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Abstract. We consider the 1D nonlinear Schrödinger equation with focusing point

nonlinearity. “Point” means that the pure-power nonlinearity has an inhomogeneous

potential and the potential is the delta function supported at the origin. This

equation is used to model a Kerr-type medium with a narrow strip in the optic

fibre. There are several mathematical studies on this equation and the local/global

existence of solution, blow-up occurrence and blow-up profile have been investigated.

In this paper we focus on the asymptotic behavior of the global solution, i.e, we

show that the global solution scatters as t → ±∞ in the L
2 supercritical case. The

main argument we use is due to Kenig-Merle, but it is required to make use of

an appropriate function space (not Strichartz space) according to the smoothing

properties of the associated integral equation.

1. Introduction

In this paper, we address a theoretical study on a model, proposed in [16], that

describes a wave propagation in a 1D linear medium containing a narrow strip of

nonlinear material, where the nonlinear strip is assumed to be much smaller than

the typical wavelength. Considering such nonlinear strip may allow to model a wave

propagation in nanodevices, in particular the authors in [13] consider some nonlinear

quasi periodic super lattices and investigate an interplay between the nonlinearity and

the quasi periodicity. Such a strip is described as an impurity, i.e. a delta measure in

the nonlinearity of nonlinear Schrödinger equation. For applications in nanodevices,

it should be important to study NLS with a quasi periodic location of delta measures,

but in this paper, as a first step, we will treat the Schrödinger equation which has

Key words and phrases. Schrödinger equation, nonlinear point interaction, scattering.
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only one impurity in the nonlinearity:

(1.1)

{
i∂tψ + ∂2xψ +K(x)|ψ|p−1ψ = 0, t ∈ R, x ∈ R

ψ(x, 0) = ψ0(x)

where p > 1, and K = δ, δ is the Dirac mass at x = 0. This singularity in the

nonlinearity is interpreted as the linear Schrödinger equation:

i∂tψ + ∂2xψ = 0, t ∈ R, x 6= 0

together with the jump condition at x = 0

ψ(0, t) := ψ(0−, t) = ψ(0+, t)

∂xψ(0+, t)− ∂xψ(0−, t) = −|ψ(0, t)|p−1ψ(0, t).

Remark that this equation (1.1) also appears as a limiting case of nonlinear Schrödinger

equation with a concentrated nonlinearity (see [7]).

In [3, 11], it was proved that the equation (1.1) is locally well-posed for any ψ0 ∈
H1(R) for p > 1, and Equation (1.1) has two conservative quantities: the mass

M(ψ) =

∫
|ψ|2

and the energy

E(ψ) =
1

2

∫
|∂xψ|2 −

1

p+ 1
|ψ(0)|p+1.

The mass condition for the global existence/blow-up, further an analysis of the blow-

up profile were established in [11, 12]. Furthermore, the problem of asymptotic sta-

bility of the standing waves of equation (1.1) has been treated in [5] and [14].

As far as we know, the asymptotic behavior, in particular, the scattering of the

solution is not known for (1.1). For the standard NLS, i.e. K ≡ 1, in one dimensional

case, such a result in H1 was firstly established in [17]. This topic has been very

active these decades thanks to a breakthrough result by Kenig-Merle [15]. Our proof

therefore essentially will be based on Kenig-Merle [15], and some results after [15],

for example [10]. However, it is required to make use of an appropriate function

space (not Strichartz space) according to the smoothing properties of the associated

integral equation to (1.1).

Higher-dimensional models with a generalization of the delta potential have been

introduced in [2] and in [6] for the three and two-dimensional setting, respectively.

While, at a qualitative level, the model in dimension three behaves like that in di-

mension one, the two-dimensional setting displays some uncommon features still to

be understood (for the analysis of the blow-up, see [1]).

We remark that the model of a NLS with a standard power nonlinearity and a

linear point interaction has been studied in [4].
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Notation. If I is an interval of R, and 1 ≤ r ≤ ∞, then LrI is the space of

strongly Lebesgue measurable, complex-valued functions v from I into C satisfying

‖v‖Lr
I
:=

∫
I
|v(t)|rdt < +∞ if r < +∞, when r = +∞, ‖v‖L∞

I
:= supt∈I |v(t)| < +∞.

The space C0
IE denotes the space of continuous functions on I with values in a Banach

space E.

For s ∈ R, we define the Sobolev space

Hs = {v ∈ S ′(R), ‖v‖Hs := ‖(1 + |ξ|2) s
2 v̂(ξ)‖L2

R

< +∞},
and the homogeneous Sobolev space

Ḣs = {v ∈ S ′(R), ‖v‖Ḣs := ‖|ξ|sv̂(ξ)‖L2
R

< +∞},

where f̂ is the Fourier transform of the function f . Thus, H0 = Ḣ0 = L2
R, and this

will be simply denoted as L2. Sometimes we put an index t or x like Ḣs
t or Ḣs

x to

enlighten which variable concerns. For α ∈ R, |∇|α denotes the Fourier multiplier

with symbol |ξ|α. For s ≥ 0, define v ∈ Hs
I if, when v(x) is extended to ṽ(x) on R by

setting ṽ(x) = 0 for x /∈ I, then ṽ ∈ Hs; in this case we set ‖v‖Hs
I
= ‖ṽ‖Hs. Finally,

χI denotes the characteristic function for the interval I ⊂ R.

The equation (1.1) has a scaling invariance: if ψ(x, t) is a solution to (1.1) then

λ
1

p−1ψ(λx, λ2t), λ > 0 is also. The scale-invariant Sobolev space for (1.1) is Ḣσc with

σc =
1

2
− 1

p− 1
,

thus, for (1.1), p = 3 is the L2 critical setting. If p > 3, then 0 < σc <
1
2
and

1

4
<

2σc + 1

4
<

1

2
, −1

4
<

2σc − 1

4
< 0.

We take q and q̃ to be given by

1

q
=

1

2
− 2σc + 1

4
,

1

2
=

1

q̃
− 1− 2σc

4
,

and from the definition of σc, we find that

q = 2(p− 1) , q̃ =
2(p− 1)

p
.

In the remainder of the paper, once p > 3 is selected, we will take σc, q and q̃ to have

the corresponding values as defined above.

Recall that by Sobolev embedding, one has

‖ψ‖Lq
R

. ‖ψ‖
Ḣ

2σc+1
4
, ‖f‖

Ḣ
2σc−1

4
. ‖f‖Lq̃

R

.

More generally than the above case, σc should satisfy −1
2
≤ σc <

1
2
to apply this

Sobolev embedding, that is, the case σc = 0 (namely p = 3) is included for this

embedding.
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First, we recall here the local wellposedness result of (1.1) established in Theorem

1.1 of [11].

Proposition 1.1. Let p > 1 and ψ0 ∈ H1. Then, there exist T ∗ > 0 and a solution

ψ(x, t) to (1.1) on [0, T ∗) satisfying for T < T ∗,

ψ ∈ C0
[0,T ]H

1
x ∩ C0

RH
3
4

(0,T ),

∂xψ ∈ C0
Rx\{0}H

1
4

(0,T ).

Here, the derivatives ∂xψ(0
±, t) := limx→±0 ∂xψ(x, t), exist in the sense of H

1
4

(0,T ) and

ψ satisfies

∂xψ(0
+, t)− ∂xψ(0

−, t) = −|ψ(0, t)|p−1ψ(0, t)

as an equality of H
1
4

(0,T ) functions (not pointwisely in t).

Among all solutions satisfying the above regularity conditions, it is unique. More-

over, the data-to-solution map ψ0 7→ ψ, as a map H1
x → C0

[0,T ]H
1
x, is continuous, and

if T ∗ < +∞, then limt↑T ∗ ‖∂xψ(t)‖L2
R

= +∞.

Hereafter, the solution to (1.1) satisfying the above regularity condition will be

referred to as H1
x solution to (1.1).

The local virial identity has been also proved in [11]. For any smooth weight

function a(x) satisfying a(0) = ∂xa(0) = ∂
(3)
x a(0) = 0, the solution ψ to (1.1) satisfies

(1.2) ∂2t

∫
a(x)|ψ|2 dx = 4

∫
∂(2)x a|∂xψ|2 − 2∂(2)x a(0)|ψ(0)|p+1 −

∫
∂(4)x a|ψ|2.

Proposition 1.2 ([11, Prop 1.3] sharp Gagliardo-Nirenberg inequality). For any

ψ ∈ H1,

(1.3) |ψ(0)|2 ≤ ‖ψ‖L2‖∂xψ‖L2 .

Equality is achieved if and only if there exist θ ∈ R, α > 0 and β > 0 such that

ψ(x) = αeiθϕ0(βx), where ϕ0 = 2
1

p−1 e−|x| is the ground state solution to (1.1) (see

[11]).

Theorem 1.3 ([11, Prop 1.4] L2 supercritical global existence/blow-up dichotomy).

Suppose that ψ(t) is an H1
x solution of (1.1) for p > 3 satisfying

(1.4) M(ψ0)
1−σc
σc E(ψ0) < M(ϕ0)

1−σc
σc E(ϕ0).

Let

η(t) =
‖ψ‖

1−σc
σc

L2 ‖∂xψ(t)‖L2

‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2

Then
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(1) If η(0) < 1, then the solution ψ(t) is global in both time directions and η(t) < 1

for all t ∈ R.

