and consequently β̄), second, even having an estimate of such mutual
information does not solve the problem. In an ideal scenario, where the estimation
is very accurate, there is in fact no reason to choose any β different from the β̄
corresponding to the mutual information (why throw away information about Y or
compress less then necessary?). In practice, the estimation will be noisy and, under
certain pathological conditions, much higher than the true value. This implies that,
while in principle the value of β could be fixed a priori, in practice it remains an
extremely important degree of freedom that must be tuned.

When working with a finite dataset, it is not possible to have access to the
true mutual information but just an empirical estimate of it. Consider two random
variables X ∈ X , Y ∈ Y distributed according to pX,Y and a dataset of joint
observations D = {xi, yi}N

i=1. The simplest way to estimate the joint probability
distribution is as follows:

p̂X,Y (x, y) =

N∑︁
i=1
1(xi = x, yi = y)

N
. (9.24)

The empirical marginals are then easily derived as well. To estimate the mutual
information is then sufficient to compute

Î(X; Y ) =
∑︂

x∈X ,y∈Y
p̂X,Y (x, y) log

(︄
p̂X,Y (x, y)

p̂X(x)p̂Y (y)

)︄
. (9.25)

A practical example of spurious correlation that could induce a fake higher em-
pirical mutual information is described hereafter. The following is not a formal
proof. Consider two independent random variables X, Y uniformly distributed in
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their sample space with cardinalities |X | = |Y| = Ns. When the number of observa-
tions is much smaller than the cardinalities N ≪ Ns, the empirical joint probability
distribution will be sparsely populated and provide the statistical illusion of false
correlations. In such a scenario, it will be likely that the conditional probabilities
p̂X|Y (x, y) will be extremely concentrated and the estimated mutual information
inflated. Using directly Î(X; Y ) as a target mutual information in the Information
Bottleneck algorithm could thus makes us incur into learning spurious correlations,
also colloquially known as overfitting. By choosing a different target mutual in-
formation (and thus a different β) we will in practice be able to move across the
underfitting/overfitting landscape (look also at Figure 11.6,Chapter 11).

9.2.2 Proof of IB solution
The following section is purely technical and serves the purpose of proving the

fact that (11.10) describes the optimal conditional probability in terms of Informa-
tion Bottleneck maximization.

We want to minimise

L = I(Xin; Xout)− βI(Y ; Xout)

among the functionals p(Xout|Xin). To simplify the derivation, the mutual informa-
tions will be measured in nats (i.e. natural logarithm instead of log2). The mutual
information I(Xin; Xout) can be written as

I(Xin; Xout) = H(Xout)−H(Xout|Xin) (9.26)

Let us then find the derivative of H(Xout) with respect to p(Xout = p|Xin = q). For
sake of brevity, in the following we will write p(Xout = p|Xin = q) = pqp:

∂H(Xout)
∂pqp

= − ∂

∂pqp

Nout∑︂
j=1

p(Xout = j) ln p(Xout = j)

Note that
p(Xout = j) =

Nin∑︂
i=1

p(Xout = j|Xin = i)p(Xin = i) (9.27)

and the term pqp appears only when j = p and i = q, so that

p(Xout = j)
dpqp

=
{︄

0 j /= p
p(Xin = q) j = p

(9.28)

Remember also that
d

dx
(x ln x) = ln x + 1
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Therefore

∂H(Xout)
∂pqp

= − ∂

∂pqp

[p(Xout = p) ln p(Xout = p)]

= −[1 + ln p(Xout = p)]p(Xin = q)

The derivative of H(Xout|Xin) is

∂H(Xout|Xin)
∂pqp

= − ∂

∂pqp

Nout∑︂
j=1

Nin∑︂
i=1

p(Xout = j|Xin = i)p(Xin = i) ln p(Xout = j|Xin = i)

= − ∂

∂pqp

[p(Xout = p|Xin = q)p(Xin = q) ln p(Xout = p|Xin = q)]

= −p(Xin = q)[1 + ln p(Xout = p|Xin = q)]

The derivative of I(Xin; Xout) is therefore

∂I(Xin; Xout)
∂pqp

= −[1 + ln p(Xout = p)]p(Xin = q) + p(Xin = q)[1 + ln p(Xout = p|Xin = q)]

= p(Xin = q) ln p(Xout = p|Xin = q)
p(Xout = p)

The mutual information I(Y ; Xout) can be written as

I(Y ; Xout) = H(Xout)−H(Xout|Y ) (9.29)

The derivative of the entropy of Xout was already found:

∂H(Xout)
∂pqp

= − ∂

∂pqp

[p(Xout = p) ln p(Xout = p)]

= −[1 + ln p(Xout = p)]p(Xin = q)

As for the conditional entropy H(Xout|Y ), we can write it as

H(Xout|Y ) = −
Nout∑︂
j=1

Nclass∑︂
m=1

p(Xout = j, Y = m) ln p(Xout = j|Y = m)
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Then

∂H(Xout|Y )
∂pqp

= −
Nout∑︂
j=1

Nclass∑︂
m=1

{︄
∂

∂pqp

p(Xout = j, Y = m)
}︄

ln p(Xout = j|Y = m)

−
Nout∑︂
j=1

Nclass∑︂
m=1

p(Xout = j, Y = m)
{︄

∂

∂pqp

ln p(Xout = j|Y = m)
}︄

= −
Nout∑︂
j=1

Nclass∑︂
m=1

{︄
∂

∂pqp

p(Xout = j|Y = m)p(Y = m)
}︄

ln p(Xout = j|Y = m)

−
Nout∑︂
j=1

Nclass∑︂
m=1

p(Xout = j, Y = m) 1
p(Xout = j|Y = m)

{︄
∂

∂pqp

p(Xout = j|Y = m)
}︄

= −
Nout∑︂
j=1

Nclass∑︂
m=1

{︄
∂

∂pqp

p(Xout = j|Y = m)
}︄

p(Y = m) ln p(Xout = j|Y = m)

−
Nout∑︂
j=1

Nclass∑︂
m=1

p(Y = m)
{︄

∂

∂pqp

p(Xout = j|Y = m)
}︄

We have

∂

∂pqp

p(Xout = j|Y = m) = ∂

∂pqp

Nin∑︂
i=1

p(Xout = j, Xin = i|Y = m)

= ∂

∂pqp

Nin∑︂
i=1

p(Xout = j|Xin = i)p(Xin = i|Y = m)

= δiqδjpp(Xin = i|Y = m) = δjpp(Xin = q|Y = m)

and therefore

∂H(Xout|Y )
∂pqp

= −
Nout∑︂
j=1

Nclass∑︂
m=1

δjpp(Xin = q|Y = m)p(Y = m) ln p(Xout = j|Y = m)

−
Nout∑︂
j=1

Nclass∑︂
m=1

p(Y = m)δjpp(Xin = q|Y = m)

= −
Nclass∑︂
m=1

p(Xin = q|Y = m)p(Y = m) ln p(Xout = p|Y = m)

−
Nclass∑︂
m=1

p(Y = m)p(Xin = q|Y = m)

= −
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p|Y = m)− p(Xin = q)
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In the overall,

∂I(Y ; Xout)
∂pqp

= ∂H(Xout)
∂pqp

− ∂H(Xout|Y )
∂pqp

= −p(Xin = q)[1 + ln p(Xout = p)]

+
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p|Y = m) + p(Xin = q)

= −p(Xin = q) ln p(Xout = p) +
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p|Y = m)

= −
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p)

+
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p|Y = m)

=
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p|Y = m)
p(Xout = p)

=
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Xout = p, Y = m)
p(Y = m)p(Xout = p)

=
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Y = m|Xout = p)
p(Y = m)

Let us now set the derivative of L with respect to pqp equal to 0. We get:

∂L
∂pqp

= p(Xin = q) ln p(Xout = p|Xin = q)
p(Xout = p)

− β
Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Y = m|Xout = p)
p(Y = m) = 0

which leads to:

p(Xin = q) lnp(Xout = p|Xin = q)
p(Xout = p) = β

Nclass∑︂
m=1

p(Xin = q, Y = m) ln p(Y = m|Xout = p)
p(Y = m)

= βp(Xin = q)
Nclass∑︂
m=1

p(Y = m|Xin = q) ln p(Y = m|Xout = p)
p(Y = m)
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and consequently

p(Xout = p|Xin = q) = p(Xout = p) exp
⎧⎨⎩β

Nclass∑︂
m=1

p(Y = m|Xin = q) ln p(Y = m|Xout = p)
p(Y = m)

⎫⎬⎭
= p(Xout = p)e−βd(q,p)

where
d(q, p) =

Nclass∑︂
m=1

p(Y = m|Xin = q) ln p(Y = m)
p(Y = m|Xout = p) (9.30)

Actually, we did not introduce the constraints, namely:
Nout∑︂
p=1

Nin∑︂
q=1

p(Xout = p|Xin = q)p(Xin = q) = 1 (9.31)

Nout∑︂
p=1

p(Xout = p|Xin = q) = 1 (9.32)

In the presence of the constraints, we get

p(Xout = p|Xin = q) = p(Xout = p)
Z(q) e−βd(q,p)

where Z(q) is such that ∑︁Nout
p=1 p(Xout = p|Xin = q) = 1 holds and (11.10) is proved.

9.3 Inference for categorical datasets
In the first part of the thesis, we treated the problem of Bayesian machine

learning linked to differentiable parametric models. Usually, such kind of models,
are intended to be applied to datasets whose domain is some subset (proper or
improper) of the D−dimensional Euclidean space RD. The simplest example is the
linear regression model in which the output, when the input is the vector u ∈ RD,
is simply computed as y = x̂⊤u. The parameter vector x̂ is usually assumed to
belong to RD and any form of gradient based estimation method can be applied as
described in the previous part of the thesis.

On the contrary, a categorical random variable C is an element of a finite
set of objects C = {o1, . . . , oNc}, C ∈ C, in which an algebra does not make gen-
erally sense. The concept is best explained informally with an example: suppose
C = {dog, cat, yellow}. It is evident that it does not make sense, at least in a
principled way, to consider algebraic manipulations of elements of the set such as
dog − yellow

13 . To overcome the problem, at least two broad possibilities are avail-
able: the first one is to follow the route of embedding the objects in some euclidean
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space RD and use the classical parametric tools described in the first part of the
thesis. The second one is to consider models in which no algebraic manipulation
is needed and treat the datapoints as element of a finite discrete set on which it is
not possible to perform algebraic manipulations. Member of the former class are
notably the natural language (NLP, an example of implementation can be found
in [94]) or the DNA (as in [2]). These cases are somehow an exception since usually
building embeddings is an extremely difficult and data hungry task, both consid-
ered cases succeeded in such an approach due to the enormous available amount of
data and the temporal structure of the datasets that helps in extracting structured
information.

