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Summary  

This Doctoral Dissertation set out to plan quality inspection strategies by adopting 
suitable defects generation models and by assessing inspection performances in low-
volume productions. The Dissertation offers some essential insights into the field of 
quality control for low-volume productions, where the limited historical data available 
and the difficulty of implementing traditional techniques and methodologies make the 
inspection process planning extremely challenging. The following Research Questions 
(RQs) are specifically addressed throughout the Dissertation: 

RQ1: Can defects occurring in low-volume production processes be predicted using 
probabilistic models? 
RQ2: How to evaluate the performances of quality inspections in low-volume 
productions? 
RQ3: How to support designers in the early design phases of inspection process 
planning of low-volume productions? 

In order to answer the aforementioned RQs, the Dissertation has been structured in six 
chapters, as described below. 

A general introduction of the framework of the research and the importance of the 
topic is provided in Chapter 1, as well as the purpose statement and the research design 
and methods used in the current Dissertation.  

Chapter 2 is concerned with an overview of the quality inspections in manufacturing 
processes. A considerable amount of literature has been published on inspection 
procedures in the manufacturing field. This chapter investigates the bibliography related 
to the inspection procedures from different perspectives. The specific aim is to review 
recent studies on inspection procedures and highlight research areas that are not 
adequately covered by the literature for identifying new challenges and research 
perspectives.   

The identification of reliable and suitable prediction models of defects occurring in 
the final product is key to plan quality inspections, especially for low-volume production 
due to the scarcity of historical data. The different typology of inspection requires a 
different structure and conceptual paradigm of the models. With the purpose of 



 

 
 

identifying reliable and suitable models of defect predictions and answering the first 
research question - RQ1, Chapter 3 begins by laying out a review of defect modeling in 
manufacturing in Section 3.1, and by proposing an overview of the current studies 
related to the application of machine learning for product quality control and 
improvement in Section 3.2. Then, a distinction between models to predict defects for 
in-process and offline inspections, respectively in Sections 3.3 and 3.4, is proposed. In 
detail, Section 3.3 introduces some defect prediction models designed for assembly 
processes, with a specific focus on the close relationship between assembly complexity 
and defect rates. In Section 3.4, a model specifically designed for offline inspections is 
proposed, using Additive Manufacturing as a case study. 

The second research question - RQ2 - is addressed in Chapter 4, where the 
formulation of two useful indicators for assessing inspection strategy performance is 
proposed. In detail, to derive these indicators, the inspection strategy is modeled 
separately for in-process inspections and offline inspections, respectively, in Section 4.1 
and 4.2. In such modeling, the defect prediction models proposed in Chapter 2 are 
combined with other inspection variables, including inspection errors and costs, with 
the purpose of assessing the performances of the two categories of inspection strategies 
through a pair of indicators. The first indicator provides an assessment of inspection 
effectiveness, evaluated based on undetected defects remaining in the final product. The 
second indicator is obtained by carrying out an overall economic evaluation of the 
strategy adopted. These indicators are formulated following a different architecture 
depending on their use for evaluating in-process or offline inspections. The probabilistic 
models formulated are strongly influenced by the cause-effect relationships between the 
process and inspection variables. In order to take this aspect into account, Section 4.2 
extends previous studies in the field of in-process inspections, that are reviewed in 
Section 4.1, by including possible interactions between process and offline inspection 
variables, in terms of cause-and-effect relationships. The final section of Chapter 4 
introduces a preliminary uncertainty evaluation of the two performance indicators. 

Intending to support designers in the selection of the most suitable inspection 
strategy, Chapter 5 is conceived to answer the last research question - RQ3 – by 
proposing an operational tool, called Inspection Strategy Map (ISM). The ISM has the 
dual purpose of analyzing and guide the inspection planning process. The description of 
such a tool is provided in Section 5.1, while different applications of the proposed 
approach are finally described in Section 5.2. The case studies addressed belongs to 
different manufacturing sectors, specifically regarding assembly processes for in-
process inspections and Additive Manufacturing technique for offline inspection. 

The concluding chapter summarizes the original contributions of the Dissertation, 
focusing on the benefits, limitations and possible future developments.  
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Chapter 1 : 
Introduction 

Manufacturing companies are increasingly focused on producing high-quality 
and fault-free products that meet customers’ needs. Defects in the final product, 

particularly those generated during the production process, can significantly affect 
the product itself, both in terms of quality and cost. In this regard, designing 
effective and cost-efficient inspection strategies for the detection of defects and the 
reduction of quality-related costs has always been a great challenge and a crucial 
factor for achieving market competitiveness (Franceschini et al., 2018; Savio et al., 
2016; Biffl and Halling, 2003; Tirkel and Rabinowitz, 2014; Verna et al., 2020e; 
Emmons and Rabinowitz, 2002). 

A distinction between in-process and offline inspection strategies should be 
considered when designing inspections. In in-process inspections, units are 
inspected during the production process (Tzimerman and Herer, 2009; Tirkel et al., 
2016; Azadeh et al., 2015; W. Wang, 2009), while in offline inspections, finished 
products are inspected after the production process is completed (Tzimerman and 
Herer, 2009; C. W. Kang et al., 2018). Although in-process inspections are 
considered more economical and effective than offline inspections, in some 
situations, they are impossible to perform, not adequate or not affordable 
(Tzimerman and Herer, 2009; Verna et al., 2020e).  

Several methods have been adopted in literature to design quality-inspections 
in mass productions, including simulations (Neu et al., 2002, 2003; Münch et al., 
2002), cost-benefit models (Savio, 2012), optimization and mathematical 
programming models (Hanne and Nickel, 2005; Shiau, 2003; Mohammadi et al., 
2015). However, when dealing with low-volume productions, such techniques may 
not be appropriate (Trovato et al., 2010; Celano et al., 2011; Marques et al., 2015; 
Del Castillo et al., 1996; Pillet, 1996; Khoo and Quah, 2002). Although these 
productions are also constantly repeated over the years, the low production rate 
makes the application of traditional techniques difficult, partly because of the 
scarcity of historical data available. 

 
This Doctoral Dissertation analyses quality inspections in low-volume 

production of manufacturing companies by addressing several key aspects. There 
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are several important areas where this Dissertation provides an original contribution 
to the study of low volume production. The following Research Questions (RQs) 
are specifically addressed throughout the Dissertation: 

RQ1: Can defects occurring in low-volume production processes be predicted 
using probabilistic models? 
RQ2: How to evaluate the performances of quality inspections in low-volume 
productions? 
RQ3: How to support designers in the early design phases of inspection process 
planning of low-volume productions? 

In detail, this Dissertation includes four main chapters. After Chapter 2, which 
provides an overview of the research framework, the three research questions RQs 
are specifically addressed in the following three chapters, i.e., in Chapters 3, 4 and 
5, as described below. 

 
Chapter 2 is concerned with an overview of the quality inspections in 

manufacturing processes. Quality control activities include quality inspections, i.e., 
the activities of checking products (ISO 2859-1:1999). The main aim of quality 
inspections is to prevent non-compliant products from reaching end customers or 
end-users. These are carried out in various production contexts and by most 
companies, because defects remaining in the product can lead to a loss of market 
competitiveness (Franceschini et al., 2018; Savio et al., 2016; Biffl and Halling, 
2003; Tirkel and Rabinowitz, 2014; Verna et al., 2020e; Emmons and Rabinowitz, 
2002).  

In scientific literature, inspection procedures have been addressed from several 
perspectives. An interesting classification was recently proposed by Genta et al. 
(2020) in their survey on inspection procedures. This classification is described in 
detail in Section 2.1. In particular, two classification categories for inspection 
procedures are considered: (A) general characteristics and (B) modeling structure. 
The first category, i.e., general characteristics, includes the type of inspection and 
the strategy adopted. On the other hand, the second category, i.e., modeling 
structure, entails different features describing an inspection procedure, including 
(a) errors, (b) costs, (c) human skills, (d) time, (e) defect modeling, (f) simulations 
and (g) low-volume production (Genta et al., 2020). 

With the purpose of clarifying the classification of inspection procedures from 
the point of view of the type of inspection, Section 2.2 defines the two main 
inspection paradigms that have been addressed in the literature, i.e., in-process and 
offline inspection.  

A brief review of key research contributions on inspection procedures since the 
1960s and the emergence and differentiation of the two inspection paradigms is 
presented in Section 2.3. The first papers published on inspection procedures were 
within the framework of inspection allocation in multi-stage production systems 
(Beightler and Mitten, 1964; Lindsay and Bishop, 1964). On the contrary, the first 
study on offline inspections dates back to the early 1980s.  

Among the papers published in the last 20 years, both addressing in-process 
and offline inspections, it is possible to identify some common research lines, 
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including similar research approaches, research objectives and application fields. 
In detail, according to Genta et al. (2020), these can be grouped in five main 
clusters: (i) multi-stage production systems, (ii) systems with multi-characteristic 
components, (iii) multi-objective optimization models, (iv) Economic Order 
Quantity (EOQ), (v) low-volume productions and defect generation models. An 
overview of the main studies carried out in each cluster is provided in Section 2.4. 

Several inspection models have been developed in the scientific literature, 
considering one or more features. In Section 2.5, the models with a complete 
structure are reviewed for both in-process inspections and offline inspections. 

With the aim of highlighting the gaps in the literature on inspection procedures, 
Section 2.6 provides an overview of the main research areas covered by the most 
recent papers and, finally, Section 2.7 offers some insight into the future research 
perspectives that are sought to be addressed in the following chapters of this 
Dissertation. 

 
In low-volume productions, the lack of historical data available and, often, the 

non-applicability of traditional statistical techniques, makes it difficult to predict 
the defects that might occur in the finished product or the semi-finished products 
(Koons and Luner, 1991; Montgomery, 2012). However, defects occurring during 
the manufacturing process represent a huge issue even for low-volume productions 
owing to the dramatic impact they can cause, both in terms of quality and costs. 
Accordingly, the development and identification of appropriate models of defects 
predictions have long been a question of great interest. In the literature, extensive 
research has been carried out on the prediction of product defects (Antani, 2014; Su 
et al., 2010; Shibata, 2002; Psarommatis et al., 2020), as described in Section 3.1. 
Besides, with the increased digitalization, lots of data can now be generated in the 
overall production process that can be used by machine learning approaches for 
several purposes, including product quality improvement, as discussed in Section 
3.2. However, such approaches have been mostly restricted to mass productions, 
involving millions of parts and operations. To date, defect prediction models 
suitable for low-volume manufacturing processes are still lacking. In this regard, to 
answer the first research question - RQ1, two novel paradigms of defect generation 
models are developed and discussed in Chapter 3. In detail, a novel prediction 
model suitable for in-process inspections is presented in Section 3.3, while a 
different methodology to estimate defects investigation using offline inspections is 
proposed in Section 3.4. The specific content of these two chapters is proposed 
below. 

After having discussed the main defect prediction models existing in the 
literature for in-process inspections, a specific focus is dedicated to those models 
relating assembly defects to complexity. The latter is a crucial factor in assembly 
processes that should be managed appropriately in order to avoid compromising the 
final quality of the finished products. Different approaches are adopted to assess 
assembly complexity, based on the product to be assembled or the process sequence 
for the assembly (Alkan et al., 2017). A general overview of these approaches is 
proposed in Section 3.3. Furthermore, one of the most accredited models developed 
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in the literature that relies on the process- and design-based complexities defined 
by Shibata (2002) and Su et al. (2010) is reviewed. The structure of this model is 
resumed to develop a novel prediction model based on another complexity 
paradigm, i.e., the structural complexity paradigm (Sinha et al., 2012; Alkan, 2019). 
Complexity is evaluated considering structural properties associated with handling 
and insertion of assembly parts and their architectural structure (Alkan, 2019). This 
approach, depending solely on physical design information, can be considered more 
practical from the design point of view, especially in the early design stages. A low-
volume production of wrapping machines is considered as a case study. 

Regarding the defect models developed for offline inspections, a scant number 
has been proposed in the literature. To fill this gap, Section 3.4 develops a novel 
probabilistic model suitable to predict defects occurring in low-volume 
manufacturing processes in case of offline inspections. The methodology proposed 
includes the definition of input and output variables, the determination of the 
mathematical relationship among these variables, the identification of all the 
uncertainty contributions and the estimation of probabilities of occurrence of 
defective-output variables. The approach is then applied to an Additive 
Manufacturing (AM) production in the automotive industry. Indeed, quality 
inspections performed on AM products are mainly restricted to offline controls, i.e., 
carried out at the end of the production process, owing to the difficulty implement 
corrective or adaptive actions once a defect has been detected during the process 
(Tapia and Elwany, 2014; Everton et al., 2016; Rao et al., 2015; Grasso and 
Colosimo, 2017; Colosimo, 2018; Tsung et al., 2018; Galetto, Genta, et al., 2020). 

Both models for in-process and offline inspections are conceived to predict 
defects using the ‘a priori knowledge’ of the product and process, without any 

additional experimental test. These predictions are useful to the designers for 
designing effective and affordable inspection procedures, as is then discussed in the 
following Chapters 4 and 5.  

 
The Inspection Process Planning (IPP), that defines which quality 

characteristics of a product should be inspected, where and when, represents a key 
factor within organizations for achieving these objectives (Zhao et al., 2009; 
Pfeifer, 2015; Mohammadi et al., 2015). There are several aspects that inspection 
designers have to consider during the IPP, including (i) the typology of production 
to be inspected, and (ii) the kind of quality control to be performed. Despite the fact 
that this topic is attracting increasing interest from researchers and practitioners, 
there remains a paucity of guidance and methodological approaches that can be 
used by manufacturing companies to support the inspection design process of low-
volume productions. In this regard, Chapter 4 attempts to answer the second 
research question - RQ2 - by extending the studies proposed by Franceschini et al. 
(2018) and Genta et al. (2018) and adapting the two practical performance measures 
conceived for in-process inspections to offline inspections.  

In particular, Section 4.1 reviews the methodology proposed by Franceschini 
et al. (2018) and Genta et al. (2018) to assess inspection effectiveness and cost in 
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the case of in-process inspection strategies. They proposed to decompose the 
manufacturing process into a certain number of steps, i.e., specific operations 
providing an added value to the end product. Next, they developed a probabilistic 
model with the aim to define two performance indicators for inspection strategies, 
related to inspection effectiveness and affordability. 

The probabilistic model and the two performance measures described in 
Section 4.1 are then adapted to the case of offline inspections in the next Section 
4.2. After having modeled the inspection strategy and defined the two practical 
performance indicators specific for offline inspections, the method is improved by 
including possible interaction between model variables and costs occurring during 
the inspection process. An excerpt from the application of the method to a real case 
study in the field of Additive Manufacturing processes is proposed.  

In Section 4.3, an approach to evaluate the uncertainty of the performance 
measures, both in the case of in-process and offline inspections, is finally provided. 

 
Chapter 5 is conceived to address the third research question - RQ3 - and 

therefore try to fill the gap in the literature regarding the scarcity of tools to support 
the designers in the early design phases of inspection process planning. The models 
of defect prediction developed in Chapter 3 and the methods to assess the 
performance of inspection strategies proposed in Chapter 4 are combined in a 
practical tool allowing for the assessment of the adequacy of alternative inspection 
strategies. In the first section of Chapter 5 (Section 5.1), a general framework to 
assess the effectiveness and cost of inspection strategies is developed through the 
definition of a novel tool, named Inspection Strategy Map (ISM). Two are the main 
purposes of ISM: (i) analyzing the positioning of different inspection strategies on 
the map, in terms of effectiveness and cost, allowing the designer to compare more 
alternatives (analysis tool); and (ii) supporting the designer in determining the 
conditions of effectiveness and cost to allow an a priori inspection strategy 
positioning. The framework tool proposed in this chapter is applied in Section 5.2 
to (i) the low-volume assembly of wrapping machines, regarding in-process 
inspections, and (ii) the additive manufacturing process of SLM, as regards offline 
inspections. With this tool, engineers are driven to identify alternative inspection 
procedures in order to make the inspection strategy more effective and cost-
efficient. 

 
The concluding chapter summarizes the original contributions of the 

Dissertation, focusing on the benefits, limitations and possible future developments.
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Chapter 2 : 
Quality 
inspections in 
manufacturing 
processes 

Quality control activities include quality inspections, i.e., the activities of 
checking products (ISO 2859-1:1999, 1999). According to the standard ISO 2859-
1:1999, an “inspection” is defined as an “activity such as measuring, examining, 

testing or gauging one or more characteristics of a product or service, and 
comparing the results with specified requirements in order to establish whether 
conformity is achieved for each characteristic” (ISO 9000:2015, 2015). The main 
aim of quality inspections is to prevent non-compliant products from reaching end 
customers or end-users. These are carried out in various production contexts and by 
most companies, because defects remaining in the product can lead to a loss of 
market competitiveness (Franceschini et al., 2018; Savio et al., 2016; Biffl and 
Halling, 2003; Tirkel and Rabinowitz, 2014; Verna et al., 2020e; Emmons and 
Rabinowitz, 2002). A variety of products can be inspected, ranging from parts used 
in production to semi-finished or finished products before shipment to the customer 
(Genta et al., 2020). Depending on the characteristics of the parts to be inspected, 
inspections can be performed manually, using automatic detection devices or a 
combination of both (H. Y. Wang and Wang, 2020; Aydin et al., 2017). 

Quality inspections are typically performed according to specific inspection 
procedures, depending on the production process. For instance, in multi-stage 
production systems, quality inspections may be carried out after some or all 
production steps (Raz, 1986; Eger et al., 2018). However, to be effective, strict 
consideration must be given to where performing an inspection, often after 
particular processing activities (Raz, 1986). Cost and constraint factors, as well as 
operational alternatives, interact intricately and make the solution far from trivial 
(Mandroli et al., 2006; Genta et al., 2020). In this respect, deciding when, where 
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and how performing an inspection is a truly strategic decision in the inspection 
planning process (Zhao et al., 2009; Pfeifer, 2015; Mohammadi et al., 2015).  

A considerable amount of literature has been published on the formulation and 
application of inspection procedures in the manufacturing field.  

This chapter investigates the bibliography related to the inspection procedures 
from different perspectives. The specific aim is to review recent studies on 
inspection procedures and highlight research areas that are not adequately covered 
by the literature for identifying new challenges and research perspectives. In detail, 
the rest of Chapter 2 has been organized as follows:  

• Section 2.1 proposes a classification of inspection procedures, adapted from 
the recent survey by Genta et al. (2020). 

• Section 2.2 deals with the description of the two inspection paradigms that 
can be identified from the inspection type perspective: in-process and 
offline inspections. 

• Section 2.3 presents a brief review of key research contributions on 
inspection procedures since the 1960s, and the emergence and 
differentiation of the two inspection paradigms are presented. 

• Section 2.4 highlights the main research lines that can be distinguished 
among the papers published in the last 20 years, both addressing in-process 
and offline inspections. 

• Section 2.5 reviews the prominent reference models identified in the 
literature for both in-process inspections and offline inspections. 

• Section 2.6 provides an overview of the main research areas covered by the 
literature on inspection procedures and identifies the major literature gaps. 

• Section 2.7 finally offers some insight into future research perspectives.   

2.1 Classification of inspection procedures 

In scientific literature, inspection procedures have been addressed from several 
perspectives. An interesting classification was recently proposed by Genta et al. 
(2020) in their survey on inspection procedures. In detail, two classification 
categories for inspection procedures are considered: (A) general characteristics and 
(B) modeling structure (see Figure 2.1). The first category, i.e., general 
characteristics, includes (Genta et al., 2020): 

(i) The type of inspection, i.e., in-process and offline inspection. This 
classification is specifically addressed in Section 2.2. 

(ii) The strategy, i.e., sampling and/or 100% inspection. The strategy to be 
adopted, ranging from 100% inspection, acceptance sampling or a 
mixture of both, is a central element of statistical quality control. In 
order to prevent defects from reaching customers or end-users, 
companies should inspect productions with a 100% inspection strategy. 
However, in some circumstances, 100% inspection may be inefficient 
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and impractical, especially in the case of destructive tests or expensive 
inspections (Schilling and Neubauer, 2017; Kahraman et al., 2016). 

On the other hand, the second category, i.e., modeling structure, entails 
different features describing an inspection procedure, including (a) errors, (b) costs, 
(c) human skills, (d) time, (e) defect modeling, (f) simulations and (g) low-volume 
production (Genta et al., 2020). A brief description of each feature is given below: 

(a) Error – Two types of inspection errors can occur during an inspection 
activity: (i) type-I error, i.e., the wrong rejection of a conforming unit, and 
(ii) type-II error, i.e., the erroneous acceptance of a nonconforming unit 
(Mandroli et al., 2006; C. W. Kang et al., 2018). In some papers, inspection 
errors are also regarded as the absence of inspection capability (Mandroli 
et al., 2006; Shetwan et al., 2011). 

(b) Cost – Implementing an inspection-oriented quality-assurance strategy 
entails a detailed economic assessment, aiming at allocating an appropriate 
level of inspection activity according to a cost-benefit logic. In particular, 
in order to achieve this aim, a trade-off must be sought between the various 
cost components associated with inspection. These include repair/rejection 
costs and replacement costs due to a quality defect, the costs of undetected 
defects, e.g., warranty penalty, incurred when a non-compliant product 
reaches customers (Emmons and Rabinowitz, 2002; Franceschini et al., 
2018). Accordingly, an inspection-oriented strategy points to cost-effective 
production and tolerates a non-zero level of defective production (Mandroli 
et al., 2006; C. W. Kang et al., 2018). 

(c) Human skill – In various production systems, most of the quality 
inspections still rely on human labor (C. W. Kang et al., 2018; Mehmood 
Khan et al., 2014), although there is an increasing trend to use sophisticated 
automatic quality monitoring devices and techniques to avoid human errors. 
Thus, the quality and performance of the inspection process may depend on 
the skill of the inspectors. 

(d) Time – The inspection time is closely related to the type of product and its 
complexity. By switching from a low complexity product to a high 
complexity product, the number of operations to be performed, the number 
and variety of components, their size and product design increase (Sardar 
and Lee, 2015). As a result, the inspector has to check more quality features 
that increase the inspection time. The inspection time also affects the 
performance of the individual inspector as well as the overall inspection 
station (W. Wang, 2009; C. W. Kang et al., 2018). It also contributes 
significantly to the total production costs (Shetwan et al., 2011).  

(e) Defect modeling – The defect modeling in a production process can be 
considered as the modeling of defects probability in the overall production 
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process or in the several stages in which it can be decomposed. This concept 
of defect modeling is the one adopted in this Dissertation. Other authors 
consider the defectiveness in the inspections by considering the defect rate, 
defined as the proportion of defective items among all items manufactured 
by a process at a stage. In some studies, the defect rate is assumed as known 
and constant for all operations, whereas in others is a random defect rate. 
In the papers in which a random defect rate is considered, in some cases, a 
probability of occurrence of defects is considered for specific ranges of 
defect rates, while in other cases, the defect rate is explicitly treated as a 
random variable (Genta et al., 2020). To summarize, in the survey of 
Mandroli et al. (2006) four possible combinations of defect rates are 
considered:  

✓ Single type constant defect rate. 
✓ Single type random defect rate. 
✓ Multiple type constant defect rate. 
✓ Multiple type random defect rate. 

(f) Simulation – In the field of inspection procedures, most of the research 
problems are formulated using an analytical model. This analytical 
formulation of the problem can be solved through analytical and/or 
simulative approaches. Although the first approach is preferable, simulative 
approaches typically provide additional information or result in highly 
complex production processes (Genta et al., 2020). 

(g) Low-volume production – The performances of inspection procedures of a 
manufacturing process are tightly related to the production volume. 
Statistical Process Control (SPC) techniques are straightforwardly applied 
(Montgomery, 2012) in the case of mass production. On the contrary, when 
dealing with low production volumes, most of the SPC techniques are often 
unsuitable (Marques et al., 2015). Section 2.4.5 is specifically concerned 
with low-volume productions. 
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Figure 2.1 - Classification of inspection procedures. Adapted from Genta et al. (2020). 

2.2 In-process and offline inspection paradigms  

In scientific literature, two general inspection paradigms can be identified: in-
process inspection and offline inspection. 

In-process inspections are often referred to in the literature as “online” 

inspections (Mandroli et al., 2006). However, in the manufacturing field, it is 
preferable to use the term “in-process” or “on-machine” instead of “online” because 

this latter is mainly employed in web-based contexts. In in-process inspection, the 
production units are inspected during the manufacturing process (Tzimerman and 
Herer, 2009; Tirkel et al., 2016; Azadeh et al., 2015; W. Wang, 2009). On the 
contrary, in offline inspection, the units are inspected after the manufacturing 
process is completed (Tzimerman and Herer, 2009; C. W. Kang et al., 2018). In-
process inspection regimes are typically more economical and effective than 
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corresponding offline inspection ones (Tzimerman and Herer, 2009). However, 
there are situations in which in-process inspections are not adequate, impossible to 
perform or not economically convenient due to operation type and time (Raz et al., 
2000). In these cases, an effective approach is to perform offline inspection after 
preserving the order in which the product is processed (Genta et al., 2020). 

Offline inspections can be performed on the finished product at the end of the 
production line or on the semi-finished product at different stages of the 
manufacturing process (Tzimerman and Herer, 2009; Ramzan and Kang, 2016).  

A considerable amount of literature has been published around the topic of in-
process and offline inspection. Generally, papers in this research field are concerned 
with only one of the inspection paradigms. As far as the in-process inspection 
paradigm is concerned, an extensive collection and analysis of the most prominent 
research papers have been provided in the survey of Mandroli et al. (2006). This 
survey reviews more than 100 papers produced from the 1960s to the early 2000s, 
extending the previous survey of Raz (1986) published in the 1980s. Regarding 
offline inspection regimes, the paper of  Kang et al. (2018) can be considered, so 
far, the reference survey for researchers and practitioners. It classifies more than 30 
papers drawn up in the last 15 years, reorganizing the previous survey of Ramzan 
et al. (2016). In the recent study of Genta et al. (2020), the surveys of Kang et al. 
(2018) and Mandroli et al. (2006) were extended by recent papers concerning in-
process and offline inspections, for a total of almost 70 papers examined. 

2.3 Key research contributions 

A brief review of key research contributions on inspection procedures since the 
1960s and the emergence and differentiation of the two inspection paradigms is 
presented. The first studies within the framework of inspection allocation in multi-
stage production systems are the papers of Beightler and Mitten (1964) and Lindsay 
and Bishop (1964). In the first study, a detailed description of the interacting effects 
which exist between quality control stations associated with the various stages of 
manufacture of a product was provided, as well as the influences that these 
interactions have on the optimal choice of sampling plan for a given station. They 
described and demonstrated the applicability of the mathematical theory of dynamic 
programming to the design of an optimal sequence of such interrelated plans. In the 
research, a digital computer program solving a simplified version of the above 
design problem was given in order to illustrate the dynamic programming solution 
procedure (Beightler and Mitten, 1964). Lindsay and Bishop (1964) proposed a 
general screening inspection program in which inspection levels and locations of 
inspection points were treated as variables. The model, assuming complete 
inspection of the production run rather than sampling, is designed to minimize the 
sum of the unit inspection cost and the cost of lost production due to improper 
processing. They showed that the function representing the total of inspection and 
scrap costs was minimized by an extreme-point solution, allowing the minimum-
cost inspection program to lie in a relatively restricted subset of all possible 
allocations. The application of a computational procedure based on dynamic-
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programming enabled the minimum-cost program to be readily determined for 
cases in which the requirement for inspection is the maintenance of a specified 
quality level or when a linear cost may be associated with outgoing defective 
material (Lindsay and Bishop, 1964).  

In the early seventies, the first author addressing non-serial production systems 
was Britney (1972). In his model, a perfect inspection and immediate repair of 
nonconforming units were considered. The total expected cost includes components 
for unit inspection and repair, fixed repair costs and shipment of nonconforming 
units. The optimization problem was solved with a branch and bound method 
(Britney, 1972). The following year, Hurst (1973) introduced for the first time a 
model including possible inspection errors. These are the type-I inspection error, 
i.e., the risk of rejection of conforming units and the type-II inspection error, i.e.,  
the risk of acceptance of nonconforming units. In the model, the production system 
was assumed to be serial with only one inspection operation possible after each 
processing step, with the units perceived as non-conforming removed from the 
production flow. The model proposed by Hurst (1973) was only descriptive without 
providing a method to optimize system performance. In the early 1980s, the 
research strand introduced by Hurst was carried on by Ballou and Pazer (1982), 
whose investigations included a “what-if” simulation analysis of n-stage linear 
production systems with inspection errors. The input parameters of the simulation 
were the number of phases, the value-added in each phase, the unit inspection costs, 
and the cost of the penalty for accepting a non-compliant unit. Cost per good unit 
accepted by the customer is used as the optimizing criterion. The cost-quality 
response surface was explored through a sequential sensitivity analysis. The results 
indicated that, under certain conditions, the level of predictable inspector fallibility 
significantly impacts the number and placement of inspection stations as well as 
cost per good unit produced. The modeled systems, however, were relatively 
insensitive to the variability of inspectors' performance (Ballou and Pazer, 1982). 

Until 1982, studies carried out within the framework of inspection procedures 
had focused on inspections carried out during the production process, i.e., in-
process inspections. The first study that dealt with offline inspections was published 
two years later by Hassin (1984), who thus launched the new inspection paradigm, 
although he actually used the term “dichotomous search”. He proposed a search 

strategy aimed at minimizing the expected number of inspections needed to locate 
the exact transition time for a process with a constant failure rate, where that last 
unit is known to be non-conforming. Applications of the strategy cover the areas of 
quality control and maintenance of communication and supply lines (Hassin, 1984). 
The first paper that discusses offline inspection policies directed towards an 
economic optimization rather than an identification of the transition unit of the 
process was published by Raz et al. (2000). In their research, the problem of 
determining the optimal inspection/disposition policy for a finite batch of items 
produced by a machine that is subject to random breakdowns was addressed. In 
detail, they identified which units should be inspected and in which order to 
minimize the sum of inspection costs and penalties (Raz et al., 2000). Henceforth, 
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the two inspection paradigms, in-process and offline, have been definitively 
established. 

2.4 Recent common research lines 

Among the papers published in the last 20 years, both addressing in-process 
and offline inspections, it is possible to identify some common research lines, 
including similar research approaches, research objectives and application fields. 
In detail, according to Genta et al. (2020), these can be grouped in five main 
clusters: (i) multi-stage production systems, (ii) systems with multi-characteristic 
components, (iii) multi-objective optimization models, (iv) Economic Order 
Quantity (EOQ), (v) low-volume productions and defect generation models. An 
overview of the main studies carried out in each cluster is provided below. 

2.4.1 Multi-stage production systems 

Multi-stage production systems are the first main cluster that is investigated 
within the research framework of in-process inspections. A large number of studies 
were published in recent years that have enriched and deepened the preliminary 
studies on the topic discussed in Section 2.3. In a multi-stage production system, 
each manufacturing stage may include three possible kinds of stations, i.e. (i) 
manufacturing station, (ii) inspection station, and (iii) rework or replacement 
station, as shown in Figure 2.2. 

 

 
Figure 2.2 – Schematic of a complete manufacturing stage (i-th stage) in a multi-stage 

production system. Adapted from Genta et al. (2020). 

The methodologies proposed in the scientific literature regarding quality 
control and improvement of multi-stage production systems typically entail 
quantitative modeling of the system, which can be (i) analytical, i.e., based on 
physical laws, or (ii) data-driven, i.e., based on process experimental data (Shi, 
2006; Shi and Zhou, 2009).  

The most prominent method belonging to the first category, i.e. analytical 
modeling of the system, is the “state space model”, proposed for the first time by 

Jin and Shi (1999) in the dimensional control field. In the state space modeling 
approach, for each manufacturing stage, the key quality characteristics of the 
product (e.g., the dimensional quality), represented by a “state vector”, are put in 

relationship with the process error sources (e.g., tooling locating errors, part 
accumulative errors, re-orientation errors). Such a model is used to model variation 
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propagation through different multi-stage manufacturing processes, including 
machining and assembly (Loose et al., 2010; Yang et al., 2017; Xin Li et al., 2017). 

With reference to the second category that includes studies based on data-
driven models, the focus is moved to the investigation of patterns in the extensive 
historical quality database, without a comprehensive a priori knowledge of the 
production process. The purposes of these data-driven techniques are manifold. 
These include statistical inference of direct interactions among the different stages 
of the production process (Zeng and Zhou, 2007; Liu et al., 2019; Eger et al., 2018), 
as well as design optimization, focusing on quality improvement, reduction of 
inspection costs and optimal allocation of inspection resources (Rezaei-Malek, 
Mohammadi, et al., 2019; Vaghefi and Sarhangian, 2009; Rezaei-Malek, Siadat, et 
al., 2019).  

Among the most recent studies carried out in the design of quality inspection 
procedures, Van Volsem et al. (2007) proposed a modeling to the problem of 
determining the optimal inspection strategy for a given multi-stage production 
process as a joint optimization of inspection location, type and inspection limits. 
This results in identifying the inspection strategy leading to the lowest total 
inspection cost, while still assuring a required output quality. They assumed a 
constant production and inspection rate, perfect inspection, and perfect rework. 
They proposed a fusion between a discrete event simulation to model the multi-
stage process subject to inspection and to calculate the resulting inspection costs, 
and an Evolutionary Algorithm (EA) to optimize the inspection strategies (Van 
Volsem et al., 2007). Azadeh and Sangari (2010) developed a solution algorithm 
based on simulated annealing. 

The optimization of inspection plans for multi-stage manufacturing systems 
with possible misclassification errors was the core topic of the research conducted 
by Vaghefi and Sarhangian (2009). They proposed a new mathematical model that 
minimizes total inspection costs while still assuring a required output quality. The 
complexity of the model required a simulation algorithm to model the multi-stage 
manufacturing system subject to inspection and to estimate the corresponding 
inspection costs (Vaghefi and Sarhangian, 2009). Two years later, Korytkowski 
(2011) proposed an approach to identify the optimal location of inspection stations 
in a multiproduct multistage production system. A multiproduct setting where part 
types compete with each other for common production resources was considered, 
as well as factors such as throughput time variability and the corresponding queuing 
aspects were included in the model. The optimal allocation was determined by using 
a genetic algorithm with tournament selection, one–point crossover and uniform 
mutation. Since the codes used in the chromosome reflect inspection allocation 
policies, the genetic approach proved to be suitable for modeling the problem of 
inspection allocation (Korytkowski, 2011). 

In a later study, Azadeh et al. (2012) proposed a particle swarm optimization 
(PSO) algorithm to determine the optimal inspection policy in serial multi-stage 
processes. The policy consisted of three decision parameters to be optimized, i.e., 
the stages in which inspection occurs, tolerance of inspection, and size of sample to 
inspect. The performance measure of the algorithm was the total inspection cost. 
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They showed that PSO provided better results in comparison with other previous 
algorithms proposed in the scientific literature (Azadeh et al., 2012). A few years 
later, the same authors addressed the problem of finding optimal inspection policies 
in serial multistage production processes to minimize total inspection cost where 
the cost components are described by the use of fuzzy numbers. In fact, in practical 
applications, cost values are generally imprecise and not known exactly and, 
therefore, fuzzy sets, i.e. specific ranges of values, are suitable to describe them 
(Dubois and Prade, 1980; Klir and Yuan, 1996). The decision variables considered 
were the type of inspection in each stage, the acceptance limits, and the size of 
sample to inspect. They also considered the case in which the inspectors were not 
error-free. A solution algorithm was proposed based on particle swarm 
optimization, and a simulation was used to provide better insight into the optimal 
solution (Azadeh et al., 2015). 

A mixed-integer linear mathematical programming model for the integrated 
planning problem of the part quality inspection and preventive maintenance 
activities in serial multi-stage manufacturing system was developed by Rezaei-
Malek et al. (2018). The model concurrently determined the right time and place 
for performing the inspection activities while the objective is to minimize the total 
cost, including the production, maintenance, inspection, scrap, replacement, and the 
penalty of shipped defective items to customers. It was assumed that each 
production stage was deteriorating in time, and consequently, the probability that a 
conforming item acquired a defect in each stage increased. The results showed that 
the determination of inspection locations along a manufacturing line in different 
periods of time regarding the impact of preventive maintenance activities on 
defective production probability resulted in a more efficient manufacturing system 
(Rezaei-Malek et al., 2018).  

Rezaei-Malek et al. (2019) published an extensive survey on the existing 
researches on the optimization of the part quality inspection in multi-stage 
manufacturing systems. They examined the studies from the viewpoint of the 
considered production system characteristics, the applied modeling approaches, and 
solution methodologies. This survey remarked that almost all the authors have 
ignored manufacturing constraints and have not taken the uncertainty of the system 
into account. The survey remarked that although numerous works have already 
been done on the part quality inspection planning (PQIP), the development of multi-
objective optimization frameworks considering real production constraints under 
parameter uncertainty was still lacking. Besides, the creation of integrated models 
aiming to plan the inspection, maintenance and production activities simultaneously 
identified as an important potential future research direction (Rezaei-Malek, 
Mohammadi, et al., 2019). Accordingly, a multi-objective mathematical model 
involving real production constraints and uncertainty of production system to plan 
part quality inspection and preventive maintenance activities concurrently was 
proposed by the same authors (Rezaei-Malek, Siadat, et al., 2019).  



 

16 
 

2.4.2 Systems with multi-characteristic components 

A second common research line that can be identified within the papers 
regarding inspection procedures, especially those referring to offline inspections, 
deals with systems with multi-characteristic critical components (Genta et al., 
2020). Such multi-characteristic critical components exist in different systems and 
include, e.g., aircraft engines, space shuttles, gas ignition systems. Duffuaa and 
Khan (2005) proposed an inspection plan in which different inspectors examine 
different characteristics of each component. In detail, for each characteristic, the 
components can be classified as (i) meeting specifications, (ii) scrap or (iii) rework. 
All the accepted components and those that meet the specifications at the rework 
station go to the next inspector, who inspects the next characteristic. This chain of 
inspection continues until all the characteristics have been inspected once, 
completing one cycle of inspection. If needed, all accepted components go to the 
next cycle of inspection, and this process is repeated a total of n times before the 
components are finally accepted. Therefore, the accepted components will be those 
that are accepted in the n-th cycle, and the total scrapped components will be the 
sum of those scrapped in the first, second, ... , n-th cycle. Figure 2.3 depicts the 
inspection plan for the generic j-th cycle concerning a generic characteristic 
(Duffuaa and Khan, 2005). This inspection plan considers several types of 
classification errors made by the inspector. In the study, the performance measures 
for this plan were defined, and the statistical and economic impact of the several 
types of inspection errors on these measures were investigated. The impact of the 
errors was studied by conducting a sensitivity analysis on the errors utilizing 
computer software by implementing an algorithm that determines the optimal 
parameters of the model of the plan. The behavior of the performance measures 
upon variation in the levels of errors was also investigated. They assumed 
characteristic failures of the components to be statistically independent. The results 
indicated that these errors had a considerable effect on the performance measures 
of the inspection plan. 
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Figure 2.3 – Inspection plan for the generic j-th cycle in systems with multi-
characteristic critical components, j = 1, …, n (Duffuaa and Khan, 2005). 

