
Composite materials are presented as the lightweight design flexibility or tailoring materials for 

desired demands in the laminate stacking sequence aerospace industries. The benefits of 

composite materials are to provide high strength and high stiffness regard to the weight, identified 

fatigue strength, wear, and corrosion resistance provided with the high performance and reliability  

[1,2]. Buckling analysis is one of the significant behaviour which can reach to the required 

resistance with constant stiffness (CS) fibre angles through the thickness of each layer in the 

conventional composites, while via the generation of a new class of composites known as variable 

stiffness (VS) pointed as laminate tailoring, with embrace the curvilinear fibre paths to the 

spatially, and hence vary in-plane stiffness, buckling response can manifest significantly 

betterment [3,4],  in compared with CS counterpart.  The stiffness variation propose in discrete 

model such as Patch design or introducing continues fiber path curvilinear which described as VAT 

laminates [5,6,7,8]. Setoodeh et al. [9] showed that in-plane loads and buckling resistance in the 

stiff zone with greater satisfied, and not in the critical zone can present higher buckling load 

adequately in VAT plates based on finite element models [10]. Lopes et al. [11] illustrate the 

advantages of variable stiffness composite in compressive buckling and failure modes of the first 

ply by taking advantage of finite element models as the numerical simulation.  

Stability analysis of simply-supported rectangular plates under non-uniform uniaxial compression 

using rigorous and approximate plane stress solutions [12]. Buckling introduced together with the 

significant failure in the thin-walled structure and thin plates [13,14,15]. A classical finite element 

cannot grantee continuity and smooths of the variable angle tow fibres with the presumption of 

them straight. Following by discretization of the fibres, a large number of elements and even 

higher by using refined mesh size, which may influence on the buckling analysis results by 

providing a wide variety of error including higher computational time due to higher Degree of 

Freedom (DOF) [16]. 

For buckling analysis in an aerospace application, Carrera Unified Formulation can introduce as a 

capable higher-order beam model (1D) to represent displacement as regards arbitrary unknown 

over the cross-section by Taylor-like expansion with a generic N-the order which obtained [17,18] 

or Lagrange-like polynomial expansion by expressing [19] for linear buckling analysis. In anisotropic 

composite materials, refined 1D CUF beam organise to display as Component-wise [20,21] or 

layer-wise model \cite{CarreraAIAA1998}, to achieve better solution in contrast with commercial 

code for classical beam, plates and solid [22].  

Lately, the CUF procedure successfully employed to perform free vibration analysis of VAT 

structures by Viglietti et al. [23,24] and [25]. 

This chapter present linear buckling and vibration analysis which modelled for variable stiffness 

composite by 1D CUF beam model, for a thin plate with sixteen layers and then the results will be 

compared with FEM to show the capability of CUF for decreasing the DOF, computational time 

with well-presented the continuity of variable stiffness fibre and accurate model. 
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