In this part of the thesis, instead, we follow the latter approach, that is more
feasible for smaller, less regular datasets. Currently, in fact, in the applied ma-
chine learning domain the unwritten rule is that when the considered dataset is
composed of categorical (or mixture of real and categorical) features, inherently
categorical based methods outperform other real parametric models such as deep
neural networks (with the notable exeption of NLP and DNA processing).

9.3.1 Decision trees
The most important class of categorical methods is based on decision trees. A

decision tree is a classifier, i.e. an object that takes as input a given D−dimensional
datapoint x ( an element of the space C(1)×C(2) · · ·×C(D)) and produces as output
y(x), one out of Ncl classes.

A decision tree is a graph (tree) where the root and intermediate nodes represent
features, the routing algorithm from a parent to one of the child is determined by
the value taken by the parent feature node, and the leaves contain the predicted
class (or a probability for a predicted class). The construction of the tree topology
is assumed for the moment to be known thanks to external sources. The concept
is best explained with a toy example. Suppose that each datapoint is composed by
three features: sex ∈ {male, female}, age ∈ {young, adult, old} and green blood ∈
{yes, no}. The objective is to determine whether the considered subject (datapoint)
is or is not affected by the XYZ-illness (healty, ill). Figure 9.1(left) depicts the
decision tree corresponding to the problem. The classification rule (either externally
fixed or somehow learnt) is the following: if you are a male (young or old) with
green blood, then you have XYZ-illness, otherwise you are healthy. To classify a
datapoint (a patient) it is then sufficient to follow the route in the tree according
to the features value, starting from the root feature,in this case the green blood
feature, and descend the tree until a leaf (classification value) is reached. Starting
from the root, for example, if a subject has green blood the right path must be
chosen. Then, similarly, according to the sex the left or right path is chosen, and
so on.

Actually, the example just described it is somehow unrealistic in that the rules
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9.3 – Inference for categorical datasets

are too rigid, fixed, and a leaf node contains a strict classification rule. It would
be nicer, to have probabilities of being ill or healthy instead of an hard label ,
something like the patient is healthy at 75%. From a technical point of view this
is obviously possible, and the result is depicted in Figure 9.1(right). Leaves where
the probability of being healthy is higher than 0.5 are colored in blue, while leaves
for which the probability of being ill is the dominant one are colored in red.

green blood

healthy sex

healthy age

ill healthy ill

green blood

p(H) = .99 sex

p(H) = .78 age

p(I) = .71 p(H) = .69 p(I) = .88

No Yes

female male

young adult old

No Yes

female male

young adult old

Figure 9.1: A decision tree (left). A soft decision tree (right), the events H, I are
short hand for healthy and ill respectively.

9.3.2 Simple algorithm for growing (learning) a tree
It is not, by any means, the objective of this introduction to fully explain how

decision trees can be built. We simply underline the general mechanism behind
such construction algorithms, having in mind that we will explain the new proposed
method in Chapters 10,11 and that to fully appreciate similarities and differences
between the methods an introduction to decision trees is necessary.

The pseudocode is described in Algorithm 3. To avoid clutter only exploration
is described, obviously one must keep track of the various paths while executing
the algorithm to be able to use the stored tree subsequently. Our goal is to build a
decision tree starting from a given dataset D = {xi, yi}N

i=1, composed of features xi

and targets yi. We would like to build the tree according to information theoretic
criteria.
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Before proceeding with the exposition we notice again that the main element of
such an approach, the true mutual information between any feature X(a) ∈ C(a)and
the target class:

I(X(a); Y ) =
∑︂

x∈C(a),y∈Y
pX(a),Y (x, y) log

(︄
pX(a),Y (x, y)

pX(a)(x)pY (y)

)︄
, (9.33)

to be computed requires the knowledge of the true distributions pX(a),Y (x, y). These
probabilities are in general unknown. To overcome the problem, and this is the
hearth of the learning process, the simplest solution is to compute instead the
empirical mutual information based on the empirical probabilities. The estimated
empirical joint probabilities are computed as

p̂X(a),Y (x, y) =

N∑︁
i=1
1(x(a)

i = x, yi = y)

N
, (9.34)

and similarly for the marginals p̂X(a)(x),p̂Y (y). A straightforward mechanism to
estimate the mutual information is, starting from (9.33),

Î(X(a); Y ) =
∑︂

x∈C(a),y∈Y
p̂X(a),Y (x, y) log

(︄
p̂X(a),Y (x, y)

p̂X(a)(x)p̂Y (y)

)︄
. (9.35)

Having clarified this technicality, we can proceed in the exposition of the tree
learning procedure. Let us slightly rearrange the notation for the dataset D, and

indicate with X =

⎡⎢⎢⎢⎢⎣
x⊤

1
x⊤

2
...

x⊤
N

⎤⎥⎥⎥⎥⎦, an N×D matrix containing the D features of the dataset,

and with y =
[︂
y1, . . . , yN

]︂⊤
the vector containing the target variables. We use the

short-hand i(y, X(:, s)) to indicate the empirical mutual information between the
target variable vector y and the s− th column of the dataset, X(:, s).

The tree is built by calling the recursive function Build tree(y, X) described
in Algorithm 3. The summary is the following: starting from the complete dataset
pick the feature with the highest empirical mutual information. Divide the dataset
according to the possible values taken by such feature and create children of this
root node. For each children repeat recursively the procedure until a termination
condition is reached (there are no left features or the sub-dataset targets belong to
a unique class).
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Algorithm 3 Recursive decision tree construction
Build tree (y, X):
Select p = arg maxs i(y, X(:, s))
loop For all a ∈ C(s):

Select the rows ({j}) of X and y for which X(j, p) = a
Remove {j} rows from y, X
Remove the p− th column from X
Call the reduced dataset (y{p}, X{p})
Compute number of columns of X{p} (Nf )
Compute number of unique values of vector y{p} (Nu)
if Nf = 0 or Nu = 1 then

Build a leaf node
Store empirical distribution of y{p}

else Build tree (y{p}, X{p})

return

Many different variants can be derived, as described in [70, 71], based on differ-
ent criteria. Instead of choosing the feature with the maximum mutual information,
a common alternative is to use the Gini impurity coefficient. The Gini impurity of
a dataset is defined as the probability that a randomly chosen datapoint is missclas-
sified if the classification label is randomly chosen according to the label probability
distribution:

g(D) =
∑︂
y∈Y

p̂Y (y)
∑︂

p∈Y,p /=y

p̂Y (p) (9.36)

The Gini impurity of a feature is simply derived as the weighted sum of Gini
impurities when the dataset is split according to the feature value. In practice, if
the s − th feature is chosen, the dataset is split according to the values taken by
the feature, a ∈ C(s), and the Gini impurity for the feature is computed as

gf (s) =
∑︂

a∈C(s)

|Da| g(Da) (9.37)

where Da is the portion of the dataset D in which the s − th features has the
value a, and |Da| is its cardinality. It is simple to rewrite (9.37) in terms of em-
pirical probability and draw a parallel with the splitting method based on Mutual
Information

9.3.3 Ensemble of trees: random forests
Conceptually, what has been described in the previous Section is sufficient to

understand the functionality and the learning mechanisms behind trees. Many

93



Information Theory and Decision Trees

important details are left out, such as the possibility of having pruning procedures,
or the discussion about hardware implementation and computational and memory
complexity. While extremely important, we do consider these aspects outside the
scope of this dissertation, and refer instead the interested reader to one of the many
good resources on the topic [69, 70].

One important aspect that we consider worthy of discussion is the concept of
ensemble of trees. To build an ensemble of trees, usually, the dataset is randomly
splitted into overlapping sub-datasets, a decision tree is built and their results are
combined, giving rise to the name random forest. The first time the name random
forest appeared in the literature was in [90].

The author in [90], based on previous experience on aggregating multiple inde-
pendent classifiers [39], proposes to combine multiple trees built on the possible 2D

subdatasets , i.e. every possible combination of taking or not a given feature out
of the D available.

Construction of random forests is based on the combination of two stochastic
operations:

1. Random selection of features, that as just described corresponds to building
multiple copies of the dataset and throw away some of the features

2. Bagging, a short-hand for bootstrap aggregating, that corresponds to the
operation of building multiple datasets from a single one by sampling with
replacement the datapoints

In practice, the combination of the two operations just described, corresponds
to a random sub-sampling with replacement of the dataset D = X, y obtained by
deletion of some of the N rows and D columns of the matrix X. The procedure for
the learning of random forest is described in Algorithm 4. It is simply composed by
three elements: the generation of many random subsets of the original dataset, the
construction of trees using the already described Algorithm 3, and the construction
of an object that aggregates all the single classification probabilities from the single
trees. Concerning this last operation, a simple and common choice, that is also the
one described in [90], is to simply average the result of the single trees

p̂forest(y|x) = N−1
tr

Ntr∑︂
i=1

p̂i
tree(y|x), (9.38)

where Ntr is the number of trees composing the forest.
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Algorithm 4 Random forest construction
Random forest (y, X):
loop For number of decision trees Ntr:

Randomly select rows of X and y
Randomly remove columns of X
Call the reduced dataset as (ỹ, X̃)
Build tree (ỹ, X̃) (Algorithm 3)

Build aggregator of classification probabilities for the single trees

This brief introduction to random forest will be useful in Chapter 11, where a
form of ensembling of multiple copies of the same basic network will be used to build
stronger classifiers. Important differences with respect to the basic methodology
just described will be underlined.
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Chapter 10

Deep Information Networks

This chapter is entirely focused on the presentation of the proposed algorithm
(Deep Information Networks, DIN [25]) and on its properties. Differently from
decision trees, where the decision is routed by considering features one at the time,
and already considered features are discarded (actually this step in certain variants
of trees is avoided), in the DIN framework the "tree" is inverted in that the root
is the target variable and the leaves are the features. Starting from the joint
observation of all features for a single datapoints, equivalent features are obtained
by merging together the initial features in a recursive, hierarchical manner. The
algorithm stops when a unique equivalent feature is remaining, at the root, and a
decision is taken.

10.1 Introduction
The so-called “information bottleneck” was described in [92, 91], where it was

employed to analyse how the information flows inside a classification neural net-
work. We here propose to exploit the same idea to build a supervised learning
machine that compresses the input data and generates the estimated class, using a
modular structure with a tree topology.

The key element of the proposed Deep Information Network (DIN) is the in-
formation node, that compresses the input while keeping its information con-
tent: during the training phase the node evaluates the conditional probabilities
P (Xout = j|Xin = i) that minimise the mutual information I(Xin; Xout) between
its input Xin and output Xout for a given mutual information between its output
and the target I(Xout; Y ). The input of each information node at the first layer
is one of the features/attributes of the data; once the conditional probabilities are
found, the node randomly generates its output according to them.