Later, the two authors developed a novel inspection plan considering statistical 
dependence of characteristics’ failures of critical components (Duffuaa and Khan, 
2008). The advantage of the new model over the previous one was illustrated in the 
case of dependency. The model resulted in an average of 32.4% reduction in cost 
compared to the situation where the dependency case is solved, assuming statistical 
independence (Duffuaa and Khan, 2008). In a further study on the field, Elshafei et 
al. (2006) proposed a dynamic programming approach to the problem of 
determination of the inspection sequence of multi-characteristic critical 
components and the number of repeat inspections for each characteristic. Even in 
this model, an inspector can classify a product as non-defective, to be reworked, or 
to be scrapped, with respect to a certain characteristic. The model accounts as well 
for possible misclassification by the inspector. The dynamic programming 
algorithm searches for a solution that minimizes the total cost of inspection per 
accepted component. The total cost includes the cost of false rejection of good 
items, the cost due to false acceptance of an item which is either reworkable or to 
be scrapped, the cost of inspection, and the cost of rework (Elshafei et al., 2006). 
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2.4.3 Multi-objective optimization models 

Again, with regard to offline inspections, multi-objective optimization models 
for process targeting have been recently studied in the literature. In the past,  process 
targeting problems were usually modeled using a single objective optimization 
model. In the second decade of the 2000s, Duffuaa and El-Ga’aly (2013b) 
introduced multi-objective optimization in the process targeting research field. In 
the model, the quality characteristic under consideration Y is normally distributed 
with unknown mean and known standard deviation and has two market 
specification limits, namely SL1 and SL2. 100% inspection was used as the mean of 
product quality control. Products that satisfy the first specification limit SL1 are sold 
in a primary market at a regular price, while products failing the first specification 
limit SL1 and satisfying the second one SL2 are sold in a secondary market at a 
reduced price. On the other hand, the product is reworked if it does not satisfy both 
specification limits. Figure 2.4 shows a schematic flowchart of the production 
process. The developed multi-objective optimization model consisted of three 
objective functions, i.e., the maximization of (i) profit, (ii) income and (iii) product 
uniformity, using Taguchi quadratic function as a surrogate for product uniformity. 
They proposed an algorithm to obtain and rank the set of Pareto optimal points. 
Sensitivity analysis was conducted and showed that the results of the model are 
sensitive to changes in process variance. Besides, they showed that the optimal 
objectives of the profit function and product uniformity were more sensitive to 
changes in model parameters than the income function (Duffuaa and El-Ga’aly, 

2013b). The same authors expanded the research by considering the case in which 
the quality of the product is controlled using lot-by-lot acceptance sampling 
(Duffuaa and El-Ga’aly, 2013a). Moreover, they also assessed the impact of the 
inspection errors on the optimal parameters and objectives functions values of 
multi-objectives optimization model for process targeting in inspection sampling 
plan (Duffuaa and El-Ga’Aly, 2015), and further in 100 % inspection (Duffuaa and 
El Gaaly, 2017). 

 
Figure 2.4 - Schematic of a production process in a multi-objective optimization 

framework. Adapted from Duffuaa and El-Ga’aly (2013b). 
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2.4.4 Economic Order Quantity 

In the offline inspection framework, the inventory model of the Economic 
Order Quantity (EOQ) is often adopted (Harris, 1913). EOQ is defined as the order 
quantity that minimizes the total holding costs and ordering costs. According to 
Salameh and Jaber (2000), the assumptions necessary to justify the use of EOQ 
models are rarely met. Accordingly, they extended the traditional EOQ model to 
provide mathematical models that more closely conform to actual inventories and 
respond to the factors that contribute to inventory costs. In detail, received or 
produced items with imperfect quality were considered in the model. They assumed 
that 100% inspections were carried out with an error-free screening. The behavior 
of inventory level (i.e., actual lot size) with respect to time is illustrated in Figure 
2.5. It is considered a lot of initial size y being delivered to the buyer in a cycle time 
T. An inspector identifies the defective items over an inspection period of duration 
t. Therefore, according to Figure 2.5, py is the number of defective items withdrawn 
from the inventory. The model showed that the economic lot size quantity tends to 
increase as the average percentage of imperfect quality items increase. This result 
is in contrast with the finding of Rosenblatt and Lee (1986) of reducing the lot size 
quantity as the average percentage of imperfect quality items increase. The 
reasonable explanation found by Salameh and Jaber was that Rosenblat and Lee 
assumed that defective items are reworked instantaneously and kept in stock. This 
resulted in an increase in the holding cost per unit per unit time that, as a 
consequence, produces smaller lot sizes. On the contrary, in Salameh and Jaber’s 

model, items of imperfect quality are withdrawn from stock resulting in lower 
holding cost per unit per unit time and larger lot sizes. 

 
Figure 2.5 - Behavior of the inventory level over time. Adapted from Salameh and Jaber 

(2000). 

Ten years later, Khan et al. (2010) further extended this model by considering 
the presence of learning in the inspection. The model proposed considered 
situations of lost sales and backorders. Mathematical models were developed with 



 

20 
 

numerical examples provided and results discussed for the cases of (i) partial 
transfer of learning, (ii) total transfer of learning, and (iii) no transfer of learning. 
Later, they extended Salameh and Jaber’s model by proposing an optimal 

production/order quantity taking care of imperfect processes. Therefore, in addition 
to the items classified as defective by the inspection process, the items returned as 
defective from the market are also considered. Such an inspection process involves 
three costs: (i) cost of inspection, (ii) cost of type-I errors, and (iii) cost of type-II 
errors. 

Finally, variations of Salameh and Jaber’s model were applied to the supply 
chain context (Yao and Askin, 2019; M Khan et al., 2012; Mehmood Khan et al., 
2014). 

2.4.5 Low-volume productions and defect generation models 

In the literature, several techniques such as cost-benefit models (Savio, 2012), 
simulation (Neu et al., 2002, 2003; Münch et al., 2002), optimization models 
(Hanne and Nickel, 2005; Shiau, 2003) and mathematical programming models 
(Mohammadi et al., 2015) have been proposed to design inspection processes. 
However, although these techniques are highly applicable to mass production, they 
may not be suitable for low-volume productions. 

The effectiveness of possible inspection strategies is, indeed, strictly related to 
the production typology and volume (Genta et al., 2018; Franceschini et al., 2018). 
In the case of mass production, traditional statistical approaches, including, e.g., 
Statistical Process Control (SPC) techniques, are straightforwardly applied 
(Montgomery, 2012). SPC consists of methods for understanding, monitoring, and 
improving process performance over time, with the aim to make the process stable 
or predictable, by distinguishing common variation from special or sporadic 
variation (Montgomery, 2012; Aivaliotis et al., 2017; Mourtzis et al., 2018; 
Woodall, 2000). SPC techniques have been extensively used to monitor process 
performance and detect anomalous situations in multiple industrial contexts. 
However, traditional SPC approaches are usually not appropriate for single-unit or 
low-volume productions, and for situations where a wide variety of mixed products 
exist (Koons and Luner, 1991; Del Castillo et al., 1996; Does, 1997; Trovato et al., 
2010; Marques et al., 2015). The category of low-volume productions certainly 
includes low-volume assembly manufacturing processes, often characterized by a 
high level of customization and complexity. Therefore, owing to the limited 
historical data available and the difficulty in applying traditional techniques, the 
design of inspection procedures and quality control for such productions represents 
a challenging issue in the manufacturing field (Trovato et al., 2010; Celano et al., 
2011; Marques et al., 2015; Del Castillo et al., 1996; Pillet, 1996; Khoo and Quah, 
2002).  

In the past decades, different approaches inherent to quality control and specific 
for low-volume productions have been proposed in the literature, and each of these 
has its advantages, shortcoming, and is more suitable for certain production 
scenarios than for others (Koons and Luner, 1991; Del Castillo et al., 1996; Does, 
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1997; Trovato et al., 2010; Marques et al., 2015). In recent studies proposed by 
Genta et al. (2018) and Franceschini et al. (2018), innovative methodologies were 
developed within the framework of inspection procedures for low-volume 
productions by defining novel probabilistic models of the production process, with 
the related inspection procedures. In detail, in case of in-process inspections, Genta 
et al. (2018) decomposed a generic manufacturing process into a certain number of 
steps, i.e. specific operations providing an added value to the end product. The 
probabilistic model relied on the following simplifying assumptions: (i) a single 
type of defect for each step, and (ii) the absence of correlation between the 
parameters related to the different steps. Furthermore, two performance indicators 
for inspection procedures related to inspection effectiveness and affordability were 
developed (Franceschini et al., 2018). The first is the expected value of the total 
number of true defects not detected by the inspection procedure. In contrast, the 
second concerns the total cost of the inspection, including the costs of specific 
inspection activities, necessary repairs, unnecessary repairs and undetected defects. 
Next, defect generation models were included in the probabilistic model with the 
aim to estimate the probability of occurrence of defects in the different stages of the 
production process (Genta et al., 2018). According to the investigations carried out 
by Hinckley (1994), Shibata (2002) and Su et al. (2010) on assembly processes, the 
a priori knowledge of the elementary operations and the design parameters may 
enable to predict, without any supplementary experimental test, the number of 
defects which can be generated in each process step, and then the probabilities of 
occurrence of defects. These predictions are useful to the inspection designers to 
design effective and economically viable inspection procedures (Franceschini et al., 
2018). Figure 2.6 graphically represents the overall methodology proposed by 
Genta et al. (2018) and Franceschini et al. (2018) in the case of in-process 
inspections for low-volume assembly manufacturing processes.  

The research conducted by these authors is the starting point for the models and 
approaches that will be discussed in the following chapters of this Doctoral 
Dissertation. 

 

 
Figure 2.6 - Schematic of overall methodology for low-volume assembly manufacturing 

processes (Genta et al., 2018; Franceschini et al., 2018) 
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2.5 Prominent inspection models 

Several inspection models have been developed in the scientific literature, 
taking into account one or more features described in the introductory part of this 
chapter and shown in Figure 2.1. In this section, the models with a more complete 
structure are reviewed. The great descriptive capabilities and the multiple modeling 
features addressed, including errors, costs, and defect modeling makes them 
reference models in the inspection procedures field. According to Genta et al. 
(2020d), these models are scientifically robust, being experimentally and/or 
numerically validated in the corresponding papers, and widely accepted by the 
scientific community, as evidenced by the high citation rate. The prominent 
reference models for both in-process inspections and offline inspections are 
described below. 

2.5.1 In-process inspection models 

As regards in-process inspections, three main models can be identified in the 
recent scientific literature (Genta et al., 2020). The first model, identified as a 
reference model, was developed by Yu and Yu (2007). The other two models have 
already been mentioned in Section 2.4.1. and were proposed in two papers on multi-
stage production systems (Vaghefi and Sarhangian, 2009; Azadeh et al., 2015). The 
three models are briefly described below, following the chronological order of 
publication. 

The first reference was designed to determine the optimal mixed policy of 
inspection and burn-in (Yu and Yu, 2007). Inspection and burn-in are two 
techniques extensively used by vendors to screen out defective items in a 
production lot in order that an outgoing batch satisfies the purchaser's quality 
requirements (Yu and Yu, 2007). Due to two types of inspection errors and high 
cost of burn-in, making a trade-off between them is a challenging task for vendors. 
To address this issue, Yu and Yu (2007) adopted the average outgoing quality 
(AOQ) as a measure of inspection and burn-in success. Being AOQ defined as the 
ratio between the number of undetected defective items and the total number of 
accepted items, it must be lower or equal to a threshold value agreed between 
producer and vendor. More specifically, under the constraint that the outgoing batch 
meets an AOQ requirement, the following issues are determined to maximize the 
expected profit that the vendor makes in a certain period (Pv):  

• The total number of produced parts (Q); 
• The number of inspected parts (Qs); 
•  The number of parts put into burn-in (Qb); 
•  The optimal burn-in time if the burn-in test is needed (tb). 

Accordingly, the expected profit may be expressed as: 

𝑃𝑣 = 𝑃𝑣(𝑄, 𝑄𝑠, 𝑄𝑏 , 𝑡𝑏) (2.1) 
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In the study of Vaghefi and Sarhangian (2009), with the aim of optimizing 
inspection plans, a mathematical model that minimizes the total inspection cost 
(TIC) was developed:  

𝑇𝐼𝐶 =∑𝑎𝑖 ∙ [𝑛𝑖 + (1 − 𝑃𝑎𝑖) ∙ (𝑁𝑖 − 𝑛𝑖)]

𝑟

𝑖=1

 (2.2) 

where: 

• r is the number of inspection stages; 
• ai is inspection cost per item at stage i; 
• ni is the number of items to be inspected (sample size) at stage i; 
• Ni is the lot size at stage i; 
• Pai is the acceptance probability of a lot at stage i.  

The third reference model was proposed by Azadeh et al. (2015), who 
addressed the problem of finding the optimal inspection policy when the cost 
components are described by fuzzy numbers. The exact values of cost components 
are rarely achieved in practical situations as they can be vague and imprecise. Those 
values are well described by fuzzy sets, which include a specific range of values 
that allow the decision-maker to have some flexibility in defining parameters and 
to deal with the uncertainties related to real situations (Hu et al., 2011). In their 
study, the objective function was the expected value of the total inspection cost, 
defined as follows: 

𝑇𝐼𝐶 = 𝐼𝐶 + 𝑅𝐶 + 𝑃𝐶 =∑(𝐼𝐶𝑖 + 𝑅𝐶𝑖)

𝑛

𝑖=1

+ 𝑃𝐶 (2.3) 

where: 

• n is the number of production stages; 
• ICi is the fuzzy inspection cost at stage i; 
• RCi is the fuzzy rework cost at stage i; 
• IC is the fuzzy total inspection cost; 
• RC is the fuzzy total rework cost. 
• PC is the fuzzy total penalty cost due to delivering defective products to the 

customer. 

As highlighted in the survey of Genta et al. (2020), each in-process inspection 
model has its own strengths and weaknesses, which have been summarized in Table 
2.1. 
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Table 2.1. Strengths and weaknesses of main in-process inspection models proposed in 
the scientific literature (Genta et al., 2020). 

Model’s authors 

and publication 
year 

Equation 
Ref. Strengths Weaknesses 

Yu and Yu (2007) 2.1 

Definition of an optimal 
mixed inspection and 
burn-in policy (the latter 
is poorly considered). 

Disregard for the peculiarities 
of long-term contracts 
between producer and vendor, 
e.g., possible discounts. 

Vaghefi and 
Sarhangian (2009) 2.2 

Development of a 
comprehensive 
mathematical model to 
minimize total inspection 
costs in multi-stage 
production systems. 

Need for specific simulation 
optimization methods to solve 
the multi-stage inspection 
problems. 

Azadeh et al. (2015) 2.3 

Identification of an 
optimal inspection policy 
in a multi-stage 
production system when 
the quality characteristic 
of the final product 
depends on all previous 
production stages. 

Simplified idealistic 
framework, with unlimited 
inspection facilities, without 
cost constraints, etc. 

2.5.2 Offline inspection models 

With regard to offline inspections, four reference models developed in the 
recent literature are identified (Genta et al., 2020). In the same way as in-process 
inspections, offline inspection models are briefly described below, following the 
chronological order of publication. 

The first reference model is the one developed by Duffuaa and Khan (2005), 
already mentioned in Section 2.4.2. with reference to systems with multi-
characteristic critical components. The purpose of the model was the identification 
of the number of inspection cycles n that minimizes the expected total cost per 
accepted component tc. This is defined as the ratio between the expected total cost 
(TC) and the total number of accepted components (TA), as follows: 

 

𝑡𝑐 =
𝑇𝐶

𝑇𝐴
=
𝑇𝐶𝐹𝑅 + 𝑇𝐶𝐹𝐴 + 𝑇𝐶𝐼

𝑇𝐴
 (2.4) 

where: 

• TCFR is the total cost of false rejection; 
• TCFA is the total cost of false acceptance; 
• TCI is the total cost of the inspection. 

Each of these cost components can be expressed as follows: 

𝑇𝐶𝐹𝑅 =∑𝐶𝐹𝑅𝑗

𝑛

𝑗=1

 (2.5) 
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𝑇𝐶𝐹𝐴 = 𝐶𝐹𝐴𝑛 (2.6) 

𝑇𝐶𝐼 =∑(𝐶𝐼1,𝑗 + 𝐶𝐼2,𝑗)

𝑛

𝑗=1

 (2.7) 

where: 

• CFRj is the cost of false rejection in the j-th cycle; 
• CFAn is the cost of false acceptance for all the n cycles; 
• CI1,j is the cost of the inspection in the j-th cycle at regular inspection stages; 
• CI2,j is the cost of the inspection in the j-th cycle at inspection stages in 

rework stations.  

This model has been re-examined and developed by the authors themselves in 
subsequent studies (Elshafei et al., 2006; Duffuaa and Khan, 2008).  

The second reference model was proposed by Yu et al. (2009). The 
identification of a mixed policy between precise inspection and continuous 
sampling plan CSP-1 (Dodge, 1943) was proposed in this model. The optimal 
policy is the one that maximizes the unit net profit (NP), which can be expressed 
as: 

 

𝑁𝑃 =
𝑅 − 𝑇𝐶

𝑄
 (2.8) 

where: 

• R is the expected overall revenue; 
• TC is the expected total cost; 
• Q is the expected production quantity. 

These three variables are related to seven parameters:  

a) type-I error; 
b) type-II error; 
c) the selling price of an item; 
d) the unit repair cost; 
e) the unit return cost; 
f) the unit precise inspection cost; 
g) the process defective fraction. 

In the third reference model (Sarkar and Saren, 2016), a deteriorating 
production process, which randomly shifts to an out-of-control state from an in-
control state, is described. Sarkar and Saren (2016) proposed a product inspection 
policy with a warranty period aimed at obtaining reduced inspection costs. The 
model is formulated to minimize the expected total cost per item C(t,u), where t is 
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the production-run length, and u is the non-inspected fraction in the batch, which is 
defined as: 
𝐶(𝑡, 𝑢) = 𝐿𝐶 + 𝐻𝐶(𝑡) + 𝑆𝐶(𝑡) + 𝑃𝑐𝐼𝐶(𝑡) + 𝑅𝐶(𝑡) + 𝑃𝑑𝐼𝐶(𝑢)

+ 𝐷𝐶𝑊𝐶(𝑡, 𝑢) 
(2.9) 

where: 

• LC is the labor cost; 
• HC(t) is the holding cost; 
• SC(t) is the setup cost; 
• PcIC(t) is the process inspection cost; 
• RC(t) is the restoration cost; 
• PdIC(u) is the product inspection cost; 
• DCWC(t,u) is defective cost and warranty cost.  

The last reference model, defined by Ramzan and Kang (2016), aims at 
reducing inspection cost by determining the optimum number of quality inspectors 
with respect to their skill levels. The total inspection cost per quality inspector (tic) 
can be expressed as: 

𝑡𝑖𝑐 =
[𝐿 ∙ 𝐼𝑄𝑙 +𝑀 ∙ 𝐼𝑄𝑚 + 𝐻 ∙ 𝐼𝑄ℎ] ∙ 𝐼𝑟

𝐿 +𝑀 + 𝐻
 (2.10) 

where:  

• L, M and H are, respectively, the number of inspectors having low, medium 
and high skills;  

• IQl, IQm and IQh are, respectively, the inspected quantity by inspectors 
having low, medium and high skills; 

• Ir is the inspection rate. 

The results showed that the inspection cost might be reduced by optimizing the skill 
level of the quality inspector. 

Table 2.2 summarizes the strengths and weaknesses of the four reference offline 
inspection models. 
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Table 2.2. Strengths and weaknesses of main offline inspection models proposed in the 
scientific literature (Genta et al., 2020). 

Model’s authors 

and publication 
year 

Equation 
Ref. Strengths Weaknesses 

Duffuaa and 
Khan (2005) 2.4 

Assessment of statistical 
and economic impact of 
classification errors on the 
performance of a general 
inspection plan. 

The model is not robust 
when there is a lack of high 
confidence estimates of its 
parameters. 

Yu et al. (2009) 2.8 

Definition of a mixed 
policy between precise 
inspection and continuous 
sampling plan CSP-1 
which maximizes the net 
profit. 

Hypothesis of production 
control, i.e., non-
consideration of possible 
process deteriorations. 

Sarkar and 
Saren (2016) 2.9 

Definition of an economic 
production quantity model 
where the process 
deteriorated based on 
production of defective 
products. 

Hypothesis of negligible 
product inspection times. 

Ramzan and 
Kang (2016) 2.10 

Development of a multi-
objective optimization 
model aims at minimizing 
the inspection cost which 
considers human factors. 

Non-consideration of 
variability over time of 
inspectors’ skill level and 
inspection targets. 

 

2.6 Research areas covered by the literature 

The survey published by Genta et al. (2020) proposed an exhaustive 
classification of almost 70 recent papers concerning inspection procedures, basing 
on the two classification categories previously mentioned and illustrated in Figure 
2.1, i.e. “General characteristics” and “Modeling structure”. In addition, the 
classification included possible applications considered in the examined papers. 
Main highlights that emerged from the bibliographic analysis performed by the 
authors of the survey are described below.  

With regard to the general characteristics of inspection procedures, a broader 
bibliography on offline inspection procedures has emerged from the literature 
review. In addition, most of the documents examined only consider acceptance 
sampling as an inspection strategy, being generally more efficient and practical than 
100% inspection (Genta et al., 2020). 

Regarding the modeling structure of inspection procedures, it was found that 
most papers included in the research approach the inspection errors and costs, while 
about one-half of the papers considered the modeling of defects. Conversely, only 
about one-third of the examined papers involved the inspection time in the analysis. 
Although time may significantly affect the inspection performances, it is generally 
challenging to evaluate and standardize and, thus, few authors considered it as a 
model variable. 
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Besides, features seldom covered by the literature are the human skills of the 
inspectors and the low-volume productions. In many cases, the inspection process 
is controlled through human labor. However, only a few industrial sectors, e.g., the 
garment industry (Ramzan and Kang, 2016; C. W. Kang et al., 2018; Ramzan et al., 
2019) allow investigating in detail the effect of human factors on process 
improvement activities. Secondly, the close relationship between the performance 
of inspection procedures and the production volume is not adequately addressed in 
the literature. Only a limited number of documents have been published within the 
framework of inspection procedures for low-volume productions (Trovato et al., 
2010; Franceschini et al., 2018; Genta et al., 2018). 

Lastly, about half of the papers adopt a simulative approach in their 
methodology, because sometimes it is the most suitable solution due to the 
complexity of analytical models. 

As far as the possible applications of inspection procedures are concerned, only 
about half of the examined papers apply their approaches to real production 
processes. The main manufacturing sectors investigated are the semiconductor and 
automotive fields (see, e.g., the papers of Avinadav and Perlman (2013), Yu and 
Yu (2007), Rezaei-Malek et al. (2018)). The remaining documents examined are 
purely methodological without practical examples. 

Figure 2.7 illustrates by Venn diagrams the different areas covered by the recent 
papers examined in the survey of Genta et al. (2020) on inspection procedures. In 
particular, separately for in-process and offline inspections, the diagram classifies 
the papers into "Error", "Cost" and "Defect modeling", i.e., the more considered 
modeling features of inspection procedures (Genta et al., 2020). A color scale with 
six levels is used to visually represent the intensity of coverage of examined 
literature on inspection procedures. As highlighted by Figure 2.7, only a limited 
proportion of the examined papers consider at the same time "Error", "Cost" and 
"Defect modeling". This diagram clearly shows the research areas which are not 
adequately covered by the literature. In detail, about one-fourth of the papers for in-
process procedures and one third for offline procedures cover the three modeling 
features. In order to provide a complete overview of the current state of the art of 
the literature on inspection procedures, a summary coverage map showing the 
different research areas is reported in Table 2.3. It is evident from the table that 
“Human skill” and “Low-volume production” appear to be the less studied 
modeling features of inspection procedures. 

For the detailed classification of recent papers concerning inspection 
procedures, refer to the survey of Genta et al. (2020). 
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Figure 2.7 - Classification of recent papers on inspection procedures by Venn diagrams 
considering the features "Error", "Cost" and "Defect modeling" for (a) in-process 

inspections and (b) offline inspections. Adapted from Genta et al. (2020). 

  

(a) 

(b) 
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Table 2.3. Coverage map of recent literature on inspection procedures, with reference to 
the classification illustrated in Figure 2.1. Adapted from Genta et al. (2020). 

  General characteristics of inspection procedures 
  Type Strategy 

 

 
In-process Offline Sampling  100%  

inspection 

Mixed sampling 
and 100% 
inspection 

M
od

el
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st

ru
ct

ur
e 

of
 

in
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ec
tio

n 
pr

oc
ed

ur
es

 Error      
Cost      
Human skill      
Time      
Defect modeling      
Simulation      
Low-volume production      
 

 Color scale level Proportion of examined literature 
  Lower than 1/3 
  Between 1/3 and 2/3 
  Greater than 2/3 

 

2.7 Research perspectives 

The results provided in Figure 2.7 and Table 2.3 highlight the need for accurate 
defect modeling, as well as the need for greater attention to human skill of 
inspectors and low-volume productions. To fill some of these gaps encountered in 
the literature, this Doctoral Dissertation focuses in particular on the development of 
defect generation models specific for low volume production and on the design of 
effective and economically sustainable inspection strategies for this type of 
production. 

The research areas addressed in this Dissertation are particularly relevant in the 
current framework of Industry 4.0. In the modern manufacturing processes, 
increasingly innovative inspection strategies are needed to cope with the growing 
presence of cyber-physical systems (Schmitt and Voigtmann, 2018; Tao and Qi, 
2017). The application of modern information technologies in the so-called “smart 

manufacturing" leads to the development of new "smart inspection strategies" 
(Genta et al., 2020). The drastic evolution of technology and digitalization in 
manufacturing is also requiring more efficient manufacturing system design. 
Manufacturing systems simulation has proven to be a powerful tool for designing 
and evaluating a manufacturing system due to its low cost and risk, and quick 
analysis. Simulation comprises an indispensable set of Information Technology 
(IT) tools and methods for the successful implementation of digital manufacturing. 
It allows experimentation and validation of product, process, and system design and 
configuration (Mourtzis, 2020). In this context, technological developments are 
rapidly expanding the number of devices connected to the Internet of Things (IoT) 
(Ahmed et al., 2017). In most IoT applications, the focus is not only on monitoring 
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discrete events, but also on mining the information collected by IoT objects. Several 
flexible and cost-effective IoT solutions are based on the use of sensors in 
production to perform online inspections with real-time data. In order to collect 
product quality data, sensors are embedded into production equipment and real-
time data are used to determine which equipment requires service, repair or 
replacement (Genta et al., 2020). Thus, IoT is one of the biggest sources of big data, 
which are rendered useless without analytics power. IoT interacts with big data 
when voluminous amounts of data are needed to be processed, transformed, and 
analyzed in high frequency. In this context, big data analytics support the overall 
quality monitoring, early warning of quality defects, and rapid identification of root 
causes (Ahmed et al., 2017).  

According to these considerations, the aforementioned “smart inspection 

strategies” will be of fundamental importance in the framework of the Industry 4.0 

future. In particular, two different scenarios could be envisaged (Genta et al., 2020). 
In the first scenario, a continuous quality monitoring is assumed, obtained with 
100% inspections integrated into the production process and carried out 
automatically, without requiring massive human intervention. On the other hand, 
the second scenario involves acceptance sampling, required only in case of 
technological constraints, as it lacks the efficiency and reduced cost advantages 
typical of a 100% inspection performed with IoT sensors. Although data-driven 
models used in modern production processes to monitor and control products are 
more accurate and reliable, they are becoming increasingly complex. In fact, the 
complexity of production processes requires the control of an increasing number of 
process parameters and disturbance variables (Schmitt and Voigtmann, 2018). The 
acquisition and reporting of these parameters during the process is a major 
challenge that both researchers and practitioners are facing.  
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Chapter 3 : 
Defect 
modeling 

In low-volume productions, the lack of historical data available and, often, the 
non-applicability of traditional statistical techniques, makes it difficult to predict 
the defects that might occur in the finished or the semi-finished products (Koons 
and Luner, 1991; Montgomery, 2012). However, these defects represent a huge 
issue even for low-volume productions owing to the dramatic impact they can 
cause, both in terms of quality and costs. Accordingly, the development and 
identification of appropriate models of defects predictions have long been a 
question of great interest. In the literature, extensive research has been carried out 
on the prediction of product defects (Antani, 2014; Su et al., 2010; Shibata, 2002; 
Psarommatis et al., 2020). Currently, a growing body of literature is focusing on the 
use of machine learning (ML) approaches for predicting defects and, in general, 
improving product quality. However, these methods have been mostly restricted to 
mass productions, involving millions of parts and operations. To date, only a limited 
number of studies is directed to the investigation of defects occurring in low-
volume manufacturing processes. In order to fill this research void, two novel 
paradigms of defect generation models are developed and discussed in this chapter. 
The former is specifically designed for those processes decomposable in steps and 
inspected by in-process inspections, such as the assembly, whilst the latter for 
finished product that may be inspected using offline inspections. Both models are 
conceived to predict defects using the ‘a priori knowledge’ of the product and 

process, without any supplementary experimental test. These predictions are useful 
to the designers for designing effective and affordable inspection procedures, as 
will be discussed in the following Chapters 4 and 5. In detail, Chapter 3 has been 
organized as follows: 

• Section 3.1 reviews the main defects generation models and the related 
modeling in the manufacturing field. 
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• Section 3.2 proposes an overview of the current studies related to the 
application of machine learning in manufacturing, especially for 
product quality control and improvement. 

• Section 3.3 addressed the defect prediction models suitable for in-
process inspections. After examining the literature on this subject, a 
novel model is developed and compare with one of the most accredited 
in the electromechanical field.  

• Section 3.4 covers the modeling of defects in those processes inspected 
by offline inspection by proposing a new methodology for estimating 
the probability of occurrence of defects in the finished product.  

3.1 Defects generation in manufacturing and related 
modeling 

Much research has been conducted in recent years focusing on the problem of 
defect generation in manufacturing because of the relevance of the topic from an 
engineering and economic point of view. The sources of these defects may be 
extremely different, according to the product typology and the production context. 
Many studies have focused on the identification of the factors that may cause 
defects, considering, e.g., Ishikawa diagrams, in which the sources of defects can 
be classified into several categories: machines, methods, materials, people, 
measurements and environment (Ishikawa, 1976). The use of these cause-and-effect 
diagrams may help to improve the product design and prevent the occurrence of 
defects.  

Different typologies of defects in production processes can be recognized. 
Kaempf (1995) proposed a classification of defects in semiconductor 
manufacturing. In detail, he subdivided defects into three environments:  

• Type-A: random defects, evenly distributed with a stable mean density. The 
yield of the process has a binomial distribution: In particular, a Poisson 
model can be considered. 

• Type-B: systematic and repeatable defects. 
• Type-C defects: combined systematic and random defects. 

Figure 3.1 shows a small set of six 44-dice wafers manufactured in Type-A and 
Type-B environment. 
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Figure 3.1 – (a) Type-A defects with random, even distribution and good binomial fit.  
(b) Type-B defects with systematic, reticle induction: distinct narrowing of yield distribution 

(Kaempf, 1995). 

 
The yield of the process is the percentage of elements (dice) of the wafer without 
any defects. This can be described through a Poisson model for the Type-A defects, 
as follows: 

𝑌 = exp(−𝐴 · 𝐷) (3.1) 

where D is the defect density per cm2, and A is the critical area sensitive to the 
considered defects, modeled in the paper of Ferris-Prabhu (1985).  

Again in semiconductor manufacturing, Nigh and Gattiker (2004) and Shankar 
and Zhong (2005) proposed to segment the product and mapped the related defects 
by means of Direct Drain Quiescent Current (IDDQ) signature analysis and a 
template-based vision system, respectively. 

A further case study of defects and their modeling in production processes was 
carried out by Baker et al. (1954) in the textile yarn manufacturing. By analyzing 
the results of a specially planned set of observations, the authors showed that a 
partially subjective test of yarn quality provided reliable results. In detail, with 
visual analysis, two different quality measures can be derived:  

• D: the average number of defects per unit length; 
• p: the proportion of defect-free unit lengths present. This corresponds to the 

yield of the process. If the yarn is assumed to be homogeneous, p follows a 
binomial distribution (Andersons et al., 2009).  

They proposed an index of yarn quality through the definition of the variable Φ, 
which can be approximated by a normal distribution: 

𝛷 =
2

𝜋
∙ sin−1(√𝑝) (3.2) 

When defect types exhibit clustering or very high variability, Pareto analysis 
can give very misleading results. Engineers and managers making decisions based 

(b) (a) 
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on Pareto charts or part per million defect rates risk concentrating manpower and 
funds on off-line quality control projects which may not significantly improve 
yield. Albin and Friedman (1992) proposed two measurements in the assembly of 
electronic components, yield loss and conditional yield loss, with the aim to reveal 
the defect types having the greatest impact on yield. They compared these ranking 
measures under the assumptions of different defect distributions: (i) Poisson 
distribution; (ii) Neyman distribution; (iii) negative binomial distribution (see also 
Koren et al. (1994)); (iv) combination of Poisson and negative binomial distribution 
(see also Koren et al. (1994)). These measurements produced conclusions identical 
to the Pareto chart in ranking defect types if defects are Poisson distributed. 
However, if clustering or high variability of some types of defect is present, the 
proposed measurements show the type of defect that causes the greatest loss of 
performance. 

The importance of the identification of defects has already been assessed in 
other research, mainly in the field of assembly manufacturing processes. Assembly, 
which is one of the activities constituting the manufacturing of complex products, 
together with the acquisition of raw materials, processing, functional testing, etc., 
is crucial for the cost and quality performance (Vandebroek et al., 2016; Xiaoqing 
et al., 2010). Recently, a growing body of literature has recognized the importance 
of the role of quality control in the assembly production context, since the product 
life cycle requires a faster response and a lower defect rate. As a result, assembly 
quality control is considered to be one of the most crucial issues in modern 
manufacturing environments (Zhong et al., 2010; Ferrer, 2007). Assembly defects 
have been classified into four categories: improper design, defective part, variance 
in the assembly system (induced by the changes in the plan/schedule/arrangement 
of a machine, fixture, tooling, etc.), and operator mistakes (Su et al., 2010). In recent 
years, much research has focused on the first three categories, and some useful 
assembly quality control technologies and management approaches have been 
developed (Zhang and Luk, 2007; Gearbox et al., 2015; Zheng, 2000; Ping et al., 
2008; He and Kusiak, 1997; Evans et al., 1997; Vandevelde et al., 2018; Qin et al., 
2015; Chiang and Su, 2003). As far as the fourth category is concerned, there is a 
large volume of published studies that have described the significant impact of 
human errors on the performance of assembly systems, which is sometimes higher 
than that of technological errors (D. Shin et al., 2006; C. W. Kang et al., 2018; Le 
et al., 2012; Báez et al., 2014; Saptari et al., 2015; Su et al., 2010; Shibata, 2002; 
Kolus et al., 2018; Krugh et al., 2016b; Genta et al., 2018; Xiaoqing et al., 2010; 
Falck et al., 2017b; Caputo et al., 2017). Research in the field of semiconductor 
products has shown that 25% of the total assembly errors are induced by human 
mistakes (Shibata, 2002). Another study has demonstrated that operator errors 
account for 20% of the total defects in copier assembly (Su et al., 2010). These high 
percentages suggest that more attention should be paid to operator-induced 
assembly defects, and that reducing the number of operator mistakes is a central 
problem for assembly manufacturing processes. For instance, Caputo et al. (2017) 
developed a quantitative model to assess the probability of errors and the correction 
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costs of errors in part feeding systems for assembly lines, in order to compare 
alternative part feeding policies and identify corrective measures.  

In the assembly field, a research line has focused on the close relationship 
between assembly complexity and human mistakes (Hinckley, 1994; Shibata, 2002; 
Su et al., 2010; Antani, 2014; Krugh et al., 2016a; Falck et al., 2017b; Galetto, 
Verna, and Genta, 2020; Le et al., 2012; Verna et al., 2020c). According to Alkan 
(2019), Krugh et al. (2016a) and Falck et al. (2017a), if assembly complexity is not 
managed adequately at the early stages of process planning, it can lead to increased 
assembly time and errors and reduce assembly quality. Therefore, understanding 
and assessing complexity and its root causes are core for increasing the efficiency 
of manual assembly operations (Falck et al., 2016). Accredited models developed 
in the literature include those in the electromechanical field. Shibata (2002) 
proposed a power-law defect-rate prediction model based on two factors, i.e., 
process and design based complexity factors. Su et al. (2010) developed a new 
defect model to match the characteristics of copier assembly. Besides, Antani 
(2014) successfully tested that manufacturing complexity can be used to predict 
product quality reliably. By focusing on mixed-model automotive assembly, 
manufacturing complexity was estimated to incorporate variables driven by design, 
process and human factors (Antani, 2014). In later studies, Krugh et al. (2016b, 
2016a) adapted the approach proposed by Antani to be implemented with 
automotive electromechanical connections in a large complex system. Falck et al. 
(Falck et al., 2017b) designed a tool to predict and control operator-induced quality 
errors by developing a method for predictive assessment of the complexity of 
manual assembly.  

3.2 Machine learning for product quality control and 
improvement 

In manufacturing, the concepts of Industry 4.0, Manufacturing 2.0, Smart 
Factory and Internet of Things (IoT) are increasingly recognized as enabling factors 
for a more flexible, customized, traceable, quality-oriented production (Riel et al., 
2017). At the same time, with the rapid development of IoT, cloud computing, and 
Artificial Intelligence (AI) technologies, more and more real-time data is collected 
in situ from production processes, allowing to improve its quality and efficiency. In 
such a framework, multi-source data, e.g. inspection measurements, optical images, 
text and other structured/unstructured sources of process and product data, are 
becoming indispensable resources for quality improvement (Liu et al., 2019).  

