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P H Y S I C S

Experimental quantum reading with photon counting
Giuseppe Ortolano1,2, Elena Losero1, Stefano Pirandola3, Marco Genovese1*, Ivano Ruo-Berchera1

The final goal of quantum hypothesis testing is to achieve quantum advantage over all possible classical strate-
gies. In the protocol of quantum reading, this is achieved for information retrieval from an optical memory, whose 
generic cell stores a bit of information in two possible lossy channels. We show, theoretically and experimentally, 
that quantum advantage is obtained by practical photon-counting measurements combined with a sim-
ple maximum-likelihood decision. In particular, we show that this receiver combined with an entangled 
two-mode squeezed vacuum source is able to outperform any strategy based on statistical mixtures of coherent 
states for the same mean number of input photons. Our experimental findings demonstrate that quantum entan-
glement and simple optics are able to enhance the readout of digital data, paving the way to real applications of 
quantum reading and with potential applications for any other model that is based on the binary discrimination 
of bosonic loss.

INTRODUCTION
In the vast panorama of quantum technologies (1, 2), the most prac-
tical area is arguably that of quantum sensing, well developed with 
both discrete (3) and continuous variable systems (4–6). In this 
area, quantum metrology (7) deals with the estimation of unknown 
parameters encoded in a state or a physical transformation, while 
quantum hypothesis testing (8) deals with the discrimination of a 
discrete set of states (9–12) or quantum channels. In particular, the 
problem of quantum channel discrimination (4, 13–22) is known to 
have a very rich theoretical structure due to its inherent double op-
timization nature, which involves finding both the best input states 
and the optimal output measurements. One of the first applications 
of this problem in quantum sensing was the protocol of quantum 
illumination (23–25), where the detection of a low-reflectivity tar-
get in a region of bright thermal noise was mapped into the discrim-
ination of two bosonic channels.

In 2011, Pirandola (26) modeled the information retrieval from 
an optical memory as a problem of bosonic channel discrimination. 
A memory cell can be represented as a reflector (e.g., a beam splitter) 
with two possible values of the reflectivity, which is equivalent to 
considering two possible lossy channels acting on the incoming 
photons. In this scenario, one can show that the use of a quantum 
source of light (and, in particular, entangled) can sensibly boost the 
retrieval of information from the cell with respect to classical input 
states, i.e., having positive P-representations (27, 28).

The idea of quantum reading has been further explored in a series 
of papers [e.g., see (29–39) among others]. A preliminary experi-
ment (40) was performed for a perfect fully unitary variant of the 
protocol, where zero discrimination error was achieved by analyz-
ing the coincidences at the two outputs of the beam-splitter cell. For 
such an ideal unitary discrimination, no entanglement is needed. 
However, in a realistic scenario, only one output of the cell is avail-
able for detection so that the process is clearly nonunitary and must 
be described by a lossy quantum channel (as in the original proposal). 

For this reason, a truly quantum reading experiment has yet to 
be performed.

In this work, we experimentally demonstrate the original proto-
col of quantum reading (26) showing that a two-mode squeezed 
vacuum state (TMSV) (41, 42) is able to outperform any classical 
state in retrieving information from an absorbing layer in a coated 
glass slide, mimicking the memory cell. This advantage is achieved 
without resorting to any complicated Helstrom-like measurement 
(8, 43, 44) but just resorting to photon counting of the output 
followed by a maximum likelihood decision. Quantum advantage is 
proven notwithstanding the presence of more than 20% experi-
mental loss. This robustness to losses and the simplicity of detection 
scheme pave the way to possible real applications of quantum 
reading in a next future.

Theoretical model
Let us store a bit u = {0,1} in a memory cell by means of two 
equiprobable lossy channels, ℰ0 and ℰ1, with transmissivities 0 and 
1. Recall that a lossy channel with transmissivity  corresponds to 
the following input-output transformation of the field operator ​​   a​  → ​
√ 

_
  ​​   a​ + i ​√ 

_
 (1 − ) ​​  v​,​ where ​​  v​​ describes an environmental vacuum 

mode (45). To retrieve the bit, consider a transmitter and a receiver. 
The transmitter irradiates M signal modes over the cell, for a total of 
N mean photons, and also sends additional L idler modes directly to 
the output. The receiver measures the transmitted signals and the 
idlers, guessing the classical bit u up to an error probability perr 
(see Fig. 1).