The second element of the DIN is the combiner that merge the outputs of two or
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more information nodes to generate the input of the subsequent one. The machine
is therefore made of several layers, and the number of information nodes per layer
decreases from layer to layer, thanks to the presence of combiners, until a unique
information node is obtained in the last layer, whose task is to provide the estimated
class of the input.

Thus a DIN has a layered architecture, similarly to a neural network, but the
working principle is completely different. In particular, there is no global objective
function and each information node is separately trained, using only its input and
the target class. The layers are trained in order: the nodes of the first layer are
trained using the available raw data (one node for each of the available features)
and stochastically generate the data for the combiners that feed the second layer;
the nodes at the second layer are trained using their input (ideally the information
contained in two or more features in the raw data) and the target, etc. Each
information node has no knowledge about the input and output of other nodes.
From layer to layer, the information nodes and the combiners allow to extract
the information content of the original data as if they were sifting it. Moreover,
differently from neural networks where end to end backpropagation is necessary,
when training a DIN the flow of data is in the forward direction only. Whereas
algorithm C4.5 by Quinland [70] builds a hierarchical decision tree starting from
the root, we here propose a way to build a similar tree, but starting from the leaves.

The advantages of DINs are clear: extreme flexibility, high modularity, com-
plexity that linearly depends on the number of nodes, overall number of nodes that
linearly depends on the number of features of the data. Since the machine works
with information theory, categorical and missing data are easily managed; on the
other hand, continuous data should be first quantized, but the true quantization
can be left to the first layer information nodes.

What has to be assessed for the proposed machine is the performance: does it
provide good results in terms of misclassification probability? are there constraints
on its parameters?

Section 10.2 more precisely describes the structure of the DIN, section 10.3 gives
some insight on the theoretical properties and section 10.4 comments the results
obtained with a simple dataset. Conclusions are finally drawn in section 10.5.

10.2 The information network
As pointed out in 10.1, the machine is made of information nodes, described

in section 10.2.1, and combiners joined together through a network described in
section 10.2.2.
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10.2.1 The information node
Each information node, described in Fig. 10.1, has an input vector xin, whose

elements take values in a set of cardinality Nin, and an output vector xout, whose
elements take values in a set of cardinality Nout; moreover the target class vector
ytrain is available as input, with elements in the set [0, Nclass − 1]; all the vectors
have the same size Ntrain. By setting Nout < Nin, the information node performs
a compression (source encoding). Let Xin (Xout, Y ) identify the random variable
whose samples are stored in vector xin (xout, y).

In the training phase, the information node randomly generates the output vec-
tor xout, according to the conditional probability distribution that satisfies equation
[92]

P (Xout = j|Xin = i) = 1
Z(i; β)P (Xout = j)e−βd(i,j), (10.1)

with i = 0, . . . , Nin − 1, j = 0, . . . , Nout − 1, where

• P (Xout = j) is the probability mass function of the output random variable
Xout

P (Xout = j) =
Nin−1∑︂

i=0
P (Xin = i)P (Xout = j|Xin = i), j = 0, . . . , Nout − 1

(10.2)

• d(i, j) is the Kullback-Leibler divergence

d(i, j) =
Nclass−1∑︂

m=0
P (Y = m|Xin = i) log2

P (Y = m|Xin = i)
P (Y = m|Xout = j)

= KL(P (Y |Xin = i)||P (Y |Xout = j)) (10.3)

Nout

Ninxin

y

xout

Figure 10.1: Schematic representation of an information node, showing the input
and output vectors, with alphabets of cardinality Nin and Nout, respectively, and
the target vector y which is available during the training phase.
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and

P (Y = m|Xout = j) =
Nin−1∑︂

i=0
P (Y = m|Xin = i)P (Xin = i|Xout = j),

m = 0, . . . , Nclass − 1, j = 0, . . . , Nout − 1 (10.4)

• β is a real positive parameter

• Z(i; β) is a normalizing coefficient that allows to get

Nout−1∑︂
j=1

P (Xout = j|Xin = i) = 1 (10.5)

The probabilities P (Xout = j|Xin = i) can be iteratively found using the Blahut-
Arimoto algorithm [92].

According to [92], Eqn. (11.10) solves the information bottleneck: it minimises
the mutual information I(Xin; Xout) under the constraint of a given mutual infor-
mation I(Y ; Xout). In particular, eqn. (11.10) is the solution of the minimisation
of the Lagrangian

L = I(Xin; Xout)− βI(Y ; Xout) (10.6)
If the Lagrangian multiplier β is increased, then the constraint is privileged and
the information node tends to maximize the mutual information between its output
Xout and the class Y ; if β is reduced, then minimisation of I(Xin; Xout) is obtained,
thus a compression is obtained. The information node must actually balance com-
pression from Xin to Xout and propagation of the information on Y , in order to
correctly decide its value. In our implementation, the compression is also imposed
by the fact that the cardinality of the output alphabet Nout is smaller than that of
the input alphabet Nin.

10.2.2 The network
Fig. 11.4 shows an example of a DIN, where we assume that the dataset is made

of a matrix X with N rows and D = 8 columns (features) and the corresponding
class vector y; we use Ntrain rows for the training phase and Ntest = N − Ntrain

rows for the testing phase, getting matrices Xtrain and Xtest (see Fig. 10.3).
Now refer to Fig. 11.4. The k-th column x(k) of matrix Xtrain should be,

together with vector ytrain, the input of the information node (k,0) at layer 0 of the
structure. However the algorithm needs a finite number N

(0)
in of values in the input

vectors, and a pre-processing quantization phase is needed. Quantization (uniform,
Max-Lloyd, etc.) is not discussed here, in the example described in Sect 10.4 we
used linear quantization. Thus the true input of node (k,0) is xq(k), the quantized
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Figure 10.2: Architecture of a simple information node network for D = 8: each
info node is represented by a circle, the numbers inside the circle identify the node,
the triangles identify the combiners, N

(k)
in is the number of values taken by the input

of the info node at layer k, N
(k)
out is the number of values taken by the output of the

info node at layer k.

version of x(k). Of course quantization is not necessary for categorical data. The
number of nodes at layer 0 of the structure is D, equal to the number of columns
of X.

Information node (k,0) at layer 0 thus processes xq(k) and ytrain, and generates
the output vector xout(k,0) with alphabet of cardinality N

(0)
out. Note that this output

vector is randomly generated by the information node, according to its probability
matrix Pk,0, whose element i, j is P (Xout = j|Xin = i) as found by the algorithm
described in section 10.2.1.

The output vectors xout(2k,0) and xout(2k + 1,0) are combined together by a
combiner (shown as a triangle in Fig. 11.4) that outputs

xin(k,1) = xout(2k,0) + N
(0)
out xout(2k + 1,0) (10.7)

Vector xin(k,1) is now the input of the information node (k,1) of layer 1, and has
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Figure 10.3: Definition of matrices, vectors and their dimensions

an alphabet with cardinality

N
(1)
in = N

(0)
out × N

(0)
out (10.8)

The topology is iterated halving the number of information nodes from layer to
layer, until an isolated information node is obtained at layer d = log2(D), that has
input vector xin(0, d) with alphabet cardinality N

(d)
in and output vector xout(0, d),

whose alphabet cardinality must be N
(d)
out = Nclass, the number of classes in the

target vector ytrain. If the parameters are correctly chosen, the output vector
xout(0, d) is equal to ytrain, and the probability matrix Pd,0 has just one value equal
to 1 in each of its rows. A tree topology is thus obtained.

In the overall, the topology proposed in Fig. 11.4 requires a number of infor-
mation nodes equal to

Nnodes = D + D

2 + D

4 + · · ·+ 2 + 1 = 2D − 1 (10.9)

and a number of combiners equal to

Ncombiners = D

2 + D

4 + · · ·+ 2 + 1 = D − 1 (10.10)

All the nodes run exactly the same algorithm and all the combiners are equal,
apart from the input/output vector alphabet cardinalities. If the cardinalities of
the alphabets are all equal, i.e. N

(i)
in and N

(i)
out do not depend on the layer i, then all

the nodes and all the combiners are exactly equal, which might help in a possible
hardware implementation.
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10.2.3 The testing/running phase
During the testing or running phase, the quantized columns of matrix Xtest are

used as inputs and each node simply generates the output vector xout according to
the input vector xin, using the probability matrix P that has been optimized during
the training phase. For example, if the n-th value stored in the vector xin(k, ℓ) of
node k, ℓ is i, then the n-th value in vector xout(k, ℓ) is j with probability Pk,ℓ(i, j).
Each node then generates a stochastic output, according to its probability matrix.

10.3 Analysis
In the following, the DIN is studied considering first the overall conditional

probabilities between the input features and the output, and second the information
flow inside it.

10.3.1 The probabilistic point of view
Consider the case of the sub-network made of nodes a, b, c as shown in Fig.

11.3; the alphabet cardinality at the input of nodes a and b is N0, the cardinality
at the output of nodes a and b is N1, the alphabet cardinality at the input of node
c is N1×N1, the cardinality at its output is N2. Node a is characterized by matrix
Pa, whose element Pa(i, j) is P (Xout,a = j|Xin,a = i); similar definitions hold for
Pb and Pc. Note that Pa and Pb have N0 rows and N1 columns, whereas Pc has
N1 × N1 rows and N2 columns; the overall probability matrix between the inputs
Xin,a, Xin,b and the output Xout,c is P with N0 ×N0 rows and N2 columns. Then

P (Xout,c = i|Xin,a = j, Xin,b = k)

=
N1−1∑︂
r=0

N1−1∑︂
s=0

P (Xout,c = i, Xout,a = r, Xout,b = s|Xin,a = j, Xin,b = k)

=
N1−1∑︂
r=0

N1−1∑︂
s=0

P (Xout,c = i|Xout,b = r, xout,c = s)P (Xout,a = r|Xin,a = j)P (Xout,b = s|Xin,b = k)

=
N1−1∑︂
r=0

N1−1∑︂
s=0

P (Xout,c = i|Xout,b = r, Xout,c = s)Pa(j, r)Pb(k, s) (10.11)

It can be shown that
P = (Pa ⊗Pb)Pc (10.12)

where ⊗ identifies the Kronecker matrix multiplication; note that Pa ⊗ Pb has
N0×N0 rows and N1×N1 columns. By iteratively applying the above rule, we can
get the expression of the overall matrix P for the exact topology of Fig. 11.4, with
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c

ba

Xin,a

Xout,a Xout,b

Xin,c

Xout,c

Xin,bN0 N0

N1 N1

N1 ×N1

N2

Figure 10.4: Sub-network used for the evaluation of the probability matrix; Xin,a,
Xout,a, Xin,b, Xout,b, Xin,c, Xout,c are all random variables; N0 is the number of values
taken by Xin,a and Xin,b, N1 is the number of values taken by Xout,a and Xout,b, N2
is the number of values taken by Xout,c.