These growing data sets coming from the ongoing process of digitalization in 
industry can be used by AI and especially Machine Learning (ML) applications to 
acquire knowledge from historical events. In particular, ML techniques have proven 
to be very effective in the domain of manufacturing in analyzing complex systems 
and solving problems (Z. Kang et al., 2020). As described in the recent review by 
Fahle et al. (2020), in the last 5 years ML techniques shifted from research-only 
solutions to applications in the industrial environment. The main problems 
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addressed by ML techniques belong to different manufacturing fields, including 
manufacturing process planning, quality control, predictive maintenance, logistics, 
robotics, assistance and learning systems, ML-training concepts in learning 
factories and process control and optimization (Fahle et al., 2020). 

3.2.1 An overview of machine learning approaches 

ML allows computer programs and applications to perform complex tasks, 
including prediction, diagnosis, recognition and planning, by learning from 
historical data. Both data and algorithms strictly affect the performance of machine 
learning models (Z. Kang et al., 2020). Regarding data, the accuracy of machine 
learning models can be improved by the high quality and large sizes of data. 
Besides, as far as the algorithms are concerned, it is essential to apply the correct 
algorithms to solve different problems, including different types of data sets.  

ML can be divided into four types: (i) supervised learning, (ii) unsupervised 
learning, (iii) semi-supervised learning and (iv) reinforcement learning. Besides, 
ML techniques are applied in numerous areas to solve different kinds of tasks. 
These include (a) regression, (b) classification, (c) clustering, (d) data reduction, 
and (e) anomaly detection (Z. Kang et al., 2020). 

The four ML types are summarized below.  

(i) Supervised Learning (SL). 
In SL, computer programs derive an inferred function between inputs and 
outputs from labeled training data consisting of a set of training examples, 
that are provided by humans. In SL, each example is a pair consisting of an 
input object, typically a vector, and a desired output value. An optimal 
scenario will allow for the algorithm to correctly determine the class labels 
for unseen instances (Russell and Norvig, 2002; Mohri et al., 2012). Thus, 
SL requires heavy human intervention, especially in the labeling of the 
output for the training set, as well as in the selection of input variables (also 
called features), algorithms, and control parameters of algorithms based on 
their assumptions. Generally, SL is used for those problems in which 
humans have specific knowledge and expertise. A drawback may be that SL 
requires massive data processing for feature selection and expects parameter 
optimization for a better configuration of the algorithm (Z. Kang et al., 
2020). 

(ii) Unsupervised Learning (UL). 
Differently from SL, UL looks for previously undetected patterns in a data 
set with no pre-existing labels and with a minimum of human supervision. 
Typically, UL is adopted when the relationships between input variables are 
unknown. Besides, the output of UL algorithms is not a value of the output 
like in the case of SL. On the contrary, UL allows for modeling of 
probability densities over input variables and mostly presents different 
clusters obtained on the base of the input data (Hinton et al., 1999). 

(iii) Semi-Supervised Learning (SSL). 
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SSL is an approach that combines a small amount of labeled data with a 
large amount of unlabeled data during training. Unlabeled data, when used 
in conjunction with a small amount of labeled data, can produce a 
considerable improvement in learning accuracy with respect to UL 
approaches. Besides, the acquisition of less labeled data for learning 
problem allows to dramatically reduce the cost of the labeling process 
compared to SL approaches (Zhu, 2005; Zhu and Goldberg, 2009). 

(iv)  Reinforcement Learning (RL). 
In RL, software agents observe the environment, perform some actions, and 
get some rewards (negative/positive) based on the selected action, and then 
the model is updated accordingly. RL uses a feedback mechanism to reward 
positive action and punish the negative action. Reinforcement learning 
differs from SL in not needing labelled data, and in not needing sub-optimal 
actions to be explicitly corrected. Instead, the focus is on finding a balance 
between exploration of uncharted territory and exploitation of current 
knowledge (Kaelbling et al., 1996). This approach is used, for instance, in 
self-driving cars and online games such as backgammon (Sutton and Barto, 
2018). 

Machine learning approaches are applied in several areas to solve different 
tasks. Five common tasks are explained as follows (Z. Kang et al., 2020): 

(a) Regression. 
Regression is used to estimate a relationship between independent and 
dependent variables. Output variables are continuous numerical variables 
(both integers and floating-point numbers). Machine learning algorithms are 
used to optimize the coefficients of each independent variable to achieve a 
minimum error in the prediction.  

(b) Classification. 
Classification maps input features to one of the discrete output variables. 
The output variable represents a class for the underlying problem. For 
binary classification, the output variable can only be one or zero. For multi-
class classification, the output variable can consist of several classes. 

(c) Clustering. 
Clustering is the task of dividing a set of data points into relevant groups (or 
clusters). This grouping is based on the similarity pattern between data 
points. 

(d) Data Reduction. 
Data reduction or dimensionality reduction is the transformation of data 
from a high-dimensional space into a low-dimensional space. Both the 
number of input variables (features) or the rows (i.e., data points) can be 
removed, due to the noisy data instances or repetitive data points. To create 
faster models, some of the features that are highly correlated or not very 
relevant may be removed from the data set. Generally, data reduction is 
combined with other tasks, especially regression and classification. 
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(e) Anomaly Detection. 
Anomaly detection is the identification of rare items, events or observations 
that significantly differ from the majority of the data. Anomaly detection 
task is primarily handled with unsupervised learning methods. Similar to the 
clustering, anomaly detection algorithms group the samples, and the 
anomalies (or outliers) are identified in the dataset by anomaly detection 
algorithms. 

An overview of the types of machine learning and the tasks that can be 
addressed with machine learning algorithms is depicted in Figure 3.2.  

 

 
 

Figure 3.2 - Schematic of machine learning types and tasks (adapted from Kang et al. 
(2020)). 

 

3.2.2 Main topics addressed  

ML approaches are widely used in the manufacturing industry for addressing 
several issues, including product quality and/or process improvement. Generally, 
the object of the improvement can be product- or process-specific quantities. 
Product-specific quantities can be, for instance, surface roughness or shrinkage, 
while waste reduction or yield improvement of a production line can be examples 
of the process characteristics (Weichert et al., 2019; Z. Kang et al., 2020). Typical 
industrial applications for quality improvement based on ML can be found in 
production such as plastic injection molding and semiconductor manufacturing 
(Khakifirooz et al., 2018; Chien et al., 2017; Kashyap and Datta, 2015), due to high 
amount of data points and the short cycle times. 

Several reviews and surveys on data mining and ML applications focusing on 
the issue of quality in the manufacturing have been published in the literature, see 
e.g., Weichert et al. (2019), Cadavid et al. (2020), Dalzochio et al. (2020), Fahle et 
al. (2020), Kang et al. (2020).  
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In this section, a general overview of the main topics addressed by ML in the 
area of product/process quality improvement is provided. Figure 3.3 summarizes 
the adopted taxonomy. In detail, three are the major topic addressed:  

• Root cause analysis; 
• Quality prediction: virtual metrology and early prediction; 
• Systems diagnostics.  

3.2.2.1 Root cause analysis 

Root cause analysis is the analysis of existing data records to extract relevant 
features and feature combinations for high or low product quality. It may be 
performed by means of feature selection at preliminary stages of learning a model 
or as specific root cause analysis (Weichert et al., 2019). Supervised learning is the 
dominant ML type adopted for root cause analysis and regression/classification and 
clustering are the main tasks. Different algorithms have been used in the literature, 
including Principal Component Analysis (PCA), Decision Trees (DT), Random 
Forests (RF), feature selection, Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), and Multivariate Adaptive Regression Splines (MARS).  

3.2.2.2 Quality prediction: virtual metrology and early prediction 

Differently from physical detection of defects, virtual detection, also called 
virtual metrology or quality prediction in the literature, refers to a set of algorithms 
that are fed with sensor and production data from the manufacturing of the product 
and are analyzed in order to find a defect without measuring the actual part. Those 
techniques for predicting product output are useful in cases where the physical 
measurements are not possible or too expensive, as in the semiconductor 
manufacturing (Psarommatis et al., 2020; S. Kang and Kang, 2017). 

Furthermore, some authors moved further, trying to make a reliable prediction 
of the final quality at early stages of the process and to identify relations between 
process steps. Hence, correcting actions before finishing the whole production 
process may be undertaken. These may include ejecting products from the 
production line before critical steps, i.e., expensive in terms of time or price, or 
performing additional corrective manufacturing actions. In the literature, different 
approaches were adopted for quality prediction, including ANN, self-organizing 
maps (SOM), that are a type of ANN, k-Nearest-Neighbor (kNN), decision trees, 
gradient boosting and bagging (Weiss et al., 2016; H. Chen and Boning, 2017; 
Lieber et al., 2013).  

3.2.2.3 System diagnostic 

Diagnostic systems within the production line may monitor both the product 
itself (part diagnosis) and/or the machines (equipment diagnosis). Both approaches 
signal a part/machine condition that is abnormal or becoming abnormal, requiring 
corrective action to be taken. 

Regarding part diagnosis, several studies focus on automatic visual inspections 
and diagnosis of part assemblies. Methods for visual inspection often use images 
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data sources for identifying possible defects. They include PCA, learning based 
approaches like SVM, Hidden Markov Models (HMM), convolutional neural 
networks (CNN) for regression classification (S. H. Chen and Perng, 2011; 
Valavanis and Kosmopoulos, 2010; Weimer et al., 2016). Regarding diagnosis of 
assembled parts, recently authors try to cover not only one specific processing stage 
but multi-stage processes as well (Z. Kang et al., 2020). To this aim, different 
methods that use data sources different from images are generally adopted, e.g., 
SVM or piecewise least squares approach for use in a state-space model (Ceglarek 
and Prakash, 2012; Luo et al., 2014). 

Diagnosis of production plants or machines can be realized by anomaly 
detection methods, which are mostly used for failure detection (H. J. Shin et al., 
2005). Closely related to anomaly detection methods is the field of maintenance 
methods which aim to prevent machine failures due to deterioration of the machine. 
A distinction is made between time-based and condition-based maintenance, called 
preventive and predictive maintenance (Dalzochio et al., 2020; Mobley, 2002; 
Ahmad and Kamaruddin, 2012). Preventive maintenance tries to extract the mean 
useful life of a machine and/or its parts to schedule maintenance activities before 
breakdown. On the other hand, predictive maintenance tries to extend the 
maintenance intervals by monitoring the condition of the machine, avoiding costs 
for time-based and unnecessary scheduled maintenance activities. In this field, 
several ML approaches are used, e.g., ANN, kNN, and SVM (Dalzochio et al., 
2020).  

 

 
Figure 3.3 - Taxonomy of the main topics addressed by ML in the area of 

product/process quality improvement. 
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The majority of methods used in the manufacturing quality control and 
improvement fields are supervised methods, as also reported in previous surveys 
(Z. Kang et al., 2020; Weichert et al., 2019; Fahle et al., 2020). However, some 
studies used both supervised and unsupervised learning methods. Referring to the 
ML classification provided in Figure 3.2, the main tasks addressed is regression, 
followed by classification and data reduction (i.e., dimension reduction) algorithms 
for data processing. For instance, Principal Component Analysis (PCA) is widely 
used to reduce the number of parameters for regression and classification problems 
(Z. Kang et al., 2020). 

The most widely used ML algorithms in this area are the artificial neural 
network algorithms (ANN), Decision Trees (DT), Support Vector Machines 
(SVM), and Random Forests (RF). Other algorithms applied for manufacturing 
quality improvement are kNN (K-nearest neighbours), GBDT (gradient boosted 
decision tree) and CNN (convolutional neural network) (Z. Kang et al., 2020; 
Weichert et al., 2019; Fahle et al., 2020). Further descriptions of the mentioned 
models and algorithms are not in the scope of this Dissertation and can therefore be 
found in current literature, for example Goodfellow et al. (2016) or Russell and 
Norvig (2002). 

3.2.3 Machine learning for low volume productions 

Several interesting insights can be derived from this general overview of ML 
techniques applied in the field of manufacturing quality control and improvement. 
First of all, the results of the study indicate that ML techniques have been widely 
used to solve several manufacturing quality-related problems, including root cause 
analysis, quality prediction and system diagnostic. These are the three major 
research directions in recent years, and ML approaches have been proved to be 
effective in such areas. However, some problems are still not fully addressed. First 
of all, the lack of relevant data or difficulties in getting access to the machine’s 

control systems that may compromise the performance of ML methods. For this 
reason, ML is mostly applied in highly complex processes, where a huge amount 
of data is generated from the production, especially in the domain of metal 
production and semiconductor industry. Such a problem might be overcome, at least 
partially, with time passing to gain expertise, fill storages, and break down obstacles 
by hardware and software.  

The lack of relevant data is one of the main obstacles to the adoption of ML 
approaches in manufacturing contexts such as low-volume production systems. In 
a low-volume production framework, the cycle time is relatively long as a result of 
high flexibility and diversity of products. Moreover, typically, many human 
interventions and limited automation exist during the production process. As a 
consequence, the scarcity of process data makes the adoption of ML methods 
extremely difficult.  

Although the numerous advantages of adopting ML methods in high-volume 
manufacturing are recognized, in this Dissertation, since low-volume productions 
are investigated in detail, specific models based on statistical methods will be 
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developed in the next Sections 3.3 and 3.4. Future research will be addressed to 
investigate the implementation of appropriate ML methods also in low volume 
systems. 

3.3 Defect prediction models for in-process inspections1 

As mentioned in Section 3.1, a growing number of studies adopted the assembly 
complexity to predict the occurrence of defects in the final product (Hinckley, 1994; 
Shibata, 2002; Su et al., 2010; Antani, 2014; Krugh et al., 2016a; Falck et al., 2017b; 
Galetto, Verna, and Genta, 2020; Le et al., 2012; Verna et al., 2020c). Although 
these predictions models play a crucial role in improving the quality of product and 
production process of companies in various industrial contexts, most of them are 
highly dependent on the method used to evaluate assembly complexity, which is 
designed for the specific industrial application and/or is obtained from subjective 
evaluations of operators (see Section 3.3.1). To overcome this, Section 3.3.4 aims 
to investigate the relationship between product defects and assembly complexity by 
proposing a novel prediction model in the electromechanical manufacturing field. 
Defect rates in the model are predicted by using the recent conceptual paradigm of 
complexity proposed by Alkan (2019) and Sinha (2014) (see Section 3.3.3) that 
considers only structural properties associated with handling and insertion of 
assembly parts and their architectural structure. This novel approach is compared 
with one of the most accredited in the literature, i.e., the Shibata-Su model, 
described in Section 3.3.2. Although the assembly of wrapping machines is used as 
a case study for developing and testing the novel prediction model, the overall 
methodology proposed can be used in other similar industrial contexts to predict 
defects in low-volume productions. Adopting this novel approach can effectively 
help designers to quantitatively estimate defects of newly developed products and 
support decisions for assembly quality-oriented design and optimization, especially 
in early design phases.  

3.3.1 Assembly complexity paradigms in the literature 

The scientific literature proposes different approaches to assess assembly 
complexity, based on the product to be assembled or the process sequence for the 
assembly (Alkan et al., 2017). Several methods are built upon the concept of easy 
of assembly, e.g., Design for Assembly and Manufacture (DFMA) (Boothroyd and 
Alting, 1992; Miyakawa, 1986). Such approaches aim at enhancing the product 

 
1 Part of the research addressed in this section is also present in the following papers:  

• Verna E., Genta G., Galetto M., and Franceschini F. (2020a). “Product assembly and 

defect prediction: a novel model based on the structural complexity paradigm” 

Submitted to Journal of Intelligent Manufacturing.  
• Verna E., Genta G., Galetto M., and Franceschini F. (2020b). “Defect prediction 

model for wrapping machines assembly” Submitted to 4th International Conference on 
Quality Engineering and Management ICQEM 2020.  
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design by reducing part numbers, optimizing part handling and insertion attributes, 
penalizing inefficient design (Alkan et al., 2017). 

Moreover, a growing body of literature provides an assessment of assembly 
complexity by using different design complexity criteria and time estimation 
methodologies (Su et al., 2010; Shibata, 2002; Hinckley, 1994; Alkan et al., 2017). 
Hinckley (1994) defined an assembly complexity factor based on the Westinghouse 
DFA worksheet suggesting a theoretical time required to assemble a product. 
Shibata (2002) proposed to evaluate process complexity based on the method of 
Sony Standard Time (SST) and design complexity through the design for 
assembly/disassembly Cost-effectiveness (DAC) method. Although these 
approaches provide a robust assessment of assembly complexity, the methodologies 
used are designed for specific assembly products. For instance, Hinckley (1994) 
based his study on the Westinghouse Database, specifically designed for 
semiconductor products. Moreover, the DAC method used by Shibata as a measure 
of design assemblability is a Sony’s methodology specific for audio equipment.  

Therefore, in order to extend the methodologies proposed by these authors to other 
contexts, it is necessary to adapt them to the specific case study, either by slightly 
modifying them or by identifying more suitable approaches. 

Further approaches consider physical and cognitive elements to calculate the 
relative effort of each manufacturing task to define an "operational complexity 
index" (ElMaraghy and Urbanic, 2004). Such an index is designed as a function of 
the quantity and diversity of both product and process elements and the relative 
complexity coefficient. In a later study, Samy and ElMaraghy (2010) extended the 
approach mentioned above by adding DFA criteria to evaluate the assembly 
complexity of individual product parts. Besides, Richardson et al. (2006) proposed 
a practical model to predict the difficulty of assembly of an object based on its 
physical attributes. However, this approach is dependent on the specific application 
it is developed for, and, therefore, requires further efforts to produce a more general 
model. 

Extensive research has shown that complexity may have a subjective nature 
and depend on the specific context and operator who perceives it (Lee, 2003). 
Accordingly, survey-based methods are often adopted to assess the perceived level 
of complexity arising from human–system interactions and manufacturing systems 
(Falck et al., 2017b, 2012; Mattsson, 2013). 

Recent studies tried to overcome the above restrictions (specific industrial 
domain and applications, subjective elements, etc.) proposing a method based on 
structural complexity that allows supporting early design phases of assembly 
products (Sinha et al., 2012; Sinha, 2014; Alkan et al., 2017; Alkan, 2019). 

3.3.2 Process- and design-based complexity model (Shibata-Su 
model) 

One of the most accredited models developed in the literature is the Shibata-Su 
model that combines the approaches proposed by Shibata (2002) and Su et al. 
(2010). This model has also been successfully implemented in recent studies by the 
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authors (Genta et al., 2018; Verna et al., 2020c; Galetto, Verna, and Genta, 2020; 
Galetto, Verna, Genta, et al., 2020).  

According to Shibata (2002), the product assembly process can be decomposed 
into a series of process steps, or workstations, defined through sheets of operation 
standards. In each workstation, a certain number of job elements, i.e., elementary 
operations, is performed (Aft, 2000; Shibata, 2002). The job elements are the 
minimum components of a specific task. These should have easily identifiable 
starting and stopping points and be repeatable on a regular basis throughout the 
workday. To predict the process complexity, Shibata defined a process-based 
complexity factor for each workstation, as follows: 

𝐶𝑓𝑃,𝑖 =∑𝑆𝑆𝑇𝑖𝑗

𝑁𝑎,𝑖

𝑗=1

− 𝑡0 ⋅ 𝑁𝑎,𝑖 = 𝑇𝐴𝑇𝑖 − 𝑡0 ⋅ 𝑁𝑎,𝑖 (3.3) 

where the index i refers to the generic i-th workstation (i=1,…,m); Na,i is the 
number of job elements in the workstation i; SSTij is the Sony Standard Time spent 
on the job element j in the workstation i; TATi is the total assembly time related to 
the workstation i; t0 is the threshold assembly time, i.e., the time required to perform 
the simplest assembly operation, below which neither assembly operations nor 
assembly defects should exist (Shibata, 2002). It should be remarked that in 
Shibata's study, the assembly times SSTij are derived from Sony Standard Time 
(SST), a commonly used time estimation tool for electronic products. Accordingly, 
they are the standard times in which the operators should complete each job element 
and not the actual assembly times.  

As evidenced by Shibata (2002), the time-related measures, and therefore the 
CfP,i, may not capture all the sources of defects. For this reason, he introduced a 
second predictor, a design-based assembly complexity factor (Shibata, 2002). It was 
defined as the ratio between a calibration coefficient and the ease of assembly 
(EOA) coefficient of the corresponding workstation estimated through the 
assembly/disassembly cost-effectiveness (DAC) method developed in Sony 
Corporation (Yamagiwa, 1988). In a later study, Su et al. (2010) remarked that the 
DAC method, which was developed specifically for Sony electronic products,  may 
not be directly suitable for other types of products, such as electromechanical 
products. To cope with this issue, he proposed a different method to evaluate the 
design complexity (Su et al., 2010).  

Su’s methodology is based on the approach developed by Ben-Arieh for 
evaluating the degree of difficulty of assembly operations (Ben-Arieh, 1994). 
According to Ben-Arieh (1994), assembly operations can be specified by 
parameters related to the parts' geometry (geometry-based parameters) and to the 
type of contact between components (non-geometrical parameters), see Table 3.1.  

Depending on the characteristics of the products to be assembled, a number l 
of parameters should be selected as criteria for evaluating the design-based 
complexity. Then, to obtain an integrated index, the weights wq of the l parameters 
are allocated using the Analytic Hierarchy Process (AHP) approach (Ben-Arieh, 
1994; Wei et al., 2005; Saaty, 1980), according to Eq. (3.4): 
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𝑤𝑞 =
(∏ 𝑎𝑞𝑟

𝑙
𝑟=1 )

1
𝑙

∑ (∏ 𝑎𝑞𝑟
𝑙
𝑟=1 )

1
𝑙𝑙

𝑞=1

        (q = 1, …, l)  (3.4) 

where: 

• 𝑎𝑞𝑟 is the relative importance of parameter q over parameter r (r = 1, … 

, l); 
• l is the number of parameters; 
• 𝑤𝑞 is the weight of parameter q. 

 

Table 3.1- Parameters of assembly operations (introduced by Ben-Arieh (1994)). 

Geometry-based parameters Non-geometrical parameters 
(A) Shape (N) Position contact 
(B) Force required (O) Snap contact 
(C) Mating direction (P) Spring contact 
(D) Alignment of components (Q) Gear contact 
(E) Mating component's length (R) Clamp fit 
(F) Length of components intersection (S) Belt contact 
(G) Ratio of length to width (diameter) of the 

mating component 
  

(H) Ratio of the mating component's weight 
to the mated one 

  

(I) Stability of the resultant assembly   
(L) Amount of support required for the 

assembly operation 
  

(M) Interference (reachability) to the 
assembled component 

  

 
Then, a number e of experts is asked to express an evaluation on the degree of 

difficulty of each parameter in each workstation. In particular, the degree of 
difficulty Dkqi is the evaluation of the parameter q in the workstation i estimated by 
the expert k. The values Dkqi are rated by scores between 0 and 10. According to the 
weight wq of the l parameters, see Eq. (3.4), and the degrees of difficulty Dkqi, the 
design-based complexity factors is defined as follows (Su et al., 2010): 

 

𝐶𝑓𝐷,𝑖 = ∑ (𝑤𝑞 ⋅
1

𝑒
⋅ ∑ 𝐷𝑘𝑞𝑖

𝑒

𝑘=1
)𝑙

𝑞=1                       (i = 1, … , m) (3.5) 

 
Previous research in the electromechanical field established that the 

relationship between DPU and CfP and CfD follows a power-law behavior (Shibata, 
2002; Galetto, Verna, Genta, et al., 2020; Verna et al., 2020c), according to Eq. 
(3.6): 

𝐷𝑃𝑈𝑖 = 𝑎 ⋅ (𝐶𝑓𝑃,𝑖)
𝑏 ⋅ (𝐶𝑓𝐷,𝑖)

𝑐 (3.6) 

where a, b and c may be obtained by means of a power-law nonlinear regression. It 
should be noted that, although Eq. (3.6) is linearizable, a recent study has shown 
that it is preferable using a nonlinear regression model in the case of few non-
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repeated data and affected by high variability, as in the case of defect rates, because 
of the well-known problem of the retransformation bias (Galetto, Verna, and Genta, 
2020). 

3.3.3 Structural complexity (Sinha-de Weck-Alkan model) 

Assembly complexity of a product can also be evaluated by a different 
perspective, that of the structural complexity model introduced by Sinha et al. 
(2012) (Sinha et al., 2012; Alkan, 2019). In this model, Huckel's molecular orbital 
theory (Hückel, 1932) is applied to the engineering domain to analyze the 
complexity of cyber-physical systems. According to Sinha et al. (2012), any 
engineering system can be represented by several components that are connected in 
different ways. Each component can be thought of as an atom and the interfaces 
between them as inter-atomic interactions, i.e., chemical bonds (Alkan et al., 2017). 
Through this analogy, product complexity can be associated with the system's 
inherent structure and, therefore, with individual system entities and the effects of 
the system connectivity pattern (Alkan and Harrison, 2019). This approach was 
successfully validated using pressure recording devices (Alkan et al., 2017) and 
printing systems (Sinha, 2014) as case studies. Accordingly, in this research, the 
approach was applied to the wrapping machines assembly, slightly amended to 
reflect the division of the process into workstations. 

Assembly complexity Ci related to each i-th workstation can be defined as 
(Sinha, 2014; Alkan, 2019): 

 

𝐶𝑖 = 𝐶1,𝑖 + 𝐶2,𝑖 ∙ 𝐶3,𝑖 (3.7) 

In Eq. (3.7), 𝐶1,𝑖 represents the sum of complexities of individual product parts 
in each i-th workstation and is calculated as follows: 

𝐶1,𝑖 =∑𝛾𝑝𝑖

𝑁𝑖

𝑝=1

 (3.8) 

where, for each i-th workstation (i = 1, … , m), 𝑁𝑖 is the total number of product 
parts and 𝛾𝑝𝑖 is the handling complexity of part p. Each complexity 𝛾𝑝𝑖 may be 
intended as the ergonomic difficulty to interact with the part and can be measured 
according to the structural characteristics that cause difficulties during its handling 
(Alkan, 2019). As suggested by Alkan (Alkan, 2019), handling complexity 𝛾𝑝𝑖 can 
be estimated as a function of the standard handling time of the part p, that involves 
the localization of the relevant box, moving arm to pick position, picking the 
relevant part and returning arm to work position. 

𝐶2,𝑖 is the complexity of liaisons related to the i-th workstation and is the sum 
of the complexities of pair-wise connections that exist in the product structure 
assembled in the workstation, as follows: 
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𝐶2,𝑖 =∑∑𝜑𝑝𝑟𝑖 ∙ 𝐴𝑝𝑟𝑖

𝑁𝑖

𝑟=1

𝑁𝑖

𝑝=1

 (3.9) 

where, for each i-th workstation (i=1,…,m), 𝜑𝑝𝑟𝑖 is the complexity in achieving 
a liaison between parts p and r and can be expressed by the relationships between 
the linked components and the nature of the connection, and 𝐴𝑝𝑟𝑖 defines the binary 
adjacency matrix representing the connectivity structure of the system, as indicated 
in Eq. (3.10): 

 

𝐴𝑝𝑟𝑖 = {
1 if there is a connection between 𝑝 and 𝑟 in the 𝑖 − th workstation
0 otherwise                                                                                                          

 (3.10) 

 
The interface complexity 𝜑𝑝𝑟𝑖 may be estimated based on the standard 

completion time of the liaison between parts p and r in isolated conditions. In 
addition to the handling of the connections, the completion time includes locating 
the connection areas, orienting and positioning the parts and the connector, placing 
the connectors and joining the parts, adjusting the connections, and a final check 
(Alkan, 2019). 

Finally, 𝐶3,𝑖 is the topological complexity of the i-th workstation and represents 
the complexity related to the architectural pattern of the assembled product. 
According to Sinha (2014), it can be obtained from the matrix energy (also called 
graph energy) EAi of the adjacency matrix related to the i-th workstation (Nikiforov, 
2007), as shown in Eq. (3.11). EAi is designated by the sum of singular values 𝛿𝑝𝑖 
of the adjacency matrix of the product assembled in the i-th workstation 

𝐶3,𝑖 =
𝐸𝐴𝑖
𝑁𝑖
=
∑ 𝛿𝑝𝑖
𝑁𝑆𝑖
𝑝=1

𝑁𝑖
 (3.11) 

where 𝑁𝑆𝑖 is the total number of singular values of the product connectivity 
matrix related to i-th workstation. It is recalled that, given a matrix A, the singular 
values are defined as the square roots of non-negative eigenvalues of the matrix 
AT∙A. 

As observed by Sinha (2014), matrix energy regime for graphs with a given 
number of nodes can be divided into (i) hyperenergetic, and (ii) hypoenergetic. An 
intermediate or transition regime between these two also exists (Xueliang Li et al., 
2012). The hyperenergetic regime is defined by graph energy greater than or equal 
to that of a fully connected graph, and the hypoenergetic regime is defined as shown 
in Eq. (3.12): 

𝐸𝐴𝑖 = {
≥ 2(𝑁𝑖 − 1)       hyperenergetic
< 𝑁𝑖                      hypoenergetic

 (3.12) 

Hence, in terms of topological complexity metric, the regimes are defined as: 
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𝐶3,𝑖 = {
≥ 2(1 −

1

𝑁𝑖
) ≈ 2      hyperenergetic

< 1                               hypoenergetic

 (3.13) 

Note that for hyperenergetic regimes, 𝐶3,𝑖 can be approximated to 2 when 𝑁𝑖 is 
sufficiently large (Xueliang Li et al., 2012). Translating the graph structures to 
system architectural pattern, typical topological complexity metric 𝐶3,𝑖 values can 
be associated to those forms, again when 𝑁𝑖 is sufficiently large: (i) 𝐶3,𝑖 < 1 for a 
centralized architecture, (ii) 1 ≤ 𝐶3,𝑖 < 2 for a hierarchical/layered architecture, 
and (iii) 𝐶3,𝑖 ≥ 2 for a distributed architecture (Sinha, 2014). Accordingly, 𝐶3,𝑖 
increases as the system topology shifts from centralized architectures to more 
distributed architectures, as shown in Figure 3.4 (Alkan, 2019; Sinha et al., 2012). 

 

 

Figure 3.4 - Spectrum of architectural patterns based on topological complexity metric 
with their respective reference values (adapted from (Sinha, 2014)). 

 
Therefore, 𝐶3,𝑖 represents the intricateness of structural dependency among 

assembly and requires knowledge of the complete architecture of the system and, 
in this sense, contrary to the previous terms 𝐶1,𝑖 and 𝐶2,𝑖, denotes a global effect 
whose influence could be perceived during the system integration phase (Sinha, 
2014). Therefore, the term 𝐶2,𝑖 ∙ 𝐶3,𝑖 in Eq. (3.7) can be referred to as a general 
indicator of the system integration effort that allows distinguishing product 
architectures with similar parts and connections complexities.  

To clarify how the complexity 𝐶3,𝑖 can be obtained, a pedagogical example is 
proposed. Let us consider an assembly process made up by a single workstation in 
which a simple product composed of 6 parts is assembled, as represented in Figure 
3.5. The graph energy of the associated adjacency matrix A is computed as the sum 
of its singular values, which are the square roots of non-negative eigenvalues of the 
matrix AT∙A. In detail, the eigenvalues of the matrix AT∙A are λ1=0 and λ2=5. Thus, 
𝐸𝐴 = √5 = 2.24. According to Eq. (3.11), it is obtained that 𝐶3 =

2.24

6
= 0.37. 

Since 𝐶3 < 1, the product topology can be qualified as a centralized architecture. 
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Figure 3.5 – Connectivity structure of a simple product composed of six parts and its 
associated adjacency matrix A. 

3.3.4 A novel prediction model based on the structural complexity 
paradigm 

This section aims to develop a novel approach to predict assembly defects in 
manufacturing by adopting the structural complexity paradigm (see Section 3.3.3). 
Two are the Research Questions (RQ) specifically addressed: 

RQ1: Is there a relationship between product defects and its structural 
complexity? 

RQ2: To what extent the structural complexity affects the estimation of defects 
in electromechanical manufacturing? 

In order to answer these questions, a novel defect prediction model is 
developed. A low-volume production of wrapping machines is considered as a case 
study, in which product complexity is approached by the novel paradigm proposed 
by Alkan (2019) and Sinha (2014). Complexity is evaluated considering structural 
properties associated with handling and insertion of assembly parts and their 
architectural structure (Alkan, 2019). This approach, depending solely on physical 
design information, can be considered more practical from the design point of view, 
especially in the early design stages. Next, this model is compared with one of the 
most accredited in the literature, i.e., the Shibata-Su model (see 3.2.1.2).  

The author believe that the novel approach based on the structural complexity 
paradigm can better support designers in the assembly quality-oriented design and 
optimization process. Furthermore, the novel prediction model can effectively help 
designers to get reliable defect estimates at early design stages and support 
decisions in the planning of quality inspections. Besides, by providing new insights 
into defects prediction, the present research should make a useful contribution to 
the field of low-volume production, where the inadequacy of traditional statistical 
approaches make quality control and inspection planning challenging (Galetto, 
Verna, Genta, et al., 2020; Verna et al., 2020e, 2020c; Koons and Luner, 1991). 

3.3.4.1 Model definition  

This section aims at proposing a novel approach to predict defects based on the 
structural complexity emulating the Shibata-Su model described in Section 3.3.2.  

The model, shown in Eq. (3.14), uses the structural complexity as the unique 
predictor of DPU: 
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𝐷𝑃𝑈𝑖
 = 𝑓(𝐶𝑖)

  (3.14) 

The structure of the new defect prediction model reflects that of Eq. (3.6). 
However, the adoption of the concept of structural complexity (Section 3.3.3) 
introduces a novel paradigm. Furthermore, the proposed approach, depending 
solely on physical design information, can be considered more useful, especially in 
the early design stages, when real production data or the physical mockup are not 
available (as is the case for the model presented in Section 3.3.2). 

In the next section, the proposed model is applied to a real case study in the 
electromechanical assembly field and compared with the Shibata-Su model 
described in 3.2.2. 

3.3.4.2 Model development in the electromechanical field  

Wrapping machines assembly 

The model defined in Section 3.3.4.1 was applied to the real assembly of 
wrapping machines. Wrapping machines are electromechanical products employed 
at the end of production lines to pack palletized loads with a stretch plastic film. 
Typically, three main categories of wrapping machines are produced: (i) turntable, 
(ii) rotating arm and (iii) rotating ring. In this study, the rotating ring wrapping 
machines are analyzed in detail, in particular those produced by the Italian company 
Tosa Group S.p.A., represented in Figure 3.6. In a typical year, the production of 
these machines is of about 50 units. Furthermore, each assembled machine is highly 
customized, making it almost a unique piece. For these reasons, such a 
manufacturing process can be classified as a low-volume manufacturing process. 

 

 

Figure 3.6 - Representation of the mechanical group and its main components of a 
rotating ring wrapping machine produced by the company Tosa Group S.p.A. (Italy). 
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The rotating wrapping machines consist of three central units: (i) mechanical, 
(ii) electrical and electronic and (iii) software. As shown in Figure 3.6, in the 
mechanical unit, a fixed and a mobile part can be distinguished. In particular, the 
fixed part is made up of: 

a) a frame, i.e., the load-bearing structure, dimensioned to guarantee strength 
and durability, composed by boxes and profiles in high-strength sheet steel; 

b) a cutting-hooking-welding unit that automatically cuts the plastic film 
employing a heated metal wire and heat-seals the last tail to the load with a 
specific plate; 

c) a pantograph presser, which stabilizes the palletized load, exerting pressure 
on its top during the wrapping process. 

In the mobile part, two devices are assembled: 

d) a rotating ring, built with a calendered steel profile, light but very resistant 
and, therefore, suitable for high speeds. It is moved by a belt connected to 
an electric motor. The rotation of the ring around the palletized load is 
combined, during the wrapping cycle, with a vertical sliding; 

e) a pre-stretching device, fixed to the rotating ring that allows: (i) the 
pulling/unwrapping, (ii) the pre-stretch and positioning of the plastic film, 
(iii) the wrapping of the pallet with the required number of wrappings. 

The electrical and electronic unit includes all the wiring of the components, 
sensors and motors onboard the machine, and the general electrical panel. The 
software unit, whose programming and configuration is entrusted to a specialized 
external supplier, is designed to control the machine, as well as to communicate 
with the operator. 

During a typical work cycle, the palletized load is transported by a roller or belt 
conveyor system within the area delimited by the trolley. Subsequently, the 
pantograph presser descends by pressing on the top of the palletized load to ensure 
stability during the film wrapping phase. The trolley descends, the ring starts to 
rotate and, at the same time, the plastic film moves through the pretensioner and is 
distributed around the load. After a variable number of wrappings that depends on 
the palletized load, the wrapping cycle ends, the cutting-hooking-welding unit 
removes the tail of the plastic film and the load is left free to be transported to the 
next station. Finally, a new pallet enters the perimeter of the machine ring, and the 
cycle is repeated.  

Owing to the complexity and the high number of components of the wrapping 
machine, the assembly of a single part, i.e., the pre-stretching device, is considered 
in detail. The main reason is that, although each machine differs from the others for 
some details, this device is common to all rotating ring wrapping machines. 
Nonetheless, the proposed approach can be extended and implemented to the 
overall wrapping machine. 

The pre-stretching device, illustrated in Figure 3.7, is installed on a support 
structure called frame plate. The stretch film runs through two rubber rollers, each 
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one connected by a belt drive system to a brushless motor: the speeds of the two 
rollers are therefore independent of each other. In contact with the surface of the 
two rollers, the film is stretched proportionally to the speed difference, thus 
determining a significant increase in the length of the film that is wrapped on the 
load. The electronic system measures the speed using specific sensors and keeps 
the tension of the film constant during its application on the entire surface of the 
pallet. Besides, the pre-stretching device may be equipped with a patent spindle 
which automatically replaces the empty film reel.  

 

Figure 3.7 - 3D CAD model of the pre-stretching device showing its main components. 

 
Table 3.2 shows the subdivision of the assembly process of the pre-stretching 

device into 29 workstations. These workstations are assembly steps defined within 
operation standards, i.e., instruction sheets for work procedure (Shibata, 2002; Su 
et al., 2010). As evidenced in Table 3.2, the first nine workstations are assembled 
on the bench, whilst the remaining are assembled on the frame plate. Moreover, 
Table 3.2 reports experimental values of defects per unit (DPU) occurring under 
stable process conditions in each workstation. These values are obtained by drawing 
on the company historical data collected over the last five years and, therefore, 
provide an indication of the average defectiveness rate of the assembly process in 
optimal working condition. 
  