(2) If η(0) > 1, then the solution ψ(t) blows-up in the negative time direction at

some T− < 0, blows-up in the positive time direction at some T+ > 0, and

η(t) > 1 for all t ∈ (T−, T+).

Remark that if E(ψ0) < 0, then the condition (1.4) is satisfied, and in that case

η(t) > 1 is forced by (1.3), so the condition (2) applies giving the blow-up.

Main result of this paper is the following.

Theorem 1.4. (asymptotic completeness) Let p > 3. Let ψ0 ∈ H1 and let ψ(t) be a

H1
x solution of (1.1) satisfying

M(ψ0)
1−σc
σc E(ψ0) < M(ϕ0)

1−σc
σc E(ϕ0)

and

‖ψ0‖
1−σc
σc

L2 ‖∂xψ0‖L2 < ‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2 .

Then, there exist ψ+, ψ− ∈ H1 such that

lim
t→±∞

‖e−it∂2xψ(t)− ψ±‖H1
x
= 0.

We only consider the focusing nonlinearity, but the scattering for the defocusing

case is similarly proved.

This paper is organized as follows: Below in Section 2, we will discuss the local

theory, scattering criterion and long-time perturbation theory. Section 2 includes

some preliminary and important results which reflect the smoothing properties of the

equation (1.1). We will give in Section 3 the profile decomposition in H1 in a form

well-adapted to our equation. In Section 4, the asymptotic completeness in H1 will

be established using the results in Sections 2 and 3. We sometimes denote all through

the paper by Cθ,... a constant which depends on θ and so on.

2. Local theory, scattering criterion, and long-time perturbation

theory

Write the equation (1.1) in the Duhamel form:

ψ(x, t) = eit∂
2
xψ0 + i

∫ t

0

ei(t−s)∂
2
xδ(x)|ψ(x, s)|p−1ψ(x, s)ds

= eit∂
2
xψ0 + i

∫ t

0

e
ix2

4(t−s)

√
4πi(t− s)

|ψ(0, s)|p−1ψ(0, s)ds.(2.1)
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We remark that the equation (1.1) is completely solved once the one-variable complex

function ψ(0, ·) is known: indeed, specializing (2.1) to the value x = 0, one obtains a

closed, nonlinear, integral, a Volterra-Abel type equation for ψ(0, ·);

(2.2) ψ(0, t) = [eit∂
2
xψ0](0) + i

∫ t

0

1√
4πi(t− s)

|ψ(0, s)|p−1ψ(0, s)ds.

Now, for any σ ∈ R, we define for f ∈ Ḣσ, t, s ∈ R with t ≥ s,

[Lsf ](x, t) :=
∫ t

s

e
ix2

4(t−τ)

√
4πi(t− τ)

f(τ)dτ.

Similarly, we define, for t ∈ R,

[Λf ](x, t) :=

∫ ∞

t

e
ix2

4(t−τ)

√
4πi(t− τ)

f(τ)dτ.

The following smoothing properties of Ls and Λ will play important roles in what

follows.

Proposition 2.1. Let σ ∈ R.

(1) ‖[ei(t−s)∂2xf ](0)‖
Ḣ

2σ+1
4

t

. ‖f‖Ḣσ , for any f ∈ Ḣσ and t, s ∈ R.

(2) Assume −1
2
< 2σ−1

4
< 1

2
. Let f ∈ Ḣ

2σ−1
4 and s ∈ R.

(2a) ‖[Lsf ](0, ·)‖
Ḣ

2σ+1
4

t

. ‖χ[s,+∞)f‖
Ḣ

2σ−1
4

. ‖f‖
Ḣ

2σ−1
4

(2b) ‖[Λf ](0, ·)‖
Ḣ

2σ+1
4

t

. ‖f‖
Ḣ

2σ−1
4

(3) Assume −1
2
< 2σ−1

4
< 1

2
. Let f ∈ Ḣ

2σ−1
4 and s ∈ R.

(3a) ‖Lsf‖L∞
Rt
Ḣσ

x
. ‖f‖

Ḣ
2σ−1

4
.

(3b) ‖Λf‖L∞
Rt
Ḣσ

x
. ‖f‖

Ḣ
2σ−1

4
.

For the proof of Proposition 2.1, we need some preparations.

Lemma 2.2. For any −1
2
< µ < 1

2
, and any t > 0, we have

(2.3) ‖χ[0,t](s)f(s)‖Ḣµ
s
. ‖f‖Ḣµ

s

with implicit constant independent of t.

Proof. First, we claim that it suffices to show

(2.4) ‖χ[0,+∞)f‖Ḣµ
s
. ‖f‖Ḣµ

s



SCATTERING FOR THE L
2 SUPERCRITICAL POINT NLS 7

Indeed, suppose that we have proved (2.4). Since χ[0,t] = χ[0,+∞)χ(−∞,t], to prove (2.3)

we note

‖χ[0,t]f‖Ḣµ
s
= ‖χ[0,+∞)χ(−∞,t]f‖Ḣµ

s

. ‖χ(−∞,t]f‖Ḣµ
s

by (2.4)

= ‖χ[0,+∞)f̃‖Ḣµ
s

where f̃(s) = f(−s+ t). In the last step, we have used that

[χ(−∞,t](s)f(s)]̂ (τ) = e−itτ [χ[0,∞)(s)f(−s+ t)]̂ (−τ)
We continue and apply (2.4) to obtain

‖χ[0,+∞)f̃‖Ḣµ
s
. ‖f̃‖Ḣµ

s
= ‖f‖Ḣµ

s

where, in the last step, we used that ̂̃f(τ) = e−itτ f̂(−τ). This completes the proof of

(2.3) assuming (2.4).

To prove (2.4), we note χ̂[0,+∞)(τ) = pv 1
iτ
+ πδ(τ) and thus

[χ[0,+∞)f ]̂ (τ) = π(Hf̂ + f̂)

where H denotes the Hilbert transform. Hence

‖χ[0,+∞)f‖Ḣµ = ‖|τ |µ[χ[0,+∞)f ]̂ (τ)‖L2
τ

. ‖|τ |µ(Hf̂)(τ)‖L2
τ
+ ‖|τ |µf̂(τ)‖L2

τ

Since −1
2
< µ < 1

2
, we can apply Corollary of Theorem 2 on page 205 in [18], combined

with (6.4) on p. 218 of [18] (for p = 2, n = 1, a = 2µ) to estimate the above as

‖χ[0,+∞)f‖Ḣµ . ‖|τ |µf̂‖L2
τ
= ‖f‖Ḣµ.

�

Proof. (of Proposition 2.1) (1) was already proved in Lemma 1 of [3], but for the sake

of completeness we give a proof. We use here the notation ,̂ which means the Fourier

transform in space, and F is in time. It suffices to show the case s = 0. Since the

free Schrödinger group is unitary in Ḣσ
x for any σ ∈ R, We may write

[eit∂
2
xf ](0) =

∫

Rξ

e−iξ
2tf̂(ξ)dξ.

By a change of variables this equals
∫ +∞

0

e−ikt
f̂(−

√
k) + f̂(

√
k)

2
√
k

dk.

Thus the Fourier transform in time gives

F [(eit∂
2
xf)(0)](ω) = 2π

f̂(−√
ω) + f̂(

√
ω)

2
√
ω

χ[0,+∞)(ω).
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Therefore

‖[eit∂2xf ](0)‖2
Ḣη = π2

∫

Rω

|ω|2η−1|f̂(−
√
ω) + f̂(

√
ω)|2χ[0,+∞)(ω)dω

≤ 2π2

∫

Rk

|k|4η−1|f̂(k)|2dk

= C‖f‖
Ḣ

4η−1
2
,

where, again we changed the variables ±√
ω = k in the second inequality. For (2a),

we may write

[Lsf ](0, t) =

∫ t

s

f(τ)√
4πi(t− τ)

dτ

=
1√
4πi

∫ +∞

−∞

(t− τ)
− 1

2
+ χ[s,∞)(τ)f(τ)dτ =

1√
4πi

(t
− 1

2
+ ∗ χ[s,+∞)f)(t),

where

t
− 1

2
+ :=

{
t−

1
2 , t > 0

0, t ≤ 0,

̂
t
− 1

2
+ (ξ) = (iξ)−

1
2Γ

(
1

2

)
.

We operate the Fourier transform and obtain

̂[Lsf ](0, ·)(ξ) =
(iξ)−

1
2

√
4i

χ̂[s,∞)f(ξ).

It thus follows that by Lemma 2.2, for −1
2
< 2σ−1

4
< 1

2
,

‖[Lsf ](0, ·)‖2
Ḣ

2σ+1
4

≤ C‖χ[s,+∞)f‖2
Ḣ

2σ−1
4

≤ C‖f‖2
Ḣ

2σ−1
4
.

The proof of (2b) is similar, since

[Λf ](0, t) =
−i√
4πi

((−t)−
1
2

+ ∗ f)(t).

For (3a), it suffices to prove that for any g ∈ Ḣ−σ
x (R) with ‖g‖Ḣ−σ

x
= 1,

〈Lsf, g〉 ≤ ‖f‖
Ḣ

2σ−1
4

t

.

The left hand side can be estimated as follows.