8 input nodes and four layers:

P =
[︄{︃[︂

(P0,0 ⊗P1,0)P0,1
]︂
⊗
[︂
(P2,0 ⊗P3,0)P1,1

]︂}︃
P0,2

⊗
{︃[︂

(P4,0 ⊗P5,0)P2,1
]︂
⊗
[︂
(P6,0 ⊗P7,0)P3,1

]︂}︃
P1,2

]︄
P0,3 (10.13)

The DIN then behaves like a one-layer system that generates the output according
to matrix P, whose size might be impractically large (with D features all quantized
with N0 levels, matrix P has size ND

0 × 2). The proposed layered structure needs
smaller probability matrices, which makes the system computationally efficient.

10.3.2 The information theory point of view
Each information node compresses the data and therefore, by a basic application

of data processing inequality, we have

I(Xout; Y ) ≤ I(Xin; Y ) (10.14)

Consider now the outputs Xout(2k, i) and Xout(2k + 1, i) of two nodes at layer
i that are combined by the combiner to generate Xin(k, i + 1). It is interesting for
analysis and integrity purposes to derive an upper and a lower bound of the total
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amount of information obtained at the output of the combiner. First of all notice
that, from an information theoretic point of view, we can write

I(Xin(k, i + 1); Y ) = I([Xout(2k, i), Xout(2k + 1, i)]; Y ) (10.15)

We can expand (10.15) as

I([Xout(2k, i), Xout(2k + 1, i)]; Y )
= H([Xout(2k, i), Xout(2k + 1, i)])−H([Xout(2k, i), Xout(2k + 1, i)]|Y )
= H(Xout(2k + 1, i)|Xout(2k, i)) + H(Xout(2k, i))
− (H(Xout(2k + 1, i)|Xout(2k, i), Y )−H(Xout(2k, i))|Y )
= I(Xout(2k, i); Y ) + I(Xout(2k + 1, i)|Xout(2k, i); Y ) (10.16)
= I(Xout(2k + 1, i); Y ) + I(Xout(2k, i)|Xout(2k + 1, i); Y ) (10.17)

where the last equality is due to evident symmetries in the equations. Combining
(10.16) and (10.17), and due to non-negativity of mutual information, we obtain

I(Xin(k, i + 1); Y ) ≥ max{I(Xout(2k, i); Y ), I(Xout(2k + 1, i); Y )} (10.18)

where equality is attained when H(Xout(2k + 1, i)|Xout(2k, i)) = 0 (i.e. when
Xout(2k + 1, i) can be exactly predicted if Xout(2k, i) is known).
We can also derive an upper bound for the total mutual information. First we
observe that

H([Xout(2k, i), Xout(2k + 1, i)]) ≤ H(Xout(2k, i)) + H(Xout(2k + 1, i)) (10.19)
H([Xout(2k, i), Xout(2k + 1, i)]|Y ) ≥ max{H(Xout(2k, i)|Y ),H(Xout(2k + 1, i)|Y )}

(10.20)

and thus we can derive, using (10.19) and (10.20), that

I(Xin(k, i + 1); Y ) = H([Xout(2k, i), Xout(2k + 1, i)])−H([Xout(2k, i), Xout(2k + 1, i)]|Y )
≤ H([Xout(2k, i), Xout(2k + 1, i)])−H(Xout(2k, i)|Y )
≤ H(Xout(2k, i)) + H(Xout(2k + 1, i))−H(Xout(2k, i)|Y )
= I(Xout(2k, i); Y ) + H(Xout(2k + 1, i)) (10.21)
= I(Xout(2k + 1, i); Y ) + H(Xout(2k, i)) (10.22)

where again the last equality is due to symmetry. We can then combine (10.21)
and (10.22) in

I(Xin(k, i + 1); Y ) ≤
min{I(Xout(2k, i); Y ) + H(Xout(2k + 1, i)), I(Xout(2k + 1, i); Y ) + H(Xout(2k, i))}

(10.23)
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Finally, combining (10.18) and (10.23)

max{I(Xout(2k, i); Y ), I(Xout(2k + 1, i); Y )} ≤
I(Xin(k, i + 1); Y ) ≤
min{I(Xout(2k, i); Y ) + H(Xout(2k + 1, i)), I(Xout(2k + 1, i); Y ) + H(Xout(2k, i))}

(10.24)

obtaining an upper and lower bound for the mutual information.

10.4 The Kidney Disease experiment
In this section we present the results of an experiment performed on the UCI

Kidney Disease dataset [93],[75]. The dataset has a total of 24 medical features,
consisting of mixed categorical, integer and real values, with missing values present.
The aim of the experiment is to correctly classify patients affected by chronic kidney
disease. Remember that the machine works also with missing values, since they are
seen a a special categorical value, whose probability is the only required measure.

In the proposed information network, layer zero has as many information nodes
as the number of features (i.e. 24), and the input of each node is one of the
quantized features; these nodes are trained in parallel. Then the outputs of layer
zero are mixed two at a time and they become the input of layer one with 12
information nodes. These 12 nodes are merged into 6 nodes into layer two and the
6 nodes are mixed into 3 nodes in layer three. Finally the three nodes are combined
into the unique final node whose output cardinality is equal to 2 (corresponding to
ill or healthy). The 24 input features are uniformly quantized with different values
of N

(0)
in , depending on the feature (from 2 to 470); on the contrary the value of

Nout is 3 for all the nodes apart from the last one. The combiners generate vectors
taking values in the range [0,8], and the information nodes compress these values
in the range [0,2]. The value of β is equal to 5; the number of training points is
equal to Ntrain = 200 (half of which positive), the number of testing points is again
Ntest = 200.

Figure 10.5 shows how the mutual information I(X; Y ) evolves in the DIN, and it
is possible to appreciate that it increases from the first to the last layer. In particular
I(Xout(2k, i); Y ) and I(Xout(2k + 1, i); Y ), represented as circles, are linked through
segments to I(Xin(k, i + 1); Y ), represented as a triangle, to show that the lower
bound in (10.24) holds from i = 0 (blue markers), to i = 3 (black markers). Figure
10.5 also shows that I(Xin(k,1); Y ) (blue triangle) is higher than I(Xout(k,1); Y )
(green circle at the same x-value), which is due to the compression performed by
the information node, that reduces the cardinality of Xin(k,1) to just three values;
this is true in general when I(Xin(k, i); Y ) is compared to I(Xout(k, i); Y ) for all
values of k and i.

In terms of performance, the results listed in table 10.1 were obtained:
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Figure 10.5: Mutual information in the network: circles correspond to inputs of
the combiners, triangles to their outputs, each dotted line represents the maximum
value of the mutual information at the input of the combiners of a given layer.
Results obtained during one run of the training phase with Ntrain = 200 (half ill,
half healthy), N

(i)
out = 3.

N
(i)
out Ntrain Ntest Accuracy Sensitivity Specificity F1 score

training 3 200 200 0.9970 0.9948 0.9993 0.9970
testing 3 200 200 0.9303 0.9188 0.9343 0.9260
training 2 200 200 0.9924 0.9985 0.9963 0.9974
testing 2 200 200 0.9648 0.9400 0.9734 0.9560
training 3 320 80 0.9947 0.9868 0.9996 0.9932
testing 3 320 80 0.9705 0.9435 0.9875 0.9647
training 2 320 80 0.9924 0.9820 0.9986 0.9902
testing 2 320 80 0.9762 0.9511 0.9918 0.9709

Table 10.1: Results obtained with DINs on the Kidney Disease dataset; averages
over 1000 runs; β = 5, the specified value of N

(i)
out is valid for i = 0,1,2,3, the last

layer has N
(4)
out = Nclasses = 2.

• some form of overfitting is present when N
(i)
out = 3 and better results are

obtained when N
(i)
out = 2, i = 1, . . . , 3

• accuracy, specificity and sensitivity are high in all the considered cases
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• when N
(i)
out = 2, the accuracy obtained with Ntrain = 200 is similar to that

obtained with Ntest = 320, which shows that 200 patients are enough to train
the DIN

• results obtained with Ntrain = 320 and Ntest = 80 can be comparable with
those obtained in [75] using other algorithms (k-nearest neighbour, random
forest, neural networks)

Notice that the DINs were run one thousand times, each time randomly changing
the subsets of patients used for the training and the testing phases; table 10.1 shows
the average results.

10.5 Conclusions
The proposed Deep Information Network (DIN) shows good results in terms

of accuracy and represents a new alternative to decision trees. We stress that, as
far as a hardware implementation is concerned, the DIN has the following good
properties:

• Simple modular structure. Only two types of elements are necessary to build
a full network (infonode, combiner).

• Flexible. By changing the number of information nodes and their connection
topology a wide range of possibilities are available.

• Computations are performed locally. Not only each infonode does not care
of computations that are performed at other nodes, but the flow of data is
single directional (forward) only.

Further optimization might be obtained by using a different value of Nout for each
of the information nodes (not necessarily all equal at each layer) and appropriately
selecting the value of the Lagrangian multiplier β. In the next Chapter 11 we
will explore more carefully the role of β and its impact on the performance of the
classification method.
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Chapter 11

Probabilistic Deep Information
Networks

In this Chapter, we modify and extend the architecture proposed in Chapter 10,
[25], by changing the structure of the information node and extending the simple
DIN to the case where multiple independents DIN are trained and combined. The
content of this chapter is an editorial adaptation of the content of [26].

Decision trees are particularly interesting because they can be easily interpreted.
Various types of tree classifiers can be discriminated according to the metric for
the iterative construction and selection of features [74]: popular tree classifiers are
based on information theoretic metrics, such as ID3, C4.5[70, 71]. However, it is
known that the greedy splitting procedure at each node can be sub-optimal [65],
and that decision trees are prone to overfitting when dealing with small datasets.
When a classifier is not strong enough, there are, roughly speaking, two possibilities:
choosing a more sophisticated classifier or ensembling multiple "weak" classifiers [10,
11]. This second approach is usually called ensemble method. In the performance
tradeoff by using multiple classifiers simultaneously we improve classification per-
formance, paying with the loss of interpretability.