 

54 
 

Table 3.2 - Subdivision of the assembly process of the pre-stretching device into 
workstations (WS) with the related experimental DPU. 

WS no. WS description Bench 
assembly 

Assembly 
on the 
frame 
plate 

Experimental 
DPUi 

1 Motor no. 1 bench assembly X  0.0364 
2 Motor no. 2 bench assembly X  0.0364 

3 Support plate of motor no. 2 bench 
assembly X  0.0182 

4 Spindle bench assembly X  0.0000 
5 Rubber tires bench assembly X  0.1091 
6 Idle rolls bench assembly X  0.0545 
7 Rubberized pads bench assembly X  0.0000 
8 Belt tensioner device bench assembly X  0.0364 

9 Driven wheels of transmission system 
bench assembly X  0.0000 

10 Pre-stretch frame plate preparation  X 0.0182 

11 Rubber rollers on pre-stretch frame plate 
assembly  X 0.0182 

12 Idle rollers on pre-stretch frame plate 
assembly  X 0.0182 

13 Motor no. 1 on frame plate assembly  X 0.0000 

14 Transmission system of motor no. 1 
assembly  X 0.0000 

15 Motor no. 2 on frame plate assembly  X 0.0182 

16 Transmission system of motor no. 2 
assembly  X 0.0364 

17 Motor no. 1 bracket on pre-stretch frame 
plate assembly  X 0.0000 

18 Belt tensioner on pre-stretch frame plate 
assembly  X 0.0364 

19 Transmission system of motor no. 1 
calibration  X 0.0364 

20 Transmission system of motor no. 2 
calibration  X 0.0364 

21 Spindle preparation for assembly on pre-
stretch frame plate  X 0.0000 

22 Spindle group on pre-stretch frame plate 
assembly  X 0.0364 

23 Rubber pads on pre-stretch frame plate 
assembly  X 0.0000 

24 Motor assembly no. 1 final steps  X 0.0545 
25 Motor assembly no. 2 final steps  X 0.0545 
26 Spindle release lever bench assembly  X 0.0000 

27 Spindle release lever on pre-stretch frame 
plate assembly  X 0.0000 

28 Compensation arm bench assembly  X 0.0909 

29 Compensation arm on pre-stretch frame 
plate assembly  X 0.0000 

The novel model: DPU vs. structural complexity 

Table 3.3 reports, for each i-th workstation, the complexities 𝐶1,𝑖, 𝐶2,𝑖 and 𝐶3,𝑖, 
evaluated according to Eqs. (3.8), (3.9), and (3.11) respectively, and the final 
assembly complexity Ci derived by Eq. (3.7). Specifically, 𝐶1,𝑖 is estimated 
considering the standard handling time of the parts that are assembled in the 
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corresponding workstation, and 𝐶2,𝑖 the standard completion time of the connection 
between the parts. Finally, 𝐶3,𝑖 is obtained from the graph energy of the adjacency 
matrix related to the i-th workstation and the number of parts assembled Ni. For 
instance, in the workstation no. 14, only two parts are assembled: the driven wheel 
and the drive belt. As shown in Table 3.3, the standard handling time of the two 
parts is 0.19 min and the time for connecting them is 0.78 min. For these two parts, 

the adjacency matrix is A = (0 1
1 0

) and its graph energy EA is 1 (the eigenvalue of 

the matrix AT∙A is λ1=1). Thus, the resulting complexity 𝐶3 is 0.50. Consequently, 
by applying Eq. (3.7), product complexity of this workstation is 0.58 min. 

To relate DPUi versus Ci, different models were tested and compared (see Table 
3.4). The adequacy of the models was assessed based on the analysis of regression 
residuals and of the S value as a measure of goodness-of-fit. A power curve fitting 
(model no. 3 in Table 3.4) was found to be the best model to define such a 
relationship. Accordingly, the final model developed for wrapping machines 
assembly is the following: 

𝐷𝑃𝑈𝑖
 = 3.05 ⋅ 10−3 ⋅ (𝐶𝑖)

1.58 (3.15) 

Figure 3.8 illustrates the novel defect prediction model defined in Eq. (3.15) 
and the corresponding residual plots. The Normal Probability Plot indicates that the 
residuals do not show significant departures from normal distribution, as also 
demonstrated by performing the Anderson-Darling test which does not reject 
normality of residuals with a confidence level of 95% (Devore, 2011). Besides, the 
plot of residuals versus order does not reveal any systematic effects in the data due 
to time or data collection order. The S value is 0.018, indicating that the 
experimental values of DPU fall a standard distance of 0.018 units from the DPU 
values predicted by Eq. (3.15). 
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Table 3.3 - Variables and predictions related to the novel defect prediction model: DPU 
vs C. 

WS no. Ni 𝑪𝟏,𝒊 [min] 𝑪𝟐,𝒊 [min] 𝑪𝟑,𝒊 𝑪𝒊 [min] Predicted 𝑫𝑷𝑼𝒊  
1 14 2.19 5.11 0.60 5.27 0.0424 
2 14 2.28 5.33 0.59 5.41 0.0443 
3 10 1.19 4.77 0.80 5.01 0.0391 
4 3 0.78 3.14 0.25 1.57 0.0062 
5 14 1.24 11.13 0.47 6.47 0.0587 
6 12 1.63 6.53 0.62 5.68 0.0478 
7 4 0.73 2.91 0.25 1.46 0.0055 
8 8 0.25 2.22 1.90 4.47 0.0327 
9 4 0.08 0.33 0.25 0.16 0.0002 

10 11 0.99 3.97 0.75 3.97 0.0271 
11 26 1.07 4.27 0.88 4.83 0.0369 
12 39 1.19 4.77 0.83 5.15 0.0409 
13 5 0.74 2.96 0.25 1.48 0.0057 
14 2 0.19 0.78 0.50 0.58 0.0013 
15 16 1.73 6.90 0.48 5.01 0.0391 
16 2 0.09 0.80 3.14 2.60 0.0139 
17 3 0.20 0.78 0.25 0.39 0.0007 
18 5 0.18 1.64 1.97 3.41 0.0213 
19 12 1.74 4.05 0.69 4.55 0.0336 
20 12 1.90 4.43 0.66 4.81 0.0366 
21 15 0.45 1.79 0.25 0.90 0.0026 
22 34 1.36 12.23 0.44 6.730 0.0625 
23 5 0.47 1.89 0.25 0.94 0.0028 
24 3 0.12 1.04 2.88 3.09 0.0182 
25 3 0.12 1.08 2.77 3.11 0.0184 
26 6 0.24 0.95 0.25 0.48 0.0009 
27 6 0.80 7.20 0.25 2.60 0.0139 
28 20 1.26 11.32 0.60 8.05 0.0830 
29 4 0.56 5.00 0.25 1.81 0.0078 
 

Table 3.4 -  Comparison of different models defining the relationship between defects 
per unit and assembly complexity. 

No. Model 
S (Standard 
error of the 
regression) 

(1) Linear model with intercept 𝐷𝑃𝑈𝑖
 = 9.82 ⋅ 10−3 ⋅ 𝐶𝑖

 − 8.16 ∙ 10−3 0.01859 
(2) Power model with intercept 𝐷𝑃𝑈𝑖

 = 9.91 ⋅ 10−3 ⋅ 𝐶𝑖
1.61 + 3.50

∙ 10−4 0.01861 

(3) Power model 𝐷𝑃𝑈𝑖
 = 3.05 ⋅ 10−3 ⋅ 𝐶𝑖

1.58 0.01826 
(4) Exponential model 𝐷𝑃𝑈𝑖

 = 6.45 ⋅ 10−3 ⋅ 𝑒0.34∙𝐶𝑖 0.01848 
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Figure 3.8 - (a) DPU vs. C: defect prediction model and experimental data; Residual 
plots: (b) Normal Probability Plot and (c) Residuals vs. Order. 

 
Shibata-Su model: DPU vs. process- and design-based complexity 

This section presents the implementation of the defect prediction model relating 
DPU with the Shibata-Su model, described in Section 3.3.2, in order to compare 
the obtained predictions with those obtained by using the new model shown in Eq. 
(3.15). 

Regarding the first predictor, CfP,i, see Eq. (3.3), each workstation was 
subdivided into a certain number of elementary operations, Na,i, ranging from 1 to 
12 (see Table 3.5). Concerning assembly times, instead of using Sony Standard 
Time (typical of Sony's home audio products), the time of each job element was 
evaluated by considering the average value of 3 measurements of the assembly 
standard time spent by the operator in the job element. The threshold assembly time 
t0 was set at 0.04 min, which corresponds to the time required to perform the least 
complex job element. The assembly time TATi is shown in Table 3.5, as well as the 
final value of the first predictor, CfP,i, calculated according to Eq. (3.3), separately 
for each i-th workstation. 

As far as the second predictor is concerned, CfD, the adopted methodology is 
the one developed by Su et al. (2010) for electromechanical products because the 
wrapping machine is substantially an electromechanical equipment. In this case, 
regarding Eqs. (3.4) and (3.5), 11 design parameters were selected by adapting Ben 
Arieh's approach to the case of wrapping machines, see Table 3.5. Two engineers 
and four assembly operators were asked to compare the relative importance of each 
parameter in determining the difficulty of inserting a part into a product. The 
evaluation scale used for the relative importance between each pair of parameters 
ranges from a minimum of 1, which indicates equal importance of the two 
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parameters, to a maximum of 9, which represents the dominant importance of the 
considered parameter with respect to the other. Six paired comparison matrices 
were obtained, whose individual evaluations were then aggregated into a single 
paired comparison matrix representative of the group judgment by using the 
geometric mean, as suggested by Dong and Saaty (2014). From this matrix, reported 
in Table 3.6, the weights wq of the l parameters were derived, according to Eq. (3.4), 
and are listed in Table 3.7. For instance, taking parameter P1 as an example, the 
corresponding weight wq (q=1) is obtained as: 𝑤1 =

1.761

12.693
= 0.139. 

Table 3.5– Variables and predictions related to the Shibata-Su defect prediction model: 
DPU vs. CfP and CfD. 

WS no. Na,i 𝑻𝑨𝑻𝒊 [min] 𝑪𝒇𝑷,𝒊 [min] 𝑪𝒇𝑫,𝒊 Predicted 𝑫𝑷𝑼𝒊  
1 6 7.30 7.1 4.38 0.0214 
2 6 7.61 7.4 4.56 0.0250 
3 3 5.96 5.8 5.06 0.0287 
4 3 3.92 3.8 4.31 0.0126 
5 12 12.37 11.9 5.69 0.0715 
6 12 8.16 7.7 4.89 0.0320 
7 3 3.64 3.5 2.76 0.0030 
8 3 2.47 2.4 3.48 0.0045 
9 2 0.41 0.3 3.68 0.0012 
10 3 4.96 4.8 4.21 0.0142 
11 4 5.34 5.2 5.35 0.0312 
12 6 5.96 5.7 5.14 0.0298 
13 1 3.70 3.7 5.09 0.0205 
14 2 0.97 0.9 5.40 0.0084 
15 4 8.63 8.5 4.94 0.0355 
16 2 0.89 0.8 4.94 0.0060 
17 1 0.98 0.9 4.22 0.0041 
18 2 1.82 1.7 4.27 0.0067 
19 2 5.79 5.7 5.19 0.0306 
20 2 6.33 6.3 5.21 0.0332 
21 2 2.24 2.2 5.20 0.0147 
22 6 13.59 13.4 5.59 0.0738 
23 2 2.36 2.3 4.13 0.0075 
24 1 1.15 1.1 4.07 0.0041 
25 1 1.20 1.2 4.25 0.0049 
26 1 1.19 1.2 4.06 0.0042 
27 3 8.00 7.9 4.72 0.0293 
28 9 12.58 12.2 5.54 0.0672 
29 3 5.56 5.4 4.96 0.0257 
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Table 3.6 - Paired comparison matrix of design parameters for evaluating the design-
based assembly complexity. 

Design 
parameter 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 (∏ 𝑎𝑞𝑟
𝑙
𝑟=1 )

1

𝑙   

P1 1.00 1.32 1.96 0.78 0.60 2.59 5.58 2.72 2.93 1.53 2.38 1.761 
P2 0.76 1.00 3.05 0.83 1.26 0.79 1.67 3.63 2.51 1.27 2.89 1.529 
P3 0.51 0.33 1.00 1.26 3.04 1.26 3.80 2.12 5.10 4.93 7.41 1.907 
P4 1.29 1.21 0.79 1.00 2.74 4.39 3.53 1.36 3.37 5.13 3.69 2.151 
P5 1.66 0.79 0.33 0.53 1.00 1.47 1.02 1.10 3.45 5.44 0.97 1.192 
P6 0.39 1.26 0.79 0.23 0.68 1.00 3.52 1.41 5.38 2.67 1.21 1.161 
P7 0.18 0.60 0.26 0.28 0.98 0.28 1.00 1.28 1.76 1.31 3.69 0.714 
P8 0.37 0.28 0.47 0.73 0.91 0.71 0.78 1.00 2.00 1.51 1.85 0.810 
P9 0.34 0.40 0.20 0.30 0.29 0.19 0.57 0.50 1.00 1.51 1.24 0.466 

P10 0.66 0.79 0.20 0.20 0.18 0.37 0.76 0.66 0.66 1.00 1.69 0.523 
P11 0.42 0.35 0.13 0.27 1.03 0.82 0.27 0.54 0.81 0.59 1.00 0.480 

         ∑ (∏ 𝑎𝑞𝑟
𝑙
𝑟=1 )

1

𝑙𝑙
𝑞=1   12.693 

Table 3.7 - Parameters selected from those in Table 1 for evaluating the design-based 
complexity factor and their weights. 

Design 
parameter 

Ref. 
Table 1 Design parameter description Weight 

wq 
P1 (A) Shape of mating objects 0.139 
P2 (B) Force required 0.120 
P3 (D) Alignment of components 0.150 
P4 (C) Mating direction 0.169 
P5 (H) Ratio of the mating component's weight to the mated one 0.094 
P6 (G) Ratio of length to width (diameter) of the mating component 0.091 
P7 (M) Reachability to the assembled component 0.056 
P8 (E) Mating component's length 0.064 
P9 (L) Amount of support required for the assembly 0.037 

P10 (I) Stability of the resultant assembly 0.041 
P11 (F) Length of components intersection 0.038 
 

Besides, the e = 6 experts were asked to evaluate the degree of difficulty of 
each design parameter in each workstation. More in detail, the question asked to the 
experts was the following: "How much does the q-th parameter affect the assembly 
difficulty in the i-th workstation on a scale from 0 to 10, where 0 corresponds to no 
difficulty and 10 corresponds to maximum difficulty?". To cope with the alignment 
of the assessment scales, the framework provided in Table 3.8 was explained to 
each expert. This tool entailed the adoption of a standard scale of judgments by 
defining conventional degrees of difficulty. 
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Table 3.8 - List of parameters used to evaluate the design-based assembly complexity, 
with examples of the degrees of difficulty to be assigned during the assessment. 

Six matrices were obtained, one for each expert. Then, by averaging the 
evaluations of the six experts, for each q-th parameter in each i-th workstation, the 
matrix of the degrees of difficulty was derived (see Table 3.9). To clarify these 
evaluations, a single workstation is analyzed in detail: the workstation no. 22, i.e., 
the spindle group on pre-stretch frame plate assembly. In such a workstation, 6 
elementary operations are performed: (1) pre-tightening the spindle on a pre-stretch 
frame plate, repeated 12 times; (2) spindle clamping on pre-stretch frame plate, 
repeated 12 times; (3) tightening the screws on the intermediate spindle ring, 
repeated 3 times; (4) tightening the screws on the spindle brake support plate, 

 

Parameter Parameter 
description 

Degree of difficulty 
0-3 

Degree of 
difficulty 

3-6 

Degree of difficulty 
6-10 

P1 Shape of mating 
objects 

   

P2 Force required Simple coupling (no manual 
tool required) 

Forced coupling 
(manual tool 

required) 

Coupling with 
hydraulic press 

(20000 kg) 

P3 Alignment of 
components 

Mechanical stop Stop with 
reference 

No reference stop 
 

P4 Mating direction 

Axial 
 

Eccentric axial 

 

Eccentric radial 

 

P5 
Ratio of the mating 

component's weight to 
the mated one 

Bearing lift 
(approx. 1 kg) 

Idle roller lift 
(approx. 4 kg) 

Frame plate lift 
(approx. 7 kg) 

P6 
Ratio of length to 

width (diameter) of 
the mating component 

Belt tensioner device 
 

Frame plate Roller 

P7 Reachability to the 
assembled component 

Simple coupling Medium 
complexity 

coupling 

Complex coupling

 

P8 Mating component's 
length 

Flanged sleeve Brushless motor Roller 

P9 
Amount of support 

required for the 
assembly 

No support Medium stable 
support 

Very stable support 
 

P10 Stability of the 
resultant assembly Very stable resultant assembly 

Medium stable 
resultant 
assembly 

Poorly stable 
resulting assembly 

P11 Length of components 
intersection 

Low component coupling 
length 

Medium 
component 

coupling length 

High component 
coupling length 
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repeated 4 times; (5) tightening the first spindle ring nut; (6) tightening the second 
spindle ring nut. To perform these operations, the assembly operator uses, in 
addition to his hands, simple equipment, including a wrench and a torque wrench. 
As shown in Table 3.9 for workstation 22, the degrees of difficulty range from a 
minimum of 4.50 to a maximum of 6.83. These values are mainly within the 
intermediate difficulty range (fourth column of Table 3.8) since the operations 
performed are mainly screw tightening activities on the spindle, requiring manual 
equipment and medium-complex couplings. Accordingly, they do not entail any 
particular assembly difficulties. The only exception is for parameter P8, whose 
degree of difficulty is almost 7, due to the high coupling length of the components 
to be assembled.  

Table 3.9 - Degrees of difficulty matrix for evaluating the design-based assembly 
complexity. 

 Design parameter 
Workstation P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

1 4.00 4.17 4.17 4.50 5.17 3.67 4.33 3.17 6.00 5.83 5.50 
2 4.33 4.33 4.17 4.50 5.17 3.67 5.67 3.33 6.00 5.83 6.33 
3 5.83 6.50 5.50 4.33 4.00 3.50 5.00 4.00 6.50 5.00 6.00 
4 3.67 4.00 3.50 3.33 4.83 3.83 6.00 5.17 6.00 6.83 6.67 
5 4.17 7.33 4.83 5.33 4.67 6.33 5.83 6.67 7.83 6.50 7.33 
6 3.83 5.67 4.83 3.50 4.00 5.83 5.00 6.50 6.33 6.50 6.67 
7 2.83 3.50 3.00 2.67 1.50 2.00 2.67 1.67 3.00 4.00 4.83 
8 3.83 4.17 4.17 3.17 2.33 1.83 3.50 1.83 4.67 5.00 5.50 
9 5.00 2.83 6.00 2.83 2.33 2.67 2.83 2.33 1.17 6.17 5.17 
10 4.17 3.50 5.00 2.00 6.17 5.33 2.67 4.33 5.67 5.83 4.83 
11 4.00 4.67 6.17 3.67 6.33 7.17 4.50 7.67 5.33 6.83 5.67 
12 4.00 4.00 6.00 3.67 6.00 6.83 4.50 7.17 5.00 7.17 5.33 
13 3.83 5.17 6.67 4.83 5.83 4.83 3.50 5.00 5.50 5.33 5.00 
14 6.17 5.00 6.67 6.33 3.17 4.00 6.00 3.83 3.17 6.67 6.17 
15 4.17 5.00 6.50 4.50 5.17 5.00 4.17 4.83 5.17 5.00 3.67 
16 5.50 4.83 5.83 6.00 2.67 3.67 6.00 3.00 2.83 6.17 6.17 
17 3.17 3.67 6.33 5.00 4.00 3.33 3.33 3.17 3.17 4.83 4.00 
18 3.67 3.67 6.50 5.17 3.00 3.33 4.00 2.83 3.00 6.33 2.67 
19 4.33 5.17 7.33 5.67 3.50 5.00 5.83 3.00 3.83 6.83 4.67 
20 4.33 5.17 7.33 5.67 3.50 4.50 5.50 3.83 3.83 6.67 5.67 
21 3.50 4.17 6.17 4.83 6.33 7.00 4.50 7.17 4.33 4.50 4.67 
22 5.50 5.67 5.33 5.17 5.67 6.50 6.33 6.83 5.17 4.50 4.67 
23 3.50 4.67 4.67 4.00 3.50 3.17 4.33 3.67 3.67 5.83 6.17 
24 3.17 3.17 5.17 5.33 3.83 3.00 4.67 2.67 3.17 5.00 4.83 
25 3.33 3.33 5.67 5.50 3.83 3.17 4.50 3.17 3.00 5.00 4.83 
26 4.00 2.83 5.50 5.00 2.50 3.33 3.67 4.00 2.83 5.00 4.83 
27 4.33 4.67 5.83 5.00 4.17 3.50 4.50 4.83 3.33 6.00 5.17 
28 4.83 4.33 6.33 5.17 5.17 6.17 5.17 7.33 5.33 6.83 6.33 
29 3.83 4.50 5.83 5.83 3.33 5.00 4.67 6.00 3.00 5.83 6.83 

 
The design-based complexity factor of each workstation, 𝐶𝑓𝐷,𝑖, is finally 

obtained by applying Eq. (3.5) and by combining the weights of the parameters and 
the degrees of difficulty matrix reported respectively in Table 3.7 and Table 3.9. 
The obtained values are listed in Table 3.5.  

Experimental DPUs were analyzed using the power-law regression model 
shown in Eq. (3.6) by using the software MATLAB®. The defect prediction model 
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obtained, which will be marked henceforth with an asterisk (*) to distinguish it from 
the novel model reported in Eq. (3.15), is the following (see also Figure 3.9): 

𝐷𝑃𝑈𝑖
∗ = 5.04 ⋅ 10−5 ⋅ (𝐶𝑓𝑃,𝑖)

0.77 ⋅ (𝐶𝑓𝐷,𝑖)
3.08 (3.16) 

The DPUs predicted by using Eq. (16) are listed in Table 5. Finally, as shown 
in Figure 3.9 (b) and (c), the analysis of the residuals between experimental DPU 
and predicted DPU suggests that the power-law model describes well the trend of 
the DPU as a function of the assembly complexity. The Normal Probability Plot 
(NPP) indicates that the residuals do not show significant departures from normal 
distribution, even though a slight hypernormality is evidenced, indicating a higher 
concentration of residuals around the central value. Furthermore, by performing the 
Anderson-Darling test, the null hypothesis that the residuals follow a normal 
distribution cannot be rejected with a confidence level of 95% (Devore, 2011). The 
plot of residuals versus order shows a horizontal band around the residual line 
(value 0) and no systematic effects in the data due to time or data collection order 
are shown. The S value, known both as the standard error of the regression and as 
the standard error of the estimate, representing a measure of goodness of fit of the 
model to be used instead of R2 for nonlinear models (Bates and Watts, 1988; Spiess 
and Neumeyer, 2010), is equal to 0.024. Such a value indicates that the 
experimental values of DPU fall a standard distance (roughly an average absolute 
distance) of 0.024 units from the DPU values predicted by Eq. (3.16). 

 

Figure 3.9 - (a) DPU vs CfP and CfD: defect prediction model and experimental data; 
Residual plots: (b) Normal Probability Plot and (c) Residuals vs Order. 
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Results analysis 

As shown in Eq. (3.16), the novel defect prediction model follows a power-law 
behavior. Thus, defectiveness rate is low for workstations with lower product 
complexity and super-linearly grows as complexity increases. These results are in 
line with previous findings obtained in the literature, e.g., Alkan (2019) and Sinha 
(2014), in which the complexity is found to be in a super-linear relationship with 
real assembly time (not standard time), thus evaluated also considering possible 
errors and reworks.  

The same behavior of the two curves, i.e., Eqs. (3.15) and (3.16), is not 
surprising because the theoretical formulation of the complexities used as predictors 
in both models is comparable. Indeed, in the Shibata-Su model described in Section 
3.3.2, process-based complexity CfP,i is estimated considering standard assembly 
times, see Eq. (3.3), that are strictly related to the handling complexity of parts and 
their connections complexity. Besides, CfD,i considers product design complexity, 
as shown in Eq. (3.5), that is related to the design and architectural pattern of the 
product. Analogously, product complexity Ci defined in Eq. (3.7), which is the 
predictor of the novel model proposed in this study, being defined by assembly 
times and structural characteristics (design), incorporates in a single factor both the 
complexity of the process and the design. As a consequence, it represents the 
equivalent of CfP,i and CfD,i, using, however, an objective perspective. While CfP,i 
is estimated based on objective characteristics of the process, i.e., standard times, 
CfD,i is obtained from the subjective evaluations provided by inspectors and, 
therefore, is much closer to a perceived complexity than an objective one. Thus, 
despite the analogy between the predictors of the models, they may differ due to the 
different perceptions that operators have of the complexity. As observed by Alkan 
(2019), perceived complexity does not correspond precisely to product complexity, 
because operators start to perceive the assembly operations as complex when the 
product complexity reaches a stagnation point.  

Moreover, it should be noted that decoupling the complexity into the two 
factors of the model shown in Eq. (3.16) can be considered artificial. In practical 
applications, there is no clear distinction between the complexity due to the process 
and the complexity due to the design, as these are often related. To make this 
concept clearer, just think of the times for handling components or connecting parts. 
These are not only process-related but are also closely associated with the 
characteristics of the parts to be assembled and the nature of their connections. 
Therefore, since process and design coexist together, Eq. (3.15) seems to be more 
suitable to evaluate the complexity of the product as a whole, because it considers 
the complexity of individual components, connections and product topology, 
without however making a clear distinction between process and design. 

Table 3.10 reports the 95% prediction interval obtained for the DPU estimated 
using defect prediction models shown in Eq. (3.15) and (3.16), separately for each 
workstation, showing both the limits and the width of the interval. These prediction 
intervals, obtained by using MINITAB®, represent the ranges in which the predicted 
responses for single new observations are expected to fall. It should be noted that 
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negative values of the lower limits of prediction intervals of DPU are set equal to 
zero. Accordingly, for most workstations, the prediction interval is not symmetric 
with respect to the predicted DPUi.  

According to results provided in Table 3.10 and by comparing Figure 3.8 and 
Figure 3.9, it is observed that the model proposed in this study allows obtaining 
more accurate estimates of DPU because the average absolute distance between 
experimental values and the regression model is 0.018, while for the other model is 
0.024. Furthermore, DPU values estimated by implementing the proposed model 
are also generally more precise since the related uncertainty in the estimate is 
tendentially lower (see the limits and the width of the prediction intervals in Table 
3.10). 

Table 3.10 - Comparison of predictions obtained using the novel defect prediction 
model, see Eq. (3.15), and an alternative one existing in the literature, see Eq. (3.16). 

 95% prediction interval for 𝑫𝑷𝑼𝒊  95% prediction interval for 𝑫𝑷𝑼𝒊∗ 
WS no. Range   Width Range   Width 

1 (0.0038;0.0810) 0.0772 (0.0000;0.0755) 0.0755 
2 (0.0056;0.0829) 0.0773 (0.0000;0.0788) 0.0788 
3 (0.0005;0.0777) 0.0771 (0.0000;0.0802) 0.0802 
4 (0.0000;0.0442) 0.0442 (0.0000;0.0639) 0.0639 
5 (0.0189;0.0985) 0.0796 (0.0134;0.1295) 0.1161 
6 (0.0090;0.0865) 0.0775 (0.0000;0.0843) 0.0843 
7 (0.0000;0.0435) 0.0435 (0.0000;0.0538) 0.0538 
8 (0.0000;0.0713) 0.0713 (0.0000;0.0551) 0.0551 
9 (0.0000;0.0376) 0.0376 (0.0000;0.0512) 0.0512 

10 (0.0000;0.0657) 0.0657 (0.0000;0.0663) 0.0663 
11 (0.0000;0.0755) 0.0755 (0.0000;0.0849) 0.0849 
12 (0.0023;0.0795) 0.0772 (0.0000;0.0815) 0.0815 
13 (0.0000;0.0436) 0.0436 (0.0000;0.0730) 0.0730 
14 (0.0000;0.0388) 0.0388 (0.0000;0.0618) 0.0618 
15 (0.0006;0.0777) 0.0771 (0.0000;0.0883) 0.0883 
16 (0.0000;0.0524) 0.0524 (0.0000;0.0573) 0.0573 
17 (0.0000;0.0382) 0.0382 (0.0000;0.0544) 0.0544 
18 (0.0000;0.0600) 0.0600 (0.0000;0.0573) 0.0573 
19 (0.0000;0.0722) 0.0722 (0.0000;0.0826) 0.0826 
20 (0.0000;0.0752) 0.0752 (0.0000;0.0850) 0.0850 
21 (0.0000;0.0402) 0.0402 (0.0000;0.0682) 0.0682 
22 (0.0221;0.1029) 0.0808 (0.0155;0.1322) 0.1167 
23 (0.0000;0.0405) 0.0405 (0.0000;0.0581) 0.0581 
24 (0.0000;0.0569) 0.0569 (0.0000;0.0544) 0.0544 
25 (0.0000;0.0571) 0.0571 (0.0000;0.0553) 0.0553 
26 (0.0000;0.0385) 0.0385 (0.0000;0.0545) 0.0545 
27 (0.0000;0.0524) 0.0524 (0.0000;0.0828) 0.0828 
28 (0.0362;0.1297) 0.0935 (0.0113;0.1230) 0.1117 
29 (0.0000;0.0459) 0.0459 (0.0000;0.0771) 0.0771 

 
The comparison between the two models pointed out that, despite the 

architectural similarities, the novel defect prediction model allows for more 
accurate and precise estimates of DPU. This may depend on the different 
perspectives used to formulate complexity in the two approaches. In the novel 
model, product complexity is approached based on objective product 
characteristics, while an objective perspective is combined with a subjective 
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evaluation provided by experts in the Shibata-Su model. Besides, the objective 
perspective seems to be preferable as it considers in a combined factor both the 
complexity due to the process and the design, without separating the two aspects. 
The proposed model, although specifically designed for wrapping machines 
assembly, can be used in other similar industrial contexts to predict defects in low-
volume productions. 

Furthermore, the method can provide a framework for future explorations on 
other products, particularly for electromechanical and mechanical products. The 
novel model can act both as a tool for quantitatively estimating defects of newly 
developed wrapping machines and as a decision support tool for the assembly 
quality-oriented wrapping machine design and optimization. Indeed, engineers can 
employ this prediction model to get a quantitative estimation of DPU and 
accordingly design or re-design the process of wrapping machines trying to 
minimize the defectiveness rates, by reducing assembly complexity. Future 
research will be aimed at exploiting this novel defect prediction to support the 
design of quality-inspection strategies in low-volume manufacturing and evaluate 
its effect on the inspection planning process.  

3.4 Defect prediction models for offline inspections2 

In the literature, a scant number of defect prediction models specific for offline 
inspections have been proposed. In this section, a probabilistic model suitable to 
predict defects occurring in low-volume manufacturing processes is developed. The 
methodology proposed includes the definition of input and output variables, the 
determination of the mathematical relationship among these variables, the 
identification of all the uncertainty contributions and the estimation of probabilities 
of occurrence of defective-output variables.  

The proposed approach, which has a general validity and can be adopted in a 
wide variety of possible industrial situations, is applied by way of example to a case 
study belonging to an Additive Manufacturing (AM) production in the automotive 
industry. In the Additive Manufacturing (AM) field, only a few authors proposed 
analytical methods for in-process defect detection and control strategies to 
implement corrective or adaptive actions once a defect has been detected during the 
process (Tapia and Elwany, 2014; Everton et al., 2016; Rao et al., 2015; Grasso and 
Colosimo, 2017; Colosimo, 2018; Tsung et al., 2018). As a result, quality 
inspections performed on AM products are mainly restricted to offline controls, i.e., 
carried out at the end of the production process. In the practical application 
considered in this section, the technique of Selective Laser Melting (SLM) has been 

 
2 Part of the work described in this section was also previously published in: 

• Verna E., Genta G., Galetto M., and Franceschini F. (2020e). “Planning Offline 

Inspection Strategies in Low-Volume Manufacturing Processes.” Quality Engineering 
In press, DOI: 10.1080/08982112.2020.1739309. 

• Galetto M., Genta G., Maculotti G., and Verna E. (2020). “Defect Probability 

Estimation for Hardness-Optimised Parts by Selective Laser Melting.” International 
Journal of Precision Engineering and Manufacturing 21 (9), 1739-1753. 
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examined in detail. Indeed, although extensive research has been carried out on the 
optimization of material properties of SLM parts to prevent defects and guarantee 
part quality, a major void still concerns the quantification of their extent in terms of 
probability of defects occurring during the process, although it is optimized. 
Considering these issues, the novel approach proposed in this section may be of 
assistance to both researchers and practitioners for quantifying the probability of 
occurrence of defects in parts inspected through offline inspections.  

3.4.1 Estimation of defective-output variable probability 

In order to evaluate the probability of occurrence of defects in the final part, the 
AM manufacturing process, in optimal working conditions, should be modeled as 
represented in Figure 3.10. Specifically, m process variables, also called input 
variables, may affect the final quality of the AM product. In order to evaluate 
product quality, n output variables are measured on the AM part, using the most 
appropriate inspection method to detect the defect, e.g., dimensional verifications, 
mechanical tests, or visual checks (See, 2012; Savio et al., 2016; Bress, 2017). In 
this situation, each input variable may potentially influence each output variable at 
different intensity levels. As represented in Figure 3.10, each input variable is 
denoted as Xi, (i = 1,…,m) and each output variable is indicated as Yj (j = 1,…,n). 
Furthermore, for each output variable Yj, a probability of occurrence of a defect, 
called 𝑝𝑌𝑗, may be defined. It is worth remarking that the manufacturing process 
considered is in optimal working conditions, meaning that each input variable is set 
at its optimum value. Under such conditions, each 𝑝𝑌𝑗  should be zero; however, in 
realistic cases, this almost never happens because of uncertainty. Consequently, it 
is of the utmost importance to estimate such probabilities of occurrence of defects 
in order to effectively and efficiently plan quality inspections on the final product 
(Verna et al., 2019). 

The probabilities of occurrence of defects, 𝑝𝑌𝑗, are closely related to the 
intrinsic characteristics of the process. Accordingly, they can be evaluated by using 
empirical methods, e.g., historical data, previous experience on similar processes, 
knowledge of the process, or by implementing probabilistic models (Franceschini 
et al., 2018; Genta et al., 2018; Galetto et al., n.d.). In the case of AM productions, 
which are small-sized lots or even unique parts, the historical data are often not 
available, requiring the formulation of a probabilistic model that exploits the 
knowledge of the production process. 
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Figure 3.10 - Schematic of a production process with m input variables and n output 
variables and the related probabilities of occurrence of defects (𝒑𝒀𝒋). 

The underlying assumption of the model is that there is a relationship between 
input and output variables. Consequently, if a defective-output variable occurs, it 
may be caused by some input variables. The probabilities of occurrence of 
defective-output variables may be therefore obtained using the mathematical 
function relating input variables to output variables (Montgomery, 2017). Besides, 
the proposed methodology requires the knowledge of the input variables values that 
result in the best values of the responses. Finally, the specification limits of the 
output variables (upper specification limit, USLj, and lower specification limit, 
LSLj) are needed in order to determine whether the products meet the specifications 
imposed by regulations and/or company standards. Input variables can be discrete 
or continuous variables. This section proposes the methodologies adopted to 
estimate the probabilities of occurrence of defective-output variables, separately for 
continuous and discrete variables. 

3.4.1.1 Continuous input variables   

Consider, for example, a case with only one output variable, denoted as Y, and 
one input variable, called X. The relationship between the two variables is given by 
the function Y = f(X). However, in realistic cases, this function is not exactly 
defined, i.e., the coefficients of the mathematical model are affected by uncertainty. 
Furthermore, also the optimal value of the input variable (x*), i.e., the value that 
optimizes the response output, is not exactly defined because of the uncertainty of 
the measurement device. For that reason, a variability range must be associated with 
it (by defining an upper UL and a lower LL variation limit, as illustrated in Figure 
3.11). The probability distribution associated with X depends on the characteristics 
of the input variable. For instance, if the values are all equiprobable in the interval, 
a uniform distribution should be considered. As shown in Figure 3.11, the variance 
of the probability distribution of the output variable may be estimated by composing 
the uncertainties associated with both the input variable and the mathematical 
function, through the law of composition of variances (Ver Hoef, 2012).  
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Figure 3.11 - Estimation of the probability of occurrence of defective-output variable 
(𝒑𝒀). 

 
More in general, if there are m input variables, 𝑿 = [𝑥1, … , 𝑥𝑚]T, the 

uncertainty of each one contributes to the variance of the related 𝑌𝑗 output variable, 
together with the contribution of the mathematical function coefficients, 𝑨 =
[𝑎0, 𝑎1, … , 𝑎𝑚]

T, as shown in Eq. (3.17), which is expressed in matrix form: 

𝑉𝐴𝑅(𝑌𝑗) ≈ [
𝜕𝑌𝑗

𝜕𝑲
]
𝑇

⋅ 𝑐𝑜𝑣(𝑲) ⋅ [
𝜕𝑌𝑗

𝜕𝑲
]    (j = 1, … , n) (3.17) 

 
where K is the vector of size 2m+1 of the input variables and the coefficients 

of the mathematical function, defined as 𝑲 = [𝑿, 𝑨]T, 𝑐𝑜𝑣(𝑲) is the variance-

covariance matrix and [𝜕𝑌𝑗
𝜕𝑲
] is the vector of the partial derivatives of 𝑌𝑗 with respect 

to each component of K. In 𝑐𝑜𝑣(𝑲), the element in the l, q position is the covariance 
between 𝐾𝑙 and 𝐾𝑞, defined as:  

cov(𝐾𝑙, 𝐾𝑞) = 𝜌𝑙,𝑞 ⋅ √𝑉𝐴𝑅(𝐾𝑙) ⋅ √𝑉𝐴𝑅(𝐾𝑞)     (3.18) 

where 𝜌𝑙,𝑞 is the Pearson correlation coefficients between the parameters 𝐾𝑙 and 
𝐾𝑞 (Devore, 2011).  