〈Lsf, g〉 =
1√
4πi

∫ +∞

−∞

χ[s,t](τ)f(τ)[e
i(t−τ)∂2x ḡ](0)dτ

≤ C‖χ[s,t]f‖
Ḣ

2σ−1
4

‖[ei(t−·)∂2x ḡ](0)‖
Ḣ−

2σ−1
4

≤ C‖f‖
Ḣ

2σ−1
4

‖g‖Ḣ−σ
x

where we have used (1) with the unitary property of free Schrödinger group in Ḣs
x for

any s ∈ R, and Lemma 2.2 in the last inequality. Since (3b) can be similarly proved,
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we omit the proof, but we remark that for any σ ∈ R, (that is, without the restriction

−1
2
< 2σ−1

4
< 1

2
),

(2.5) ‖Λf‖Ḣσ
x
. ‖χ[t,+∞)f‖

Ḣ
2σ−1

4
.

holds. �

From now on, we prepare some basic facts in order to prove the asymptotic com-

pleteness. For the sake of simplicity we will study the following Propositions 2.3-2.5

only in the case t > 0, but we can consider the negative time t < 0 similarly.

Proposition 2.3 (small data global well-posedness). Let p ≥ 3. There exists δsd > 0

such that if ψ0 ∈ Ḣσc and ‖[eit∂2xψ0](0)‖Lq
t>0

≤ δsd, then ψ ∈ Ḣσc solving (1.1) is global

in Ḣσc and

‖ψ(0, t)‖Lq
t>0

≤ 2‖[eit∂2xψ0](0)‖Lq
t>0

‖ψ(x, t)‖C0
[0,∞)

Ḣσc
x

≤ 2‖ψ0‖Ḣσc .

(Note that by Proposition 2.1 (1) and Sobolev embedding, the smallness assumption

‖[eit∂2xψ0](0)‖Lq
t>0

≤ δsd is satisfied if ‖ψ0‖Ḣσc ≤ Cδsd. )

Proof. Define a map: for a ψ0 ∈ Ḣσc given,

Tψ0ψ(t) := [eit∂
2
xψ0](0) + i[L0(|ψ|p−1ψ)](t).

By Proposition 2.1 and Sobolev embedding, we have

‖Tψ0ψ‖Lq
t>0

≤ ‖[eit∂2xψ0](0)‖Lq
t>0

+ ‖L0(|ψ|p−1ψ)(0, ·)‖Lq
t>0

≤ ‖[eit∂2xψ0](0)‖Lq
t>0

+ C‖[L0(|ψ|p−1ψ)](0, ·)‖
Ḣ

2σc+1
4

t

≤ ‖[eit∂2xψ0](0)‖Lq
t>0

+ C‖χ[0,∞)|ψ|p‖
Ḣ

2σc−1
4

t

≤ ‖[eit∂2xψ0](0)‖Lq
t>0

+ C‖ψ(0, ·)‖p
Lq
t>0
.

Let

B := {φ ∈ Lqt>0 : ‖φ‖Lq
t>0

≤ 2‖[eit∂2xψ0](0)‖Lq
t>0

}.

If ‖[eit∂2xψ0](0)‖Lq
t>0

≤ δsd then Tψ0ψ ∈ B for any ψ ∈ B, taking δsd sufficiently small.

The difference ‖Tψ0ψ − Tψ0ψ̃‖Lq
t
is similarly estimated by

‖[Tψ0(|ψ|p−1ψ − |ψ̃|p−1ψ̃)](·)‖Lq
t>0

≤ C(‖ψ‖p−1
Lq
t>0

+ ‖ψ̃‖p−1
Lq
t>0

)‖ψ − ψ̃‖Lq
t>0

for ψ, ψ̃ ∈ B. Again taking δsd sufficiently small, we conclude that Tψ0 is a contraction

on B. There thus exists a unique solution ψ̃ ∈ B such that Tψ0ψ̃ = ψ̃.
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For the last inequality in the proposition, we use Eq. (2.1) for the unique solution

ψ̃ obtained above in B. Inserting ψ̃ as the value of ψ(0, t) at time t in the RHS of

(2.1), The values of ψ(x, t) for any x can be expressed as

ψ(x, t) = eit∂
2
xψ0 + i

∫ t

0

e
ix2

4(t−s)

√
4πi(t− s)

|ψ(0, s)|p−1ψ(0, s)ds,

with ψ(0, ·) ∈ B. Then, Sobolev embedding and Proposition 2.1 implies

‖ψ‖Ḣσc
x

≤ ‖eit∂2xψ0‖Ḣσc
x

+ ‖L0(|ψ|pψ)(·, t)‖Ḣσc
x

≤ ‖eit∂2xψ0‖Ḣσc
x

+ C‖χ[0,t]|ψ|p−1ψ‖
Ḣ

2σc−1
4

≤ ‖ψ0‖Ḣσc
x

+ C‖χ[0,t]|ψ|p−1ψ‖Lq
R

≤ ‖ψ0‖Ḣσc
x

+ ‖ψ(0, ·)‖p
Lq
t>0
.(2.6)

Since ψ(0, ·) ∈ B with ‖[eit∂2xψ0](0, t)‖Lq
t>0

≤ δsd, by Sobolev embedding and Proposi-

tion 2.1(1),

‖ψ(0, ·)‖p
Lq
t>0

≤ 2pδp−1
sd ‖[eit∂2xψ0](0)‖Lq

t>0
≤ 2pδp−1

sd ‖eit∂2xψ0(0)‖
Ḣ

2σc+1
4

t

≤ 2pδp−1
sd ‖ψ0‖Ḣσc

x
.

Taking δsd sufficiently small, the RHS of (2.6) is bounded by 2‖ψ0‖Ḣσc
x
. Note that the

time continuity property follows from the fundamental solution, and this concludes

‖ψ(x, t)‖C0
[0,∞)

Ḣσc
x

≤ 2‖ψ0‖Ḣσc
x
.

. �

Proposition 2.4 (scattering criterion). Let p ≥ 3. Suppose that ψ0 ∈ H1 and ψ ∈ H1
x

solving (1.1) is forward global with

‖ψ(0, ·)‖Lq
t>0

<∞
and with a uniform H1

x bound

sup
t≥0

‖ψ(·, t)‖H1
x
≤ B.

Then ψ(t) scatters in H1
x as t ր +∞. This means that there exists ψ+ ∈ H1

x such

that

lim
tր+∞

‖ψ(t)− eit∂
2
xψ+‖H1

x
= 0.

Proof. Using the equation (2.1), we may write

ψ(t)− eit∂
2
xψ+ = −i

∫ +∞

t

ei(t−s)∂
2
xδ(x)|ψ(s)|p−1ψ(s)ds,(2.7)

where

ψ+ := ψ0 + i

∫ +∞

0

e−is∂
2
xδ(x)|ψ(s)|p−1ψ(s)ds.
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Therefore,

‖ψ(t)− eit∂
2
xψ+‖H1

x
= ‖

∫ +∞

t

ei(t−s)∂
2
xδ(x)|ψ(s)|p−1ψ(s)ds‖H1

x

= ‖Λ(|ψ|p−1ψ)(·, t)‖H1
x
.

Thus we shall estimate ‖Λ(|ψ|p−1ψ)(·, t)‖L2
x
and ‖Λ(|ψ|p−1ψ)(·, t)‖Ḣ1

x
. First, ‖Λ(|ψ|p−1ψ)(·, t)‖L2

x

is estimated by (3b) of Proposition 2.1 and the Sobolev embedding as follows. For

any t > 0,

‖Λ(|ψ|p−1ψ)(·, t)‖L2
x

≤ ‖χ[t+∞)|ψ|p−1ψ‖
Ḣ−1

4

≤ C‖χ[t,+∞)|ψ|p−1ψ‖Lq̃
R

≤ C‖ψ‖p
Lq
(t,+∞)

.(2.8)

Second, by the Sobolev embedding and fractional chain rule [8], for any t > 0,

‖Λ(|ψ|p−1ψ)(·, t)‖Ḣ1
x

≤ C‖χ[t,+∞)|ψ|p−1ψ‖
Ḣ

1
4
t

≤ C‖χ[t,+∞)|ψ|p−1‖Lr1
Rt
‖|∇| 14χ[t,+∞)ψ‖Lr2

Rt
(2.9)

with 1
2
= 1

r1
+ 1

r2
, 1 < r1, r2 < +∞. Taking q < r1 < +∞ and 2 < r2 < 4, by

interpolation,

‖χ[t,+∞)|ψ|p−1‖Lr1
Rt

≤ C‖ψ‖
q
r1

Lq
(t,+∞)

sup
s≥t

|ψ(0, s)|(1−
q
r1

)

≤ C‖ψ‖
q
r1

Lq
(t,+∞)

sup
s≥t

‖ψ(s)‖
(1− q

r1
)

L∞
Rx

≤ C‖ψ‖
q
r1

Lq
(t,+∞)

sup
s≥t

‖ψ(s)‖
(1− q

r1
)

H1
x

≤ CB‖ψ‖
q
r1

Lq
(t,+∞)

where we have used the Sobolev embedding H1(Rx) ⊂ L∞(Rx). Again by interpola-

tion

‖|∇| 14χ[t,+∞)ψ‖Lr2
Rt

≤ ‖χ[t,+∞)ψ‖
2
r2

Ḣ
1
4
t

‖|∇| 14χ[t,+∞)ψ‖
(1− 2

r2
)

L∞
Rt

≤ C‖χ[t,+∞)ψ‖
2
r2

Ḣ
1
4

(
‖χ[t,+∞)ψ‖Ḣ 1

4
+ ‖χ[t,+∞)ψ‖Ḣ 3

4

)(1− 2
r2

)

where we have used the Sobolev embedding H1(Rt) ⊂ L∞(Rt) in the second inequal-

ity. We go back to the equation (2.7), evaluating at x = 0, to estimate

‖χ[t,+∞)ψ‖Ḣ 1
4

≤ ‖χ[t,+∞)[e
it∂2xψ+](0)‖

Ḣ
1
4
+ ‖χ[t,+∞)Λ(|ψ|p−1ψ)(0, ·))‖

Ḣ
1
4

≤ ‖ψ+‖L2
x
+ ‖χ[t,+∞)|ψ|p−1ψ‖

Ḣ−1
4

≤ ‖ψ+‖L2
x
+ ‖ψ‖p

Lq
t>0
,
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and

‖χ[t,+∞)ψ‖Ḣ 3
4

≤ ‖χ[t,+∞)[e
it∂2xψ+](0)‖

Ḣ
3
4
+ ‖χ[t,+∞)Λ(|ψ|p−1ψ)(0, ·))‖

Ḣ
3
4

≤ ‖ψ+‖H1
x
+ ‖χ[t,+∞)|ψ|p−1ψ‖

Ḣ
1
4
.