The so-called “information bottleneck”, described in [92], [91], was proposed
in Chapter 10 ([25]) to build a classifier (Deep Information Network, DIN) with
a tree topology that compresses the input data and generates the estimated class.
DINs, Chapter 10 ([25]), are based on the so-called information node that, using the
input samples of a feature Xin, generates samples of a new feature Xout, according
to the conditional probabilities P (Xout = j|Xin = i) obtained by minimising the
mutual information I(Xin; Xout), with the constraint of a given mutual information
I(Xout; Y ) between Xout and the target/class Y (information bottleneck [92]). The
outputs of two or more nodes are combined, without information loss, to generate
samples of a new feature passed to a subsequent information node. The final node
(root) directly outputs the class of each input datapoint. The tree structure of the
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network is thus built from the leaves, whereas C4.5 and ID3 build it from the root.
We here propose an improved implementation of the DIN scheme in Chapter

10 ([25]) that only requires the propagation through the tree of small matrices
containing conditional probabilities. Notice that the previous version of the DIN
was stochastic, while the one we propose here is deterministic. Moreover we use an
ensemble (like [10, 11]) of trees with randomly permuted features and weigh their
outputs to improve classification accuracy.

The proposed architecture has several advantages in terms of:

• Extreme flexibility and high modularity: all the nodes are functionally equiv-
alent and with a reduced number of inputs and outputs, which gives good
opportunities for a possible hardware implementation.

• High parallelizability: each tree can be trained in parallel with the others.

• Memory usage: we need to feed the network with data only at the first layer
and simple incremental counters can be used to estimate the initial probability
mass distribution.

• Training time and training complexity: the locality of the computed cost
function allows a nodewise training that does not require any kind of infor-
mation from other points of the tree apart from its feeding nodes (that are
usually a very small number, e.g. 2-3).

With respect to the DINs in Chapter 10 ([25]), the main difference is that samples
of the random variables in the inner layers of the tree are never generated, which
is an advantage in the case of large datasets. However an assumption of statistical
independence (see Sect. 11.1.3) is necessary to build the probability matrices and
this might be seen as a limitation of the newly proposed method. However, experi-
mental results (see Sect. 11.4) show that this approximation does not compromise
the performance.

We underline similarities and differences of the proposed classifier with respect
to the methods described in [70, 71] since they are among the best performing ones.
When using decision trees, as well as DINs, categorical and missing data are easily
managed, but continuous random variables are not: quantization of these input
features is necessary in a pre-processing phase, and it can be performed as in C4.5
[70], using other heuristics, or manually. Concerning differences, instead, the first
one is that normally a hierarchical decision tree is built starting from the root and
splitting at each node, whereas we here propose a way to build a tree starting from
the leaves. The topology of our network implies that, once the initial ordering of
the features has been set, there is no need, after each node is trained, to perform a
search of the best possible next node. The second important difference is that we
do not use directly mutual information as a metric for building the tree but we base
our algorithm on the Information Bottleneck principle [92, 91, 82, 86, 87, 14, 31].
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This allows us to extract all the relevant information (the sufficient statistic) while
removing the redundant one, which is helpful in avoiding overfitting. As in [10,
11] we use an ensemble method. We choose the simplest possible form of ensemble
combination: we train independently many structurally equivalent networks, using
the same single dataset but permuting the order of the features, and produce a
weighted average of the outputs based on a simple rule described in section 11.2.1.
Notice that we use a one shot procedure, i.e. we do not iterate more than once over
the entire dataset and exploit techniques similarly to [27, 17]. We leave the study
of more sophisticated techniques to future works.

Sections 11.1 and 11.2 more precisely describe the structure of the DIN and how
it works, section 11.3 gives some insight on the theoretical properties and section
11.4 comments the results obtained with standard datasets. Conclusions are finally
drawn in section 11.5.

11.1 The DIN architecture and its training
The information network is made of input nodes (section 11.1.1), information

nodes (section 11.1.2) and combiners joined together through a tree network de-
scribed in section 11.1.3. Moreover, an ensemble of Nmach trees is built, based on
which the final estimated class is produced (section 11.2.1). In Chapter 10 ([25]),
the input nodes are not present, the information node has a slightly different role,
the combiners are much simpler than those described here, and just one tree was
considered. As already stated, the new version of the DIN is more efficient when a
large dataset with relatively few features is analysed.

In the following, it is assumed that all the features take a finite number of
discrete values; a case of continuous random variables is discussed in section 11.4.2.

It is also assumed that Ntrain points are used in the training phase, Ntest points
in the testing phase, and that D features are present. The n-th training point
corresponds to one of Nclass possible classes.

11.1.1 The input node
Each input node (see Fig. 11.1) has two input vectors:

1. xin of size Ntrain, whose elements take values in a set of cardinality Nin; xin

corresponds to one of the D features of the dataset (typically one column).

2. y of size Ntrain, whose elements take values in a set of cardinality Nclass; y
corresponds to the known classes of the Ntrain points.

The notation we use in the equations below is the following: Y, Xin represent
random variables, y(n) and xin(n) are the n-th elements of vectors y and xin,

111



Probabilistic Deep Information Networks

respectively, and 1(c) is equal to 1 if c is true otherwise it is equal to 0. Using
Laplace smoothing [61], the input node estimates the following probabilities1:

P̂ (Y = m) ≃ 1 +∑︁Ntrain−1
n=0 1(y(n) = m)
Ntrain + Nclass

m = 0, . . . , Nclass − 1 (11.1)

P̂ (Xin = i) ≃ 1 +∑︁Ntrain−1
n=0 1(xin(n) = i)

Ntrain + Nin

, i = 0, . . . , Nin − 1 (11.2)

P̂ (Y = m, Xin = i) ≃ 1 +∑︁Ntrain−1
n=0 1(y(n) = m)1(xin(n) = i)

Ntrain + NclassNin

(11.3)

From basic application of probability rules, P̂ (Y = m|Xin = i) and P̂ (Xin =
i|Y = m) are then computed. From now on, for simplicity, we will denote all the
estimated probabilities P̂ simply as P .

All the above probabilities can be organized in matrices defined as follows:

PY ∈ R1×Nclass , PY (m) = P (Y = m) (11.4)

PXin
∈ R1×Nin , PXin

(i) = P (Xin = i) (11.5)
PXin|Y ∈ RNclass×Nin , PXin|Y (m, i) = P (Xin = i|Y = m) (11.6)
PY |Xin

∈ RNin×Nclass , PY |Xin
(i, m) = P (Y = m|Xin = i) (11.7)

Note that vectors xin and y are not needed by the subsequent elements in the tree,
only the input nodes have access to them.
Notice also that the following equalities hold:

PXin
= PY PXin|Y (11.8)

PY = PXin
PY |Xin

(11.9)

1The probability mass function of Y in (11.1) is common to all the input nodes: it can be
evaluated only by the first one and passed to the others.

Input node

xin

Xin

y

Y

Figure 11.1: Schematic representation of an input node: the inputs are two vectors,
the outputs are matrices that statistically describe the random variables Xin and
Y .
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11.1.2 The information node
The information node is schematically shown in Fig. 11.2: the input discrete

random variable Xin is stochastically mapped into another discrete random variable
Xout (see Chapter 10 ([25]) for further details) through probability matrices:

• The input probability matrices PXin
, PXin|Y , PY |Xin

, PY describe the input
random variable Xin, with Nin possible values, and its relationship with class
Y .

• The output matrices PXout , PXout|Y , PY |Xout , PY describe the output random
variable Xout, with Nout possible values, and its relationship with Y .

Compression (source encoding) is obtained by setting Nout < Nin.
In the training phase, the information node generates the conditional probability

mass function that satisfies equation (see [92])

P (Xout = j|Xin = i) = 1
Z(i; β)P (Xout = j)e−βd(i,j), i = 0, . . . , Nin−1, j = 0, . . . , Nout−1

(11.10)
where

• P (Xout = j) is the probability mass function of the output random variable
Xout

P (Xout = j) =
Nin−1∑︂

i=0
P (Xin = i)P (Xout = j|Xin = i), j = 0, . . . , Nout − 1

(11.11)

• d(i, j) is the Kullback-Leibler divergence

d(i, j) =
Nclass−1∑︂

m=0
P (Y = m|Xin = i) log2

P (Y = m|Xin = i)
P (Y = m|Xout = j)

= KL(P (Y |Xin = i)||P (Y |Xout = j)) (11.12)

and

P (Y = m|Xout = j) =
Nin−1∑︂

i=0
P (Y = m|Xin = i)P (Xin = i|Xout = j),

m = 0, . . . , Nclass − 1, j = 0, . . . , Nout − 1
(11.13)

• β is a real positive parameter
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• Z(i; β) is a normalizing coefficient to get

Nout−1∑︂
j=1

P (Xout = j|Xin = i) = 1. (11.14)

The probabilities P (Xout = j|Xin = i) can be iteratively found using the Blahut-
Arimoto algorithm [92, 4, 8].

Eqn. (11.10) solves the information bottleneck: it minimises the mutual infor-
mation I(Xin; Xout) under the constraint of a given mutual information I(Y ; Xout).
In particular, eqn. (11.10) is the solution of the minimisation of the Lagrangian

L = I(Xin; Xout)− βI(Y ; Xout). (11.15)

If the Lagrangian multiplier β is increased, then the constraint is privileged and
the information node tends to maximize the mutual information between its output
Xout and the class Y ; if β is reduced, then minimisation of I(Xin; Xout) is obtained
(compression). The information node must actually balance compression from Xin

to Xout and propagation of the information about Y . In our implementation, the
compression is also imposed by the fact that the cardinality of the output alphabet
Nout is smaller than that of the input alphabet Nin.

The role of the information node is thus that of finding the conditional proba-
bility matrices

PXout|Xin
∈ RNin×Nout , PXout|Xin

(i, j) = P (Xout = j|Xin = i) (11.16)

PY |Xout ∈ RNout×Nclass , PY |Xout(j, m) = P (Y = m|Xout = j) (11.17)
PXout ∈ R1×Nout , PXout(j) = P (Xout = j). (11.18)

11.1.3 The combiner
Consider the case depicted in Fig. 11.3, where the two information nodes a and

b feed a combiner (shown as a triangle) that generates the input of the informa-
tion node c. The random variables Xout,a and Xout,b, both having alphabet with
cardinality N1, are combined together as

Xin,c = Xout,a + N1 Xout,b (11.19)

that has an alphabet with cardinality N1 ×N1.
The combiner actually does not generate Xin,c, it simply evaluates the probabil-

ity matrices that describe Xin,c and Y . In particular, the information node c needs
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PY PY |Xin

PXin|Y

PXout

PY

PXin

PY |Xout

PXout|Y

Information

node

Xin, Y

Xout, Y

Figure 11.2: Schematic representation of an information node, showing the input
and output matrices.