Given that the distribution of the output variable 𝑌𝑗 originates by many different 
random contributions, according to the central limit theorem (Montgomery, 2012), 
it can be approximated to a Normal distribution. Hence, the probability of 
occurrence of the defective-output variable 𝑝𝑌𝑗, which represents the probability 
that 𝑌𝑗 falls outside the specification limits (LSLj and USLj), may be estimated by 
computing the area of the normal distribution outside the two specification limits 
by Eq. (3.19): 

𝑝𝑌𝑗 = 1 − 𝑃(𝐿𝑆𝐿𝑗 ≤ 𝑌𝑗 ≤ 𝑈𝑆𝐿𝑗)     (3.19) 

x* X

Y

𝑝𝑌  0
𝑌 = 𝑓( )

LSL

LL UL

 
2
 

USL

Law of variance 
composition
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3.4.1.2 Discrete input variables 

The probability of occurrence of the j-th defective-output variable, 𝑝𝑌𝑗, can be 
derived from the probabilities of occurrence of defects in the final product caused 
by the input variables. Accordingly, in the model, each i-th input variable is 
associated with the probability 𝑝𝑋𝑖, i.e., the probability of occurrence of defects in 
the final part due to the input variable  𝑖.  

The relation between input and output variables is represented in the model 
through the probability 𝑝𝑌𝑗

𝑋𝑖, i.e., the probability of occurrence of the defective-

output variable Yj due to the input variable Xi. Besides, each input variable may be 
the source of more than one defective-output variable. In this situation, the 
probability that the input variable Xi causes k defective-output variables is denoted 
as 𝑝𝑌1∩𝑌2∩…∩𝑌𝑘

𝑋𝑖 , with nk  . Similarly, each defective-output variable may be caused 
by more than one input variable. In such a case, the probability that s input variables 
cause the defective-output variable Yj is identified with the probability 𝑝𝑌𝑗

𝑋1∩𝑋2∩…∩𝑋𝑠, 

with ms  . 
Consider an exemplifying process with 3 input variables and 4 output variables, 

as shown in Figure 3.10. 
 

 

Figure 3.12 - Representation of an exemplifying process with 3 input variables and 4 
output variables. 

 
In this specific example, the probabilities of occurrence of defects in the 

product due to the input variables, 𝑝𝑋𝑖  (i=1,2,3), are: 
 

𝑝𝑋1 = 𝑝𝑌1
𝑋1 + 𝑝𝑌2

𝑋1 − 𝑝𝑌1∩𝑌2
𝑋1  (3.20) 

𝑝𝑋2 = 𝑝𝑌2
𝑋2 + 𝑝𝑌3

𝑋2 − 𝑝𝑌2∩𝑌3
𝑋2  (3.21) 

𝑝𝑋3 = 𝑝𝑌4
𝑋3 (3.22) 

 
More in general, 𝑝𝑋𝑖 can be calculated, for each 𝑖 ∈ {1,2, … ,𝑚}, as follows: 
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𝑝𝑋𝑖 =∑𝑝𝑌𝑗
𝑋𝑖

𝑘

𝑗=1

− ∑ 𝑝𝑌𝑗1∩𝑌𝑗2
𝑋𝑖

𝑗1<𝑗2

+⋯+ (−1)𝑟+1 ⋅ ∑ 𝑝𝑌𝑗1∩𝑌𝑗2∩…∩𝑌𝑗𝑟
𝑋𝑖

𝑗1<𝑗2<⋯<𝑗𝑟

+⋯

+ (−1)𝑘+1 ⋅ 𝑝𝑌1∩𝑌2∩…∩𝑌𝑘
𝑋𝑖  

(3.23) 

 

where each sum ∑  𝑗1<𝑗2<⋯<𝑗𝑟 is calculated for all the (𝑘
𝑟
) possible subsets of r 

elements of the set {1,2, … , 𝑘}, and k is the total number of defective-output 
variables caused by the input variable Xi, with 𝑘 ≤ 𝑛. 

At this point, the probabilities of occurrence of defective-output variables of 
the example illustrated in Figure 3.12, 𝑝𝑌𝑗 (j=1,2,3,4), can be derived as follows: 

𝑝𝑌1 = 𝑝𝑌1
𝑋1 (3.24) 

𝑝𝑌2 = 𝑝𝑌2
𝑋1 + 𝑝𝑌2

𝑋2 − 𝑝𝑌2
𝑋1∩𝑋2 (3.25) 

𝑝𝑌3 = 𝑝𝑌3
𝑋2 (3.26) 

𝑝𝑌4 = 𝑝𝑌4
𝑋3 (3.27) 

 
where the probability 𝑝𝑌2

𝑋1∩𝑋2  in Eq. (3.25) can be calculated, according to the 
Bayes’s theorem (Schervish, 2012), as follows: 

 

𝑝𝑌2
𝑋1∩𝑋2 =

{
  
 

  
 𝑝𝑌2

𝑋1 ⋅ 𝑝𝑌2
𝑋2       if the occurrence of  1 and that of  2 are independent    

𝑝𝑌2
𝑋2|𝑋1 ⋅ 𝑝𝑌2

𝑋1    if the occurrence of  1 and that of  2 are dependent         

     (the occurrence of  1is the conditioning event)

𝑝𝑌2
𝑋1|𝑋2 ⋅ 𝑝𝑌2

𝑋2   if the occurrence of  1 and that of  2 are dependent          

        (the occurrence of  2is the conditioning event)   

 (3.28) 

 
In Eq. (3.28),  𝑝𝑌2

𝑋1|𝑋2 is the probability that the defective-output variable 𝑌2 
caused by  1 occurs, given that the defective-output variable 𝑌2 caused by  2 has 
occurred (or vice versa for 𝑝𝑌2

𝑋2|𝑋1). 
More in general, 𝑝𝑌𝑗 can be calculated, for each 𝑗 ∈ {1,2, … , 𝑛}, as follows: 
 

𝑝𝑌𝑗 =∑𝑝𝑌𝑗
𝑋𝑖

𝑠

𝑖=1

− ∑ 𝑝𝑌𝑗
𝑋𝑖1∩𝑋𝑖2

𝑖1<𝑖2

+⋯+ (−1)𝑟+1 ⋅ ∑ 𝑝𝑌𝑗
𝑋𝑖1∩𝑋𝑖2∩…∩𝑋𝑖𝑟

𝑖1<𝑖2<⋯<𝑖𝑟

+⋯

+ (−1)𝑠+1 ⋅ 𝑝𝑌𝑗
𝑋1∩𝑋2∩…∩𝑋𝑠 

(3.29) 

 
where each sum ∑  𝑗1<𝑗2<⋯<𝑗𝑟 is calculated for all the (𝑠

𝑟
) possible subsets of r 

elements of the set {1,2, … , 𝑠}, and s is the total number of input variables that cause 
the defective-output variable 𝑌𝑗 jointly, with 𝑠 ≤ 𝑚. The generic probability 
𝑝𝑌𝑗
𝑋𝑖1∩𝑋𝑖2∩…∩𝑋𝑖𝑟, expressed in Eq. (3.29), can be derived by exploiting the Bayes’s 

theorem (Schervish, 2012) and according to the logic-causal criteria between input 
variables. However, in manufacturing, it can be assumed the independence between 
the input variables, as shown in Eq. (3.30), because they are the controlled 
independent inputs of the process affecting the quality of the finished product. 
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𝑝𝑌𝑗
𝑋𝑖1∩𝑋𝑖2∩…∩𝑋𝑖𝑟  = 𝑝

𝑌𝑗

𝑋𝑖1 · 𝑝
𝑌𝑗

𝑋𝑖2 · … · 𝑝
𝑌𝑗

𝑋𝑖𝑟                 𝑗 ∈ {1,2, … , 𝑛} (3.30) 
 

3.4.2 Practical applications to Selective Laser Melting Process 

Consider the low-volume production of components by Additive 
Manufacturing process based on Selective Laser Melting (SLM) technique, also 
called Direct Metal Laser Sintering (DMLS). In this process, a high-density object 
is built up layer by layer through the consolidation of metal powder particles with 
a focused laser beam that selectively scans the surface of the powder bed (Gibson 
et al., 2014). In this process, several input variables can influence the quality of the 
finished product, including continuous variables, such as laser power, scan speed 
and hatching distance, and discrete variables, e.g., the use of recycled powder and 
the layer thickness (Sufiiarov et al., 2017; Delgado et al., 2012; Ardila et al., 2014; 
Asgari et al., 2017).  

In this section, the two proposed methodologies to predict the probability of 
occurrence of defects for continuous and discrete input variables are applied to the 
SLM process. In detail, regarding the first category of variables, the effect of laser 
power, scan speed and hatching distance on the defectiveness in terms of surface 
roughness and macro-hardness was investigated in Section 3.4.2.1. The 
methodology described in Section 3.4.1.1 was applied to obtain the probabilities of 
occurrence of defective-output variables. On the other hand, the example proposed 
in Section 3.4.2.2 shows how to obtain the probabilities of occurrence of defective-
output variables from discrete variables (see Section 3.4.1.2), i.e., use of recycled 
powder and layer thickness, and how they can be used to plan quality inspections. 

3.4.2.1 Continuous input variables 

The aluminium samples, produced using the AlSi10Mg alloy, were prepared 
by SLM with an EOS M290 machine. In this machine, a powerful ytterbium (Yb) 
fiber laser system in an argon atmosphere is used to melt powders with a continuous 
power up to 400 W, a scanning rate up to 7 m/s, and a spot size of 100 μm. During 

the production process, three areas can be identified in the parts: up-skin, down-
skin and in-skin, as shown in Figure 3.13 (a). The up-skin is the region on the part 
layer above which there is no area to be exposed. The bottom region, which is in 
contact with the building platform below it and laser exposed areas above it, is 
called down-skin. The third area, the in-skin, is the region where there are above 
and below exposed areas. For each layer, a contour of the layer structure is exposed 
with the contour speed and the laser power. After that, the inner area is solidified 
by means of the laser beam which moves line after line several times. The distance 
between the lines is called hatching distance. Once the inner area is solidified, a 
second exposure of the exterior part contour is carried out in order to increase the 
accuracy of the building process (Calignano et al., 2013). Several studies (Krishnan 
et al., 2014; Tian et al., 2017; Trevisan et al., 2017) have shown that this region-
wise differentiated parameter setting can achieve control of material properties, 
such as surface finishing and mechanical properties. In fact, according to Figure 
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3.13 (a), up- and down-skin parameters are related to surface properties, while in-
skin parameters to the core average properties of the component.  

 

Figure 3.13 - (a) Schematic of up-skin, in-skin and down-skin areas; (b) Geometry of 
specimen. 

Output variables optimization 

In this case study, the output variables measured on the specimens were macro-
hardness and up-skin roughness. It is evident from the literature that controlling and 
changing process variables may result in different quality outputs of the parts. 
Specifically, the most influencing process variables on the hardness of the parts are 
laser power, scan speed and hatching distance of the in-skin (Krishnan et al., 2014). 
For the surface roughness, process parameters chosen were laser power, scan speed 
and hatching distance of the up-skin (Calignano et al., 2013). The specimens, whose 
dimensions are 22x10x10 mm, were designed, according to Figure 3.13 (b), in order 
to measure both surface roughness and hardness. The different inclinations of the 
sample will allow evaluating how the roughness changes with the variation of the 
surface considered. In this study, the roughness of the upper surface is analyzed in 
detail. 

In order to obtain optimal process parameters that result in the best values of 
hardness and roughness, two experimental plans were designed. Specifically, two 
33 full factorial design were performed in order to investigate possible quadratic 
effects of input variables. For the first response, the hardness, the three input 
variables relevant to the in-skin, laser power (PI), scan speed (vI) and hatching 
distance (hdI), were kept at three levels. Similarly, three levels were chosen for the 
three input variables for up-skin, laser power (PU), scan speed (vU) and hatching 
distance (hdU) (see Table 3.11). In this experiment, the down-skin roughness was 
not specifically investigated.  Variable values used were the same as those of the 
up-skin. Consequently, the results achieved for the up-skin can also be reasonably 
exploited for the assessment of the down-skin. The choice of the levels of the 
process variables set in both the experimental plans allowed to get a wide range of 
energy density function, ψ, which is calculated as follows: 

𝜓 =
𝑃

ℎ𝑑⋅𝑣⋅𝑡
[
𝐽

mm3
]    (3.31) 

where P and v are respectively the laser power and scan speed, hd is hatching 
distance and t is layer thickness. Specifically, in the first experiment ψ varied from 
35.09 to 124.58 J/mm3 and in the second from 44.97 to 134.47 J/mm3. Energy 
density is strictly related to the degree of consolidation of the powder particles and 
may cause defects by creating turbulence in the melt pool (Read et al., 2015). 
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Consequently, it is often adopted in literature as a reference parameter for the setup 
of a planned experimentation (Trevisan et al., 2017). The experiments were not 
randomized because the high repeatability of the machine allowed building the 
samples in a single job, by varying process parameters for each sample (Calignano 
et al., 2013; Read et al., 2015). This approach, as a first approximation, is the one 
adopted in the computer experiment field (Sacks et al., 1989). 

Table 3.11 - Process parameters values used in the two planned experimentations. 

Hardness HB [HB] Roughness Ra [µm] 
Process 
Variable 

Values 
Fixed 

Parameter 
Value 

Process 
Variable 

Values 
Fixed 

Parameter 
Value 

PI [W] 
340 – 355 - 

370 
Layer 
thickness [µm] 

30 PU [W] 
340-355-

370 
Layer thickness 
[µm] 

30 

vI 
[mm/s] 

900 – 1300 
- 1700 

Spot size [mm] 0.1 
vU 
[mm/s] 

800-1000-
1200 

Spot size [mm] 0.1 

hdI [mm] 
0.11 – 0.15 

– 0.19 
PU [W] 355 

hdU 
[mm] 

0.11-0.16-
0.21 

PI [W] 355 

  vU [mm/s] 100   vI [mm/s] 1300 
  hdU [mm] 0.16   hdI [mm] 0.15 
 

After the production, the 27 specimens for hardness measurements were 
polished. Then, the Brinell hardness test was performed according to the industrial 
standard ISO 6506-1:2014 (ISO 6506-1:2014, 2014). The test was carried out using 
a sphere with a diameter of 2.5 mm and applying a force of 62.5 kgf, thus evaluating 
Brinell hardness in the scale HBW 2.5/62.5. For simplicity of notation, the 
measurement unit of Brinell hardness will henceforth be indicated with the symbol 
HB. Three measures for each specimen were taken and the average value was 
examined. The coefficient of variation of the three hardness measurements ranges 
from a minimum of 1% to a maximum of 7% (see Table 5.2).  

The surface roughness on the top surface of the other 27 samples was measured 
according to industrial standards ISO 4287 and ISO 4288, using a contact stylus, 
Veeco Dektak 150 Surface Profiler, with a 2 μm radius stylus tip (ISO 4287:2009, 
2009; ISO 4288:2000, 2000). The roughness parameter calculated from the filtered 
roughness profile was Ra, defined as the average value of the ordinates from 
centerline. For surfaces having a periodic profile, such as the top surfaces of the 
samples, the prescribed sampling length is based on the mean width of profile 
elements (RSm). When RSm is included between 0.13 mm and 0.4 mm, it is 
recommended to use a sampling length for filtering of 0.8 mm and to perform 
measurements over five consecutive sampling lengths, resulting in an evaluation 
length of 4 mm (ISO 4288:2000, 2000). Three measurements, each 1 mm apart, in 
the direction perpendicular to the scan path were performed on each sample, and 
the average value was examined. The coefficient of variation of the three roughness 
measurements ranges from a minimum of 1% to a maximum of 18%, except for a 
single sample which reaches 48% (see Table 5.4). Such high value may be 
attributed to the peculiarities of the measurement activity. Indeed, due the discrete 
nature of the measurements obtained using the contact stylus, each roughness 
measurement may be sensitive to localized defects. However, considering the mean 
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value of three measurements, the roughness value obtained can be considered 
representative of the up-skin. The use of a non-contact device, such as a Point 
Autofocus Instrument (PAI), could help to reduce measurements’ uncertainty and 

the related inspection errors. 
The arrangement of the two 33 full factorial designs with the indication of the 

three measurements, the resulting mean value, standard deviation and coefficient of 
variation for the hardness and the up-skin roughness are reported in Table 5.2 and 
Table 5.4, respectively.  

The Response Surface Methodology (RSM) was used to analyze the results and 
optimize the process for both the experimental designs (Montgomery, 2017). The 
arrangement of the two full factorial design allowed the development of an 
appropriate empirical equation, a second-order polynomial multiple regression 
equation. The standard stepwise regression was adopted to obtain a model 
containing exclusively significant factors. This method both adds and removes 
predictors at each step, according to selected Alpha-to-Enter and Alpha–to-Remove 
values (Devore, 2011). These two values were set at 10% to allow entering terms 
very close to the significance level of 5%. The software Minitab®, which was used 
to perform the analysis, provided the coefficients of the significant regression terms 
with their relevant standard errors, reported in Table 3.12, and the regression 
equations showed in Eqs. (3.32) and (3.33). The analysis of residuals, i.e., the 
differences between the observed and the corresponding fitted value, for both 
hardness and roughness, showed a random pattern of residuals and the absence of 
systematic errors. Furthermore, the R2 value, a measure of goodness model fit, 
shows that the variation in the response explained by the model is 92.32 % for HB 
and 72.50 % for Ra. Moreover, the S value, also known as the standard error of the 
regression or as the standard error of the estimate (Devore, 2011), is 4.55 for HB 
and 4.13 for Ra. The 3D surface plots representing how the fitted responses are 
related to the process variables are reported in Figure 3.14 and Figure 3.15.  

𝐻𝐵 = 𝑎0 + 𝑎1 ⋅ 𝑃𝐼 + 𝑎2 ⋅ 𝑣𝐼 + 𝑎3 ⋅ ℎ𝑑𝐼 + 𝑎4 ⋅ 𝑣𝐼 ⋅ 𝑣𝐼 + 𝑎5 ⋅ 𝑣𝐼 ⋅ ℎ𝑑𝐼 (3.32) 

𝑅𝑎 = 𝑏0 + 𝑏1 ⋅ 𝑣𝑈 + 𝑏2 ⋅ ℎ𝑑𝑈 + 𝑏3 ⋅ 𝑃𝑈 ⋅ 𝑃𝑈 + 𝑏4 ⋅ 𝑃𝑈 ⋅ 𝑣𝑈 + 𝑏5 ⋅ 𝑃𝑈 ⋅ ℎ𝑑𝑈 (3.33) 

In order to find the best values of laser power, scan speed and hatching distance, 
two response optimizations were performed. The objective functions were the 
maximization of hardness and the minimization of surface roughness. Parameters 
setups and the respective value of energy density ψ are summarized in Table 3.13, 
together with the predicted value of responses.  
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Table 3.12 - Estimates of regression models’ parameters (see Eqs. (3.32) and (3.33)), with 
their standard errors (SE), separately for the hardness HB [HB] and roughness Ra [µm]. The 
standard error of the estimate is 4.55 for HB and 4.13 for Ra. 

Hardness HB [HB] Roughness Ra [µm] 

Variable Parameter 
Parameter 
estimate 

Parameter 
SE 

estimate 
 Variable Parameter 

Parameter 
estimate 

Parameter SE 
estimate 

constant a0 [HB] -5.12∙101 3.57∙101  constant b0 [µm] 8.71∙101 8.45∙101 
PI a1 [HB/W] -1.42∙10-1 7.16∙10-2  vU b1 [µm/(mm/s)] -2.99∙10-1 1.41∙10-1 

vI 
a2 

[HB/(mm/s)] 
2.19∙10-1 3.28∙10-2  hdU b2 [µm/mm] 9.85∙102 5.64∙102 

hdI a3 [HB/mm] 4.85∙102 1.10∙102  PU·PU b3 [µm/W2] -5.85∙10-4 6.68∙10-4 

vI·vI 
a4 

[HB/(mm/s)2] 
-5.46∙10-5 1.16∙10-5  PU∙vU 

b4 

[µm/(W·mm/s)] 
8.76∙10-4 3.96∙10-4 

vI∙hdI 
a5 

[HB/(mm2/s)] 
-2.69∙10-1 8.22∙10-2  PU∙hdU 

b5 

[µm/(W·mm)] 
-2.58∙100 1.59∙100 

 

 

Figure 3.14 - Surface plot of HB [HB] versus: (a) hdI [mm] and PI [W] (vI was set to 
1300 mm/s); (b) vI [mm/s] and PI [W] (hdI was set to 0.15 mm); (c) hdI [mm] and vI [mm/s] 

(PI was set to 355 W). 

 

Figure 3.15 - Surface plot of Ra [µm] versus: (a) hdU [mm] and PU [W] (vU was set to 
1000 mm/s); b) vU [mm/s] and PU [W] (hdU was set to 0.16 mm); c) hdU [mm] and vU [mm/s] 

(PU was set to 355 W). 

 

 

Table 3.13 - Responses optimization (max. HB and min. Ra): process setups and 
predicted values. 

Control factors 
 HB 

predicted 
value 

 
Control factors 

 Ra 
predicted 

value 
PI 
[W] 

vI 
[mm/s] 

hdI 
[mm] 

ψ 

[J/mm3] 
Mean 
value 
[HB] 

122.45 

 PU 
[W] 

vU 
[mm/s] 

hdU 
[mm] 

ψ 

[J/mm3] 
Mean 
value 
[µm] 
29.68 

340 1538 0.19 38.78 
 

340 1200 0.11 85.85 

  

 

 



 

76 
 

Estimation of the probabilities of occurrence of defective-output variables 

Once the input parameters optimizing the responses were obtained, the 
variances of the output variables were derived, according to Eq. (3.28), by 
propagating the uncertainty of both the mathematical function parameters (see 
Table 3.12) and the input variables, evaluated as the resolution of the AM machine 
(see Table 3.14). The AM measuring device that displays the values of input 
variables is digital. In such a case, the distribution of the resolution contribution is 
uniform because the measurand can be assumed to have an equal probability of 
occurrence at any point in the range associated with the displayed value, i.e., the 
resolution interval (JCGM 100:2008, 2008). Accordingly, the standard deviations 
of the input variables are calculated considering a uniform distribution and are 
reported in Table 3.14 (JCGM 100:2008, 2008). The Pearson correlation 
coefficients between the parameters of the regression models used in the variance-
covariance matrix (see Eq. (3.29)) were derived by the software Minitab®. The 
computations were performed using the software MATLAB® and the obtained 
variances of hardness and roughness are reported in Eqs. (3.34) and (3.35) 
respectively.  

Table 3.14 - Variability range (i.e., resolution interval) and standard deviation of input 
variables, under the assumption of uniform distributions. 

It is reminded that the variance of a uniform distribution is σ2=a2/3, where a is half of the 

variability range. 

Up-skin and in-skin 
process variables 

Resolution of 
AM machine 

Process variable 
variability range 

Process variable 
standard deviation 

Laser power [W] 0.1 (PI ± 0.05) 
(PU ± 0.05) √

0.052

3
= 2.89 ∙ 10−2 

Scan speed [mm/s] 0.1 (vI ± 0.05) 
(vU ± 0.05) √

0.052

3
= 2.89 ∙ 10−2 

Hatching distance 
[mm] 0.01 (hdI ± 0.005) 

(hdU ± 0.005) √
0.0052

3
= 2.89 ∙ 10−3 

 

𝑉𝐴𝑅(HB) ≈ [
𝜕𝐻𝐵

𝜕𝑲𝐻𝐵
]
𝑇

⋅ 𝑐𝑜𝑣(𝑲𝐻𝐵) ⋅ [
𝜕𝐻𝐵

𝜕𝑲𝐻𝐵
] = 4.62 HB2   

 

(3.34) 

 

where 𝑲𝐻𝐵 = [𝑃𝐼, 𝑣𝐼, ℎ𝑑𝐼, 𝑣𝐼 · 𝑣𝐼, 𝑣𝐼 ∙ ℎ𝑑𝐼, 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5]T. 

𝑉𝐴𝑅(Ra) ≈ [
𝜕𝑅𝑎

𝜕𝑲𝑅𝑎
]
𝑇

⋅ 𝑐𝑜𝑣(𝑲𝑅𝑎) ⋅ [
𝜕𝑅𝑎

𝜕𝑲𝑅𝑎
] = 6.55 µm2     (3.35) 

where 𝑲𝑅𝑎 = [𝑃𝑈, 𝑣𝑈, ℎ𝑑𝑈, 𝑃𝑈 · 𝑃𝑈, 𝑃𝑈 ∙ 𝑣𝑈, 𝑃𝑈 ∙ ℎ𝑑𝑈, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5]T. 
 

The distributions of the two responses (HB and Ra) were also obtained through 
a computer simulation. In both cases, the normality of the distributions cannot be 
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rejected by the Anderson-Darling test at a significance level of 5%. Thus, under the 
hypothesis of normal distribution, the probabilities of occurrence of the defective-
output variables may be obtained. Given the mean values, reported in Table 3.13, 
the variances of Eqs. (3.34) and (3.35), and the specification limits, the probabilities 
of occurrence of defects, pHB and pRa, were derived by applying Eq. (3.30). The 
specification limits were fixed according to technological requirements for the 
produced parts (for hardness a lower specification limit, LSLHB, was set to 114 HB 
and for roughness an upper specification limit, USLRa, was set to 36 µm). The two 
resulting probabilities are shown in Eqs. (3.36) and (3.37). 

𝑝𝐻𝐵 = 𝑃(𝐻𝐵 ≤ 𝐿𝑆𝐿𝐻𝐵) = 0.55%  (3.36) 

𝑝𝑅𝑎 = 𝑃(𝑅𝑎 ≥ 𝑈𝑆𝐿𝑅𝑎) = 0.67%  (3.37) 

To summarize, by providing a quantitative assessment of defect probabilities, 
this methodology can help researchers and practitioners in their understanding of 
the SLM process in terms of defect generation. Operatively, the approach herein 
presented has the great potential of supporting inspection designers in the planning 
of effective quality inspection strategies during the early phases of inspection 
planning (see next Chapter 5). 

3.4.2.2 Discrete input variables 

The use us recycled powder may be considered a Boolean variable (use or not 
of the recycled powder). The second variable, the layer thickness, is primarily 
chosen based on the particle size and cannot be thinner than the largest particle in 
the powder (Hutmacher et al., 2004). Besides, in AM machines, the layer thickness 
can typically assume discrete values in the permissible range. For instance, in the 
machine EOSIN M 270, the layer thickness can vary from 20 µm to 100 µm, 
depending on the material, and assuming the following values: 20 µm, 30 µm, 40 
µm, 50 µm, 60 µm, 70 µm, 80 µm, 90 µm and 100 µm. In the scientific literature, 
extensive studies have shown the effect of recycled powder and layer thickness on 
porosity, tensile strength and dimensional accuracy of components produced with 
SLM technique. In particular, some authors found empirically that the use of 
recycled powder has a significant effect on porosity and mechanical properties, 
including tensile strength (Ardila et al., 2014; Asgari et al., 2017; Hadadzadeh et 
al., 2018), while layer thickness on dimensional accuracy as well as tensile 
properties (Basalah et al., 2016; Delgado et al., 2012; Xu et al., 2015). Although 
recycled powder and layer thickness may also affect other output variables, e.g., 
surface roughness (Z. Chen et al., 2018), this example is restricted to analyzing 
porosity, tensile strength and dimensional accuracy. However, the proposed 
approach can be extended to further output variables. The recycled powder is 
denoted as RP and the layer thickness is denoted as LT. The output variables, i.e., 
porosity, tensile strength and dimensional accuracy, are denoted as PO, TS, DA, 
respectively (see Figure 3.16). 
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Figure 3.16 - Schematic of the SLM process with 2 input variables and 3 output 
variables with the related probabilities.  

 
Let us assume that the probabilities of occurrence of defects in the product due 

to RP and LT, pRP and pLT, are respectively 2% and 3%. Regarding RP, see Eq. 
(3.38), the probability that it causes defects of porosity, 𝑝𝑃𝑂𝑅𝑃, is 2% and defects of 
tensile strength, 𝑝𝑇𝑆𝑅𝑃, is 1%. Besides, RP jointly produces defects of porosity and 
tensile strength with a probability 𝑝𝑃𝑂∩𝑇𝑆𝑅𝑃  of 1%. Regarding LT, see Eq. (3.39), it 
causes defects of tensile strength with a probability 𝑝𝑇𝑆𝐿𝑇 of 2%, defects of 
dimensional accuracy with a probability 𝑝𝐷𝐴𝐿𝑇  of 3% and jointly defects of tensile 
strength and dimensional accuracy with a probability 𝑝𝑇𝑆∩𝐷𝐴𝐿𝑇  of 2%.  

 
𝑝𝑅𝑃 = 𝑝𝑃𝑂

𝑅𝑃 + 𝑝𝑇𝑆
𝑅𝑃 − 𝑝𝑃𝑂∩𝑇𝑆

𝑅𝑃 =2%+1%-1%=1% (3.38) 

𝑝𝐿𝑇 = 𝑝𝑇𝑆
𝐿𝑇 + 𝑝𝐷𝐴

𝐿𝑇 − 𝑝𝑇𝑆∩𝐷𝐴
𝐿𝑇 =2%+3%-2%=3% (3.39) 

 
Accordingly, the probabilities of occurrence of defective-output variables can 

be derived, according to Eqs. (3.29) and (3.30):  
 

𝑝𝑃𝑂 = 𝑝𝑃𝑂
𝑅𝑃=2% 

𝑝𝑇𝑆 = 𝑝𝑇𝑆
𝑅𝑃 + 𝑝𝑇𝑆

𝐿𝑇 − 𝑝𝑌2
𝑅𝑃∩𝐿𝑇=1%+2%-(1%·2%)=2.98% 

𝑝𝐷𝐴 = 𝑝𝐷𝐴
𝐿𝑇=3% 

(3.40) 

(3.41) 

(3.42) 

 
At this point, once the probabilities of occurrence of defective-output variables 

are derived from the relationships existing with the input variables, the probabilities 
that these defective-output variables occur jointly can be obtained. Such 
probabilities can be derived from the related conditional probabilities. For instance, 
let us assume that the following conditional probabilities occur in the SLM process: 

 
𝑝𝑇𝑆|𝑃𝑂
 =60% 

𝑝𝐷𝐴|𝑃𝑂
 =20% 

𝑝(𝑇𝑆∩𝐷𝐴)|𝑃𝑂
 =10% 

𝑝𝐷𝐴|𝑇𝑆
 =15% 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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By exploiting the Bayes’s theorem (Schervish, 2012), the probabilities that the 
defective-output variables occur jointly are derived, as follows: 

𝑝𝑇𝑆∩𝑃𝑂
 = 𝑝𝑇𝑆|𝑃𝑂

 · 𝑝𝑃𝑂
 = 1.2% (3.47) 

𝑝𝐷𝐴∩𝑃𝑂
 = 𝑝𝐷𝐴|𝑃𝑂

 · 𝑝𝑃𝑂
 = 0.4% (3.48) 

𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂
 = 𝑝(𝑇𝑆∩𝐷𝐴)|𝑃𝑂

 · 𝑝𝑃𝑂
 = 0.2% (3.49) 

𝑝𝐷𝐴∩𝑇𝑆
 = 𝑝𝐷𝐴|𝑇𝑆

 · 𝑝𝑇𝑆
 = 0.45% (3.50) 
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Chapter 4 : 
Inspection 
strategies 
modeling and 
performance 
measurement 

For years, manufacturing companies have exploited traditional approaches to 
design quality-inspections (Montgomery, 2012; Mandroli et al., 2006). Nowadays, 
the increasing complexity and customization of products require more 
sophisticated, flexible and, therefore, expensive quality control strategies 
(Colledani et al., 2014; Eger et al., 2018). There are several aspects that inspection 
designers have to consider during the design of inspections, including (i) the 
typology of production to be inspected, and (ii) the kind of quality control to be 
performed. The low production rate and the high level of complexity and 
customization of low-volume productions often require the execution of specific 
inspection strategies. Consequently, assessing whether one inspection procedure is 
better than another in terms of both efficiency and cost is often critical for these 
productions. 

Although this topic is attracting increasing interest from researchers and 
practitioners, there remains a paucity of quantitative methods that can be used to 
evaluate both in-process and offline inspection performances of low-volume 
productions. To this aim, this chapter extends the studies proposed by Franceschini 
et al. (2018) and Genta et al. (2018) by adapting the two practical performance 
measures conceived for in-process inspections to offline inspections. In detail: 
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• Section 4.1 reviews the methodology proposed by Franceschini et al. 
(2018) and Genta et al. (2018) to assess inspection effectiveness and 
cost in the case of in-process inspection strategies. 

• Section 4.2 aims to adapt the methodology proposed in Section 4.1 to 
the case of offline inspections. The approach also involves possible 
interactions between process and inspection variables, in terms of 
cause-and-effect relationships, in addition to potential imperfect 
inspections. 

• Section 4.3 enrich the proposed method by providing an approach to 
evaluate the uncertainty of the performance measures, both in the case 
of in-process and offline inspections. 

4.1 In-process inspections 

In the case of in-process inspections, Franceschini et al. (2018) and Genta et al. 
(2018) proposed to decompose the manufacturing process into a certain number of 
steps, i.e., specific operations providing an added value to the end product. Further, 
they developed a probabilistic model with the aim to define two performance 
indicators for inspection strategies related to inspection effectiveness and 
affordability. In detail, the inspection strategy modeling and the probabilistic model 
are described in Section 4.1.1, while the performance measures are review in 
Section 4.1.2. The probabilistic model and, accordingly, the two indicators of 
effectiveness and total cost, used to depict an inspection strategy, may be integrated 
with the defect generation models that have been proposed in Section 3.3. 

4.1.1 Inspection strategy modeling 

As highlighted in the previous Section 3.3, an overall assembly manufacturing 
process, in optimal settings condition, may be modeled by decomposing it into 
several process steps, also called workstations (Shibata, 2002; Su et al., 2010; Genta 
et al., 2018; Franceschini et al., 2018). Each of such workstations produces an 
outcome, henceforth called workstation-output, whose conformity can be tested 
through different inspection activities. Quality control activities are performed on 
the workstation-output according to the specific kind of defect to be detected. They 
include, for instance, dimensional verifications, visual checks, comparison with 
reference exemplars, mechanical tests, etc. (Savio et al., 2016; See, 2012; Bress, 
2017). The combination of the inspection activities performed on the workstations 
defines an inspection strategy for the assembly process. Inspection designers can 
choose between several alternative strategies to inspect an overall manufacturing 
process. For example, a strategy may require all workstations to be inspected or 
only some of them. Alternatively, the choice may concern a strategy where all 
workstations are inspected by visual checks or another one where only mechanical 
tests are performed, and so on. 

According to Franceschini et al. (2018), it is assumed that (i) for each 
workstation there can be one-and-only-one defect typology, (ii) defects originated 



 

82 
 

in different workstations are uncorrelated, (iii) the occurrence of defects and that of 
inspection errors are uncorrelated. 

When performing an inspection activity, two types of inspection errors may 
occur: there are a risk of detecting a defect when it is not present (type I error) and 
a risk of not detecting the defect when it is actually present (type II error). Although 
such risks can be reduced through sophisticated quality monitoring techniques, 
manual and/or automatic, they should not be neglected (C. H. Wang, 2007; Ko et 
al., 2013; Sarkar and Saren, 2016; Tang and Schneider, 1987).  

In the modeling of a manufacturing process and inspection strategy, the 
outcome of each i-th workstation is modeled by a Bernoulli distribution 
(Montgomery, 2012). Thus, each i-th workstation (where i=1,…,m) can be 
associated with three variables (Franceschini et al., 2018): 

• pi: probability of occurrence of a defective-workstation-output in optimal 
operating conditions; 

• αi: probability of erroneously detecting a defective-workstation-output (i.e., 
type-I inspection error); 

• βi: probability of erroneously not detecting a defective-workstation-output 
(i.e., type-II inspection error). 

The first variable, pi, is strictly related to the quality of the process relative to 
the i-th workstation. It should be emphasized that such defect probability is due to 
a physiological condition of the process; therefore, it is not affected by occasional 
failures or errors. On the other hand, the inspection errors αi and βi depend on the 
quality of the inspection activity, that involves the inspection typology and 
procedure, the technical skills and experience of the operators, the environmental 
conditions, etc. (Duffuaa and Khan, 2005; C. W. Kang et al., 2018; Tzimerman and 
Herer, 2009; Tang and Schneider, 1987). In practical applications, the variables pi, 
αi and βi can be estimated by the use of simulations, prediction models and/or 
empirical methods, based on historical data, previous experience on similar 
processes, and process knowledge (Franceschini et al., 2018; Genta et al., 2018; 
Galetto, Verna, Genta, et al., 2020). In particular, the probability of occurrence of 
at least one defect in each workstation i (pi) may be estimated as the fraction of 
nonconforming units in the workstation i (Montgomery, 2012). Accordingly, pi may 
be calculated, in the case of low-volume productions, by exploiting the defect rates 
obtained using the defects rates predicted by the models described in Section 3.3 
and the number of job elements in the relative workstation, as shown in Eq. (4.1) 
(Genta et al., 2018): 

 

𝑝𝑖 = 1 − (1 −
𝐷𝑃𝑈𝑖
𝑁𝑎,𝑖

)

𝑁𝑎,𝑖

 (4.1) 

 
It should be remarked that Eq. (4.1) is obtained under the assumptions that: (i) 

each job element may introduce at most one defect; and (ii) for each workstation i, 
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the probability of occurrence of a defect is the same for each job element (Hinckley, 
1994; Genta et al., 2018). 

According to Franceschini et al. (2018), the following probabilities can be 
calculated for each i-th workstation: 

 
𝑃(signalling a defective-workstation output in the workstation i)

= 𝑝i ⋅ (1 − 𝛽𝑖) + (1 − 𝑝i) ⋅ 𝛼i 
(4.2) 

and 
𝑃(not signalling a defective-workstation output in the workstation i)

= 𝑝i ⋅ 𝛽𝑖 + (1 − 𝑝i) ⋅ (1 − 𝛼i) 
(4.3) 

 
where i = 1, …, m, i.e. the total number of workstations.  

 
In the case a defective-workstation-output is signaled, this will be true with a 

probability pi∙(1-βi) or false with a probability (1–pi)∙αi (see Eq. (4.2)). On the other 
hand, in the case no defect is signaled, this will be the result of an inspection error 
with a probability pi∙βi, or will be due to the real absence of any defect with a 
probability (1-pi)∙(1-αi) (see Eq. (4.3)). 