Note that we used Lemma 2.2, and Proposition 2.1 (2b). Plugging these results

into (2.9), we see that for t > 0 sufficiently large, ‖χ[t,+∞)|ψ|p−1ψ‖
Ḣ

1
4
is small. This

completes the proof combining with (2.8). �

Proposition 2.5 (long-time perturbation theory). Let p ≥ 3. For each A≫ 1, there

exists ǫ0 = ǫ0(A) ≪ 1 and c = c(A) ≫ 1 such that the following holds. Let ψ ∈ H1
x

for all t solving

i∂tψ + ∂2xψ + δ|ψ|p−1ψ = 0.

Let ψ̃ ∈ H1
x for all t and suppose that there exists e ∈ Lq̃t>0 such that

i∂tψ̃ + ∂2xψ̃ + δ(|ψ̃|p−1ψ̃ − e) = 0.

If

‖ψ̃(0, ·)‖Lq
t>0

≤ A , ‖e(0, ·)‖Lq̃
t>0

≤ ǫ0

and

‖[ei(t−t0)∂2x(ψ(t0)− ψ̃(t0))](0)‖Lq
t0≤t<∞

≤ ǫ0

for some t0 ≥ 0, then

‖ψ(0, ·)‖Lq
t>0

≤ c = c(A) <∞.

Proof. Put w = ψ − ψ̃. Then w satisfies

(2.10) i∂tw + ∂2xw +W = 0,

where

W = δ(|ψ̃ + w|p−1(ψ̃ + w)− |ψ̃|p−1ψ̃ + e).

Since ‖ψ̃(0, ·)‖Lq
[t0,+∞)

≤ A, there exists a N = N(A) so that the interval [t0,+∞)

may be divided into the sum of N(A) intervals. Namely, [t0,+∞) = ∪N(A)
j=1 Ij with

Ij = [tj, tj+1] (j = 0, 1, 2, ..) so that ‖ψ̃(0, ·)‖Lq
Ij

≤ η (η is small to be determined

later). Let t ∈ Ij . Write the equation (2.10) in the integral form.

(2.11) w(t) = ei(t−tj )∂
2
xw(tj) + i

∫ t

tj

ei(t−s)∂
2
xW (s)ds.

We estimate the time Lq norm of w evaluated at x = 0.

‖w(0, ·)‖Lq
Ij
≤ ‖[ei(t−tj )∂2xw(tj)](0)‖Lq

Ij
+

∥∥∥∥∥

∫ t

tj

ei(t−s)∂
2
xW (s)ds|x=0

∥∥∥∥∥
Lq
Ij

.
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The last term can be written as, taking into account for the delta potential in W ,
∥∥∥∥∥

∫ t

tj

ei(t−s)∂
2
xW (s)ds|x=0

∥∥∥∥∥
Lq
Ij

= ‖[Ltj (|ψ̃+w|p−1(ψ̃+w)(0, ·)−|ψ̃|p−1ψ̃(0, ·)+e(·))](0, ·)‖Lq
Ij

and then we estimate as follows.

‖[Ltj (|ψ̃ + w|p−1(ψ̃ + w)− |ψ̃|p−1ψ̃ + e)](0, ·)‖Lq
Ij

≤ C‖ψ̃ + w|p−1(ψ̃ + w)− |ψ̃|p−1ψ̃‖Lq̃
Ij

+ ‖e‖Lq̃
Ij

≤ C(‖ψ̃p−1w(0, ·)‖Lq̃
Ij

+ ‖wp(0, ·)‖Lq̃
Ij

) + ‖e‖Lq̃
Ij

,

where, in the first inequality, we have used, by density of C∞
0 (Ij) ⊂ Lq̃(Ij), Sobolev

embedding, and Proposition 2.1 (2a).

The first term of RHS is estimated by Hölder inequality as follows.

‖ψ̃p−1w(0, ·)‖Lq̃
Ij

≤ ‖ψ̃(0, ·)‖p−1
Lq
Ij

‖w(0, ·)‖Lq
Ij
.

Thus, we have

‖w(0, ·)‖Lq
Ij

≤ ‖[ei(t−tj )∂2xw(tj)](0)‖Lq
Ij
+ Cηp−1‖w(0, ·)‖Lq

Ij

+C‖w(0, ·)‖p
Lq
Ij

+ Cǫ0.

We then obtain

‖w(0, ·)‖Lq
Ij

≤ 2‖[ei(t−tj )∂2xw(tj)](0)‖Lq
Ij
+ 2Cǫ0,(2.12)

provided

η <

(
1

2C

) 1
p−1

and

‖[ei(t−tj )∂2xw(tj)](0)‖Lq
Ij
+ Cǫ0 ≤

(
1

2C

) 1
p−1

.(2.13)

Now take t = tj+1 in (2.11), apply ei(t−tj+1)∂2x to both hands,

ei(t−tj+1)∂2xw(tj+1) = ei(t−tj )∂
2
xw(tj) + i

∫ tj+1

tj

ei(t−s)∂
2
xW (s)ds,

and we take Lq(Rt) norm of this equation after evaluating at x = 0,

‖[ei(t−tj+1)∂2xw(tj+1)](0)‖Lq
Rt

≤ ‖[ei(t−tj )∂2xw(tj)](0)‖Lq
Rt
+ Cηp−1‖w(0, ·)‖Lq

Ij

+C‖w(0, ·)‖p
Lq
Ij

+ Cǫ0.
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Thus, by (2.12),

‖[ei(t−tj+1)∂
2
xw(tj+1)](0)‖Lq

Rt
≤ 2‖[ei(t−tj )∂2xw(tj)](0)‖Lq

Rt
+ 2Cǫ0.

Iterating this inequalty starting from j = 0, we have

‖[ei(t−tj )∂2xw(tj)](0)‖Lq
Rt

≤ 2j+2Cǫ0.

To satisfy (2.13) for all Ij with 0 ≤ j ≤ N−1, we require ǫ0 = ǫ0(N) to be sufficiently

small such that 2N+2Cǫ0 <
(

1
2C

) 1
p−1 (i.e. ǫ0 needs to be taken in terms of A), and we

obtain

‖ψ(0, t)‖Lq
t>0

≤ c = c(A).

�

3. Profile decomposition

Proposition 3.1 (profile decomposition). Let p ≥ 3. Suppose that {ψn} is a uni-

formly bounded sequence in H1
x. Then for each M , there exists a subsequence of

{ψn}, also denoted {ψn} and

(1) for each 1 ≤ j ≤M , there exists a (fixed in n) profile φj ∈ H1

(2) for each 1 ≤ j ≤M , there exists a sequence (in n) of time shifts tjn
(3) there exists a sequence (in n) of remainders wMn (x) in H1 such that

ψn =

M∑

j=1

e−it
j
n∂

2
xφj + wMn

The time sequences have a pairwise divergence property: for 1 ≤ i 6= j ≤M , we have

lim
n→∞

|tin − tjn| = +∞.

The remainder sequence {wMn }n has the following asymptotic smallness property

lim
M→∞

[
lim
n→∞

‖[eit∂2xwMn ](0)‖Lq
Rt

]
= 0.

For fixed M and any 0 ≤ σc ≤ 1, we have the asymptotic Ḣσc decoupling

‖ψn‖2Ḣσc
=

M∑

j=1

‖φj‖2
Ḣσc

+ ‖wMn ‖2
Ḣσc

+ on(1),(3.1)

also we have

(3.2) |ψn(0)|p+1 =

M∑

j=1

|[e−itjn∂2xφj](0)|p+1 + |wMn (0)|p+1 + on(1).
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Proof. For R > 0, let χR(ξ) be a smooth cutoff to R−1 < |ξ| < R. Let A =

lim supn→∞ ‖ψn‖H1
x
and B1 = limn→∞ ‖[eit∂2xψn](0)‖Lq

Rt
. If B1 = 0, the proof is done.

Let B1 > 0. Since for 0 ≤ σc ≤ 1,
∫

|ξ|<R−1

|ψ̂n(ξ)|2|ξ|2σc dξ ≤ R−2σc‖ψn‖2L2 ≤ A2R−2σc

∫

|ξ|>R

|ψ̂n(ξ)|2|ξ|2σc dξ ≤ R2(σc−1)‖ψn‖2Ḣ1 ≤ A2R2(σc−1).