PXin,c|Y , which can be evaluated assuming that Xout,a and Xout,b are conditionally
independent given Y 2:

P (Xin,c = k|Y = m) = P (Xout,a = ka, Xout,b = kb|Y = m)
= P (Xout,a = ka|Y = m)P (Xout,b = kb|Y = m) (11.20)

where k = ka + N1kb. In particular, the m-th row of PXin,c|Y is the Kronecker
product of the m-th rows of PXout,a|Y and PXout,b|Y

PXin,c|Y (m, :) = PXout,a|Y (m, :)⊗PXout,b|Y (m, :), m = 0, . . . , Nclass − 1 (11.21)
(here A(m, :) identifies the m-th row of matrix A). The probability vector PXin,c

can be evaluated considering that

P (Xin,c = k) =
Nclass−1∑︂

m=0
P (Xin,c = k, Y = m) =

Nclass−1∑︂
m=0

P (Xin,c = k|Y = m)P (Y = m)

(11.22)
so that

PXin,c
= PY PXin,c|Y (11.23)

At this point, matrix PY |Xin,c
can be evaluated element by element since

P (Y = m|Xin,c = k) = P (Xin,c = k|Y = m)P (Y = m)
P (Xin,c = k) ,

m = 1, . . . , Nclass − 1, k = 0, . . . , N1 ×N1 − 1 (11.24)
It is straightforward to extend the equations to the case in which Xin,a and Xin,b

have different cardinalities.

2Notice that in implementation Chapter 10 ([25]) this assumption was not necessary.
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c

ba

Xin,a

Xout,a Xout,b

Xin,c

Xout,c

Xin,bN0 N0

N1 N1

N1 ×N1

N2

Figure 11.3: Sub-network: Xin,a, Xout,a, Xin,b, Xout,b, Xin,c, Xout,c are all random
variables; N0 is the number of values taken by Xin,a and Xin,b, N1 is the number of
values taken by Xout,a and Xout,b, N2 is the number of values taken by Xout,c.

11.1.4 The tree architecture
Fig. 11.4 shows an example of a probabilistic DIN, where we assume that the

dataset has D = 8 features and that training is thus obtained using a matrix Xtrain

with Ntrain rows and D = 8 columns, with a corresponding class vector y. The
k-th column x(k) of matrix Xtrain feeds, together with vector y, the input node
I(k), k = 0, . . . , D − 1.

Information node (k,0) at layer 0 processes the probability matrices generated
by the input node I(k), with N

(0)
in possible values of Xin(k,0), and evaluates the

conditional probability matrices with N
(0)
out possible values of Xout(k,0), using the

algorithm described in Section 11.1.2. The outputs of info nodes (2k,0) and (2k +
1,0) are given to a combiner that outputs the probability matrices for Xin(k,1),
having alphabet of cardinality N

(1)
in = N

(0)
out × N

(0)
out, using the equations described

in Section 11.1.3. The sequence of combiners and information nodes is iterated,
decreasing the number of information nodes from layer to layer, until the final
root node is obtained. In the previous implementation of the DINs in Chapter 10
([25]), the root information node outputs the estimated class of the input and it
is therefore necessary that the output cardinality of the root info node is equal to
Nclass. In the current implementation, this cardinality can be larger than Nclass,
since classification is based on the output probability matrix PY |Xout .

For a number of features D = 2d, the number of layers is d. If D is not a power
of 2, then it is possible to use combiners with 3 or more inputs (the changes in the
equations in Sect. 11.1.3 are straightforward, since a combiner with three inputs
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Figure 11.4: Example of a DIN for D = 8: the input nodes are represented as
rectangles, the info nodes as circles, the combiners as triangles. The numbers inside
each circle identify the node (position inside the layer and layer number), N

(k)
in is

the number of values taken by the input of the info node at layer k, N
(k)
out is the

number of values taken by the output of the info node at layer k. In this example
the info nodes at a given layer all have the same input and output cardinalities.

can be seen as two cascaded combiners with two inputs each).
In the overall, the binary topology proposed in Fig. 11.4 requires a number of

information nodes equal to

Nnodes = D + D

2 + D

4 + · · ·+ 2 + 1 = 2D − 1 (11.25)

and a number of combiners equal to

Ncomb = D

2 + D

4 + · · ·+ 2 + 1 = D − 1 (11.26)
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All the info nodes run exactly the same algorithm and all the combiners are equal,
apart from the input/output alphabet cardinalities. If the cardinalities of the al-
phabets are all equal, i.e. N

(i)
in and N

(i)
out do not depend on the layer i, then all

the nodes and all the combiners are exactly equal, which might help in a possible
hardware implementation; in this case the number of parameters of the network is
(Nout − 1)×Nin ×Nnodes.

Actually the network performance depends on how the features are coupled in
subsequent layers and a random shuffling of the columns of matrix Xtrain provides
results that might be significantly different. This property will be used in Section
11.2.1 for building the ensemble of networks.

11.1.5 A note on computational complexity and memory
requirements

The modular structure of the proposed method has several advantages both in
terms of memory footprint and computational cost. The considered topology in this
explanation is binary, similarly to what depicted in Fig. 11.4. We will furthermore
consider for simplicity cardinalities of the D input features all equal to Nin and
input/output cardinalities of subsequent layers information node to be also fixed
constants N∗

in and N∗
out = N∗

in

2 respectively. As we will show in the experimental
section 11.4 small values for N∗

in and N∗
out such as 2,3 or 4 are sufficient in the

considered cases. Straightforward generalizations are possible when considering
dishomogeneous cases.

At the first layer (the input node layer) each of the D input nodes stores the
joint probabilities of the target variable Y and its input feature. Each node thus
includes a simple counter that fills the probability matrix of dimension Nin×Nclass.
Both the computational cost and the memory requirements for this first stage are
the same as the Naive Bayes algorithm. Notice that from memory requirements
point of view, is not necessary to store all the training data but just counters with
number of joint occurrences of features/ classes. If after training new datapoints are
observed it is in fact sufficient to update the counters and properly renormalize the
values to obtain the updated probability matrices. In this thesis we do not cover the
topic of online learning as well as possible strategies to reduce the computational
complexity in such a scenario.

At the second layer (the first information node layer) each node receives as
input the joint probability matrix of feature and target variable and performs the
Blahut-Arimoto algorithm. The internal memory requirement of this node is the
space needed to store two probability matrices of dimensions N∗

in×Nclass and N∗
in×

N∗
out respectively. The cost per iteration of Blahut-Aritmoto depends on matrices

multiplication of sizes N∗
in × N∗

out matrix and N∗
in × Nclass, and thus obviously

the complexity scales with the number of classes of the considered classification
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problem. To the best of our knowledge, the convergence rate for the Blahut-Arimoto
algorithm applied to Information Bottleneck problems is unknown. In this work we
found however empirically that for the considered datasets 5-6 iterations per node
are sufficient, as will be discussed in Section 11.4.5.

Each combiner process the matrices generated by two information nodes: the
memory requirement is zero and the computational cost is roughly Nclass Kronecker
products between rows of probability matrices. Since for ease of explanation we
chosed N∗

out = N∗
in

2 the output probability matrix have again dimensions N∗
in×Nclass.

The overall memory requirement and computational complexity (for a single
DIN) is thus going to scale as D times the requirements for an input node, 2D− 1
times the requirements for an information node and D − 1 times the requirements
for a combiner. To complete the discussion we have to remember that a further mul-
tiplication factor of Nmach is required to take into account that we are considering
an ensemble of networks3.

11.2 The running phase
During the running phase, the columns of matrix X with N rows and D columns

are used as inputs. Assume again that the network architecture is that depicted in
Fig. 11.4 with D = 8, and consider the n-th input row X(n, :).

In particular, assume that X(n,2k) = i and X(n,2k + 1) = j. Then

1. (a) input node I(2k) passes value i to info node (2k,0);
(b) input node I(2k + 1) passes value j to info node (2k + 1,0);

2. (a) info node (2k,0) passes the probability vector
pa = PXout(2k,0)|Xin(2k,0)(i, :) (i-th row) to the combiner; pa stores the
conditional probabilities P (Xout(2k,0) = g|X(n,2k) = i) for
g = 0, . . . , N

(0)
out − 1;

(b) info node (2k + 1,0) passes the probability vector
pb = PXout(2k+1,0)|Xin(2k+1,0)(j, :) (j-th row) to the combiner; pb stores
the conditional probabilities P (Xout(2k + 1,0) = h|X(n,2k + 1) = j) for
h = 0, . . . , N

(0)
out − 1;

3. the combiner generates vector

pc = pa ⊗ pb, (11.27)

3Actually the first layer, the set of input nodes, can be shared by the different architectures
since only the relative position of the input nodes changes, see Sect. 11.2.1
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which stores the conditional probabilities
P (Xin(k,1) = s|X(n,2k) = i, X(n,2k + 1) = j) for s = 0, . . . , N

(1)
in − 1, where

N
(1)
in = N

(0)
out ×N

(0)
out;

4. info node (k,1) generates the probability vector

pcPXout(k,1)|Xin(k,1), (11.28)

which stores the conditional probabilities
P (Xout(k,1) = r|X(n,2k) = i, X(n,2k + 1) = j) for r = 0, . . . , N

(1)
out

5. in the following layer each combiner performs the Kronecker product of its
two input vectors and each info node performs the product between the input
vector and its conditional probability matrix PXout|Xin

;

6. the root information node at layer 3, having the input vector p, outputs

pout(n) = pPXout(0,3)|Xin(0,3)PY |Xout(0,3), (11.29)

which stores the estimated probabilities
P (Y = m|X(n, :)) for m = 0, . . . , Nclass − 1.

According to the MAP criterion, the estimated class of the input point X(n, :)
is

Ŷ (n) = arg max pout(n) (11.30)
but we propose to use an improved method, described in Section 11.2.1.

11.2.1 The DIN ensemble
At the end of the training phase, when all the conditional matrices have been

generated in each information node and combiner, the network is run with input
matrix Xtrain (Ntrain rows and D columns) and the probability vector pout is ob-
tained for each input point Xtrain(n, :). As anticipated at the end of Section 11.1.4,
the DIN classification accuracy depends on how the input features are combined
together. By permuting the columns of Xtrain, a different probability vector pout is
typically obtained. We thus propose to generate an ensemble of DINs by randomly
permuting the columns of Xtrain, and then combine their outputs.

Since in the training phase y(n) is known, it is possible to get for each DIN v
the probability pv

out(n), and ideally pv
out(n, y(n)), the estimated probability corre-

sponding to the true class y(n), should be equal to one. The weights

wv =
∑︁Ntrain−1

n=0 pv
out(n, y(n))∑︁Ntrain−1

n=0
∑︁Nmach−1

j=0 pj
out(n, y(n))

(11.31)
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thus represent the reliability of the v-th DIN.
In the running phase, feeding the Nmach machines each with the correctly per-

muted vector X(n, :), the final estimated probability vector is determined as

p̂ens(n) =
Nmach−1∑︂

v=0
wvp̂v

out(n) (11.32)

and the estimated class is

Ŷ (n) = arg max p̂ens(n). (11.33)

11.3 The probabilistic point of view
This section is intended to underline the difference in probability terms formu-

lation between the Naive Bayes classifier [61, 36] and the proposed scheme, since
both use the assumption of conditional independence of the input features. Both
these classifiers build in a simplified way the probability matrix PY |X0,...,XD

with
Nclass rows and ∏︁D−1

i=0 N
(i)
in , where N

(i)
in is the cardinality for the input feature Xi. In

the next sections we show the different structure of these two probability matrices.