Considering the m Bernoulli random variables Xi, they are defined as 
(Franceschini et al., 2018): 

• Xi = 0: when (i) a defective-workstation-output is correctly signaled, or 
(ii) no defect is present in the i-th workstation; 

• Xi = 1: when a defective-workstation-output is erroneously not signaled 
in the i-th workstation. 

4.1.2 Inspection performance measures: effectiveness and total cost 

A typical inspection strategy performance may be assessed by two inspection 
indicators that depict the overall effectiveness and economic convenience of an 
inspection strategy (Savio et al., 2016; De Ruyter et al., 2002; Avinadav and 
Perlman, 2013; Verna et al., 2020e). As explained in recent studies (Franceschini 
et al., 2018; Genta et al., 2018; Galetto, Verna, Genta, et al., 2020), the inspection 
effectiveness of an inspection strategy may be represented using a practical 
indicator, Dtot, defining the mean total number of defective-workstation-outputs 
which are erroneously not detected after completing the overall inspection strategy, 
as follows (Genta et al., 2018; Franceschini et al., 2018): 

 

𝐷𝑡𝑜𝑡 =∑𝐸( 𝑖)

𝑚

𝑖=1

=∑𝐷𝑖

𝑚

𝑖=1

=∑𝑝𝑖 ⋅ 𝛽𝑖

𝑚

𝑖=1

 (4.4) 

 
where Di represents the mean number of real defects undetected in the i-th 

workstation. The indicator Dtot is obtained by assuming that the variables pi, αi and 
βi related to both the same workstations and to different ones are uncorrelated.  
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The total cost related to the inspection strategy may be estimated by the total 
cost indicator, Ctot, that includes the cost of the specific inspection activity, the 
necessary- and the unnecessary-repair costs, and the cost of undetected defects, as 
defined in Eq. (4.5) (Franceschini et al., 2018; Galetto, Verna, Genta, et al., 2020):  

 
𝐶𝑡𝑜𝑡
 =∑ 𝐶𝑡𝑜𝑡,𝑖

 𝑚

𝑖=1
= ∑ [𝑐𝑖 +𝑁𝑅𝐶𝑖 ⋅ 𝑝𝑖 ⋅ (1 − 𝛽𝑖) + 𝑈𝑅𝐶𝑖 ⋅

𝑚
𝑖=1

(1 − 𝑝𝑖) ⋅ 𝛼𝑖 +𝑁𝐷𝐶𝑖 ⋅ 𝑝𝑖 ⋅ 𝛽𝑖]  
(4.5) 

where: 

• 𝐶𝑡𝑜𝑡,𝑖
 is the total cost related to the i-th workstation; 

• ci is the cost of the control performed in the i-th workstation; 
• NRCi is the Necessary-Repair Cost, namely the necessary cost for 

repairing/removing the defective-workstation-outputs (or in some cases 
the cost of rejection); 

• URCi is the Unnecessary-Repair Cost, i.e., the cost incurred when 
identifying false defective-workstation outputs; e.g., despite there is no 
cost required for defective-workstation-outputs removal, the overall 
process can be slowed down, with a consequent extra cost. 

• NDCi is the cost of undetected defective-workstation-outputs, namely 
the external failure costs related to the missing detection of defective-
workstation-outputs, including legal fees related to customer lawsuits, 
loss of future sales from dissatisfied customers, product recalls, product 
return costs, after-sales repair costs, etc. (Verna et al., 2020e). 

• NDCi is the cost of undetected defects, i.e., the cost related to the 
missing detection of defects.  

Apart from the estimate of the probabilities pi, αi and βi, the calculation of the 
total cost indicator requires the estimate of additional quantities. In general, ci and 
NRCi are known costs, URCi is likely to be relatively easy to estimate, while NDCi 
is difficult to estimate since it may depend on difficult-to-quantify factors. It is 
noted that among the parameters in Eq. (4.5) only ci, αi and βi are related to the 
inspection strategy adopted. Indeed, the costs NRCi, URCi and NDCi depend on the 
cost concerning (in)appropriate defect repair or missing defect detection, while pi 
is associated with the process propensity to generate defects. 

Even this indicator is obtained under the assumption of absence of statistical 
correlation between the variables pi, αi and βi related both to the same workstations 
and to different ones. 

The indicator Ctot gives a trade-off among different cost components. For each 
i-th workstation, the first cost component ci is always present, in the case an 
inspection is performed, while the second component 𝑁𝑅𝐶𝑖 ⋅ 𝑝𝑖 ⋅ (1 − 𝛽𝑖) generally 
has an opposite behavior with respect to the latter two components 𝑈𝑅𝐶𝑖 ⋅
(1 − 𝑝𝑖) ⋅ 𝛼𝑖 and 𝑁𝐷𝐶𝑖 ⋅ 𝑝𝑖 ⋅ 𝛽𝑖. In fact, when the defect is detected and repair is 
performed correctly, we certainly do not incur in the third and fourth cost 
components. Consider the i-th workstation and suppose that the parameters pi, ci, 
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NRCi, URCi, and NDCi are known and fixed. The first cost component ci is 
independent of αi and βi, the second and fourth component are functions of βi, and 
the third component is a function of αi, as shown in Figure 4.1.  

 

 

Figure 4.1 - Cost components as functions of the probabilities αi and βi for a generic i-th 
workstation (Franceschini et al., 2018). 

It is worth remarking that, as the quality of the inspections is improved (i.e., αi 
and βi are likely to decrease, while 𝑐𝑖 is likely to increase, due to the improved 
testing activities), then the contributions 𝑈𝑅𝐶𝑖 ⋅ (1 − 𝑝𝑖) ⋅ 𝛼𝑖 and 𝑁𝐷𝐶𝑖 ⋅ 𝑝𝑖 ⋅ 𝛽𝑖 will 
tend to decrease, while 𝑁𝑅𝐶𝑖 ⋅ 𝑝𝑖 ⋅ (1 − 𝛽𝑖) and 𝑐𝑖 will tend to increase. The 
indicator Ctot may be consequently affected by compensation effects.  

The indicator Ctot provides a preliminary indication of the total cost related to 
the inspection strategy in use. In this sense, it can be used as a proxy for the 
economic convenience of an inspection procedure.  

4.2 Offline inspections3 

The probabilistic model and the two performance measures describe in Section 
4.1 are now adapted to the case of offline inspections. In particular, the purpose of 
this section is to quantify inspection effectiveness and cost to support designers in 
offline inspection planning. After having modeled the inspection strategy in Section 
4.2.1, two practical performance indicators are developed to assist designers in 
choosing the best compromise between effectiveness and cost of alternative 
inspection strategies in the next Section 4.2.2. Besides, the method proposed is 
improved in Section 4.2.3 by including possible interaction between model 
variables and costs occurring during the inspection process. An excerpt of the 
application of the method to a real case study in the field of Additive Manufacturing 
processes is also proposed.  

 
3 Part of the work described in this section was also previously published in Verna E., Genta 

G., Galetto M., and Franceschini F. (2020c). “Planning Offline Inspection Strategies in Low-
Volume Manufacturing Processes.” Quality Engineering In press, DOI: 
10.1080/08982112.2020.1739309 
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4.2.1 Inspection strategy modeling 

With reference to the manufacturing process modeling described in Section 
3.4.1, to check the conformity of the product, many different inspection strategies 
aimed at evaluating the output variables may be performed, such as dimensional 
verifications, visual checks, comparison with reference exemplars, mechanical 
tests, etc. (Savio et al., 2016; See, 2012; Bress, 2017). For each inspection activity, 
there is a risk of detecting a defect when it is not present (type I error), and a risk of 
not detecting it when it is actually present (type II error). Although these risks can 
be minimized by using sophisticated (manual and/or automatic) quality monitoring 
techniques, they can never be eliminated. Accordingly, the following probabilities 
can be associated with each j-th output variable: 

• 𝑝𝑌𝑗: probability of occurrence of a defect related to output variable Yj in 
nominal operating conditions;  

• 𝛼𝑌𝑗: probability of erroneously detecting a defect related to output variable 
Yj (i.e., type-I inspection error);  

• 𝛽𝑌𝑗: probability of erroneously not detecting a defect related to output 
variable Yj (i.e., type-II inspection error). 

The probability 𝑝𝑌𝑗 concerns the quality of the process and it is strictly related 
to the intrinsic characteristics of the process and its propensity to generate defects. 
The inspection errors 𝛼𝑌𝑗  and 𝛽𝑌𝑗 depend on the quality of the j-th output variable 
inspection activity. They are strongly related to factors such as the technical skills 
and experience of the inspectors, the type of inspection performed, the time allowed 
for inspection, the work environment, and other work- and inspection-related 
factors (C. W. Kang et al., 2018; Tzimerman and Herer, 2009; Duffuaa and Khan, 
2005; Tang and Schneider, 1987). In practical applications, the probabilities 𝑝𝑌𝑗, 
𝛼𝑌𝑗  and 𝛽𝑌𝑗 may be a priori estimated using adequate probabilistic models, 
empirical methods (historical data, previous experience on similar processes, 
process knowledge, etc.) or simulations (Franceschini et al., 2018; Genta et al., 
2018; Sarkar and Saren, 2016; De Ruyter et al., 2002; Galetto, Verna, Genta, et al., 
2020).  

4.2.2 Inspection performance measures 

According to Verna et al. (Verna et al., 2020e), for each j-th output variable 
(j=1,…,n) the following probabilities can be obtained: 

 
𝑃(classify the output variable 𝑌𝑗 as defective)

= 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) + (1 − 𝑝𝑌𝑗) ⋅ 𝛼𝑌𝑗 
(4.6) 
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𝑃(classify the output variable 𝑌𝑗 as not defective)

= 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗 + (1 − 𝑝𝑌𝑗) ⋅ (1 − 𝛼𝑌𝑗) 
(4.7) 

 
In the case a defective-output variable is classified, this will be true with a 

probability 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) or false with a probability (1 − 𝑝𝑌𝑗) ⋅ 𝛼𝑌𝑗 , see Eq. (4.6). 
On the other hand, in case no defective-output variable is classified, this will be the 
result of an inspection error with a probability 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗, or will be due to the real 

absence of any defective-output variable with a probability (1 − 𝑝𝑌𝑗) ⋅ (1 − 𝛼𝑌𝑗), 
see Eq. (4.7). Figure 4.2 depicts this scenario. The above probabilities represent the 
“elementary bricks” for the construction of two indicators depicting the 

performance of inspection strategies in terms of effectiveness and cost 
(Franceschini et al., 2018; Genta et al., 2018).  

 

 

Figure 4.2 – Tree diagram of the inspection process of each j-th output variable. 

Next, n Bernoulli random variables (𝑊𝑗) can be defined as follows: 

• 𝑊𝑗 =0, when either (i) the truly defective output variable Yj is detected 
as such or (ii) the output variable Yj is not defective; 

• 𝑊𝑗 =1, the truly defective output variable Yj is not detected as such. 

According to Eq. (4.6) and (4.7), the following two relationships are obtained  
(j = 1, … , n): 

𝑃(𝑊𝑗 = 0) = 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) + (1 − 𝑝𝑌𝑗)  (4.8) 

𝑃(𝑊𝑗 = 1) = 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗  (4.9) 

 
Indeed, an authentic defective-output variable is detected with a probability 

𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) and not detected with a probability 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗. Instead, when no 
defective-output variable is actually present, a defect may be detected with a 
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probability (1 − 𝑝𝑌𝑗) ⋅ 𝛼𝑌𝑗  and not detected with a probability (1 − 𝑝𝑌𝑗) ⋅

(1 − 𝛼𝑌𝑗). Of course, the sum of the latter two probabilities is the probability that 

no defect is present, i.e. (1 − 𝑝𝑌𝑗). 
Therefore, the mean number of real defective-output undetected for the j-th 

output-variable is: 
𝐷𝑌𝑗 = 𝐸(𝑊𝑗) = 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗 (4.10) 

 
When considering the overall inspection strategy, the mean total number of 

defective-output variables which are erroneously not detected can be defined as: 
 

𝐷𝑡𝑜𝑡 = ∑ 𝐸(𝑊𝑗)
𝑛
𝑗=1 = ∑ 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗

𝑛
𝑗=1   (4.11) 

 
The variable Dtot is assumed as a first approximation of inspection effectiveness 

since it provides a measure of the overall effectiveness of the inspection strategy 
performed on the product. It should be pointed out that Eq. (4.11) is obtained under 
the hypothesis of no interaction between inspection errors and defect probabilities 
of different output variables. As a consequence, the two output variables can be 
considered decoupled. 

Regarding each output variable Yj, the total cost for inspection and defects 
removal can be expressed as (Genta et al., 2018): 

 
𝐶𝑌𝑗 = 𝐹𝐶𝑗 + 𝑐𝑗 + 𝑁𝑅𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) + 𝑈𝑅𝐶𝑗 ⋅ (1 − 𝑝𝑌𝑗) ⋅

𝛼𝑌𝑗 + 𝑁𝐷𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗  
(4.12) 

where: 

• FCj is the fixed cost for controlling and keeping the input variables at 
the values which result in the best values of the response, and within 
their variability range; 

• cj is the cost of the j-th inspection activity (e.g., manual or automatic 
inspection activities); 

• NRCj is the necessary-repair cost, i.e., the necessary cost for removing 
defects of the j-th output variable; 

• URCj is the unnecessary-repair cost, i.e., the cost incurred when 
identifying false defective-output variables; e.g., despite there is no cost 
required for defective-output variables removal, the overall process can 
be slowed down, with a consequent extra cost; 

• NDCj is the cost of undetected defective-output variables, i.e., the cost 
related to the missing detection of defective-output variables. 

As shown in Eq. (4.12), 𝐶𝑌𝑗  is composed of five cost components. The first cost 
component, 𝐹𝐶𝑗, depends on the quality of the inspection used to control the input 
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variables that affect the j-th output variable. The second cost component, 𝑐𝑗, is 
always present in the case an inspection is performed, and it is strictly related to the 

quality of the inspection. The third cost component, 𝑁𝑅𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗), 
generally has an opposite behavior with respect to the latter two components, 
𝑈𝑅𝐶𝑗 ⋅ (1 − 𝑝𝑌𝑗) ⋅ 𝛼𝑌𝑗  and 𝑁𝐷𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗. Indeed, when the quality of the 

inspections improves, it is probable that 𝛼𝑌𝑗  and 𝛽𝑌𝑗 decrease and 𝑐𝑗 increase, due 
to the enhancement of controls. As a result, the contributions of the fourth and fifth 
cost components will tend to decrease, being respectively functions of 𝛼𝑌𝑗  and 𝛽𝑌𝑗, 
whilst the third cost component, together with the inspection cost 𝑐𝑗, will tend to 
increase. 

In addition to the estimates of the probabilities 𝑝𝑌𝑗, 𝛼𝑌𝑗  and 𝛽𝑌𝑗, the evaluation 
of the costs FCj, cj, NRCj, URCj, NDCj, which are considered fixed parameters as a 
preliminary approximation, is required. Typically, FCj, cj and NRCj are known 
costs. URCj is usually relatively easy to estimate, while NDCj is usually hard to 
estimate since it may depend on difficult-to-quantify factors, such as external 
failure costs including legal fees related to customer lawsuits, loss of future sales 
from dissatisfied customers, product recalls, product return costs, after-sales repair 
costs, etc. (Verna et al., 2020e). 

The total cost for inspection and defective-output variables removal related to 
the overall inspection strategy (n output variables) can be expressed as: 

 

𝐶𝑡𝑜𝑡 = ∑ 𝐶𝑌𝑗
𝑛
𝑗=1 = ∑ [𝐹𝐶𝑗 + 𝑐𝑗 +𝑁𝑅𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) +

𝑛
𝑗=1

𝑈𝑅𝐶𝑗 ⋅ (1 − 𝑝𝑌𝑗) ⋅ 𝛼𝑌𝑗 + 𝑁𝐷𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗]  
(4.13) 

 
Eq. (4.13) can be considered a preliminary approximation of the total cost of 

the inspection strategy. Even for this indicator, it is assumed that no interaction 
between inspection errors and defect probabilities of different output variables 
occurs. Furthermore, Eq. (4.13) does not consider possible cost-sharing between 
the output variables. As a result, in some circumstances 𝐶𝑡𝑜𝑡 might overestimate the 
costs related to the inspection strategy. 

4.2.3 Interaction between model variables  

As mentioned above, Eqs. (4.11) and (4.13) are obtained under the assumption 
of no interaction between defects and inspections errors of different output 
variables. This allows to decouple the corresponding output variables and, 
therefore, to consider the related events as mutually exclusive, i.e., disjoint events. 
However, in practical situations, different defective-output variables can occur 
jointly, requiring the proposed model and performance indicators to be refined. 
Besides, when several output variables are considered together, the interaction 
between the costs related to their inspections should also be considered in the final 
cost indicator. 
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It is worth noting that, in this study, possible interactions between variables are 
intended as cause-and-effect relationships and not merely as correlations. Indeed, a 
correlation is a statistical measure of the relationship between two or more variables 
that, however, does not provide information about the cause-and-effect relationship 
of the data (Eger et al., 2018; Murdoch and Barnes, 1973). 

Consider for example two output variables denoted by 𝑌1 and 𝑌2 that are 
inspected on the final product. In the case of interaction between defects and 
inspections errors of 𝑌1 and 𝑌2, there are 16 different possibilities in such an 
inspection process, including some cases of misclassifications and other of correct 
classifications. This scenario is depicted in Figure 4.3.  

It should be highlighted that the events represented in Figure 4.3, both related 
to the occurrence of defects and inspection errors, are considered independent. For 
instance, the occurrence of the defective-output variable 𝑌2 is independent from the 
occurrence of the defective output-variable 𝑌1. Besides, inspections on 𝑌1 and 𝑌2 
are performed separately, as it happens in most practical cases, and the 
corresponding inspection errors do not depend on the typology of the defect. 
Accordingly, as shown in Figure 4.3, the type-I and type-II inspection errors are the 
same in all the paths of the graphical model. In graphical terms, this situation is 
indicated by the absence of any direct arrow between the nodes of the events in the 
tree diagram.  

However, in real situations, the assumption of independence between the 
defective-output variables can be an oversimplification. In general, probabilities are 
context sensitive. For example, the probability of occurrence of the defective-output 
variable 𝑌2 can be conditioned on the occurrence of the other defective-output 
variable 𝑌1, or vice versa. In such a case, i.e., when there is a dependence between 
the occurrence of defective-output variables, the scenario is depicted in Figure 4.4. 
The four possible combinations of defects in such a scenario are: Event (A) - 
𝑌1 defective and 𝑌2 defective; Event (B) - 𝑌1 defective and 𝑌2 non-defective; Event 
(C) - 𝑌1 non-defective and 𝑌2 defective; Event (D) - 𝑌1 non-defective and 𝑌2 non-
defective. The probabilities associated with each event are reported in Figure 4.4. 
Specifically, the probability that the two defective-output variables occur jointly, 
𝑝𝑌1∩𝑌2, can be obtained by exploiting Bayes’s theorem (Schervish, 2012), as 
follows: 

𝑝𝑌1∩𝑌2 =

{
 
 

 
 
𝑝𝑌2
 ⋅ 𝑝𝑌1

       if the occurrence of 𝑌1 and that of 𝑌2 are independent            

𝑝𝑌2|𝑌1
 ⋅ 𝑝𝑌1

  if the occurrence of 𝑌1 and that of 𝑌2 are dependent               

           (the occurrence of 𝑌1 is the conditioning event)

𝑝𝑌1|𝑌2
 ⋅ 𝑝𝑌2

  if the occurrence of 𝑌1 and that of 𝑌2 are dependent               

           (the occurrence of 𝑌2 is the conditioning event)

 (4.14) 
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Figure 4.3 – Tree diagram of the inspection process of 2 output variables in case of independence between the occurrence of defects, inspection errors and both. 



 

92 
 

In light of this, according to the structure of the problem and the directionality 
of the cause-and-effect relationship between the output variables, in the graphical 
model depicted in Figure 4.4, 𝑝𝑌1∩𝑌2  should be replaced by the probabilities reported 
in Eq. (4.14). It should be noted that, when the occurrence of 𝑌1 and that of 𝑌2 are 
independent, the diagram in Figure 4.4 can lead back to the diagram in Figure 4.3. 

As far as inspection errors are concerned, their probability could also be related 
to the occurrence of the defective-output variables, i.e., to the four different events 
(A), (B), (C) and (D). In this case, simple probabilities should be replaced by 
conditional probabilities, as shown in Figure 4.5. In detail, four different inspection 
errors can occur when inspecting 𝑌1 (𝛽𝑌1|𝐴, 𝛽𝑌1|𝐵, 𝛼𝑌1|𝐶 and 𝛼𝑌1 |𝐷), and other four 
when inspecting 𝑌2 (𝛽𝑌2|𝐴, 𝛽𝑌2|𝐶, 𝛼𝑌2|𝐵, 𝛼𝑌2|𝐷). However, in practical applications, 
inspection errors are not mainly related to the part to be inspected and its defects, 
instead they depend closely on factors such as the measuring device and procedure, 
the inspectors, and other work- and inspection-related factors (Mehmood Khan et 
al., 2011; Dorris and Foote, 1978). For that reason, as a first approximation, the 
model and indicators proposed in this study rely on the independence between 
inspection errors and the occurrence of defects. 

More in general, when considering n output variables inspected, the possible 
combinations in which the defects can occur in the product are 2n, each one 
associated with 2n possible combinations of inspection errors, resulting in a total of 
22n combinations.  
 
 



 

93 
 

 

Figure 4.4 – Tree diagram of the inspection process of 2 output variables in case of independence between inspection errors, and between inspection error and the 
occurrence of defects. 
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Figure 4.5 - Tree diagram of the inspection process of 2 output variables in case of independence between inspection errors. 
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4.2.3.1 Inspection effectiveness 

Let us now define a Bernoulli random variable (𝑊) as follows: 

• 𝑊 = 0, when either (i) a truly defective output variable is classified as 
defective or (ii) an output variable is not defective; 

• 𝑊 = 1, a truly defective output variable is not classified as defective. 

According to the graphical models of Figure 4.3, Figure 4.4 and Figure 4.5, 
𝑃(𝑊 = 0) can be obtained by multiplying the probabilities on the paths with 
continuous lines, while 𝑃(𝑊 = 1) can be derived by multiplying the probabilities 
on the paths with dotted lines. In the specific case of independence between 
inspection errors and the related defective-output variables (see Figure 4.4), the 
following two relationships are obtained:  

𝑃(𝑊 = 0) = 1 − 𝑝𝑌1 ⋅ 𝛽𝑌1 − 𝑝𝑌2 ⋅ 𝛽𝑌2 + 𝑝𝑌1∩𝑌2 ⋅ 𝛽𝑌1 ⋅ 𝛽𝑌2   (4.15) 

𝑃(𝑊 = 1) = 𝑝𝑌1 ⋅ 𝛽𝑌1 + 𝑝𝑌2 ⋅ 𝛽𝑌2 − 𝑝𝑌1∩𝑌2 ⋅ 𝛽𝑌1 ⋅ 𝛽𝑌2                      (4.16) 

Therefore, according to Eqs. (4.15) and (4.16), the mean total number of 
defective-output variables which are erroneously not detected in the inspection 
process can be defined as: 

 
𝐷′
𝑡𝑜𝑡 = 𝐸(𝑊) = 𝑝𝑌1 ⋅ 𝛽𝑌1 + 𝑝𝑌2 ⋅ 𝛽𝑌2 − 𝑝𝑌1∩𝑌2 ⋅ 𝛽𝑌1 ⋅ 𝛽𝑌2      (4.17) 

 
Thus, if the inspection process is examined in its totality and, therefore, the two 

output variables are not decoupled, Eq. (4.17) differs from Eq. (4.11) for the 
component 𝑝𝑌1∩𝑌2 ⋅ 𝛽𝑌1 ⋅ 𝛽𝑌2, which represents the mean total number of undetected 
defects of 𝑌1 and 𝑌2 when they occur jointly in the product.  

More in general, if there are n output variables to be inspected on the product, 
by exploiting the total probability theorem (Schervish, 2012), the inspection 
effectiveness indicator becomes: 

 

𝐷′𝑡𝑜𝑡 =∑(𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗)

𝑛

𝑗=1

− ∑ [(𝑝𝑌𝑗1∩𝑌𝑗2
) ⋅ (𝛽𝑌𝑗1

⋅ 𝛽𝑌𝑗2
)]

𝑗1<𝑗2

+⋯+ (−1)𝑡+1

⋅ ∑ [(𝑝𝑌𝑗1∩𝑌𝑗2∩…∩𝑌𝑗𝑡
 ) ⋅ (𝛽𝑌𝑗1

⋅ 𝛽𝑌𝑗2
⋅ … ⋅ 𝛽𝑌𝑗𝑡

)]

𝑗1<𝑗2<⋯<𝑗𝑡

+⋯

+ (−1)𝑛+1 ⋅ [(𝑝𝑌1∩𝑌2∩…∩𝑌𝑛
 ) ⋅ (𝛽𝑌1 ⋅ 𝛽𝑌2 ⋅ … ⋅ 𝛽𝑌𝑛)]

=∑(−1)𝑗+1 ⋅ ∑ [(𝑝
⋂ 𝑌𝑘𝑞
𝑗
𝑞=1

 ) ⋅ (∏𝛽𝑌𝑘𝑞

𝑗

𝑞=1

)]

1≤𝑘1<⋯< 𝑘𝑗≤𝑛

𝑛

𝑗=1

 

(4.18) 

 
where each sum ∑  𝑗1<𝑗2<⋯<𝑗𝑡  is calculated for all the (𝑛

𝑡
) possible subsets of t 

elements of the set {1,2, … , 𝑛}. Thus, D’tot is obtained by summing the probabilities 
of occurrence of defects multiplied by the related type-II errors, minus the 
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probabilities associated with defects appearing in even numbers, also multiplied by 
the related type-II errors, and by summing again the probabilities associated with 
defects appearing in odd numbers, also multiplied by the related type-II errors. 
Although Eq. (4.18) is formulated for the case in which there is independence 
between inspection errors and the related defective-output variables, it can be 
considered a good approximation of the indicator of inspection effectiveness when 
n defective-output variables can occur jointly in the product. 

4.2.3.2 Inspection cost 

Similar to the inspection effectiveness indicator, the indicator of inspection 
total cost is first evaluated considering only two output variables that can occur 
jointly in the product, and then its expression is generalized to the case of n output 
variables. 

When considering all the variables together, an interaction between the costs 
related to the different output variables may occur.  

The first kind of interaction may incur when the same input variables cause 
different defective-output variables. In this case, there will be an allocation of the 
fixed costs FC among the variables. Such interaction is introduced in the total cost 
indicator using the variable 𝐼𝐹𝐶𝑗 , which is a weight between 0 and 1 to be assigned 
to corresponding fixed cost 𝐹𝐶𝑗, as follows:  

 

𝐼𝐹𝐶𝑗 = {
= 1

∈ [0,1)
 

if the variable 𝑌𝑗 is not affected by the same input 
variables of other output variables 
if the variable 𝑌𝑗 is affected by the same input variables 
of other output variables 
 

(4.19) 

The second kind of interaction occurs when inspecting a single output variable 
also provides information on the defectiveness of other output variables. In such a 
case, an interaction between the costs 𝑐𝑗 should be introduced. The interaction 
between the inspection costs is considered in the total cost indicator using the 
functions 𝐼𝑐𝑗, which is defined as: 

𝑰𝒄𝒋 = {
= 𝟏

∈ [𝟎, 𝟏)
  

if inspecting other variables different from 𝒀𝒋 does  
not provide information  on the defectiveness of 𝒀𝒋 
if inspecting other variables different from 𝒀𝒋  
provides information on the defectiveness of 𝒀𝒋 
 

(4.20) 

Furthermore, the necessary-repair costs of different output variables (as well as 
the unnecessary repair costs) may be correlated when the cost for repairing multiple 
output variables is different from the sum of the costs for repairing them 
individually. Such a situation occurs, for instance, when the repair action is the 
same or when the presence of defects leads to the rejection of the piece. For 
instance, consider two output variables 𝑌1 and 𝑌2. The necessary repair cost for 
repairing both is denoted as 𝑁𝑅𝐶1,2. Generally, the range of the cost 𝑁𝑅𝐶1,2 is 
defined as follows: 
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𝑚𝑎𝑥(𝑁𝑅𝐶1, 𝑁𝑅𝐶2) ≤ 𝑁𝑅𝐶1,2 ≤ 𝑁𝑅𝐶1 + 𝑁𝑅𝐶2 (4.21) 

 
Although repairing multiple output variables together is generally less 

expensive than repairing them individually, when the repair of both defects is more 
expensive than the sum of the individual repair costs, the range of  𝑁𝑅𝐶1,2 becomes: 

 
𝑁𝑅𝐶1,2 ≥ 𝑁𝑅𝐶1 + 𝑁𝑅𝐶2 (4.22) 

 
Similarly, the costs of undetected defects may be correlated when not detecting 

multiple defective-output variables implies an increase or decrease in costs with 
respect to the individual undetected defect cost. Such a situation could occur when 
the after-sales repair action is the same for multiple variables or when the presence 
of defects leads to the rejection of the product. Conversely, multiple undetected 
defects in the same product may results in an increase of the undetected costs 
because of the more significant external failure costs (legal fees, product recalls, 
etc.) that result in not identifying multiple defects jointly. Always considering the 
two output variables 𝑌1 and 𝑌2, in the first case the range of the cost of not detecting 
both the defects, 𝑁𝐷𝐶1,2, is defined as: 

 
𝑚𝑎𝑥(𝑁𝐷𝐶1, 𝑁𝐷𝐶2) ≤ 𝑁𝐷𝐶1,2 ≤ 𝑁𝐷𝐶1 + 𝑁𝐷𝐶2 (4.23) 

 
On the other hand, in the second case, the range is as follows: 

 
𝑁𝐷𝐶1,2 ≥ 𝑁𝐷𝐶1 + 𝑁𝐷𝐶2 (4.24) 

 
Moreover, an interaction may occur between the costs of reworking and 

repairing activities on the product. In particular, if several defects (authentic or not) 
occur at the same time, they are considered by the operator as real defects and 
therefore a reduction, or less frequently, an increase of the repair cost if compared 
to the sum of the individual costs may occur, In such a case, the total cost which 
combines the costs NRC and URC is called repair cost RC. When dealing with two 
output variables 𝑌1 and 𝑌2, two different repair costs should be considered. The first 
one which includes 𝑁𝑅𝐶1 and 𝑈𝑅𝐶2 is denoted as 𝑅𝐶𝑁1,𝑈2. This cost is defined in 
the range: 

 
𝑚𝑎𝑥(𝑁𝑅𝐶1, 𝑈𝑅𝐶2) ≤ 𝑅𝐶𝑁1.𝑈2 ≤ 𝑁𝑅𝐶1 + 𝑈𝑅𝐶2 (4.25) 

 
However, when repairing both the defects (authentic and not) is more expensive 

than repairing them individually, the range of 𝑅𝐶𝑁1,𝑈2becomes: 
  

𝑅𝐶𝑁1,𝑈2 ≥ 𝑁𝑅𝐶1 + 𝑈𝑅𝐶2 (4.26) 
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The second repair cost involves the costs 𝑈𝑅𝐶1 and 𝑁𝑅𝐶2 and is denoted as 
𝑅𝐶𝑈1,𝑁2. Even this cost is typically included in the following range: 

 
𝑚𝑎𝑥(𝑈𝑅𝐶1, 𝑁𝑅𝐶2) ≤ 𝑅𝐶𝑈1,𝑁2 ≤ 𝑈𝑅𝐶1 + 𝑁𝑅𝐶2 (4.27) 

 
Nevertheless, occasionally, may be defined in the range: 
 

𝑅𝐶𝑈1,𝑁2 ≥ 𝑈𝑅𝐶1 + 𝑁𝑅𝐶2 (4.28) 
 
Finally, the costs NRC (or URC) and NDC are not reasonably correlated, except 

in negligible cases in which repairing defects (authentic or not) lead to a 
reduction/increase of the costs of the undetected defect. For that reason, this kind 
of interaction is not considered in the final cost indicator.  

According to Figure 4.6, the indicator of the total cost may be derived by 
multiplying the cost component of each path of the graphical model by the 
corresponding probabilities.  

As a result, the final cost indicator is: 
 

𝐶′𝑡𝑜𝑡 = 𝐹𝐶1 + 𝐹𝐶2 + 𝐼𝑐1 ⋅ 𝑐1 + 𝐼𝑐2 ⋅ 𝑐2 + 𝑁𝐷𝐶1,2 ∙ 𝑝𝑌1∩𝑌2 ∙ 𝛽𝑌1 ∙ 𝛽𝑌2 + (𝑁𝐷𝐶1

+ 𝑁𝑅𝐶2) ∙ 𝑝𝑌1∩𝑌2 ∙ 𝛽𝑌1 ∙ (1 − 𝛽𝑌2) + (𝑁𝑅𝐶1

+ 𝑁𝐷𝐶2) ∙ 𝑝𝑌1∩𝑌2 ∙ (1 − 𝛽𝑌1) ∙ 𝛽𝑌2 + 𝑁𝑅𝐶1,2 ∙ 𝑝𝑌1∩𝑌2 ∙ (1 − 𝛽𝑌1)

∙ (1 − 𝛽𝑌2) + (𝑁𝐷𝐶1 + 𝑈𝑅𝐶2) ∙ (𝑝𝑌1 − 𝑝𝑌1∩𝑌2) ∙ 𝛽𝑌1 ∙ 𝛼𝑌2
+ 𝑁𝐷𝐶1 ∙ (𝑝𝑌1 − 𝑝𝑌1∩𝑌2) ∙ 𝛽𝑌1 ∙ (1 − 𝛼𝑌2) + 𝑅𝐶𝑁1,𝑈2
∙ (𝑝𝑌1 − 𝑝𝑌1∩𝑌2) ∙ (1 − 𝛽𝑌1) ∙ 𝛼𝑌2 + 𝑁𝑅𝐶1 ∙ (𝑝𝑌1 − 𝑝𝑌1∩𝑌2)

∙ (1 − 𝛽𝑌1) ∙ (1 − 𝛼𝑌2) + (𝑈𝑅𝐶1 + 𝑁𝐷𝐶2) ∙ (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ∙ 𝛼𝑌1
∙ 𝛽𝑌2 + 𝑅𝐶𝑈1,𝑁2 ∙ (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ∙ 𝛼𝑌1 ∙ (1 − 𝛽𝑌2) + 𝑁𝑅𝐶2

∙ (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ∙ (1 − 𝛼𝑌1) ∙ (1 − 𝛽𝑌2) + 𝑁𝐷𝐶2

∙ (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ∙ (1 − 𝛼𝑌1) ∙ (1 − 𝛽𝑌2) + 𝑈𝑅𝐶1,2 ∙ (1 − 𝑝𝑌1
− 𝑝𝑌2 + 𝑝𝑌1∩𝑌2) ∙ 𝛼𝑌1 ∙ 𝛼𝑌2 + 𝑈𝑅𝐶1 ∙ (1 − 𝑝𝑌1 − 𝑝𝑌2 + 𝑝𝑌1∩𝑌2)

∙ 𝛼𝑌1 ∙ (1 − 𝛼𝑌2) + 𝑈𝑅𝐶2 ∙ (1 − 𝑝𝑌1 − 𝑝𝑌2 + 𝑝𝑌1∩𝑌2) ∙ (1 − 𝛼𝑌1)

∙ 𝛼𝑌2  

(4.29) 

 

It should be highlighted that, when there is no interaction between costs (i.e. 
when 𝐼𝑐1 = 1, 𝐼𝑐2 = 1, 𝑁𝐷𝐶1,2 = 𝑁𝐷𝐶1 + 𝑁𝐷𝐶2, 𝑁𝑅𝐶1,2 = 𝑁𝑅𝐶1 + 𝑁𝑅𝐶2, 
𝑅𝐶𝑁1,𝑈2 = 𝑁𝑅𝐶1 + 𝑈𝑅𝐶2, 𝑅𝐶𝑈1,𝑁2 = 𝑈𝑅𝐶1 + 𝑁𝑅𝐶2, 𝑈𝑅𝐶1,2 = 𝑈𝑅𝐶1 + 𝑈𝑅𝐶2), 
Eq. (4.29) corresponds to the total cost indicator calculated according to Eq. (4.13) 
without variables interaction, as follows: 

 
𝐶 ′
𝑡𝑜𝑡 = 𝐹𝐶1 + 𝐹𝐶2 + 𝑐1 + 𝑐2 + 𝑁𝑅𝐶1 ⋅ 𝑝𝑌1 ⋅ (1 − 𝛽𝑌1) + 𝑁𝑅𝐶2 ⋅ 𝑝𝑌2 ⋅ (1 − 𝛽𝑌2)

+ 𝑈𝑅𝐶1 ⋅ (1 − 𝑝𝑌1) ⋅ 𝛼𝑌1 + 𝑈𝑅𝐶2 ⋅ (1 − 𝑝2) ⋅ 𝛼𝑌2 +𝑁𝐷𝐶1

⋅ 𝑝𝑌1 ⋅ 𝛽𝑌1 +𝑁𝐷𝐶2 ⋅ 𝑝𝑌2 ⋅ 𝛽𝑌2  

(4.30) 
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Figure 4.6 - Tree diagram of the inspection process of 2 output variables in case of independence between inspection errors, and between inspection error and the 

occurrence of defects. For each branch of the tree diagram, the related cost components are shown. 
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Indeed, the independence between the inspection errors and between them and 

the occurrence of defects, as well as the non-interaction between costs, lead to the 
decoupling of the two output variables. 

The general expression of the total cost of an inspection strategy becomes 
highly complex when more than two output variables are considered. Indeed, the 
possible combinations of the output variables are 2n, which have to be multiplied 
by the combinations of inspection errors, again 2n, resulting in a total of 22n 

combinations. For instance, an inspection strategy concerning 4 output variables 
involves 256 different combinations and, as a consequence, as many cost 
components for the calculation of the cost indicator. For that reason, an 
approximated expression of the total cost indicator is proposed.   

Firstly, by exploiting the graphical model of Figure 4.7, the probability that a 
defective-output variable is correctly classified as such, denoted by 𝑝𝑁𝑅, can be 
derived as: 

 
𝑝𝑁𝑅 = (𝑝𝑌1 − 𝑝𝑌1∩𝑌2) ⋅ (1 − 𝛽𝑌1) + (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ⋅ (1 − 𝛽𝑌2)

+ 𝑝𝑌1∩𝑌2 ⋅ (1 − 𝛽𝑌1 ⋅ 𝛽𝑌2) 
(4.31) 

 
The probability 𝑝𝑁𝑅 represents the probability that the product needs to be 

repaired or rejected because of the defective-output variables identified. As shown 
in Eq. (4.31), 𝑝𝑁𝑅 is the sum of the probability that (i) when only 𝑌1 is defective, it 
is classified as defective, (ii) when only 𝑌2 is defective, it is classified as such, and 
(iii) when both 𝑌1 and 𝑌2 are defective, both 𝑌1 and 𝑌2 are classified as defective. 