We may take a R1 large enough so that AR−σc
1 ≤ B1/2 and ARσc−1

1 ≤ B1/2, specifi-

cally R1 = 〈2AB−1
1 〉max{ 1

σc
, 1
1−σc

} so that

lim
n→∞

‖[eit∂2x(δ − χ̌R1) ∗ ψn](0)‖Lq
Rt

≤ 1

2
B1.

It thus follows, using Proposition 2.1(1),
(
1

2
B1

)q

≤ lim
n→∞

‖[χ̌R1 ∗ eit∂
2
xψn](0)‖qLq

Rt

≤ lim
n→∞

‖[χ̌R1 ∗ eit∂
2
xψn](0)‖2L2

Rt

‖[χ̌R1 ∗ eit∂
2
xψn](0)‖q−2

L∞
Rt

.

For the factor ‖[χ̌R1 ∗ eit∂
2
xψn](0)‖2L2

t>0
, we use again the smoothing estimate of Propo-

sition 2.1(1) to bound by

‖χ̌R1 ∗ ψn‖2Ḣ−1/2
x

≤ R1‖χ̌R1 ∗ ψn‖2L2
x
≤ R1A

2.

Thus, we see limn→∞ ‖[χ̌R1 ∗ eit∂
2
xψn](0)‖L∞

Rt
> (R1A

2)−
1

q−2 (B1/2)
q

q−2 , and we take a

sequence {t1n}n such that

[χ̌R1 ∗ eit∂
2
xψn](0, t

1
n) =

∫
χ̌R1(−y)(eit

1
n∂

2
xψn)(y) dy,

and

(3.3)
1

2
(R1A

2)−
1

q−2

(
B1

2

) q
q−2

≤
∣∣∣∣
∫
χ̌R1(−y)eit

1
n∂

2
xψn(y) dy

∣∣∣∣ .

Consider the sequence {eit1n∂2xψn}n, which is uniformly bounded in H1
x, and pass to

subsequence such that eit
1
n∂

2
xψn converges weakly in H1

x to some φ1 ∈ H1. By Cauchy-

Schwarz inequality, using that ‖χ̌R1‖Ḣ−σc . R
1
2
−σc

1 and (3.3),

‖φ1‖Ḣσc ≥ (R
1
2
−σc

1 )−1(R1A
2)−

1
q−2

(
B1

2

) q
q−2 1

2
.

Then for any 0 ≤ σc ≤ 1

lim
n→∞

‖ψn − e−it
1
n∂

2
xφ1‖2

Ḣσc
= ‖ψn‖2Ḣσc

− ‖φ1‖2
Ḣσc

.
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If |t1n| → +∞, since ‖[e−it∂2xφ1](0)‖Lq
Rt

≤ ‖φ1‖Ḣσc
x
, possibly taking a subsequence,

we have |[e−it1n∂2xφ1](0)|q → 0 as n → +∞. On the other hand, since ψn is uniformly

bounded in H1
x, there is a weak limit ψ̃ ∈ H1

x and ψn(0) → ψ̃(0) as n → ∞ by

Proposition 4.1 of [11]. Then, we have

lim
n→∞

|[ψn − e−it
1
n∂

2
xφ1](0)|p+1

= lim
n→∞

{(ψn(0)− [e−it
1
n∂

2
xφ1](0))(ψn(0)− [e−it1n∂2xφ1](0))} p+1

2

= |ψ̃(0)|p+1 = lim
n→∞

(|ψn(0)|p+1 − |[e−it1n∂2xφ1](0)|p+1),

i.e.

(3.4) lim
n→∞

[|ψn(0)|p+1 − |[e−it1n∂2xφ1](0)|p+1 − |w1
n(0)|p+1] = 0.

If t1n → t∗ for some finite t∗, by the time continuity of free Schrödinger group,

limn→∞ ψn(0) = ψ̃(0) = [e−it
∗∂2xφ1](0). Thus we may write

lim
n→∞

|[ψn − e−it
1
n∂

2
xφ1](0)|p+1 = lim

n→∞
(|ψn(0)|2 − |[e−it1n∂2xφ1](0)|2) p+1

2

= 0 = lim
n→∞

(|ψn(0)|p+1 − |[e−it1n∂2xφ1](0)|p+1),

which again gives (3.4).

Repeat the process, keeping the same A but switching to B2 obtaining R2 in terms

of B2. Basically this amounts to replacing ψn by ψn − e−it
1
n∂

2
xφ1 and rewriting the

above to obtain t2n and φ2 where

φ2 = weak lim[eit
2
n∂

2
x(ψn − e−t

1
n∂

2
xφ1)] in H1

x.

As a result,

lim
n→∞

‖ψn − e−it
1
n∂

2
xφ1 − e−it

2
n∂

2
xφ2‖2

Ḣσc
= lim

n→∞
‖ψn − e−it

1
n∂

2
xφ1‖Ḣσc − ‖φ2‖2

Ḣσc

= lim
n→∞

‖ψn‖2Ḣσc
− ‖φ1‖2

Ḣσc
− ‖φ2‖2

Ḣσc
,

and same for

lim
n→∞

|[ψn − e−it
1
n∂

2
xφ1 − e−it

2
n∂

2
xφ2](0)|p+1

= lim
n→∞

(|ψn(0)|p+1 − |[e−it1n∂2xφ1](0)|p+1 − |[e−it2n∂2xφ2](0)|p+1).

If t2n− t1n converged to something finite (say t∗), then φ2 would be the weak limit of

eit
∗∂2x [eit

1
n∂

2
xψn−φ1], which is zero, contradicting the lower bound. Hence |t1n−t2n| → ∞

and thus

〈e−it1n∂2xφ1, e−it
2
n∂

2
xφ2〉Ḣσc → 0.

Again repeat this process, we have

‖φ1‖2
Ḣσc

+ ‖φ1‖2
Ḣσc

+ · · ·+ ‖φM‖2
Ḣσc

+ lim
n→+∞

‖wMn ‖2
Ḣσc

= lim
n→+∞

‖ψn‖2Ḣσc
.
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Let BM+1 := limn→+∞ ‖[eit∂2xwMn ](0)‖Lq
Rt

and we wish to show that BM+1 → 0. Note

that from the above equality and the lower bound for ‖φM‖Ḣσc , we obtain
∞∑

M=1

R−θ
M B

q
q−2

M ≤ 2A
2(q−1)
q−2 , θ =

1

q − 2
+

1

2
− σc =

1

2(p− 2)
+

1

2
− σc > 0,

whose LHS diverges if BM does not converge to 0. �

Lemma 3.2. With wMn as defined in Proposition 3.1 (in particular, w0
n = ψn), let

BM = lim
n→∞

‖[eit∂2xwM−1
n ](0)‖Lq

Rt
.

Then

lim
n→∞

‖[ei(t−tMn )∂2xφM ](0)‖Lq
Rt

≤ 2BM .

Proof. We will write the argument for M = 1 (the general case is analogous). As in

the proof of Proposition 3.1, let

A = lim
n→∞

‖ψn‖H1
x

and

R1 = 〈2AB−1
1 〉max( 1

σc
, 1
1−σc

)

and χR1(ξ) be a cutoff to R−1
1 ≤ |ξ| ≤ R1. As in the beginning of the proof of

Proposition 3.1,

‖(δ − χ̌R1) ∗ ei(t−t
1
n)∂

2
xφ1(0)‖2Lq

Rt

. ‖[(δ − χ̌R1) ∗ eit∂
2
xφ1](0)‖2

Ḣ
2σc+1

4
t

. ‖(δ − χ̌R1) ∗ φ1‖2
Ḣσc

x
. R1

−2σc‖φ1‖2L2 +R1
−2(1−σc)‖φ1‖2

Ḣ1

≤ A2(R1
−2σc +R1

−2(1−σc)) ≤ 1

4
B2

1

This, and the similar estimates at the beginning of the proof of Proposition 3.1, show

that it suffices to prove

(3.5) lim
n→∞

‖χ̌R1 ∗ ei(t−t
1
n)∂

2
xφ1(0)‖2Lq

Rt

≤ 1

4
B2

1 ,

and this can be seen as follows. By the translation invariance of Lq
Rt

norm,

‖χ̌R1 ∗ ei(t−t
1
n)∂

2
xφ1(0)‖Lq

Rt
= ‖χ̌R1 ∗ eit∂

2
xφ1(0)‖Lq

Rt

and by Sobolev embedding and Proposition 2.1, we have,

‖χ̌R1 ∗ eit∂
2
xφ1(0)‖Lq

Rt
. ‖χ̌R1 ∗ eit∂

2
xφ1(0)‖

Ḣ
2σc+1

4
t

. ‖χ̌R1 ∗ φ1‖Ḣσc
x

.
(
A2R

−2(1−σc)
1

) 1
2 ≤ B1/2.

�
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4. Minimal non scattering solution

In this section we will prove that there exists a minimal non scattering solution.

For this purpose we prepare the following lemma which gives additional estimates

under the situation (1) of Theorem 1.3. We recall that ϕ0 is the ground state to

(1.1). It is known that ϕ0(x) = 2
1

p−1 e−|x| (see (1.9) of [11]).

Lemma 4.1. Let p > 3 and ψ0 ∈ H1
x. Assume (1.4) and η(0) < 1. If ψ is a H1

x

solution to (1.1), then for all t ∈ R,

(4.1)
(p− 1)

2(p+ 1)
‖∂xψ(t)‖2L2 ≤ E(ψ(t)) ≤ 1

2
‖∂xψ(t)‖2L2 .