11.3.1 Assumption of conditionally independent features
The Naive Bayes assumption allows to write the output estimated probability

of the naive bayes classifier as follows:

P (Y = m|x = x0) = P (x = x0|Y = m)P (Y = m)
P (x = x0)

=

[︂∏︁D−1
k=0 P (Xk = xk0|Y = m)

]︂
P (Y = m)∑︁Nclass

s=0

[︂∏︁D−1
k=0 P (Xk = xk0|Y = s)

]︂
P (Y = s)

(11.34)

which is very easily implemented, without the need of generating the tree net-
work. We rewrite this output probability in a fairly complex way to show the
difference between the naive Bayes probability matrix and the DIN one. Con-
sider the nth feature x(n), that can take values in the set {c0

n, . . . , cDn−1
n }. Define

px(n)|y=m = [P (x(n) = c0
n|Y = m), . . . P (x(n) = cDn−1

n |Y = m)], then

PXin|Y (m, :) = ⊗D−1
k=0 px(k)|y=m (11.35)

and thus obviously

PXin|Y =

⎡⎢⎢⎢⎢⎣
⊗D−1

k=0 px(k)|y=0
⊗D−1

k=0 px(k)|y=1
...

⊗D−1
k=0 px(k)|y=Nclass

⎤⎥⎥⎥⎥⎦ (11.36)
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We can write the joint probability matrix as

PXin,Y = diag(PY )PX|Y (11.37)

and the probability matrix of target class given observation as

PY |Xin
= (PXin,Y diag(P◦(−1)

Xin
))T (11.38)

The hypothesis of conditional statistical independence of the features is not
always correct and thus we can incurr obviously into performance degratation.

11.3.2 The overall probability matrix
We now instead compute the output estimated probability for the DIN classifier.

Consider again the sub-network in Fig. 11.3 made of info nodes a, b, c. Info node
a is characterized by matrix Pa, whose element Pa(i, j) is P (Xout,a = j|Xin,a = i);
similar definitions hold for Pb and Pc. Note that Pa and Pb have N0 rows and N1
columns, whereas Pc has N1 × N1 rows and N2 columns; the overall probability
matrix between the inputs Xin,a, Xin,b and the output Xout,c is P̃ with N0 × N0
rows and N2 columns. Then

P (Xout,c = i|Xin,a = j, Xin,b = k)

=
N1−1∑︂
r=0

N1−1∑︂
s=0

P (Xout,c = i, Xout,a = r, Xout,b = s|Xin,a = j, Xin,b = k)

=
N1−1∑︂
r=0

N1−1∑︂
s=0

P (Xout,c = i|Xout,a = r, Xout,b = s)P (Xout,a = r|Xin,a = j)P (Xout,b = s|Xin,b = k)

=
N1−1∑︂
r=0

N1−1∑︂
s=0

P (Xout,c = i|Xout,s = r, Xout,b = s)Pa(j, r)Pb(k, s). (11.39)

It can be shown that
P̃ = (Pa ⊗Pb)Pc (11.40)

where ⊗ identifies the Kronecker matrix multiplication; note that Pa ⊗ Pb has
N0×N0 rows and N1×N1 columns. By iteratively applying the above rule, we can
get the expression of the overall matrix P̃ for the exact topology of Fig. 11.4, with
8 input nodes and four layers:

P̃ =
[︄{︃[︂

(P0,0 ⊗P1,0)P0,1
]︂
⊗
[︂
(P2,0 ⊗P3,0)P1,1

]︂}︃
P0,2

⊗
{︃[︂

(P4,0 ⊗P5,0)P2,1
]︂
⊗
[︂
(P6,0 ⊗P7,0)P3,1

]︂}︃
P1,2

]︄
P0,3. (11.41)

The ovarall output probability matrix PY |X can be finally computed as

PY |Xin
= P̃PY |Xout(0,3). (11.42)
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The DIN then behaves like a one-layer system that generates the output according
to matrix PY |Xin

, whose size might be impractically large. It is also possible to
interpret the system as a sophisticated way of factorizing and approximating the
exponentially large true probability matrix. In fact, the proposed layered structure
needs smaller probability matrices, which makes the system computationally effi-
cient. The equivalent probability matrix is thus different in the DIN (11.42) and
Naive Bayes (11.38) case.

11.4 Experiments
In this section we analyse the results obtained with benchmark datasets. In

particular we consider the DIN ensemble when a) each DIN is based on the prob-
ability matrices (the scheme described in this Chapter) and b) each information
node of the DIN randomly generates the symbols, as described in the previous
work Chapter 10 ([25]). We refer to these two variants in captions and labels as
DIN(Prob) and DIN(Gen) respectively. The reason for this comparison is that
conditional statistical independence is not required in the case DIN(Gen), and the
classification accuracy could be different in the two cases. Note that Chapter 10
([25]) considered just one DIN, not an ensemble of DINs. In the following we intro-
duce three datasets on which we tested the method (subsections 11.4.1,11.4.2,11.4.3
respectively) and propose some examples of DINs architectures. Complete analysis
of numerical results is described in Section 11.4.4. Sections 11.4.5,11.4.6, analyse
the impact of changing the maximum number of iterations of Blahut-Arimoto al-
gorithm and Lagrangian coefficient β respectively. Finally a synthetic multiclass
experiment is described in section 11.4.7.

11.4.1 UCI Congressional Voting Records dataset
The first experiment on real data was conducted on the UCI Congressional

Voting Records dataset [93], that collects the votes given by each of the U.S. House
of Representatives Congressmen on 16 key laws (year 1985). Each vote can take
three values corresponding to (roughly, see [93] for more details) yes, no and missing
value; each datapoint belongs to one of two classes (democrats or republican). The
aim of the network is, given the list of 16 votes, decide if the voter is republican
or democratic. In this dataset we thus have D = 16 features and a total of 435
datapoints splitted in Ntrain datapoints for the training and Ntest = 435 − Ntrain

points for the testing. The architecture of the used network is the same as the one
described in Sect. 11.1.4, except for the fact that there are 16 input features instead
of 8 (the network has thus one more layer). The input cardinality in the first layer is
N

(0)
in = 3 (yes/no/missing) and the output cardinality is set to N

(0)
out = 2. From the

second layer on, the input cardinality for each information node is equal to Nin = 4
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and Nout = 2. In the majority of the cases, the size of the probability matrices is
therefore 4 × 2 or 2 × 2. In this example we used Nmach = 30 and Ntrain = 218
(roughly 50% of the datapoints). The value of β has been set to 2.2.

11.4.2 UCI Kidney Disease dataset
The second considered dataset was the UCI Kidney Disease dataset ([75]. The

dataset has a total of 24 medical features, consisting of mixed categorical, integer
and real values, with missing values. Quantization of non-categorical features of
the dataset was performed according to the thresholds in Section 11.4.2, agreed
with a medical doctor.

The aim of the experiment is to correctly classify patients affected by chronic
kidney disease. We performed 100 different trials training the algorithms using only
Ntrain = 50 out of 400 samples for the training. Layer zero has 24 input nodes,
then the outputs of layer zero are mixed two at a time to get 12 information nodes
at layer 1, 6 at the layer 2, 3 at layer 3; the last 3 nodes are combined into a unique
final node. The output cardinality of all nodes is equal to 2 (including the input
nodes), the value of β was set equal to 5.6. Also in this case we used an ensemble
of Nmach = 30 DINs.

Quantization

Hereafter we present the quantization4 scheme used for the numerical features
of chronic kidney disease dataset.

• Age (Years) {< 10, < 18, < 45, < 70, < 120}

• Blood (mm/Hg) { < 80, < 84, < 89, < 99, < 109,≥ 110}

• Blood Glucose Random (mgs/dl) {< 79, < 160, < 200,≥ 200}

• Blood Urea (mgs/dl) {< 6, < 20,≥ 20}

• Serum Creatinine (mgs/dl) {< 0.5, < 1.2, < 2,≥ 2}

• Sodium (mEq/L) {< 136, < 145,≥ 145}

• Potassium (mEq/L) {< 3.5, < 5,≥ 5}

• Hemoglobine (gms) {< 12, < 17,≥ 17}

• Packed Cell Volume {< 27, < 52,≥ 52}

4A special thank to Prof. MD Gabriella Olmo who suggested a quantization of the continuous
values of the features in the experiment which is correct from a medical point of view.
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• White Blood Cell Count (cells/cumm) {< 3500, < 10500,≥ 10500}

• Red Blood Cell (millions/cmm) {< 2.5, < 6,≥ 6}

11.4.3 UCI Mushroom dataset
The last considered dataset was the UCI Mushroom dataset [21]. This dataset

is made of 22 categorical features with different cardinalities, that describe some
properties of mushrooms, and one target variable that defines whether the consid-
ered mushroom is edible or poisonous/unsafe. There are a total of 8124 entries in
the dataset. We pad the dataset with two null features to reach the cardinality
of 24 and use exactly the same architecture as the kidney disease experiment. We
select Ntrain = 50,β = 2.7 and number of DINs equal to Nmach = 15.

11.4.4 Misclassification probability analysis
We hereafter report results in terms of misclassification probability between the

proposed method and several classification methods implemented using MATLAB®

Classification Learner. All the datasets were randomly splitted 100 times into train-
ing and testing subsets, thus generating 100 different experiments. The proposed
method shows competitive results in the considered cases, as can be observed in
Table 11.1. It is interesting to compare in terms of performance the proposed algo-
rithm with respect to the Naive Bayes classifier, i.e. eqn. (11.34), and the Bagged
Tree algorithm, that is the closest algorithm (conceptually) to the one we propose.
In general, the two variants of the DINs performs similarly to the Bagged Trees,
while outperform Naive Bayes. For Bagged Trees and KNN-Ensemble the same
number of learners as DIN ensembles were used.