Then, the probability that a defective-output variable is erroneously classified 
as such, denoted by 𝑝𝑈𝑅, can be expressed as: 

 
𝑝𝑈𝑅 = (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ⋅ 𝛼𝑌1 + (𝑝𝑌1 − 𝑝𝑌1∩𝑌2) ⋅ 𝛼𝑌2

+ (1 − 𝑝𝑌1 − 𝑝𝑌2 + 𝑝𝑌1∩𝑌2) ⋅ (𝛼𝑌1 + 𝛼𝑌2 − 𝛼𝑌1 ⋅ 𝛼𝑌2)

= (1 − 𝑝𝑌1) ⋅ 𝛼𝑌1 + (1 − 𝑝𝑌2) ⋅ 𝛼𝑌2
− (1 − 𝑝𝑌1 − 𝑝𝑌2 + 𝑝𝑌1∩𝑌2) ⋅ (𝛼𝑌1 ⋅ 𝛼𝑌2) 

(4.32) 

 
 
Such probability defines the probability that the product needs to be 

unnecessarily repaired or rejected because of the misclassification of the defective-
output variables. As shown in Eq. (4.32), 𝑝𝑈𝑅 is the sum of the probability that (i) 
when only 𝑌2 is defective, 𝑌1 is misclassified as defective, (ii) when only 𝑌1 is 
defective, 𝑌2  is misclassified as defective, minus the probability that (iii) when both 
𝑌1 and 𝑌2 are non-defective, both 𝑌1 and 𝑌2 are misclassified as defective. 

The probability that a defective-output variable is not classified as such, and 
therefore remains in the product, 𝑝𝑁𝐷, is the probability derived in Eq. (4.16), that 
can also be rewritten as: 
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𝑝𝑁𝐷 = 𝑝𝑌1 ⋅ 𝛽𝑌1 + 𝑝𝑌2 ⋅ 𝛽𝑌2 − (𝑝𝑌1∩𝑌2 ⋅ 𝛽𝑌1 ⋅ 𝛽𝑌2)

= (𝑝𝑌1 − 𝑝𝑌1∩𝑌2) ⋅ 𝛽𝑌1 + (𝑝𝑌2 − 𝑝𝑌1∩𝑌2) ⋅ 𝛽𝑌2 + 𝑝𝑌1∩𝑌2

⋅ (𝛽𝑌1 + 𝛽𝑌2 − 𝛽𝑌1 ⋅ 𝛽𝑌2) 

(4.33) 

 
This probability is the sum of the probability that (i) when only 𝑌1 is defective, 

it is misclassified as non-defective, (ii) when only 𝑌2 is defective, it is misclassified 
as non-defective, and (iii) when both 𝑌1 and 𝑌2 are defective, only 𝑌1 is misclassified 
as non-defective, only 𝑌2 is misclassified as non-defective and both 𝑌1 and 𝑌2 are 
misclassified as non-defective. 

Accordingly, the indicator of inspection total cost becomes: 
 

𝐶′𝑡𝑜𝑡 ≈ 𝐹𝐶1 + 𝐹𝐶2 + 𝐼𝑐1 ⋅ 𝑐1 + 𝐼𝑐2 ⋅ 𝑐2 + 𝑁𝑅𝐶
̅̅ ̅̅ ̅̅ ⋅  𝑝𝑁𝑅 + 𝑈𝑅𝐶̅̅ ̅̅ ̅̅ ⋅ 𝑝𝑈𝑅 +𝑁𝐷𝐶̅̅ ̅̅ ̅̅ ⋅ 𝑝𝑁𝐷  (4.34) 

 

where the cost  𝑁𝑅𝐶̅̅ ̅̅ ̅̅  represents the average cost for repairing/rejecting the 
product due to real defective-output variables, while 𝑈𝑅𝐶̅̅ ̅̅ ̅̅  is the average 
unnecessary repair cost due to non-defective output variables identified as such, and 
𝑁𝐷𝐶̅̅ ̅̅ ̅̅  the average cost of non-detected defects. These costs can be evaluated, as a 
first approximation, as the average of the corresponding costs related to the single 
output variables 𝑌1 and 𝑌2, and the cost related to the two variables occurring jointly, 
as follows: 

𝑁𝑅𝐶̅̅ ̅̅ ̅̅ =
𝑁𝑅𝐶1 + 𝑁𝑅𝐶2 +𝑁𝑅𝐶1,2

3
 (4.35) 

𝑈𝑅𝐶̅̅ ̅̅ ̅̅ =
𝑈𝑅𝐶1 + 𝑈𝑅𝐶2 + 𝑈𝑅𝐶1,2

3
 (4.36) 

𝑁𝐷𝐶̅̅ ̅̅ ̅̅ =
𝑁𝐷𝐶1 + 𝑁𝐷𝐶2 + 𝑁𝐷𝐶1,2

3
 (4.37) 

More in general, when the inspection strategy involves n output variables, the 
indicator of total cost may be written as: 

 

𝐶′𝑡𝑜𝑡 ≈∑(𝐹𝐶𝑗 + 𝐼𝑐𝑗 ⋅ 𝑐𝑗

𝑛

𝑗=1

) + 𝑁𝑅𝐶̅̅ ̅̅ ̅̅ ⋅  𝑝𝑁𝑅 + 𝑈𝑅𝐶̅̅ ̅̅ ̅̅ ⋅ 𝑝𝑈𝑅 + 𝑁𝐷𝐶̅̅ ̅̅ ̅̅ ⋅ 𝑝𝑁𝐷 (4.38) 

 

where the average costs 𝑁𝑅𝐶̅̅ ̅̅ ̅̅ , 𝑈𝑅𝐶̅̅ ̅̅ ̅̅  and 𝑁𝐷𝐶̅̅ ̅̅ ̅̅  are calculated by averaging the 
cost of the 2𝑛 − 1 possible cases in which the output variables can occur 
(individually, in pairs, in triplets, up to n together), as follows: 

 

𝑁𝑅𝐶̅̅ ̅̅ ̅̅ =
∑ (𝑁𝑅𝐶𝑗)
𝒏
𝒋=𝟏 + ∑ (𝑁𝑅𝐶𝑗1,𝑗2) + ∑ (𝑁𝑅𝐶𝑗1,𝑗2,…,𝑗𝑡) + 𝑁𝑅𝐶1,2,…,𝑛𝑗1<𝑗2<⋯<𝑗𝑡𝑗1<𝑗2

2𝑛 − 1
 (4.39) 

𝑈𝑅𝐶̅̅ ̅̅ ̅̅ =
∑ (𝑈𝑅𝐶𝑗)
𝒏
𝒋=𝟏 + ∑ (𝑈𝑅𝐶𝑗1,𝑗2) + ∑ (𝑈𝑅𝐶𝑗1,𝑗2,…,𝑗𝑡) + 𝑈𝑅𝐶1,2,…,𝑛𝑗1<𝑗2<⋯<𝑗𝑡𝑗1<𝑗2

2𝑛 − 1
 (4.40) 

𝑁𝐷𝐶̅̅ ̅̅ ̅̅ =
∑ (𝑁𝐷𝐶𝑗)
𝒏
𝒋=𝟏 +∑ (𝑁𝐷𝐶𝑗1,𝑗2) + ∑ (𝑁𝐷𝐶𝑗1,𝑗2,…,𝑗𝑡) + 𝑁𝐷𝐶1,2,…,𝑛𝑗1<𝑗2<⋯<𝑗𝑡𝑗1<𝑗2

2𝑛 − 1
 (4.41) 
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where each sum ∑  𝑗1<𝑗2<⋯<𝑗𝑡  is calculated for all the (𝑛
𝑡
) possible subsets of t 

elements of the set {1,2, … , 𝑛}.  
Besides, the probabilities in Eq. (4.38) can be expressed as: 

𝒑𝑵𝑹 =∑[(𝒑𝒀𝒋 − ∑ 𝒑𝒀𝒋=𝒋𝟏 ∩𝒋𝟐
 

𝒋=𝒋𝟏<𝒋𝟐

− ∑ 𝒑𝒀𝒋=𝒋𝟏∩𝒋𝟐∩…∩𝒋𝒕
 

𝒋=𝒋𝟏<𝒋𝟐<⋯<𝒋𝒕

− 𝒑𝒀𝟏∩𝟐∩…∩𝒏
 )

𝒏

𝒋=𝟏

⋅ (𝟏 − 𝜷𝒀𝒋)] + ∑ [𝒑𝒀𝒋𝟏∩𝒋𝟐
 ⋅ (𝟏 − 𝜷𝒀𝒋𝟏

⋅ 𝜷𝒀𝒋𝟐
)]

𝒋𝟏<𝒋𝟐

+⋯

+ ∑ [𝒑𝒀𝒋𝟏∩𝒋𝟐∩…∩𝒋𝒕
 ⋅ (𝟏 − 𝜷𝒀𝒋𝟏

⋅ 𝜷𝒀𝒋𝟐
⋅ … ⋅ 𝜷𝒀𝒋𝒕)]

𝒋𝟏<𝒋𝟐<⋯<𝒋𝒕

+⋯

+ [(𝒑𝒀𝟏∩𝟐∩…∩𝒏
 ) ⋅ (𝟏 − 𝜷𝒀𝟏 ⋅ 𝜷𝒀𝟐 ⋅ … ⋅ 𝜷𝒀𝒏)] 

(4.42) 

𝒑𝑼𝑹 =∑[(𝟏 − 𝒑𝒀𝒋) ⋅ (𝜶𝒀𝒋)]

𝒏

𝒋=𝟏

− [𝟏 − (∑(−𝟏)𝒋+𝟏 ⋅ ∑ (𝒑
⋂ 𝒀𝒌𝒒
𝒋
𝒒=𝟏

 )

𝟏≤𝒌𝟏<⋯< 𝒌𝒋≤𝒏

𝒏

𝒋=𝟏

)]

⋅ (∏𝜶𝒀𝒋

𝒏

𝒋=𝟏

) 

(4.43) 

𝒑𝑵𝑫 =∑(−𝟏)𝒋+𝟏 ⋅ ∑ [(𝒑
⋂ 𝒀𝒌𝒒
𝒋
𝒒=𝟏

 ) ⋅ (∏𝜷𝒀𝒌𝒒

𝒋

𝒒=𝟏

)]

𝟏≤𝒌𝟏<⋯< 𝒌𝒋≤𝒏

𝒏

𝒋=𝟏

 (4.44) 

4.2.3.3 Practical example 

In order to better illustrate the proposed approach involving interactions 
between model variables, a practical example in the AM is provided. The indicators 
of effectiveness and total cost obtained in Eqs. (4.18) and (4.38), respectively, are 
evaluated for the inspection strategy adopted in the case study that was presented 
in Section 3.4.2.2 for a process with discrete input variables. 

In detail, the inspection activities related to the three output variables, i.e., 
porosity, tensile strength and dimensional accuracy, are characterized by the 
inspection errors reported in Table 4.1. By combining the inspection errors of each 
output variable with the related defect probabilities, that were obtained in Section 
3.4.2.2, the two indicators of effectiveness and cost may be derived.  

Table 4.1 – Inspection errors related to porosity PO, tensile strength TS and 
dimensional accuracy DA. 

Output variable 𝛼𝑌𝑗  [%] 𝛽𝑌𝑗  [%] 

PO 5 4 

TS 3 2 

DA 2 1 
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When the interactions between variables are not considered, the effectiveness 
indicator can be derived by exploiting Eq. (4.11): 

 
𝐷𝑡𝑜𝑡 = 𝑝𝑃𝑂 · 𝛽𝑃𝑂

 + 𝑝𝑇𝑆 · 𝛽𝑇𝑆
 + 𝑝𝐷𝐴 · 𝛽𝐷𝐴

 = 1.70 · 10−3 

      
(4.45) 

Instead, when considering the interactions, the indicator of effectiveness 
becomes, according to Eq. (4.18), as follows: 

 
𝐷′𝑡𝑜𝑡 = 𝑝𝑃𝑂 · 𝛽𝑃𝑂

 + 𝑝𝑇𝑆 · 𝛽𝑇𝑆
 + 𝑝𝐷𝐴 · 𝛽𝐷𝐴

 − (𝑝𝑇𝑆∩𝑃𝑂
 · 𝛽𝑇𝑆

 · 𝛽𝑃𝑂
 )

− (𝑝𝐷𝐴∩𝑃𝑂
 · 𝛽𝐷𝐴

 · 𝛽𝑃𝑂
 ) − (𝑝𝐷𝐴∩𝑇𝑆

 · 𝛽𝐷𝐴
 · 𝛽𝑇𝑆

 )

+ (𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂
 · 𝛽𝑇𝑆

 · 𝛽𝐷𝐴
 · 𝛽𝑃𝑂

 ) = 1.68 · 10−3 
(4.46) 

 

As can be noticed, the interactions between model variables result in a slight 
decrease in the mean number of undetected defective-output variables. In both cases 
(see Eqs. (4.45) and (4.46)), given production of 1000 components, there are nearly 
2 defective-output variables which are erroneously not identified. Given that the 
production of SLM components can reach hundreds of parts per year, the number 
of undetected can be considered negligible. 

Table 4.2 reports the costs of each output variable, estimated considering the 
time required for the activity and the labor cost of operators/inspectors. As a first 
approximation, the necessary and un-necessary repair costs are considered 
identical.  

Table 4.2 – Cost estimates related to porosity PO, tensile strength TS and dimensional 
accuracy DA. 

Output variable j 𝐹𝐶𝑗 [€] 𝑐𝑗 [€] 𝑁𝑅𝐶𝑗 [€] 𝑈𝑅𝐶𝑗 [€] 𝑁𝐷𝐶𝑗 [€] 

PO 10 15 25 25 100 

TS 20 18 50 50 120 

DA 10 10 14 14 80 

 

According to Eq. (4.13), the total cost indicator without interactions can be 
evaluated as: 

 
𝐶𝑡𝑜𝑡 = ∑ [𝐹𝐶𝑗 + 𝑐𝑗 + 𝑁𝑅𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ (1 − 𝛽𝑌𝑗) + 𝑈𝑅𝐶𝑗 ⋅ (1 − 𝑝𝑌𝑗) ⋅ 𝛼𝑌𝑗

𝑗∈{𝑃𝑂,𝑇𝑆,𝐷𝐴}

+ 𝑁𝐷𝐶𝑗 ⋅ 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗] = 88.48 € 
(4.47) 

 
In the presence of interaction between model variables, the total cost indicator 

can be evaluated by using Eq. (4.38) and considering the cost components reported 
in Table 4.3. As shown in the table, in some circumstances, repairing the output 
variables together leads to a reduction in costs with respect to repairing the output 
variables independently, e.g., for TS and PO, and for DA and PO. Conversely, in 
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some cases, the cost of the undetected defects is greater than the sum of the 
individual costs (see NDC for TS, DA and PO). 

Table 4.3 – Cost estimates related to porosity PO, tensile strength TS and dimensional 
accuracy DA, when they occur jointly. 

Output variables   𝑁𝑅𝐶  [€] 𝑈𝑅𝐶  [€] 𝑁𝐷𝐶  [€] 

TS and PO   70 70 220 

DA and PO   35 35 180 

DA and TS   64 64 200 

TS, DA and PO   80 80 350 

 

The average costs 𝑁𝑅𝐶̅̅ ̅̅ ̅̅ , 𝑈𝑅𝐶̅̅ ̅̅ ̅̅  and 𝑁𝐷𝐶̅̅ ̅̅ ̅̅  can be calculated according to Eqs. 
(4.42), (4.43) and (4.44), by averaging the related cost components reported in 
Table 4.3. As a result, the following costs are obtained: 𝑁𝑅𝐶̅̅ ̅̅ ̅̅ = 𝑈𝑅𝐶̅̅ ̅̅ ̅̅ = 62.25 € 
and 𝑁𝐷𝐶̅̅ ̅̅ ̅̅ = 237.5 €.  

Furthermore, the probabilities 𝑝𝑁𝑅, 𝑝𝑈𝑅 and 𝑝𝑁𝐷 can be obtained by using Eqs. 
(4.39), (4.40) and (4.41), as follows: 

 
𝑝𝑁𝑅 = (𝑝𝑃𝑂 − 𝑝𝑇𝑆∩𝑃𝑂

 − 𝑝𝐷𝐴∩𝑃𝑂
 − 𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂

 ) · (1 − 𝛽𝑃𝑂
 )

+ (𝑝𝑇𝑆 − 𝑝𝑇𝑆∩𝑃𝑂
 − 𝑝𝐷𝐴∩𝑇𝑆

 − 𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂
 ) · (1 − 𝛽𝑇𝑆

 )

+ (𝑝𝐷𝐴 − 𝑝𝐷𝐴∩𝑃𝑂
 − 𝑝𝐷𝐴∩𝑇𝑆

 − 𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂
 ) · (1 − 𝛽𝐷𝐴

 )

+ 𝑝𝑇𝑆∩𝑃𝑂
 · (1 − 𝛽𝑇𝑆

 · 𝛽𝑃𝑂
 ) + 𝑝𝐷𝐴∩𝑃𝑂

 · (1 − 𝛽𝐷𝐴
 · 𝛽𝑃𝑂

 )

+ 𝑝𝐷𝐴∩𝑇𝑆
 · (1 − 𝛽𝐷𝐴

 · 𝛽𝑇𝑆
 ) + 𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂

 

· (1 − 𝛽𝑇𝑆
 · 𝛽𝐷𝐴

 · 𝛽𝑃𝑂
 ) = 5.48% 

 

(4.48) 

𝑝𝑈𝑅 = (1 − 𝑝𝑃𝑂) · 𝛼𝑃𝑂
 + (1 − 𝑝𝑇𝑆) · 𝛼𝑇𝑆

 + (1 − 𝑝𝐷𝐴) · 𝛼𝐷𝐴
 

− (1

− (𝑝𝑃𝑂 + 𝑝𝑇𝑆 + 𝑝𝐷𝐴 − 𝑝𝑇𝑆∩𝑃𝑂
 − 𝑝𝐷𝐴∩𝑃𝑂

 − 𝑝𝐷𝐴∩𝑇𝑆
 

+ 𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂
 )) · (𝛼𝑇𝑆

 · 𝛼𝐷𝐴
 · 𝛼𝑃𝑂

 ) = 9.75% 

 

(4.49) 

𝑝𝑁𝐷 = 𝑝𝑃𝑂 · 𝛽𝑃𝑂
 + 𝑝𝑇𝑆 · 𝛽𝑇𝑆

 + 𝑝𝐷𝐴 · 𝛽𝐷𝐴
 − (𝑝𝑇𝑆∩𝑃𝑂

 · 𝛽𝑇𝑆
 · 𝛽𝑃𝑂

 )

− (𝑝𝐷𝐴∩𝑃𝑂
 · 𝛽𝐷𝐴

 · 𝛽𝑃𝑂
 ) − (𝑝𝐷𝐴∩𝑇𝑆

 · 𝛽𝐷𝐴
 · 𝛽𝑇𝑆

 )

+ (𝑝𝑇𝑆∩𝐷𝐴∩𝑃𝑂
 · 𝛽𝑇𝑆

 · 𝛽𝐷𝐴
 · 𝛽𝑃𝑂

 ) = 0.17% 

 

(4.50) 

Finally, considering that no interaction between the costs cj occurs because the 
inspection activities are performed separately, the weight 𝐼𝑐𝑗 can be considered 
equal to one for all the output variables, i.e. 𝐼𝑐𝑗 = 1, ∀ 𝑗 ∈ {𝑃𝑂, 𝑇𝑆, 𝐷𝐴}. Besides, 
since the output variables PO and DA are affected by the same input variables of 
TS, their fixed cost should not be considered in order not to count the same cost 
twice. Thus, 𝐼𝐹𝐶𝑃𝑂 = 𝐼𝐹𝐶𝐷𝐴 = 0, while 𝐼𝐹𝐶𝑇𝑆 = 1. 

Accordingly, the total cost indicator becomes: 
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𝐶′𝑡𝑜𝑡 ≈ ∑ (𝐼𝐹𝐶𝑗 ⋅ 𝐹𝐶𝑗 + 𝐼𝑐𝑗 ⋅ 𝑐𝑗

 

𝑗∈{𝑃𝑂,𝑇𝑆,𝐷𝐴}

) + 𝑁𝑅𝐶̅̅ ̅̅ ̅̅ ⋅  𝑝𝑁𝑅 + 𝑈𝑅𝐶̅̅ ̅̅ ̅̅ ⋅ 𝑝𝑈𝑅 + 𝑁𝐷𝐶̅̅ ̅̅ ̅̅

⋅ 𝑝𝑁𝐷 = 72.88 € 
(4.51) 

 

As can be seen from Eqs. (4.47) and (4.51), the total cost indicator calculated 
in the presence of interactions between variables and costs, 𝐶′𝑡𝑜𝑡, is about 18% lower 
than the indicator which does not take the interactions into account, 𝐶𝑡𝑜𝑡. The reason 
for such a difference is that, by decoupling the output variables, any joint effects 
between the variables are not addressed.  

4.3 Uncertainty evaluation of performance measures4 

The reliability of the two indicators of inspection strategy performance, for both 
cases, i.e., in-process and offline inspections, can be assessed by providing a 
quantitative evaluation of the variability of their estimates. The approach that can 
be used to this aim is the method based on the evaluation of uncertainty given in 
the GUM (Guide to the expression of Uncertainty in Measurement) (JCGM 
100:2008, 2008). According to this approach, the uncertainty affecting all the model 
variables, i.e., probabilities of occurrence of defects, inspection errors, and costs, 
can be combined and propagated to the resulting indicators Dtot and Ctot (JCGM 
100:2008, 2008; Ver Hoef, 2012). A detailed description and implementation of the 
method for in-process inspections is provided in the recent study of the author 
(Galetto, Verna, Genta, et al., 2020). Accordingly, the uncertainty, expressed in 
terms of variance, VAR, of the indicators of effectiveness and total cost for in-
process inspections is, respectively: 

𝑉𝐴𝑅(𝐷𝑡𝑜𝑡) =∑[𝛽𝑖
2 ⋅ 𝑉𝐴𝑅(𝑝𝑖) + 𝑝𝑖

2 ⋅ 𝑉𝐴𝑅(𝛽𝑖)]

𝑚

𝑖=1

 (4.52) 

𝑉𝐴𝑅(𝐶𝑡𝑜𝑡
 ) ≈∑[(𝑁𝑅𝐶𝑖 −𝑁𝑅𝐶𝑖 ⋅ 𝛽𝑖 − 𝑈𝑅𝐶𝑖 ⋅ 𝛼𝑖 + 𝑁𝐷𝐶𝑖 ⋅ 𝛽𝑖)

2 ⋅ 𝑉𝐴𝑅(𝑝𝑖) +

𝑚

𝑖=1

+(𝑈𝑅𝐶𝑖 −𝑈𝑅𝐶𝑖 ⋅ 𝑝𝑖)
2 ⋅ 𝑉𝐴𝑅(𝛼𝑖) + (−𝑁𝑅𝐶𝑖 ⋅ 𝑝𝑖 + 𝑁𝐷𝐶𝑖 ⋅ 𝑝𝑖)

2 ⋅ 𝑉𝐴𝑅(𝛽𝑖) + 𝑉𝐴𝑅(𝑐𝑖) +

+(𝑝𝑖 − 𝑝𝑖 ⋅ 𝛽𝑖)
2 ⋅ 𝑉𝐴𝑅(𝑁𝑅𝐶𝑖)+(𝛼𝑖 − 𝑝𝑖 ⋅ 𝛼𝑖)

2 ⋅ 𝑉𝐴𝑅(𝑈𝑅𝐶𝑖) + (𝑝𝑖 ⋅ 𝛽𝑖)
2 ⋅ 𝑉𝐴𝑅(𝑁𝐷𝐶𝑖)]

 (4.53) 

 
On the other hand, the uncertainty of the indicators of effectiveness and total 

cost for offline inspections is, respectively: 
 

𝑉𝐴𝑅(𝐷𝑡𝑜𝑡) =∑[𝛽𝑌𝑗
2 ⋅ 𝑉𝐴𝑅 (𝑝𝑌𝑗) + 𝑝𝑌𝑗

2 ⋅ 𝑉𝐴𝑅 (𝛽𝑌𝑗)]

𝑛

𝑗=1

 (4.54) 

 
4 Part of the present Section was also published in Galetto M., Verna E., Genta G., and 

Franceschini F. (2020). “Uncertainty Evaluation in the Prediction of Defects and Costs for Quality 

Inspection Planning in Low-Volume Productions.” The International Journal of Advanced 
Manufacturing Technology 108 (11), 3793–3805. 
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𝑉𝐴𝑅(𝐶𝑡𝑜𝑡
 ) ≈∑[(𝑁𝑅𝐶j −𝑁𝑅𝐶j ⋅ 𝛽𝑌𝑗 − 𝑈𝑅𝐶j ⋅ 𝛼𝑌𝑗 + 𝑁𝐷𝐶j ⋅ 𝛽𝑌𝑗)

2

⋅ 𝑉𝐴𝑅 (𝑝𝑌𝑗) +

𝑛

𝑗=1

(𝑈𝑅𝐶j − 𝑈𝑅𝐶j ⋅ 𝑝𝑌𝑗)
2

⋅ 𝑉𝐴𝑅 (𝛼𝑌𝑗) + (−𝑁𝑅𝐶𝑗 ⋅ 𝑝𝑌𝑗 + 𝑁𝐷𝐶𝑗 ⋅ 𝑝𝑌𝑗)
2

⋅ 𝑉𝐴𝑅 (𝛽𝑌𝑗) + 𝑉𝐴𝑅(𝐹𝐶𝑗) + 𝑉𝐴𝑅(𝑐𝑗)

+ (𝑝𝑌𝑗 − 𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗)
2

⋅ 𝑉𝐴𝑅(𝑁𝑅𝐶𝑗)+ (𝛼𝑌𝑗 − 𝑝𝑌𝑗 ⋅ 𝛼𝑌𝑗)
2

⋅ 𝑉𝐴𝑅(𝑈𝑅𝐶𝑗) + (𝑝𝑌𝑗 ⋅ 𝛽𝑌𝑗)
2

⋅ 𝑉𝐴𝑅 (𝑁𝐷𝐶𝑌𝑗)]

 

 

(4.55) 

It should be noted that the uncertainty of probabilities of occurrence of 
defective workstation-output can be obtained, with reference to in-process 
inspections, by composing the uncertainties of the defect prediction models’ 

parameters (see Section 3.3). On the other hand, when considering offline 
inspections, the uncertainty of the probabilities of occurrence of defective-output 
variables can be estimated by using, for instance, simulative methods, and then 
composed with the uncertainty affecting the other random variables according to 
Eqs. (4.54) and (4.55).
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Chapter 5 : 
Practical tools 
for supporting 
inspection 
planning 

Several tools and methods have been proposed in the literature to support the 
inspection planning in mass productions. These include simulations (Neu et al., 
2002, 2003; Münch et al., 2002), cost-benefit models (Savio, 2012), optimization 
and mathematical programming models (Hanne and Nickel, 2005; Shiau, 2003; 
Mohammadi et al., 2015). However, in the case of low-volume productions, such 
techniques may not be appropriate. In previous chapters, suitable models of defect 
prediction have been developed and methods to assess the performance of 
inspection strategies have been proposed, both for in-process and offline 
inspections. Despite this research enhancements, a practical tool allowing for the 
assessment of the adequacy of alternative inspection strategies is still lacking. To 
fill this gap, Chapter 5 provides new insight into the understanding of the inspection 
planning process by proposing a general framework to assess the effectiveness and 
cost of inspection strategies. The defect prediction models proposed in Chapter 3 
and the practical indicators of inspection effectiveness and cost, that were described 
in Chapter 4, are now combined to develop a novel tool, named Inspection Strategy 
Map (ISM). Two are the main purposes of ISM: 

(i) analyzing the positioning of different inspection strategies on the map, 
in terms of effectiveness and cost, allowing the designer to compare 
more alternatives (analysis tool); 

(ii) supporting the designer in determining the conditions of effectiveness 
and cost to allow a priori inspection strategy positioning. 
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The framework tool proposed in this chapter is applied to (i) the low-volume 
assembly of wrapping machines, regarding in-process inspections, and (ii) the 
additive manufacturing process of SLM, as regards offline inspections.  

This tool may provide an opportunity to advance the understanding of the 
inspection planning process, especially for low-volume productions where 
traditional techniques are not exploitable. By ISM, engineers are driven to identify 
alternative inspection procedures in order to make the inspection strategy more 
effective and cost-efficient. 

In detail, Chapter 5 has been organized in the following way: 

• Section 5.1 presents and discusses the novel tool, i.e., the Inspection 
Strategy Map. 

• Section  5.2 describes different applications of ISM to the case study of 
assembly of wrapping machines and the additive manufacturing 
productions of automotive components. 

5.1 Inspection Strategy Maps (ISM)5 

As presented in Chapter 4, for each inspection strategy, whether in-process or 
offline, to be assessed and compared, two performance measures may be calculated 
by Eqs. (4.4) and (4.5) for in-process inspections and by Eqs. (4.18) and (4.38) for 
offline inspections. According to the scientific literature about Multi-Criteria 
Decision-Making (MCDM), several methods may be implemented to choose from 
different alternatives when multiple criteria and trade-offs are involved (Zeleny, 
2011; Guo and Zhao, 2017; Ishizaka and Nemery, 2013; Bhushan and Rai, 2007). 
In the present study, a more straightforward and practical methodology is proposed 
to support quality inspection planning by Inspection Strategy Maps (ISMs). ISMs 
are defined on a plan whose axes are the two indicators Dtot and Ctot (see Figure 
5.1). Each inspection strategy may be described by a point on the ISM. 

A pair of thresholds (respectively D*tot and C*tot) defined by the designer limits 
the values of the two indicators. D*tot can be seen as a guarantee for the consumer 
because it represents the maximum average number of acceptable defective-
workstation output remaining in the final product. The second threshold, C*tot, is a 
cost limit for the company, i.e. the maximum cost that the producer is willing to 
pay for the inspection strategy. Then, the following rules can be used to support 
inspection designers in the choice of the most appropriate inspection strategy 
according to their requirements. 

For each s-th inspection strategy (where s = 1,…, k), a comparison between the 
upper limit of the 95% confidence interval of Dtot,s and Ctot,s, identified as 𝐷𝑡𝑜𝑡,𝑠𝑈  and 
𝐶𝑡𝑜𝑡,𝑠
𝑈 , is made with the thresholds D*tot and C*tot: 

 
5 Part of the research addressed in this section is also present in the paper Verna E., Genta G., 

Galetto M., and Franceschini F. (2020d). “Inspection planning by defect prediction models and 

inspection strategy maps for low-volume productions” Submitted to Flexible Services and 
Manufacturing Journal. 
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1) if 𝐷𝑡𝑜𝑡,𝑠𝑈
 < D*tot and 𝐶𝑡𝑜𝑡,𝑠𝑈   < C*tot, the strategy may be selected: the 

strategy is therefore in the acceptance region (see Figure 5.1); 
2) if 𝐷𝑡𝑜𝑡,𝑠𝑈

 > D*tot or 𝐶𝑡𝑜𝑡,𝑠𝑈
 > C*tot, the strategy is located in the rejection 

region (see Figure 5.1).  

If more strategies lie in the acceptance region, and therefore their values of Dtot 
and Ctot are below the imposed thresholds, the designer can decide which strategy 
should be adopted. The preferred strategy is the one that minimizes both Dtot and 
Ctot. However, if among the alternatives no strategy minimizes both indicators, the 
designer can choose whether minimizing one or the other. Such choice strictly 
depends on the product specifications and on the certification constraints imposed 
by the product application sector. For example, in medical or aerospace sectors, the 
producer may be more inclined to select the strategy that minimizes Dtot instead of 
choosing the most cost-efficient one, because of the significant consequences 
external failures could have. Conversely, if the specifications are not so stringent, 
the manufacturer may be driven to choose the most economical strategy. 

 

Figure 5.1 - Schematic representation of an Inspection Strategy Map. 

 

The first aim of an ISM is to enable the analysis and positioning of the 
inspection strategies implemented by a manufacturing company. Indeed, according 
to a cost-benefit logic, the combined use of the inspection indicators and their 
uncertainty allows the positioning of alternative inspection strategies into the map 
and, consequently, designers are guided in choosing the most appropriate one. ISM 
may also be adopted to compare more alternative inspection strategies, such as 
partial inspections in selected workstations, or strategies in which current control 
activities are modified or improved. Apart from being an analysis tool, the ISM can 
also be used as a design tool. In other words, by setting an objective point on the 
map, it is possible to determine which conditions of effectiveness and cost may 
guarantee its achievement. Thus, ISM can represent a powerful and practical 
decision tool to assist the inspection designers in quality assessment and 
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improvement. An example of the use of ISM for both functionalities is discussed in 
the next Section 5.2. 

 

5.2 Application of ISM to real low-volume productions 

In this section, the proposed ISM is applied to two case studies concerning in-
process inspections and offline inspections, respectively, in Section 5.2.1 and 5.2. 
In the former, the low-volume production of wrapping machines is considered. The 
defects prediction models that have been described in Section 3.3 are incorporated 
in this decision support tool with the purpose of selecting the most suitable 
inspection strategy among several alternatives. On the other hand, the defect 
prediction model developed for offline inspection in Section 3.4 is combined with 
the inspection performance measures defined in Section 4.2 and applied to an 
automotive low-volume production by SLM process. 

5.2.1 In-process inspections: wrapping machines assembly6 

5.2.1.1. Inspection strategies positioning using the ISM 

The two inspection strategy indicators of effectiveness and total cost developed 
for in-process inspections are evaluated for the current inspection strategy, denoted 
as IS-0, performed by the producer of wrapping machines, which is detailed in 
Table 5.1. Such a strategy requires each workstation to be checked through an 
inspection activity, needing specific equipment depending on the workstation-
output (see Table 5.1). Table 5.2 reports the cost values used for estimating 
inspection total cost. Precisely, the estimates of ci were calculated considering the 
time required for the inspection activity and the labor cost of operators/inspectors. 
NRCi and URCi, considered identical as a first approximation, were estimated 
starting from the time required for identifying and repairing possible defects 
(necessary or unnecessary) and the respective labor cost. Finally, NDCi was 
estimated considering the after-sales repair costs, calculated as the time for the 
repairs/substitutions and the operator labor costs. Table 5.2 also summarizes the 
probabilities of occurrence of defect in each workstation, obtained by using the 
novel prediction model developed in Section 3.3 (see Eq. (3.15)). 

 
6 Part of the research addressed in this section is also present in the paper Verna E., Genta G., 

Galetto M., and Franceschini F. (2020d). “Inspection planning by defect prediction models and 

inspection strategy maps for low-volume productions” Submitted to International Journal of 
Advanced Manufacturing and Technology. 
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Table 5.1 - Current inspection strategy of the pre-stretching device: description of the controls performed in the workstations and the equipment used. 

No. 
workstation 

Control type Control description Equipment 

1 Visual and manual Cleaning of motor shaft 1, alignment of groups pulley-motor shaft 1 and clamping ring-motor shaft 1 Hands 
2 Visual, manual and dimensional Cleaning of motor shaft 2, correct dimensions of the groups shrink disk-crankshaft 2 and pulley-crankshaft 2 Hands, caliper, bench vice 
3 Visual and manual Surface cleaning of motor support plate 2 and correct assembly of the upper and lower plate Hands 
4 Visual, manual and mechanical Presence of all the components for the spindle subassembly and spindle spring operation Hands 
5 Visual, manual and mechanical Cleaning of the wheeled roller shaft and correct rotation of the wheeled roller assembly Hands 
6 Visual, manual and mechanical Cleaning of idle rolls shaft and correct rotation of idle rollers assembly Hands 
7 Visual and geometric Correct positioning of the rubber pad assembly 1 and 2 and hexagonal support of the rubber pad assembly 1 and 2 Hands 
8 Visual and mechanical Alignment of the belt tensioning device group and correct rotation of the belt tensioning device roller Hands 

9 Visual and mechanical 
Penetration of the protective on the surface of the driven wheels and correct positioning of the clamping rings in the 
transmission-driven wheels 

Hands 

10 Visual Aesthetic appearance of the surface plate of the pre-stretch frame Hands 
11 Mechanical and geometric Correct rotation of the rubber rolls and alignment of the rubber rollers on the pre-stretch frame plate Hands 
12 Mechanical and geometric Correct idle roller rotation and alignment of the idle rollers on the pre-stretch frame plate Hands 
13 Mechanical Correct tightening of the motor bolts 1 on the frame plate Hands 
14 Visual Correct positioning of the components Hands 
15 Visual and mechanical Correct tightening of motor bolts 2 on the frame plate Hands 
16 Visual Correct positioning of components Hands 
17 Visual Correct positioning of the motor casing 1 Hands 
18 Mechanical and geometric Correct alignment of the belt tensioner assembly and rotation of the belt tensioning device roller Hands 
19 Mechanical and geometric Movement of the motor drive belt 1 Hands 
20 Mechanical and geometric Movement of the motor drive belt 2 Hands 
21 Visual and mechanical Check the number of screws removed from the component and correct operation of the internal spindle spring Hands 
22 Mechanical and geometric Correct spindle rotation on the pre-stretch frame plate and alignment of the spindle assembly on the pre-stretch frame plate Hands 
23 Geometric Correct alignment of the pads on the pre-stretch frame plate Hands 

24 Manual and mechanical 
Correct operation of the motor 1, final check of the motor 1 drive belt tension and final alignment check of the motor 1 
transmission assembly 

Hands 

25 Manual and mechanical 
Correct operation of the motor 2, final check of the motor 2 drive belt tension and final alignment check of the motor 2 
transmission assembly 

Hands 

26 Visual and mechanical Alignment and correct movement of spindle release lever assembly Hands 
27 Mechanical and geometric Correct movement and alignment of the spindle release lever on the pre-stretch frame plate Hands 

28 
Visual, geometric, mechanical 

and dimensional 
Correct rotation of the compensation arm roller and alignment of the cam system 

Hands, caliper, metallic 
ruler,  Gauge block 

29 Visual and mechanical 
Correct movement of the compensation arm assembly on the pre-stretch frame plate and correct rotation of the compensation 
arm roller 

Hands 
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Table 5.2 - Variables related to the inspection strategy IS-0 of the pre-stretching 
device. 