Furthermore, if we take δ > 0 such that M(ψ0)
1−σc
σc E(ψ0) ≤ (1− δ)M(ϕ0)

1−σc
σc E(ϕ0),

then there exists cδ > 0 such that for all t ∈ R,

(4.2) 4‖∂xψ‖2L2 − 2|ψ(0, t)|p+1 ≥ cδ‖∂xψ0‖2L2 .

Proof. The upper bound of the energy in (4.1) follows by the definition of Energy

E and the focusing nonlinearity. Use the sharp Gagliardo-Nirenberg inequality and

η(t) < 1 for the lower bound, i.e.,

E(ψ) ≥ 1

2
‖∂xψ‖2L2

(
1− 1

p+ 1
‖ψ‖

p+1
2

L2 ‖∂xψ‖
p−3
2

L2

)

>
1

2
‖∂xψ‖2L2

(
1− 1

p+ 1
‖ϕ0‖

p+1
2

L2 ‖∂xϕ0‖
p−3
2

L2

)

=
p− 1

2(p+ 1)
‖∂xψ‖2L2 ,

where we have used the fact ‖∂xϕ0‖L2 = ‖ϕ0‖L2 = 2
1

p−1 in the last equality (see [11]).

Next, we show (4.2). We may take δ1 = δ1(δ) > 0 such that

(4.3) ‖ψ0‖
1−σc
σc

L2 ‖∂xψ(t)‖L2 ≤ (1− δ1)‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2 ,

for all t ∈ R. Let

h(t) :=
1

‖ϕ0‖
2(1−σc)

σc

L2 ‖∂xϕ0‖2L2

(4‖ψ0‖
2(1−σc)

σc

L2 ‖∂xψ(t)‖2L2 − 2‖ψ0‖
2(1−σc)

σc

L2 |ψ(0, t)|p+1).

By Gagliardo-Nirenberg inequality,

h(t) ≥ g


‖ψ0‖

(1−σc)
σc

L2 ‖∂xψ(t)‖L2

‖ϕ0‖
(1−σc)

σc

L2 ‖∂xϕ0‖L2


 ,

where g(y) := 4(y2 − y
p+1
2 ). The inequality (4.3) implies the variable y of g(y) is in

the interval 0 ≤ y ≤ 1 − δ1 and then we see that there exists a constant c = cδ1 > 0

such that g(y) ≥ cy2 if 0 ≤ y ≤ 1− δ1. �
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Lemma 4.2. (Existence of wave operator) Let p > 3. Suppose ψ+ ∈ H1
x and

(4.4)
1

2
‖ψ+‖

2(1−σc)
σc

L2 ‖∂xψ+‖2L2 < M(ϕ0)
1−σc
σc E(ϕ0).

There exists ψ0 ∈ H1
x such that ψ solving (1.1) with initial data ψ0 is global in H1

x,

with

M(ψ) = ‖ψ+‖2L2, E(ψ) =
1

2
‖∂xψ+‖2L2 ,

‖∂xψ(t)‖L2‖ψ0‖
1−σc
σc

L2 < ‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2

and

lim
tր+∞

‖ψ(t)− eit∂
2
xψ+‖H1

x
= 0.

Moreover, if ‖[eit∂2xψ+](0)‖Lq
t>0

≤ δsd, then

‖ψ0‖Ḣσc ≤ 2‖ψ+‖Ḣσc , ‖ψ(0, ·)‖Lq
t>0

≤ 2‖[eit∂2xψ+](0)‖Lq
t>0
.

The statement above is for the case t > 0, but the case t < 0 can be similarly

proved.

Proof. It suffices to solve the integral equation:

ψ(t) = eit∂
2
xψ+ − iΛ(|ψ(0)|p−1ψ(0))(t)

for t ≥ T with T large. Since

‖[eit∂2xψ+](0)‖Lq
t>0

. ‖[eit∂2xψ+](0)‖
Ḣ

2σc+1
4

t

≤ ‖ψ+‖Ḣσc
x
,

there exists a large T > 0 such that ‖[eit∂2xψ+](0)‖Lq
[T,∞)

≤ δsd. Thus we may solve as

in the proof of Proposition 2.3.

‖ψ(0, ·)‖Lq
[T,+∞)

≤ ‖[eit∂2xψ+](0)‖Lq
[T,∞)

+ C‖Λ(|ψ(0)|p−1ψ(0))(·)‖Lq
[T,+∞)

≤ ‖[eit∂2xψ+](0)‖Lq
[T,∞)

+ C‖ψ(0, ·)‖p
Lq
[T,+∞)

.

If T is sufficiently large, we have ‖ψ(0, ·)‖Lq
[T,+∞)

< 2‖[eit∂2xψ+](0)‖Lq
[T,+∞)

. Using this,

similarly as in the proof of Proposition 2.4, we obtain if t ≥ T ,

‖ψ(t)− eit∂
2
xψ+‖L2

x
≤ C‖Λ(|ψ(0)|p−1ψ(0))‖L2

x
≤ ‖ψ(0, ·)‖p

Lq
[T,+∞)

≤ Cδpsd,

‖ψ(t)− eit∂
2
xψ+‖Ḣ1

x
≤ C‖χ[T,+∞)|ψ|p−1ψ‖

Ḣ
1/4
t
,

which are small if T is sufficiently large. Thus, ψ(t)− eit∂
2
xψ+ → 0 in H1

x as t→ +∞.

Note that ‖∂xeit∂
2
xψ+‖L2

x
= ‖∂xψ+‖L2 . On the other hand, since [eit∂

2
xψ+](0) is uni-

formly bounded in Lqt>0, there exists a sequence {tn}n → +∞ such that [eitn∂
2
xψ+](0) →

0 as n→ +∞. Together with all these facts, we have

E(ψ(t)) = lim
n→+∞

{
1

2
‖∂xeitn∂

2
xψ+‖L2

x
− 1

p+ 1
|eitn∂2xψ+(0)|p+1

}
=

1

2
‖∂xψ+‖L2

x
.
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Similarly, M(ψ(t)) = ‖ψ+‖2L2
x
. It now follows from (4.4) that

M(ψ(t))
1−σc
σc E(ψ(t)) < M(ϕ0)

1−σc
σc E(ϕ0),

and

lim
t→+∞

‖∂xψ(t)‖2L2
x
‖ψ(t)‖

2(1−σc)
σc

L2
x

= lim
t→+∞

‖∂xeit∂
2
xψ+‖2L2

x
‖eit∂2xψ+‖

2(1−σc)
σc

L2
x

= ‖∂xψ+‖2L2
x
‖ψ+‖

2(1−σc)
σc

L2
x

< 2M(ϕ0)
1−σc
σc E(ϕ0) =

p− 3

p+ 1
‖∂xϕ0‖2L2

x
‖ϕ0‖

2(1−σc)
σc

L2
x

We can take a large T such that ‖∂xψ(T )‖L2
x
‖ψ(T )‖

1−σc
σc

L2
x

< ‖∂xϕ0‖L2
x
‖ϕ0‖

1−σc
σc

L2
x

. Then,

applying Theorem 1.3 we evolve ψ(t) from T back to the time 0. �

We are now in position to enter in the main subject of this section. If the initial

data ψ0 to (1.1) satisfies M(ψ0)
1−σc
σc E(ψ0) ≤ p−1

2(p+1)
δsd and η(0) < 1, we have

‖ψ0‖2/σcḢσc
x (R)

≤ ‖ψ0‖
2(1−σc)

σc

L2
x

‖∂xψ0‖2L2 ≤ M(ψ0)
1−σc
σc E(ψ0) ≤ δsd,

and the scattering holds by the small data scattering, Proposition 2.3. Now let A be

the infimum of M(ψ)
1−σc
σc E(ψ), taken over all evolution of ψ which does not scatter.

In what follows NLS(t)ψ denotes the solution to (1.1) with initial data ψ. By the

above argument, 0 < p−1
2(p+1)

δsd ≤ A, and moreover due to Proposition 2.4, A satisfies

(1) For any ψ such that M(ψ)
1−σc
σc E(ψ) < A, it holds ‖[NLS(t)ψ](0, ·)‖Lq

Rt
<∞,

(2) For any A′ > A, there exists a non scattering NLS(t)ψ for which

A ≤M(ψ)
1−σc
σc E(ψ) ≤ A′.

If A ≥ M(ϕ0)
1−σc
σc E(ϕ0), Theorem 1.4 is true. We therefore proceed with the proof

by assuming A < M(ϕ0)
1−σc
σc E(ϕ0).

The first task is to apply the profile decomposition to show that there exists ψ

such that M(ψ)
1−σc
σc E(ψ) = A and NLS(t)ψ does not scatter. We will call such a

solution a minimal non scattering solution. Take a sequence of initial data ψ0,n, with

1 > ηn(0) := ‖ψ0,n‖
1−σc
σc

L2 ‖∂xψ0,n‖L2/‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2, each evolving to non scattering

solutions, for which M(ψ0,n) = 1, E(ψ0,n) ≥ A and E(ψ0,n) → A. Apply the profile

decomposition to ψ0,n which is uniformly bounded in H1 to obtain, extracting a
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subsequence,

ψ0,n =
M∑

j=1

e−it
j
n∂

2
xφj + wMn ,(4.5)

E(ψ0,n) =

M∑

j=1

E(e−it
j
n∂

2
xφj) + E(wMn ) + on(1),(4.6)

where M will be taken large later. Remark that each term in (4.6) is non negative

by the same reason for (4.1), using the decompositions (3.1) and (3.2) in ηn(0) < 1.