Classifier Congressional Voting Records Kidney Disease Mushroom
Naive Bayes 0.10894 0.051 0.20641
Decision Tree 0.050691 0.062314 0.05505
Bagged Trees 0.043641 0.0268 0.038305
DIN Prob 0.050138 0.037229 0.020796
DIN Gen 0.049447 0.026286 0.022182
Linear Discriminant Classifier 0.059724 0.091029 0.069923
Logistic Regression 0.075161 0.096429 0.07074
Linear SVM 0.063226 0.049914 0.04513
KNN 0.08682 0.11369 0.037018
KNN-Ensemble 0.062811 0.036057 0.043967

Table 11.1: Mean misclassification probability (over 100 random experiments) for
the three datasets with the considered classifiers.
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11.4.5 The impact of number of iterations of Blahut-Arimoto
on the performance

As anticipated in Section 11.1.5, the computational complexity of a single node
scales with the number of iterations of Blahut-Arimoto algorithm. To the best
of our knowledge it does not exist a provable convergence rate for the Blahut-
Arimoto algorithm in the Information Bottleneck setting. We hereafter (Figure
11.5) present empirical results on the impact of limiting the number of iterations
of Blahut-Arimoto algorithm (for simplicity the same bound is applied to all nodes
in the networks). When the number of iterations is too small there is a drastic
decrease in performance, that is due to the fact that the probability matrices in the
information nodes have not yet converged, while 5-6 iterations are sufficient and a
further increase in the number of iterations is not necessary in terms of performance
improvements.

0 5 10 15 20

# of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

c
la

s
s
if
ic

a
ti
o

n
 p

ro
b

a
b

ili
ty

Congressional Voting records

Kidney disease

Mushroom

Figure 11.5: Misclassification probability versus number of iterations(average over
10 different trials) for the considered UCI datasets.

11.4.6 The role of β: underfitting, optimiality and overfit-
ting

As usual with almost all machine learning algorithms, the choice of hyperpa-
rameters is of fundamental importance. For simplicity, in all experiments described
in previous sections we kept the value of β constant through the network. To gain
some intuition, figure 11.6 shows the misclassification probability for different β for
the three considered datasets (each time keeping β constant through the network).
While the three curves are quantitatively different we can notice the same qualita-
tive trend: when β is too small not enough information about the target variable
is propagated, then by increasing β above a certain threshold the misclassification
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probability drops. Increasing β too much however induces overfittig, as expected,
and the classification error (slowly) increases again. Remember (from (11.15)) that
the Lagrangian we are minimising is

L = I(Xin; Xout)− βI(Y ; Xout).

Information theory tells us that at every information node we should propagate
only the sufficient statistic about the target variable Y . In practice this is reflected
in the role of β: when it is too small we neglect the term I(Y ; Xout) and just
minimise I(Xin; Xout) (that corresponds to underfitting), while increasing β allows
to pass more information about the target variable through the bottleneck. It is
important to remember however that we do not have direct access to the true mutual
information values but just to an empirical estimate based on a finite dataset.
Especially when the cardinalities of inputs and outputs are high this translates into
an increased probability of spotting spurious correlations that, if learned by the
nodes, induce overfitting. The overall message is that β has an extremely important
role in the proposed method, and its value should be chosen to modulate between
underfitting and overfitting.
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Figure 11.6: Misclassification probability versus β (average over 20 different trials)
for the considered UCI datasets.

11.4.7 A synthetic multiclass experiment
In this section we present results on a multiclass synthetic dataset. We generated

64 dimensional feature vectors z drawn from multivariate Gaussian distributions
with mean and covariance dependending on a target class y and a control parameter
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ρ:

p(z|y = l) = |2πΣl|−
1
2 exp

(︃
−1

2(z− µl)T (ρΣl)−1(z− µl)
)︃

l = 1, · · · , Nclass

(11.43)

where for the considered experiment Nclass = 8. The mean µl is sampled from a
normal 64 dimensional random vector and Σl is randomly generated as Σl = AAT

(where A is sampled from a matrix normal distribution) and normalized to have
unit norm. The other parameter ρ is inserted to modulate the signal to noise ratio of
the generated samples: a smaller value of ρ corresponds to smaller feature variances
and more distinct, less overlapping, pdfs p(z|y = l), and an easier classification
task. We then perform quantization of the result using 1 bit, i.e. the input of the
ensemble of DINs is the following random vector:

x = U(z) (11.44)

where U(·) is the Heaviside step operator. The designed architecture has at the
first layer 64 input nodes, then 32,16,4,2,1. The output cardinalities are equal to
2 for the first three layers, equal to 4 for the fourth and fifth layer and equal to 8
at the last layer. We select Ntrain = 1000, β = 7 (constant trough the network)
and number of DINs equal to Nmach = 10. Figure 11.7 shows the classification
accuracy (on a test set of 1000 samples) for different values of ρ. As expected
when the value of ρ is small we can reach almost perfect classification accuracy,
whereas by increasing it the performance drops to the point where the useful signal
is completely buried in noise and the classification accuracy reaches the asymptotic
level of 1

8 (that corresponds to random guessing when the number of classes is equal
to 8).

11.5 Conclusions
The proposed ensemble Deep Information Network (DIN) shows good results

in terms of accuracy and represents a new simple, flexible and modular structure.
The required hyperparameters are the cardinality of the alphabet at the output of
each information node, the value of the Lagrangian multiplier β, and the structure
of the tree itself (number of input information nodes of each combiner).

Simplistic architecture choices made for the experiments (such as equal cardinal-
ity of all node outputs, β constant through the network,...) performed comparably
to finely tuned networks. We expect however, that, similarly to what happened
in Neural Network applications, a domain specific design of the architectures will
allow for consistent improvements in terms of performance on complex datasets.

Despite the local assumption of conditionally independent features, the proposed
method always outperforms Naive Bayes. As discussed in section 11.3, the induced
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Figure 11.7: Varying of classification accuracy for different values of control param-
eter ρ

equivalent probability matrix is different in the two cases. Intuitively, we can
understand the difference in performance under the point of view of probability
matrix factorization. On one side we have the true, exponentially large, joint
probability matrix of all features and target class; on the other side we have the
Naive Bayes one, that is extremely simple in terms of complexity but obviously less
performing; in between we have the proposed method, where the complexity is still
reasonable but the quality of the approximation is much better. The DIN(Gen)
algorithm does not require the assumption of statistically independence, but the
classification accuracy is very close to that of DIN(Prob), which further suggests
that the assumption can be accepted from a practical point of view.

The proposed method leaves open the possibility of devising a custom hardware
implementation. Differently from classical decision trees, in fact, the execution
times of all branches as well as the precise number of operations is fixed per dat-
apoint and known a priori, helping in various system design choices. In fact with
classical trees, where nodes utilization depend on the datapoint, we are forced to
design the system for the worst case, even if in the vast majority of time not all
nodes are used. Instead, with DIN, there is not such a problem.

Finally, a clearly open point is related to the quantization procedure of con-
tinuous random variables. One possible self-consistent approach could be devising
an information bottleneck based method (similarly to the method for continuous
random variables [14]).

Further studies on extremely large dataset will help understand principled ways
of tuning hyperparameters and architecture choices and their relationship on per-
formance.
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Chapter 12

Conclusions of Part II

We proposed a practical algorithm designed for categorical datasets. In Chap-
ters 10,11 we presented the Deep Information Networks (DIN) and their imple-
mentation variant. The algorithm is presented starting from clear and definite
information theoretic principles, in particular the information bottleneck criterion.
The connection with the concept of compression and minimal statistical sufficiency
is explored in the introductory chapters.

The DIN shows good results in terms of classification accuracy. The experi-
mental validation suggests that the DINs are a valid alternative to the classical
decision trees. We moreover depart from the original DIN idea by exploring en-
semble of networks and a different implementation based on a local assumption of
conditionally independent features. Despite this assumption , the proposed method
always outperforms Naive Bayes. We explained the differences among the different
algorithms under the lens of probability matrices factorization.

Despite being the discussion on implementations at an extremely, we stress
throughout the thesis the practicality of possible hardware implementations of the
considered method. The DIN could be easily implemented on large scale in hard-
ware having the following qualities: modularity, flexibility and locality of the com-
putations. They are in fact composed of infonodes and combiners that can be
arranged in any desired topology (provided there are no loops) without restriction
imposed by non local communications. Moreover, the DIN algorithms are better
suited for custom hardware implementation than their closest relative, decision
trees. Differently from decision trees, in fact, the system design choices are simpler
since both the execution times of all branches and the precise number of operations
is fixed per datapoint and known in advance. On the contrary, with classical trees,
nodes utilization depends on the single datapoint. An hardware engineer is thus
forced to design the system considering the worst case scenario, possibly wasting
In fact with classical trees, where nodes utilization depend on the datapoint, we
are forced to design the system for the worst case, even if in the vast majority of
time not all nodes are used.
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Chapter 13

General Conclusions

This manuscript explored contributions to Efficient Machine Learning. The
dissertation has been divided into two separate parts, explored indipendently.

The motivating problem of the first part has been uncertainty estimation for
continuous parametric models, that is usually performed with algorithms that are
extremely sensitive to hyperparameters. To partially overcome this problem, we
presented a Stochastic Gradient based sampling algorithm, i-sgd, providing a
sound theoretical characterization. Thanks to the proposed algorithm, the burden
of hyperparameters optimization, in particular the learning rate scheduling, was
lessened. We extended the idealised version of the algorithm to realistic settings,
providing empirical validation against state of the art competitors.

The focus of future research on this topic will be the in depth study of the sg
noise distribution. In particular, several challenging directions could be taken. The
major one concerns the study of the interplay between the sg noise, the injected
noise and the performance of the sampling methods. Is it possible, with a deeper
theoretical understanding of the loss landscape and the noise covariance to design an
even more efficient and robust sampler? What is the true bottleneck that prevents
the usage across different scenarios of the same sampler, requiring the inefficient fine
tuning procedure? For these reasons, an accurate understanding of the true noise
distribution, the study of the characterization of the noise that should be injected
and the impact on the overall performance would be of paramount importance.

The second part of the thesis focused on efficient algorithms for classifying dis-
crete datasets. The driving target of the research has been the quest for algorithms
easily deployable in hardware. We did propose a novel algorithm, Deep Information
Networks (and an ensemble variant), based on a flexible and modular structure. We
explored in depth the parallelizability properties of the considered method. The
theoretical foundation of the proposed method is the Information Bottleneck prin-
ciple, that provided a sound tool for the exploration of the method.

This first initial exploration of the method could be extended considering sev-
eral interesting variations. Could we relax the constraints on the topology of the
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networks, for example considering full mesh scenarios with possibly recurrent con-
nections? Could such a choice further improve efficiency by allowing, for example,
some form of asynchronous training across nodes? A second interesting direction
concerns, similarly to the first part of the thesis, the investigation of modification
to the algorithm to derive efficiently some of the hyperparameters, leveraging the-
oretical intuitions. Finally, we could consider whether some of the good properties
of the considered algorithm, such as locality of computations, could be similarly ex-
ploited in architectures designed for continuous datasets, building for example deep
neural networks with local computations of the cost function using the Information
Bottleneck criterion.
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