Assuming an optimal measurement at the receiver, the minimi-
zation of perr over all transmitters with fixed signal energy N is diff-
cult to solve. If we restrict the analysis to classical transmitters, 
described by a state with positive P-representation (mixture of 
coherent states), then, the minimum error probability is given 
by (26)

	​​ p​err​ 
cla ​  ≥  C (N, ​​ 0​​, ​​ 1​​ ) ≔ ​  1 − ​√ 

____________

  1 − ​e​​ −N​(​√ 
_

 ​​ 1​​ ​−​√ 
_

 ​​ 0​​ ​)​​ 2​​ ​  ──────────── 2 ​​	  (1)

Equivalently, the maximum information accessible to classical 
transmitters cannot exceed the bound 1 − H(𝒞), where H(·) 
denotes the binary Shannon entropy (46). Consider now a multi-
mode quantum transmitter in a tensor product of M TMSV states 
​​∣ TMSV⟩​S,I​ 

​⊗​​ M​​​. Each TMSV state irradiates ​​   n ​​ mean photons per 
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mode and describes an entangled pair of signal (S) and idler (I) 
modes, so that we have a total of M signals and corresponding L = M 
idlers. Let us assume that ​​   n ​​ is chosen such that ​M​   n ​  =  N​ mean photons 
are globally irradiated over the cell. Then, for sufficiently large M, it 
is possible to show that the error probability perr goes below the 
classical bound 𝒞. In terms of the gain

	​ G  =  1 − H(​p​ err​​ ) − [1 − H(C ) ]​	 (2)

one can show that G may approach 1, meaning that the quantum 
transmitter retrieves all the information, while the bit cannot be 
read by any classical strategy (26).

In the following, we show that a similar result can be achieved by 
performing a photon-counting measurement at the output and a 
maximum likelihood decision, in the place of the unspecified opti-
mal receiver. Note that quantum advantage has been demonstrated 
by photon-counting measurement strategies for loss estimation 
(47–53), where the goal is to estimate the value of a continuous pa-
rameter  [see also (54) for phase estimation]. For loss estimation, it 
can be proven that suitable quantum resources and photon-counting 
measurements allow one to reach the ultimate (nonadaptive) quan-
tum limits in precision (53, 55–57). However, for the discrete case 
considered here, i.e., for a problem of binary channel discrimina-
tion, such a proof has not been given and the effective performance 
of photon counting has not been investigated yet.

RESULTS
Photon-counting strategy
When photon-counting measurements are performed over the 
signal and idler modes of a bipartite state , the output is a classical 
random variable n = (nS, nI), distributed as p(n) = ⟨nS, nI∣∣nS, nI⟩, 
where ∣nk⟩ is the eigenstate with eigenvalue nk of the number oper-
ator ​​​   n ​​ k​​  = ​​    a ​​k​ 

†​ ​​   a ​​ k​​​ of the field and k = S, I. The effect of a lossy channel 
ℰ on the signal mode of a bipartite state is to combine its initial 
photon distribution p0(n) with a binomial distribution ​ℬ(​n​ S​ ′ ​  ∣ ​ n​ S​​, )​ 
with nS trials and success probability  so that the outcome n will be 
distributed according to

	​ p(n ∣  ) = ​ ​ 
m=

​
n

​ 
S
​​
​ 

∞
 ​ ​ p​ 0​​(m, ​n​ I​​ ) ℬ(​n​ S​​ ∣ m, )​	 (3)

Let us suppose that n is the outcome of photon-counting mea-
surements after a lossy channel with unknown transmissivity u (for 
u = 0,1). Using the Bayes’ theorem, the conditional probability of 
u is given by

	​ p(​​ u​​ ∣ n)  =  ​ p(n∣​​ u​​ ) p(​​ u​​)  ─ p(n) ​   = ​   p(n∣​​ u​​)  ─────────────  p(n∣​​ 0​​ ) + p(n∣​​ 1​​) ​​	 (4)

where the last equality follows from the condition of equiprobable 
channels, p(u) = 1/2. To assign a value to the recovered bit, the 
optimal strategy is to choose the value u = 0,1 such that u = argmaxu p(u∣n). 
Because p(u)  is uniform, this is equivalent to a maximum likeli-
hood decision, i.e., to choose u = argmaxu p(n∣u).

The corresponding error probability will be given by perr(0, 1∣n) = 
minu p(u∣n). Therefore, by averaging over the distribution of the 
outcomes p(n), we may write the following expression for the 
mean error probability

	​​
​p​ err​​(​​ 0​​, ​​ 1​​ ) = ​​ 

 n
​ ​ ​ min​ u​ ​  p(​​ u​​ ∣ n ) p(n)

​  
= ​ 1 ─ 2 ​ ​​ 

 n
​ ​ ​ min​ u​ ​  p(n ∣ ​​ u​​)

 ​​	  (5)

The error probability above describes the performance achievable 
by a photon-counting receiver in the reading scenario of Fig. 1 
where the transmitter irradiates a generic bipartite state. In general, 
the formula can be applied to a transmitter with arbitrary M and L 
by considering an M + L vectorial variable n. Let us now apply this 
analysis to evaluate the corresponding performances with classical 
and quantum states. Without loss of generality, in the following, we 
assume that 0 < 1.