Taking the limit n→ ∞ in both hand sides,

lim
n→∞

M∑

j=1

E(e−it
j
n∂

2
xφj) ≤ A(4.7)

for all j. Also, by σc = 0 in (3.1), we have

M∑

j=1

M(φj) + lim
n→∞

M(wMn ) = lim
n→∞

M(ψ0,n) = 1.(4.8)

Here we consider two cases.

Case 1 There are at least two indexes j such that φj is not zero.

Case 2 Only one profile is non zero, i.e. without loss of generality φ1 6= 0, and φj = 0

for all j ≥ 2.

We begin with Case 1. By (4.8), we necessarily have 0 ≤ M(φj) < 1 for each j

which, by (4.7), implies that for n sufficiently large

(4.9) M(e−it
j
n∂

2
xφj)

1−σc
σc E(e−it

j
n∂

2
xφj) ≤ Aj ,

with each Aj < A. For a given j, there are two possibilities. Case a) |tjn| → ∞ as

n→ ∞ and Case b) there is a finite limit t∗ such that tjn → t∗ as n→ ∞. Both cases

allow us to ensure the existence of a new profile φ̃j ∈ H1 associated to φj such that

‖NLS(−tjn)φ̃j − e−it
j
n∂

2
xφj‖H1 → 0, n→ ∞;

indeed, if Case a) occurs, by the uniform Lq integrability in time of [e−it∂
2
xφj](0) (cf.

the same argument in Proposition 3.1), passing to a subsequence of tjn,

|[e−itjn∂2xφj](0)| → 0, n→ ∞
and thus

1

2
‖φj‖

2(1−σc)
σc

L2 ‖∂xφj‖2L2 < A.

Since A < M(ϕ0)
1−σc
σc E(ϕ0), φ

j satisfies the assumption of Lemma 4.2. Namely, there

exists φ̃j ∈ H1 such that

‖NLS(−tjn)φ̃j − e−it
j
n∂

2
xφj‖H1 → 0, n→ ∞
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with

M(φ̃j) = ‖φj‖2L2, E(φ̃j) =
1

2
‖∂xφj‖2L2,

‖∂xNLS(t)φ̃j‖L2‖φ̃j‖
1−σc
σc

L2 < ‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2 ,

and thus

M(φ̃j)
1−σc
σc E(φ̃j) < A.

Therefore by the definition of threshold A, we have

(4.10) ‖NLS(t)φ̃j(0)‖Lq
Rt
< +∞.

If the Case b), by the time continuity in H1
x norm of the linear flow, we know

e−it
j
n∂

2
xφj → e−it∗∂

2
xφj in H1

x.

Thus it suffices to put φ̃j := NLS(t∗)[e
−it∗∂2xφj]. Then this φ̃j again satisfies (4.10).

To see this, note first that by the H1 continuity of the flow, sending n→ ∞ in (4.9)

gives

M(e−it∗∂
2
xφj)

1−σc
σc E(e−it∗∂

2
xφj) ≤ Aj < A

By (3.1) applied for σc = 0 and σc = 1, and the assumption that ηn(0) < 1 for every

n, we obtain that

‖φj‖
1−σc
σc

L2
x

‖∂xφj‖L2
x

‖ϕ0‖
1−σc
σc

L2
x

‖∂xϕ0‖L2
x

< 1.

By the defining property of the threshold A, we have that the NLS flow with initial

data e−it∗∂
2
xφj scatters, i.e.

‖NLS(t)φ̃j(0)‖Lq
Rt

= ‖NLS(t + t∗)e
−it∗∂2xφj(0)‖Lq

Rt
<∞.

Now replace e−it
j
n∂

2
xφj by NLS(−tjn)φ̃j in (4.5), and we have

ψ0,n =
M∑

j=1

NLS(−tjn)φ̃j + w̃Mn ,

with

w̃Mn = wMn +

M∑

j=1

(e−it
j
n∂

2
xφj − NLS(−tjn)φ̃j).
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Note that by Sobolev embedding and Proposition 2.1 (1),

‖[eit∂2xw̃Mn ](0)‖Lq
Rt

≤ ‖[eit∂2xwMn ](0)‖Lq
Rt
+

M∑

j=1

‖[eit∂2x(−NLS(−tjn)φ̃j + e−it
j
n∂

2
xφj)](0)‖Lq

Rt

≤ ‖[eit∂2xwMn ](0)‖Lq
Rt
+

M∑

j=1

‖NLS(−tjn)φ̃j − e−it
j
n∂

2
xφj‖Ḣσc

x
,

≤ ‖[eit∂2xwMn ](0)‖Lq
Rt
+

M∑

j=1

‖NLS(−tjn)φ̃j − e−it
j
n∂

2
xφj‖H1

x
.

Thus we obtain,

lim
M→+∞

[ lim
n→+∞

‖[eit∂2xw̃Mn ](0)‖Lq
Rt
] = 0.

From this way of writing we might approximately see

NLS(t)ψn,0 ≈
M∑

j=1

NLS(t− tjn)φ̃
j.

However, from (4.10), the RHS is finite in Lq
Rt

norm, while the LHS cannot scatter by

assumption, and so a contradiction could be deduced. We shall justify this argument

by Proposition 2.5.

Let vj(t) := NLS(t)φ̃j, ψn := NLS(t)ψ0,n, and ψ̃n =
∑M

j=1 v
j(t − tjn). Then, ψ̃n

satisfies

i∂tψ̃n + ∂2xψ̃n + δ(|ψ̃n|p−1ψ̃n + en) = 0.

Here,

en := −|ψ̃n|p−1ψ̃n +
M∑

j=1

|vj(t− tjn)|p−1vj(t− tjn).

We are going to show that

1 there exists a large constant A independent of M satisfying the following

property: for any M there is n0 = n0(M) such that if n > n0, ‖ψ̃n(0, ·)‖Lq
Rt
≤

A.

2 For each M and ε > 0 there exists n1 = n1(M, ε) such that for n > n1,

‖en‖Lq̃
Rt

≤ ε.

Remark that there exists M1 = M1(ε) such that for each M > M1, there exists

n2 = n2(M) such that if n > n2, ‖[eit∂
2
x(ψ̃n(0)−ψn(0))](0)‖Lq

Rt
≤ ε. Thus, if the above

1 and 2 hold, it follows from Proposition 2.5 that for n and M sufficiently large,
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‖ψn‖Lq
Rt
<∞, which gives a contradiction. Therefore it is enough to prove the above

claims 1 and 2. First we prove the claim 1. Take M0 large enough so that

‖[eit∂2xwM0
n ](0)‖Lq

Rt
≤ δsd/2.

Then, by Lemma 3.2, for each j > M0, we have ‖[ei(t−tjn)∂2xφj ](0)‖Lq
Rt

≤ δsd. Thus by

Lemma 4.2 we obtain, for each j > M0, and for large n,

(4.11) ‖vj(0, · − tjn)‖Lq
Rt

≤ 2‖[ei(t−tjn)∂2xφj](0)‖Lq
Rt
.

By Minkowski inequality (since p > 3),

‖ψ̃n(0, ·)‖qLq
Rt

≤ Cq

(∥∥∥
M0∑

j=1

vj(0, · − tjn)
∥∥∥
q

Lq
Rt

+

∥∥∥∥∥
M∑

j=M0+1

vj(0, · − tjn)

∥∥∥∥∥

q

Lq
Rt

)

≤ Cq

( M0∑

j=1

‖vj(0, · − tjn)‖2Lq
Rt

+

M∑

j=M0+1

‖vj(0, · − tjn)‖2Lq
Rt

+

M0∑

j 6=m,j,m=1

‖vj(0, · − tjn)v
m(0, · − tmn )‖

q/2

L
q/2
Rt

+
M∑

j 6=m,j,m=M0+1

‖vj(0, · − tjn)v
m(0, · − tmn )‖

q/2

L
q/2
Rt

)

≤ Cq

( M0∑

j=1

‖vj(0, · − tjn)‖2Lq
Rt

+
M∑

j=M0+1

‖[ei(t−tjn)∂2xφj](0)‖2Lq
Rt

+

M0∑

j 6=m,j,m=1

‖vj(0, · − tjn)v
m(0, · − tmn )‖

q/2

L
q/2
Rt

+

M∑

j 6=m,j,m=M0+1

‖vj(0, · − tjn)v
m(0, · − tmn )‖

q/2

L
q/2
Rt

)

where we have used (4.11). The last terms
∑

j 6=m ‖vjvm‖
L
q/2
t

can be made small if n

is large (see the argument below for the claim 2). On the other hand, using (4.5), the

same argument for (3.2) allows us to obtain

|[eit∂2xψ0,n](0)|q =
M∑

j=1

|[ei(t−tjn)∂2xφj](0)|q + |[eit∂2xwMn ](0)|q + on(1),
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thus, integrating in time,

‖[eit∂2xψ0,n](0)‖Lq
Rt

=

M0∑

j=1

‖[ei(t−tjn)∂2xφj ](0)‖Lq
Rt

+

M∑

j=M0+1

‖[ei(t−tjn)∂2xφj](0)‖Lq
Rt
+ ‖[eit∂2xwMn ](0)‖Lq

Rt
+ on(1)

which shows that
∑M

j=M0+1 ‖ei(t−t
j
n)∂

2
xφj‖2

Lq
Rt

is bounded independently of M if n > n0

since ‖[eit∂2xψ0,n](0)‖Lq
Rt

≤ ‖ψ0,n‖Ḣσc . Recall that ‖vj(0, ·−tjn)‖Lq
Rt

= ‖NLS(t)φ̃j(0)‖Lq
Rt
<

∞. Therefore ‖ψ̃n(0, ·)‖qLq
Rt

is bounded independently of M provided n > n0.