No. 
workstation 

𝒑𝒊
  

[%] αi [%] βi [%] ci [€] NRCi [€] URCi [€] NDCi [€] 

1 4.16 0.5 0.8 0.12 0.37 0.37 1584.00 
2 4.34 0.5 0.8 0.32 0.73 0.73 1592.00 
3 3.86 0.3 0.5 0.25 0.37 0.37 87.00 
4 0.62 0.2 0.5 0.76 0.86 0.86 569.00 
5 5.71 0.4 0.8 0.56 2.02 2.02 483.00 
6 4.67 0.4 0.8 0.45 2.20 2.20 273.00 
7 0.55 0.1 0.1 0.14 0.18 0.18 11.00 
8 3.23 0.3 1.0 0.04 0.75 0.75 31.00 
9 0.02 0.4 0.6 0.08 0.09 0.09 47.00 
10 2.68 0.5 0.3 1.06 1.83 1.83 224.00 
11 3.64 0.2 0.2 0.29 0.15 0.15 11.67 
12 4.02 0.2 0.2 0.27 0.15 0.15 17.50 
13 0.57 0.3 0.3 0.26 0.05 0.05 8.75 
14 0.13 0.4 0.8 0.10 0.37 0.37 66.00 
15 3.86 0.3 0.3 0.31 0.12 0.12 5.83 
16 1.38 0.4 0.8 0.17 0.37 0.37 99.00 
17 0.07 0.2 0.2 0.13 0.02 0.02 6.00 
18 2.12 0.5 0.9 0.10 0.02 0.02 5.83 
19 3.33 0.2 0.2 0.37 0.05 0.05 5.83 
20 3.63 0.2 0.2 0.35 0.10 0.10 5.83 
21 0.26 0.5 0.7 0.32 0.18 0.18 5.83 
22 6.09 0.5 0.7 0.91 0.29 0.29 11.67 
23 0.28 0.2 0.2 0.04 0.07 0.07 5.83 
24 1.82 0.5 1.2 0.08 0.43 0.43 5.83 
25 1.84 0.5 1.2 0.12 0.43 0.43 5.83 
26 0.09 0.3 0.3 0.29 0.56 0.56 25.00 
27 1.38 0.2 0.2 0.34 0.09 0.09 5.83 
28 8.00 0.8 1.2 0.26 0.31 0.31 106.00 
29 0.78 0.5 0.5 0.17 0.07 0.07 5.83 

 
Moreover, the estimates of the inspection performances are complemented by 

an estimation of their uncertainty. To this aim, Table 5.3 reports the estimates of 
the variances of the probabilities and costs of the model. Specifically, the variance 
of probabilities 𝑝𝑖  is obtained by composing the uncertainties of the two regression 
models parameters shown in Eq. (3.15) by using the approach proposed in Verna et 
al. (2020). Besides, the variances of inspection errors (αi and βi) and the costs (ci, 
NRCi, URCi and NDCi) are estimated by the inspectors based on previous 
experience. 
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Table 5.3 - Variances of the variables related to the process and the current inspection strategy of the pre-stretching device (IS-0). 

No. workstation VAR(𝒑𝒊 ) 
(×10-4) 

VAR(αi) 
(×10-7) 

VAR(βi) 
(×10-7) 

VAR(ci) 
(×10-4) [€2] 

VAR(NRCi) 
(×10-4) [€2] 

VAR(URCi) 
(×10-4) [€2] 

VAR(NDCi) 
(×101) [€2] 

1 3.30 0.63 1.60 0.36 3.42 3.42 2.50 
2 3.29 0.63 1.60 2.56 13.32 13.32 2.50 
3 3.35 0.23 0.63 1.56 3.42 3.42 1.89 
4 3.40 0.10 0.63 14.44 18.49 18.49 2.50 
5 3.38 0.40 1.60 7.84 102.01 102.01 2.50 
6 3.27 0.40 1.60 5.06 121.00 121.00 2.50 
7 3.40 0.03 0.03 0.49 0.81 0.81 0.03 
8 3.39 0.23 2.50 0.04 14.06 14.06 0.24 
9 3.33 0.40 0.90 0.16 0.20 0.20 0.55 

10 3.43 0.63 0.23 28.09 83.72 83.72 2.50 
11 3.34 0.10 0.10 2.10 0.56 0.56 0.03 
12 3.30 0.10 0.10 1.82 0.56 0.56 0.08 
13 3.42 0.23 0.23 1.69 0.06 0.06 0.02 
14 3.34 0.40 1.60 0.25 3.42 3.42 1.09 
15 3.33 0.23 0.23 2.40 0.36 0.36 0.01 
16 3.48 0.40 1.60 0.72 3.42 3.42 2.45 
17 3.34 0.10 0.10 0.42 0.01 0.01 0.01 
18 3.48 0.63 2.03 0.25 0.01 0.01 0.01 
19 3.42 0.10 0.10 3.42 0.06 0.06 0.01 
20 3.41 0.10 0.10 3.06 0.25 0.25 0.01 
21 3.36 0.63 1.23 2.56 0.81 0.81 0.01 
22 3.49 0.63 1.23 20.70 2.10 2.10 0.03 
23 3.36 0.10 0.10 0.04 0.12 0.12 0.01 
24 3.55 0.63 3.60 0.16 4.62 4.62 0.01 
25 3.55 0.63 3.60 0.36 4.62 4.62 0.01 
26 3.34 0.23 0.23 2.10 7.84 7.84 0.16 
27 3.46 0.10 0.10 2.89 0.20 0.20 0.01 
28 4.48 1.60 3.60 1.69 2.40 2.40 2.50 
29 3.42 0.63 0.63 0.72 0.12 0.12 0.01 
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Table 5.4 shows the indicators of effectiveness Dtot and total cost Ctot calculated 

according to Eqs. (4.4) and (4.5) and variable estimates listed in Table 5.2. 
Furthermore, the 95% confidence intervals of the indicator estimates are provided 
in Table 5.4, according to Eqs. (4.52) and (4.53) and variable uncertainties reported 
in Table 5.3.  

Table 5.4 - Mean values and 95% confidence intervals of inspection performance 
indicators Dtot and Ctot for inspection strategies IS-0, IS-1 and IS-2. 

Inspection 
strategy Dtot (×10-3) 95% confidence interval 

of Dtot (×10-3) Ctot [€] 95% confidence interval 
of Ctot [€] 

IS-0 4.80 (3.45; 6.15) 10.74 (9.95; 11.53) 
IS-1 378.61 (217.32;539.91) 10.13 (7.43;12.83) 
IS-2 1.51 (0.64;2.37) 11.41 (11.08;11.75) 

 
As can be observed in Table 5.4, the mean number of defective-workstation-

outputs which are not detected by the adopted inspection strategy, is nearly 5 units, 
considering a production of one thousand pre-stretching devices. As mentioned 
before, being the production of such devices of only 50 units per year, the number 
of defective-workstation-outputs that are erroneously not identified by the 
inspection strategy may be considered very little, i.e. 5 every 20 years. Moreover, 
by separately comparing the Di values, the most critical workstations in terms of 
residual defectiveness may be identified. In particular, the workstations with the 
highest values of Di are the number 28, 5 and 24, respectively. For these 
workstations, the producer could design and adopt more effective inspection 
activities (see next Section 5.2.1.2). 

 

Figure 5.2 - Representation of the ISM for the inspection strategies IS-0, IS-1 and 
IS-2. 
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Table 5.5 - Variables related to the inspection strategy IS-1 of the pre-stretching device. 
Workstations subject to inspection are reported in bold type. 

No. 
workstation αi [%] βi [%] ci [€] NRCi [€] URCi [€] NDCi [€] 

1 0.5 0.8 0.12 0.37 0.37 1584.00 
2 0.5 0.8 0.32 0.73 0.73 1592.00 
3 0.3 0.5 0.25 0.37 0.37 87.00 
4 0.2 0.5 0.76 0.86 0.86 569.00 
5 0.4 0.8 0.56 2.02 2.02 483.00 
6 0.4 0.8 0.45 2.20 2.20 273.00 
7 0.0 100.0 0.00 0.00 0.00 11.00 
8 0.0 100.0 0.00 0.00 0.00 31.00 
9 0.0 100.0 0.00 0.00 0.00 47.00 
10 0.5 0.3 1.06 1.83 1.83 224.00 
11 0.0 100.0 0.00 0.00 0.00 11.67 
12 0.0 100.0 0.00 0.00 0.00 17.50 
13 0.0 100.0 0.00 0.00 0.00 8.75 
14 0.4 0.8 0.10 0.37 0.37 66.00 
15 0.0 100.0 0.00 0.00 0.00 5.83 
16 0.4 0.8 0.17 0.37 0.37 99.00 
17 0.0 100.0 0.00 0.00 0.00 6.00 
18 0.0 100.0 0.00 0.00 0.00 5.83 
19 0.0 100.0 0.00 0.00 0.00 5.83 
20 0.0 100.0 0.00 0.00 0.00 5.83 
21 0.0 100.0 0.00 0.00 0.00 5.83 
22 0.0 100.0 0.00 0.00 0.00 11.67 
23 0.0 100.0 0.00 0.00 0.00 5.83 
24 0.0 100.0 0.00 0.00 0.00 5.83 
25 0.0 100.0 0.00 0.00 0.00 5.83 
26 0.0 100.0 0.00 0.00 0.00 25.00 
27 0.0 100.0 0.00 0.00 0.00 5.83 
28 0.8 1.2 0.26 0.31 0.31 106.00 
29 0.0 100.0 0.00 0.00 0.00 5.83 

 
Regarding the economic perspective, considering that the total cost of the pre-

stretching device, including labor costs and materials, amounts to 3000 €, the cost 

of the current inspection strategy is less than 1%. Even for this indicator, individual 
Ctot,i values can be compared with each other to identify the most expensive 
workstations (in this case, numbers 5, 10 and 22 respectively). Therefore, the 
inspection in the workstation 5 is not only the worst in terms of effectiveness, but 
it is also the most expensive for the company. It should be noted that such a 
workstation is also the one with the highest value of pi. As a consequence, due to 
the high number of defects, the sum of the cost components related to the repair 
(𝑁𝑅𝐶𝑖 ⋅ 𝑝𝑖 ⋅ (1 − 𝛽𝑖)) and to the defects remaining in the pre-stretching device 
(𝑁𝐷𝐶𝑖 ⋅ 𝑝𝑖 ⋅ 𝛽𝑖) are higher than those in the other workstations.  

As shown in Figure 5.2, for the pre-stretching device the two thresholds 
imposed by the company designer are D*tot = 4.00·10-3 and C*tot = 15 €. IS-0 is 
represented in Figure 5.2 as a region delimited by the confidence intervals of both 
indicators, while the central point of the region corresponds to their average value. 
It can be noted that IS-0 region belongs only for a small part to the acceptance 
region and the central point falls in the rejection region. Thus, being this strategy 
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not acceptable by the producer, two alternative strategies are analyzed: IS-1 
(Inspection Strategy 1) and IS-2 (Inspection Strategy 2).  

Table 5.6 - Variables related to the inspection strategy IS-2 of the pre-stretching device. 
Workstations accurately inspected by appointed staff through dedicated equipment are 

reported in bold type. 

No. 
workstation αi [%] βi [%] ci [€] NRCi [€] URCi [€] NDCi [€] 

1 0.07 0.10 0.17 0.37 0.37 1584.00 
2 0.07 0.10 0.43 0.73 0.73 1592.00 
3 0.04 0.07 0.34 0.37 0.37 87.00 
4 0.03 0.07 1.03 0.86 0.86 569.00 
5 0.04 0.08 0.76 2.02 2.02 483.00 
6 0.04 0.08 0.60 2.20 2.20 273.00 
7 0.10 0.10 0.14 0.18 0.18 11.00 
8 0.30 1.00 0.04 0.75 0.75 31.00 
9 0.40 0.60 0.08 0.09 0.09 47.00 
10 0.50 0.30 1.06 1.83 1.83 224.00 
11 0.03 0.03 0.39 0.15 0.15 11.67 
12 0.20 0.20 0.27 0.15 0.15 17.50 
13 0.04 0.04 0.35 0.05 0.05 8.75 
14 0.05 0.10 0.13 0.37 0.37 66.00 
15 0.04 0.04 0.41 0.12 0.12 5.83 
16 0.40 0.80 0.17 0.37 0.37 99.00 
17 0.20 0.20 0.13 0.02 0.02 6.00 
18 0.07 0.12 0.14 0.02 0.02 5.83 
19 0.03 0.03 0.50 0.05 0.05 5.83 
20 0.03 0.03 0.47 0.10 0.10 5.83 
21 0.05 0.07 0.43 0.18 0.18 5.83 
22 0.07 0.09 1.23 0.29 0.29 11.67 
23 0.20 0.20 0.04 0.07 0.07 5.83 
24 0.50 1.20 0.08 0.43 0.43 5.83 
25 0.50 1.20 0.12 0.43 0.43 5.83 
26 0.30 0.30 0.29 0.56 0.56 25.00 
27 0.20 0.20 0.34 0.09 0.09 5.83 
28 0.08 0.12 0.35 0.31 0.31 106.00 
29 0.07 0.07 0.22 0.07 0.07 5.83 

 
In IS-1, only the workstations whose cost of undetected defects (NDCi) is 

considered expensive by the manufacturer (more than 50 €) are reconsidered. In 

detail, these are the workstations number 1-6, 10, 14, 16 and 28, respectively. 
Controls performed in such workstations are the same as those adopted in the 
current strategy IS-0. Accordingly, the inspection variables related to such 
workstations have the same values of those reported in Table 5.2. For the generic i-
th workstation not subject to inspection, the corresponding inspection variables are 
αi=0, βi=1, ci=0, NRCi=0 and URCi=0. The probability pi and the cost NDCi do not 
change compared to IS-0, being not affected by the inspection strategy adopted. 
Table 5.5 reports the complete list of variables for IS-1. 

In IS-2, selected workstations that are critical in terms of defectiveness are 
accurately inspected through dedicated equipment and carried out by appointed 
staff. As a result, the cost of inspection activity ci slightly increases because of an 
increase in time of 40%, while inspection errors decrease by about 85% with 
compared to IS-0. The remaining workstations are inspected using the same 
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controls carried out in the current strategy IS-0 and, therefore, the inspection 
variables for these workstations are set equal to the values of IS-0 shown in Table 
5.2. It should be noted that pi, NRCi, URCi and NDCi remain unchanged from IS-0, 
being irrespective of the strategy implemented. Table 5.6 provides the complete 
table of variables for the strategy IS-2. 

Table 5.4 shows the mean values of the indicators Dtot and Ctot of the two 
alternative inspection strategies IS-1 and IS-2 and their 95% confidence intervals. 

5.2.1.2 Comparison and analysis of alternative inspection strategies 

Given the results shown in Figure 5.2, the strategy IS-1 is out of the acceptance 
region. The indicator Dtot is about two orders of magnitude higher than the 
threshold, although Ctot is in line with the manufacturer’s requirements. Indeed, 

performing IS-1 leads to a significant increase in the indicator of effectiveness, 
caused by the non-inspection of selected workstations and, therefore, by leaving 
defects in the final pre-stretching device. However, the inspection total cost of such 
a strategy remains affordable and comparable with the cost of the other two 
strategies because the absence of inspection in the workstations with the lowest 
values of NDCi does not entail inspection and repair costs, but only costs of 
undetected defects, which remain minimal. 

Regarding strategies IS-0 and IS-2, the comparison of the corresponding 
indicators is shown in the ISM illustrated in Figure 5.3. 

 

Figure 5.3 – Comparison of the inspection strategies IS-0 and IS-2 using the ISM. 

 
The strategy to be preferred is IS-2. It is the only strategy that allows for a 

residual defectiveness lower than the threshold D*tot imposed by the producer. From 
an economic point of view, both strategies lead to comparable costs, although IS-2 
is on average slightly more expensive than IS-0. Besides, as shown in Figure 5.3, 
inspection indicators Dtot and Ctot obtained for IS-2 are affected by less uncertainty 
compared to those obtained for IS-0. Accordingly, the estimates of the two 
indicators are more accurate for IS-2 than IS-0.  

In light of this, since in this case study the higher costs are those of undetected 
defects, it is advisable choosing an inspection strategy that minimizes them through 
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high-performance inspections, without, however, significantly increasing the costs 
of inspection activities, as in the case of the strategy IS-2. 

5.2.1.3 ISM for designing inspections 

ISM can also be used in a reverse way to the approach discussed in Section 
5.2.1.2. In other words, when the designer wants to achieve an effectiveness and 
cost objective, represented by a “target point” on ISM, this tool can guide designer 

choices. In fact, when the target values of indicators Dtot and Ctot are known, the 
conditions for their implementation can be determined. For instance, suppose that 
the wrapping machines company aims to set as target values of the indicators Dtot 
and Ctot respectively 1.00·10-3 and 14 € (IS-3). This situation is represented in 
Figure 5.4. In order to reach the target point, since probabilities pi are physiological 
characteristics of the production process, and being NRCi, URCi and NDCi costs 
irrespective of the strategy adopted, the sole variables to be addressed are inspection 
errors αi and βi and the costs of inspection activities ci. A possible strategy involves 
reducing inspection errors by 80% compared to the strategy IS-0 by improving 
quality controls in all the workstation (e.g. using dedicated equipment and training 
inspectors). As a consequence, it is assumed that inspection costs will increase by 
50% (see Table 5.7). In this case, the resulting indicators Dtot and Ctot becomes 
respectively 0.96·10-3 and 13.76€. It should be noted that, although the cost ci is 
increased for all the workstations by 50%, the strategy total cost is approximately 
30% higher than that of IS-0 owing to the 80% reduction in both the cost of 
undetected defects and unnecessary repairs. 

 
Figure 5.4 - Representation in the ISM of the “target point” (IS-3) to be achieved 

starting from the condition IS-0. 
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Table 5.7 - Variables αi, βi and ci related to the inspection strategy IS-3 of the pre-
stretching device. 

No. 
workstation αi [%] βi [%] ci [€] 

1 0.10 0.16 0.18 
2 0.10 0.16 0.48 
3 0.06 0.10 0.38 
4 0.04 0.10 1.15 
5 0.08 0.16 0.84 
6 0.08 0.16 0.67 
7 0.02 0.02 0.21 
8 0.06 0.20 0.06 
9 0.08 0.12 0.12 
10 0.10 0.06 1.60 
11 0.04 0.04 0.43 
12 0.04 0.04 0.40 
13 0.06 0.06 0.39 
14 0.08 0.16 0.15 
15 0.06 0.06 0.46 
16 0.08 0.16 0.25 
17 0.04 0.04 0.20 
18 0.10 0.18 0.16 
19 0.04 0.04 0.55 
20 0.04 0.04 0.52 
21 0.10 0.14 0.48 
22 0.10 0.14 1.37 
23 0.04 0.04 0.06 
24 0.10 0.24 0.12 
25 0.10 0.24 0.18 
26 0.06 0.06 0.44 
27 0.04 0.04 0.51 
28 0.16 0.24 0.39 
29 0.10 0.10 0.25 

5.2.2 Offline inspections: Additive Manufacturing7 

In this section, the case study presented in Section 3.4.2.1 is extended by 
applying the ISM to select the most suitable inspection strategy among four 
alternatives.  

The AM production of SLM components may be inspected through different 
offline inspections concerning macro-hardness and roughness evaluations. In this 
section, four alternative inspection strategies are examined and compared. With 
respect to hardness, the Brinell Hardness (HB) and Rockwell Hardness (HRB) tests 
are examined. HB test is a widely used method for characterizing specimens by 
SLM. The main advantage is the simplicity of implementation, while the main 
defect is represented by the difficulty (and ambiguity) of the measure (Herrmann, 
2011). HRB test is much faster and cheaper than the Brinell test, making this a 
widely used method of measuring metal hardness in industrial context. However, 
the considerable practical advantages are accompanied by a loss of metrological 

 
7 Part of the results discussed in this section are also present in the paper Verna E., Genta G., 

Galetto M., and Franceschini F. (2020e). “Planning Offline Inspection Strategies in Low-Volume 
Manufacturing Processes.” Quality Engineering In press, DOI: 10.1080/08982112.2020.1739309 
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characteristics (Herrmann, 2011). As far as roughness measurement is concerned, 
two instruments belonging to two different classes of methods for surface texture 
measurements, the Line Profiling and the Areal Topography, are considered (Leach, 
2011). Specifically, the first instrument is a Contact Stylus (CS) and the second one 
is a Point Autofocus Instrument (PAI). In CS, the stylus is loaded on the surface to 
be measured and then moved across the surface at a constant velocity to obtain 
surface height variation (Leach, 2011). A PAI is a non-contact, optical measuring 
instrument that automatically focuses a laser beam to a single point on the surface 
and raster scans an area of interest (Maculotti et al., 2019). Each of the four different 
methods is characterized by the three probabilities 𝑝𝑌𝑗, 𝛼𝑌𝑗  and 𝛽𝑌𝑗, which are 
reported in Table 5.8. 

Table 5.8 - Estimates of defects probabilities, inspection errors, cost parameters and 
inspection indicators related to each inspection method (HB, HRB, CS and PAI). 

Output 
variable 

Inspection 
method 

𝒑𝒀𝒋  
[%] 

𝜶𝒀𝒋 
[%] 

𝜷𝒀𝒋  
[%] 

CFj 
[€] 

cj 
[€] 

NRCj 
[€] 

URCj 
[€] 

NDCj 
[€] 

𝑫𝒀𝒋  
(×10-5) 

[-] 

𝑪𝒀𝒋  
[€] 

Hardness 
HB 0.55 2 1 15 12.5 50 50 100 5.53 28.77 

HRB 0.55 3 2 15 4.2 50 50 100 11.05 20.97 

Roughness 
CS 0.67 5 4 15 6.3 1.3 1.3 80 26.79 21.39 
PAI 0.67 2 1 15 125 1.3 1.3 80 6.70 140.04 

 

In Table 5.8, hardness defect probabilities (pHB and pHRB) were considered 
identical and equal to the probability pHB obtained in Eq. (3.36), as well as for 
roughness defect probabilities (pCS and pPAI), which were set equal to pRa derived in 
Eq. (3.37). In fact, as a preliminary approximation, the two different methods for 
inspecting both hardness and roughness are based on similar technologies with 
comparable performances in terms of detection of defects. In other words, although 
pHB and pRa are strongly dependent on the instrument used, they can be considered 
good estimates of the actual defectiveness in terms of the order of magnitude. In 
order to refine the estimates of pHRB and pPAI, future research will be aimed at 
designing a specific planned experimentation. The inspection errors 𝛼𝑌𝑗  and 𝛽𝑌𝑗 
were estimated by the inspectors, for each inspection method, basing on empirical 
values obtained from similar parts produced with the adopted SLM technique and 
other manufacturing processes such as casting processes. Table 5.8 also reports the 
estimates of the cost parameters for each inspection method (HB, HRB, CS and 
PAI). CFj was estimated as the cost for calibrating the AM machine carried out by 
the supplier during the preventive maintenance. The estimates of cj were calculated 
considering the time required for the inspection and the labor cost of 
operators/inspectors. NRCj and URCj were estimated starting from the time required 
for identifying and repairing possible defects (necessary or unnecessary), and the 
respective labor cost. Finally, NDCj included external failure costs. According to 
Eqs. (4.10) and (4.12), the indicators 𝐷𝑌𝑗  and 𝐶𝑌𝑗  were calculated for each 
inspection method and were reported in Table 5.8. It should be noted that in this 
case study, the interaction between model variables and costs are, as a first 
approximation, considered negligible. 
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By combining the four different inspection methods of Table 5.8, four 
inspection strategies may be performed (see Table 5.9). The first one, IS-A, 
includes Brinell hardness test and roughness measurement with the contact stylus 
CS. The second, IS-B, is performed with a Brinell hardness test and a roughness 
test using a PAI. ISC requires hardness to be measured with a Rockwell test (HRB) 
and roughness with the contact stylus CS. Finally, IS-D involves measuring 
hardness with a Rockwell test (HRB) and roughness using a PAI. Table 5.9 shows 
the indicators Dtot and Ctot obtained for the inspection strategies IS-A, IS-B, ISC 
and IS-D, calculated using respectively Eqs. (4.11) and (4.13). As a first 
approximation, consider that model variables are not affected by uncertainty and, 
consequently, the performance indicators are not affected either. 

Table 5.9 - Indicators values calculated for IS-A, IS-B, IS-C and IS-D. 

Indicator IS-A IS-B IS-C IS-D 
Dtot (×10-4)  [-] 3.23 1.22 3.78 1.78 

Ctot [€] 50.16 168.81 42.36 161.01 
 

The strategy with the lowest value of Dtot is IS-B, but it is also the most 
expensive one. Conversely, ISC has the lowest Ctot, but it is characterized by the 
highest mean total number of undetected defects. IS-A and IS-D are two 
intermediate strategies between IS-B and IS-C. According to these results, the 
producer of SLM parts may easily select the best inspection strategy that adequately 
satisfies its needs by using the ISMs. For example, if the manufacturer is willing to 
accept on average up to 4 defective output variables undetected every 10000 in 
order to have a total inspection cost not exceeding 45 €, the best choice is IS-C. 
This situation is represented in the ISM shown in Figure 5.5. 

 

 

Figure 5.5 - Representation of the ISM for the inspection strategies IS-A, IS-B, 
IS-C and IS-D, considering the first scenario. 

 

On the contrary, if the objective is the minimization of defects, and in particular 
the two thresholds imposed by the company designer are D*tot = 1.500·10-4 and C*tot 

= 180 €, the producer will select IS-B, while accepting a quadruple increase in costs 
with respect to IS-C (see Figure 5.6). 
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Figure 5.6 - Representation of the ISM for the inspection strategies IS-A, IS-B, 
IS-C and IS-D, considering the second scenario. 

 
The decision is strictly related to the producer requirements, which are in turn 

connected with the certification constraints imposed by the product application 
sectors. For instance, if the component is designed for medical or aerospace sectors, 
the producer may be more inclined to choose the strategy that minimizes Dtot, 
instead of choosing the most affordable one, because of the considerable 
consequences that residual defects could have. On the contrary, if the sector 
requirements are not so stringent, the producer is led to choose the most affordable 
strategy. However, it should be highlighted that the number of undetected defects 
in all the four strategies is very small, also considering that it refers to a low-volume 
production. Indeed, despite in IS-C the indicator Dtot is almost three times greater 
than in IS-B, it means that given a production of 104 components, there are nearly 
4 defective-output variables which are erroneously not signaled. Since the 
production of these components can reach a hundred parts per year, the number of 
defects which are erroneously not signaled is actually very low. 
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Chapter 6 : 
Conclusions 

The present Doctoral Dissertation was designed to provide new insight into the 
research field of quality control in low-volume productions for supporting designers 
during the early phases of the inspection planning. Throughout its chapters, this 
Dissertation attempted to answer the following three research questions:  

RQ1: Can defects occurring in low-volume production processes be predicted 
using probabilistic models? 
RQ2: How to evaluate the performances of quality inspections in low-volume 
productions? 
RQ3: How to support designers in the early design phases of inspection process 
planning of low-volume productions? 

In this concluding section, the answers to these RQs are provided, summarizing the 
original contributions of this research, and focusing on the benefits, limitations and 
possible future developments. 

 
First of all, this Dissertation proposes a detailed analysis of the existing 

literature on inspection procedures. Starting from the classification proposed in the 
recent survey of Genta et al. (2020) that subdivided all research studies according 
to the general characteristics and the modeling structure, this Dissertation moved to 
describe the two main inspection paradigms that can be identified from the 
inspection type perspective, i.e., in-process and offline inspections. After having 
discussed the difference between the two inspection paradigms, a brief review of 
key research contributions on inspection procedures since the 1960s is proposed, 
and the emergence and differentiation of the two inspection paradigms are 
presented. Next, the focus of this Dissertation shifts to recent papers published over 
the last 20 years, with the purpose of identifying the main research lines that can be 
distinguished, both addressing in-process and offline inspections. Within this 
framework, the major reference models identified in the literature for both in-
process inspections and offline inspections are then reviewed, highlighting the main 
advantages and disadvantages of each model. Moreover, an overview of the main 
research areas covered by the literature on inspection procedures is provided and 
the major literature gaps are identified. Finally, this Dissertation offers some insight 
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into future research perspectives and challenges that have been identified from the 
research areas which are not adequately covered by the literature. In particular, the 
need for accurate defect modeling, as well as the need for greater attention to human 
skill of inspectors and low-volume productions have been underlined. Accordingly, 
in the following chapters, this Dissertation has sought to address the issues that have 
emerged regarding the lack of specific defect generation models for low-volume 
production and the design of appropriate inspection strategies for this type of 
production. 

 
After having reviewed the literature on inspection procedures to identify new 

perspectives, this Dissertation focused on defect generation models in the quality 
area. In the literature, extensive research has been carried out on the prediction of 
product defects in the manufacturing field (Antani, 2014; Su et al., 2010; Shibata, 
2002; Psarommatis et al., 2020). Furthermore, with the increased digitalization in 
manufacturing, a huge amount of data can be generated in the overall production 
process. Accordingly, the generated data sets can now be used by machine learning 
techniques for analytics of the production process to improve product quality 
control. However, a review of the main contributions in this field showed that the 
developed models and approaches had been mostly restricted to mass productions 
and high-volume production lines. On the contrary, only a limited number of studies 
was directed to the investigation of defects occurring in low-volume manufacturing 
processes. In order to address this issue and answer the first research question - 
RQ1, this Dissertation provided two different defect prediction models suitable for 
(i) processes decomposable into steps, such as assembly processes, that are 
inspected through in-process inspections, and (ii) processes in which quality 
inspections are mainly performed at the end of the production and therefore are 
mainly offline inspections. The different variables involved in the models have 
resulted in a different model structure.  

Regarding the first category of models, a literature analysis has shown that the 
most accredited models rely on the close relationship between defects and 
complexity. Indeed, if assembly complexity is not managed adequately at the early 
stages of process planning, it can lead to increased assembly time and errors and 
reduce assembly quality. Following this research line, the first model developed in 
this Dissertation is based on the novel conceptual paradigm of complexity proposed 
by Alkan (2019) and Sinha (2014). The predictor of such a model is the structural 
product complexity formulated by considering both complexities of product 
elements and effects of product assembly topology. The assembly of wrapping 
machines was used as a case study for developing and testing this prediction model. 
This process belongs to the category of low-volume productions (production rate: 
50 machines assembled each year). In this situation, identifying an appropriate 
defect prediction model is essential, being traditional statistical methods not 
suitable or not applicable. This novel approach was compared with the Shibata-Su 
model, one of the most accredited in the literature. The comparison between the 
two models pointed out that, despite the architectural similarities, the novel defect 
prediction model allows for more accurate and precise estimates of DPU. This may 
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depend on the different perspectives used to formulate complexity in the two 
approaches. In the novel model, product complexity is approached based on 
objective product characteristics, while an objective perspective is combined with 
a subjective evaluation provided by experts in the Shibata-Su model. Besides, the 
objective perspective seems to be preferable as it considers in a combined factor 
both the complexity due to the process and the design, without separating the two 
aspects. 

Regarding the second category of models, relatively little attention has been 
paid to the quantification of possible defects occurring in the process when it is 
optimized. To this aim, the modeling of defects in those processes inspected by 
offline inspection was proposed by developing a new methodology for estimating 
the probability of occurrence of defects in the finished product, separately for 
continuous and discrete input variables. The steps to be followed in the proposed 
approach for continuous input variables are (i) the definition of input and output 
variables, (ii) the determination of the mathematical relationship among these 
variables, (iii) the identification of all the uncertainty contributions, and (iv) the 
estimation of probabilities of occurrence of defective-output variables. This defect 
model is applied to an Additive Manufacturing (AM) production in the automotive 
industry. The selected output variables were macro-hardness and surface roughness. 
A designed experiment was performed to identify statistically significant process 
variables and, consequently, the response surface methodology (RSM) provided the 
mathematical model relating the process variables to the responses. Afterwards, the 
response surfaces were optimized to obtain the optimal configuration of the process 
variables. Finally, through the proposed methodology, the probability of occurrence 
of hardness and roughness defect under optimal working conditions were estimated. 

Regarding discrete output variables, the model also relies on the knowledge of 
the relationships between input and output variables. In detail, the probability of 
occurrence of defective-output variables can be derived from the probabilities of 
occurrence of defects in the final product caused by the input variables. An excerpt 
of application is proposed considering a Selective Laser Melting production again. 

By providing a quantitative assessment of output-variables defect probability, 
the models proposed in this Dissertation can help researchers and practitioners in 
their understanding of the manufacturing process in terms of defect generation. 
Furthermore, all the models developed, operatively, have the great potential of 
supporting inspection designers in the planning of effective quality inspection 
strategies during the early phases of inspection planning.  

 
The design of quality-inspections for low-volume productions is still a 

remarkable issue because of the inadequacy of traditional techniques, including 
cost-benefit models, simulations, optimization models and mathematical 
programming and optimization models (Neu et al., 2002, 2003; Münch et al., 2002; 
Hanne and Nickel, 2005; Shiau, 2003; Mohammadi et al., 2015). Accordingly, the 
second research question - RQ2 - of this Dissertation was addressed by using the 
aforementioned defect generation models and combine them with inspection 
variables, including inspection errors and costs, to define two practical performance 
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measures of an inspection strategy. The preliminary study proposed by Franceschini 
et al. (2018) and Genta et al. (2018) in the field of in-process inspections was 
extended and adapted to offline inspections. In particular, two practical 
performance indicators are developed to assist designers in choosing the best 
compromise between effectiveness and cost of alternative inspection strategies. The 
method proposed in this Dissertation extends previous studies in the field by 
considering possible interaction between model variables and costs occurring 
during the inspection process. A practical application of the method is applied to a 
real case study in the field of Additive Manufacturing processes. This application 
highlights the effectiveness of the method in supporting the design team in 
assessing the effectiveness and cost of an inspection strategy involving a variety of 
output variables and their interactions.  

The method to evaluate inspection performance measures, both for in-process 
and offline inspections, is complemented with an uncertainty evaluation analysis, 
by developing a methodology according to the GUM - Guide to the expression of 
Uncertainty in Measurement - (JCGM 100:2008, 2008). 

 
Finally, this Dissertation presents a novel methodology to support inspection 

designers in the first stages of inspection planning. Although some preliminary 
research has been carried out on the design of inspection strategies for low-volume 
productions, relatively little attention has been paid to the definition of a decision 
support tool for designers enabling the assessment of the adequacy of alternative 
inspection strategies. Considering this literature gap, with the purpose to answer the 
third research question - RQ3, this Dissertation proposes a strategic tool, named 
Inspection Strategy Map (ISM), able to guide inspection designers in the inspection 
planning process from the early design phases. The proposed tool relies on defect 
generation models and uses the pair of practical indicators depicting the 
effectiveness and total cost of an inspection strategy to map the company’s scenario. 

The ISM represents a powerful tool for (i) enabling positioning assessment and 
benchmarking of different inspection strategies, and (ii) driving designer choices to 
achieve desired specification targets. 

The proposed tool is very flexible because it is suitable for both in-process and 
offline inspections. This flexibility allows the ISM to be used in several industrial 
contexts, making it a very useful tool for inspection designers. To show the validity 
of the ISM, the methodology is applied to a practical case study concerning the 
assembly of wrapping machines and an Additive Manufacturing production. In the 
former, the current inspection strategy performed by the company is compared with 
potential different inspection alternatives. In the latter, two different scenarios are 
considered in which four alternative inspection strategies are compared with the 
aim to show the potential of the ISM tool.  

 
This Dissertation has attempted to provide a deep overview of the quality-

inspection strategies and practical tools to support inspection design in low-volume 
productions. The major limitations of this Dissertation are the following: (i) defect 
prediction models proposed in Chapter 3 are tested under specific manufacturing 
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field and still require validations on a higher number of different real cases; (ii) 
performance measures of in-process inspections have not been yet developed 
considering interactions between variables and costs; (iii) although the tools 
proposed in Chapter 5 have been tested both in real cases of in-process and offline 
inspections, further improvements can be made by including variables interactions 
and uncertainty to enhanced the obtained results.  

Although the practical applications proposed in this Dissertation have shown 
the validity and relevance of the methodologies in different industrial contexts, i.e., 
in low-volume assembly processes and AM processes, a generalization of the 
obtained results is still lacking. It is clear that, in the specific case of low volume 
production systems, the huge variety of possible industrial cases and situations can 
make the generalization of the proposed approaches a non-trivial problem, also 
considering that this cannot be achieved within a reasonable time. However, 
although proof of generalization is missing, the applicability of the proposed 
models and decision support tools may have general validity. In order to generalize 
the proposed approaches to different application fields, some modifications might 
be applied. The defect prediction models developed in Chapter 3 are applicable to 
any low-volume production, but each model should be tailored to the specific 
technology, possibly resulting in different model’s variables and coefficients. On 
the other hand, the performance measurements of inspection strategies and the 
Inspection Strategy Map (ISM) defined in Chapter 4 and 5, respectively, are 
applicable to any kind of industrial context for which support is required in the 
quality control planning process. Generally speaking, once the production process 
and the inspections have been adequately modelled depending on the specific 
technology and manufacturing field, the proposed approaches for supporting and 
improving quality control can still be applied without relevant modifications to 
every industrial application characterized by low-volume production rates.  

In light of the results of this Dissertation, several questions can be raised 
concerning the design of inspections in low-volume productions. In particular, in 
addition to the issues addressed in the different chapters of this Dissertation, further 
research is needed to:  

(i) examine alternative models involving different predictors both for the 
approaches developed in the field of in-process and offline inspections. 
In particular, appropriate machine learning algorithms might be 
explored for predicting parts quality. In fact, the implementation of 
these algorithms in the inspection of low volume production systems, 
as mentioned in Chapter 3, is not yet properly explored, becoming a 
great opportunity for future research in the field. 

(ii) extend the use of the proposed tools and methodologies to real-time 
monitoring of inspection activities. More in detail, further research 
should focus on the design and implementation of a general tool, in 
specific software, to be used in real-time monitoring supervision. 
Although this tool needs a huge amount of work to be implemented in 
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each application case, considering the specificities of each of them, the 
general model could be almost the same. 

(iii) expand the research approaches by moving the perspective from 
product perspective to the overall production process or production 
system standpoint. 
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