We next prove the claim 2. We see that en is estimated using Hölder inequality

with 1
q̃
= p−2

q
+ 2

q
as follows.

‖en‖Lq̃
Rt

≤ Cp

M∑

j=1

(
‖vj‖p−2

Lq
Rt

+
∥∥∥

M∑

j=1

vj
∥∥∥
p−2

Lq
Rt

)
‖(v1 + · · ·+ vj−1 + vj+1 + · · ·+ vM)vj‖

L
q/2
Rt

where we abbreviated vj(0, t − tjn) as vj. Here, note that by (4.10), for any ε > 0,

there exists a large R > 0 such that

‖NLS(t− tkn)φ̃
k(0)‖Lq({t:|t−tkn|>R})

< ε.

Thus, taking large n such that |tjn − tkn| > 2R with j 6= k for such a R > 0, we can

estimate ‖vjvk‖
L
q/2
Rt

as follows:

‖vjvk‖
L
q/2
Rt

≤ ‖[NLS(t− tjn)φ̃
j](0)[NLS(t− tkn)φ̃

k](0)‖
L
q/2
Rt

≤ ‖NLS(t− tjn)φ̃
j(0)‖Lq({t:|t−tjn|>R})

‖NLS(t− tkn)φ̃
k(0)‖Lq

Rt

+‖NLS(t− tjn)φ̃
j(0)‖Lq

Rt
‖NLS(t− tkn)φ̃

k(0)‖Lq({t:|t−tkn|>R})

≤ Cε.

This shows that there exists n1 such that the Lq̃ norm of en is small if n > n1(M, ε).

Now we consider Case 2. In this case, we haveM(φ1) ≤ 1 and limn→∞E(e−it
1
n∂

2
xφ1) ≤

A. As in the Case 1, by the existence of wave operator, there is φ̃1 ∈ H1
x such that

‖NLS(−t1n)φ̃1 − e−it
1
n∂

2
xφ1‖H1 → 0, n→ +∞.

Put

w̃Mn := wMn − NLS(−t1n)φ̃1 + e−it
1
n∂

2
xφ1

Then we can write

ψ0,n = e−it
1
n∂

2
xφ1 + wMn = NLS(−t1n)φ̃1 + w̃Mn ,
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with

lim
M→∞

lim
n→∞

‖[eit∂2xw̃Mn ](0)‖Lq
Rt
= 0.

Let ψc be the solution to (1.1) with initial data ψc(0) = φ̃1. Now we claim that

‖ψc(0, ·)‖Lq
Rt

= +∞ (and thus M(ψc)
1−σc
σc E(ψc) = A). We proceed as in the Case 1.

Suppose A := ‖ψc(0, ·)‖Lq
Rt
< ∞. By definition, ‖NLS(t)φ̃1(0)‖Lq

Rt
= ‖ψc(0, ·)‖Lq

Rt
=

A. For any shift t′, we can say ‖NLS(t − t′)φ̃1(0)‖Lq
Rt

= ‖NLS(t)φ̃1(0)‖Lq
Rt
, thus we

take in particular t′ = t1n and operate NLS(t) to ψ0,n = NLS(−t1n)φ̃1 + w̃Mn . We apply

the perturbation argument by Proposition 2.5 to

ψn = ψ̃n +NLS(t)w̃Mn ,

with ψ̃n = NLS(t − t1n)φ̃
1 and ‖ψ̃n(0, ·)‖Lq

Rt
= A < +∞. For n and M sufficiently

large, we have

‖[eit∂2x(ψn(0)− ψ̃n(0))](0)‖Lq
Rt
= ‖[eit∂xw̃Mn ](0)‖Lq

Rt
≤ ǫ0,

and also the Lq̃t norm of the corresponding error term is estimated by ǫ0, where ǫ0 =

ǫ0(A) is obtained in Proposition 2.5. Then, by Proposition 2.5, we have ‖ψn(0, ·)‖Lq
Rt
<

∞, and this is a contradiction to non scattering assumption on ψn.

On the other hand, the proof of Lemma 5.6 in [10] allows us to have also,

Lemma 4.3. Suppose {ψ(t, x), t ≥ 0} is precompact in H1
x. Then for any ε > 0,

there exists Rε > 0 such that

sup
t≥0

∫

|x|≥Rε

(|ψ(x, t)|2 + |∂xψ(t, x)|2)dx ≤ ε.

Using this Lemma and the local viriel identity (1.2), we conclude the following

proposition.

Proposition 4.4. Let p > 3. Assume ψ0 ∈ H1 satisfies (1.4) and η(0) < 1. Let

ψ(t, x) be the global solution to (1.1) with the initial data ψ0 satisfying the precom-

pactness: for any ε > 0, there exists Rε > 0 such that

(4.12)

∫

|x|≥Rε

(|ψ(x, t)|2 + |∂xψ(x, t)|2)dx ≤ ε, for all t ≥ 0.

Then ψ0 ≡ 0.

Proof. Take a(x) in the localized virial (1.2), as, for R > 0 (which will be determined

later), and for all x ∈ R,

a(x) = R2χ
( |x|
R

)
,
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where χ ∈ C∞
0 (R+), χ(r) = r2 for r ≤ 1, and χ(r) = 0 for r ≥ 2. Put zR(t) :=∫

R
a(x)|ψ|2dx, then we have

z′R(t) = −2R Im

∫

R

χ′
( |x|
R

)
∂xψψdx,

and

z′′R(t) = 8

∫

|x|≤R

|∂xψ|2dx+ 4

∫

R<|x|<2R

χ′′
( |x|
R

)
|∂xψ|2dx

− 1

R2

∫

R<|x|<2R

χ(4)
( |x|
R

)
|ψ|2dx− 4|ψ(0)|p+1

≥ 2{4
∫

|x|≤R

|∂xψ|2dx− 2|ψ(0)|p+1} − C0

∫

R<|x|<2R

(|∂xψ|2 +
1

R2
|ψ|2)dx

≥ 2{4
∫

|x|≤R

|∂xψ|2dx− 2|ψ(0)|p+1} − C0

∫

R<|x|

(|∂xψ|2 +
1

R2
|ψ|2)dx(4.13)

with a constant C0 = C0(‖χ′′‖L∞ , ‖χ(4)‖L∞) uniform in R.

Take 0 < δ < 1 such that

M(ψ0)
1−σc
σc E(ψ0) ≤ (1− δ)M(ϕ0)

1−σc
σc E(ϕ0),

then by (4.2), there exists cδ > 0 such that for any t ∈ R

(4.14) 4

∫

|x|≤R

|∂xψ|2dx− 2|ψ(0)|p+1 ≥ cδ‖∂xψ0‖2L2 − 4

∫

|x|>R

|∂xψ|2dx.

Now, we choose ε = cδ
8+C0

‖∂xψ0‖2L2 in (4.12), then for sufficiently largeR1 > max{1, Rε},
∫

|x|>R1

(
|∂xψ|2 +

1

R2
1

|ψ|2
)
dx ≤

∫

|x|>R1

(
|∂xψ|2 + |ψ|2

)
dx ≤ ε =

cδ
8 + C0

‖∂xψ0‖2L2.

Thus, by the choice of R = R1, we have (4.14) ≥ cδ‖∂xψ0‖2L2 − 4ε and so

z′′R1
(t) ≥ cδ‖∂xψ0‖2L2.

Integration in time then implies

z′R1
(t)− z′R1

(0) ≥ cδt‖∂xψ0‖2L2 .

On the other hand,

|z′R1
(t)− z′R1

(0)| ≤ CR1

where C depends on p, ‖ψ0‖L2 , and ‖∂xψ0‖L2 . This is absurd except the case ψ0 ≡ 0.

�

Finally we complete our arguments with

Proposition 4.5.

K = {ψc(t), t ≥ 0} ⊂ H1
x

with ψc obtained above as the minimal non scattering solution, is precompact in H1
x.
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The proof for this proposition is similar to the proof for the existence of ψc, and we

omit it. We apply Proposition 4.4 to ψc, and we have ψc(0) ≡ 0, which contradicts

the fact that ‖ψc(0, ·)‖Lq
Rt
= +∞. This concludes the statement of Theorem 1.4. �

Acknowledgment The work described in this paper is a result of a collaboration

made possible by the IMA’s annual program workshop ”Mathematical and Physical

Models of Nonlinear Optics.” This work was supported by JSPS KAKENHI Grant

Number 15K04944.

References

[1] R. Adami, R. Carlone, M. Correggi, L. Tentarelli, Blow-up for the pointwise NLS in dimension

two: absence of critical power, preprint arXiv:1808.10343 (2018).

[2] R. Adami, G. Dell’Antonio, R. Figari, A. Teta, The Cauchy Problem for the Schrödinger

Equation in Dimension Three with Concentrated Nonlinearity, Ann. Inst. H. Poincaré (C) An.
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