The photon-counting performance with a classical transmitter, 
i.e., described by a state with positive P-representation, is optimized 
by the use of a single signal mode (M = 1 and L = 0) with N mean 
photons, whose photon number statistics is a Poisson distribution 
𝒫𝒩(n). It is easy to show that there is a threshold value nth ≔ N(1 − 0)/ 
log (1/0) such that, for every n ≤ nth, one has 𝒫𝒩(0∣n) > 𝒫𝒩(1∣n) 
and thus the value 0 is chosen.

The error probability will be given by

	​​​ p​err​ 
cla,phc​(​​ 0​​, ​​ 1​​ ) = ​ 1 ─ 2 ​​[​​1 − ​ (​​ 0​​ ) − (​​ 1​​) ─ 

⌊​n​​ th​⌋!
 ​​ ]​​​​	 (6)

where ⌊x⌋ is the floor of x, (u) ≔ (⌊nth + 1⌋, Nu), and (x, y) is 
the incomplete gamma function. In other words, Eq. 6 establishes a 
lower bound on the error probability that can be achieved by using 
classical transmitters and photon counting.

Let us now study the photon-counting performance that is 
achievable by a quantum transmitter based on copies of TMSV 
states. We consider the transmitter’s state ​​∣ TMSV⟩​S,I​ 

​⊗​​ M​​​, where 
each signal-idler TMSV state ​​∣ TMSV⟩​ S,I​​ ∝ ​ ​ n​​ ​√ 

_
 ​P​ ​   n ​​​(n) ​ ​∣ n⟩​ S​​ ​∣ n⟩​ I​​​ is 

maximally correlated in the number of photons and locally charac-
terized by a single-mode thermal distribution ​​P​ ​   n ​​​(n ) = ​​   n ​​​ n​ / ​(​   n ​ + 1)​​ n+1​.​ 
The product state ​​∣ TMSV⟩​S,I​ 

​⊗​​ M​​​ preserves the perfect correlation 
between the total photon numbers, redefined as ​​​m=1​ M  ​ ​n​S/I​ 

(m)​  → ​ n​ S/I​​,​ 
while the marginal distribution becomes multithermal PN, M(nS/I), 
with mean photon number N. Fixing N and increasing M, this 
distribution becomes narrower and tends to a Poisson distribution 
𝒫𝒩(nS/I) with mean occupation number N/M → 0.

Fig. 1. Quantum reading of a memory cell. A memory cell encodes a bit u in a 
lossy channel with transmissivity u. The cell is read by a transmitter (Tx), which 
irradiates M signal modes and N mean total photons over the cell, plus extra L idler 
modes sent to the output. The receiver (Rx) performs a generally joint measure-
ment of signals and idlers, decoding the bit u up to some error probability perr. 
Quantum reading corresponds to using a quantum source of light for the Tx so that 
we outperform any classical source in the readout of the bit. The scheme can be 
realized in reflection or in transmission, as done in our experiment.
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The presence of a memory cell with transmissivity u on the sig-
nal path transforms the input joint probability PN, M(nS, nI) into the 
output probability distribution PN, M(nS, nI∣u) = PN, M(nI)ℬ(nS∣nI, u). 
Photon counting is then performed on both the signal and idler 
modes, and a maximum likelihood decision is lastly taken. We can 
identify a threshold value

	​​ n​S​ th​  = ​​ {​​ ​ 
log(​​ 1​​ / ​​ 0​​)

  ─────────────  log [ (1 − ​​ 0​​ ) / (1 − ​​ 1​​ ) ] ​ + 1​}​​​​ 
−1

​ ​n​ I​​​	 (7)

and choose 0 if ​​n​ S​​  < ​ n​S​ th​,​ corresponding to the condition PN, M(nS, 
nI∣0) > PN, M(nS, nI∣1).

Otherwise, we choose 1. This strategy provides an error probability 
​​p​err​ 

qua,phc​​ for the TMSV-based transmitter and the photon-counting 
receiver. We explicitly evaluate the performance of this strategy in 
the numerical study below.

Theoretical predictions
Numerical investigation shows a quantum advantage even with a 
single TMSV state. However, the described narrowing of the mar-
ginal distributions, resulting from the spread of the energy over a 
high number of copies M, makes the discrimination more effective, 
so this is the regime that we will consider and exploit in our experiment. 
We have studied the following information gain ​G  =  1 − H(​p​err​ 

qua,phc​ ) −  
[1 − H(​p​err​ 

cla ​ ) ]​, where we have assumed, for ​​p​err​ 
cla ​​ either the optimal 

classical bound in Eq. 1 or the classical photon-counting bound of Eq. 6.
As we can see from Fig. 2, there is an evident information gain, 

which may approach the maximum value of 1, meaning that, in cer-
tain regions, the use of quantum resources allows the full recovery 
of the stored information, whereas no information could be re-
trieved by classical means.

In Fig. 2 (A and B), we see that, increasing the mean photon number, 
the maximum of the advantage shifts toward higher reflectivity 0. 

Fig. 2. Information gain G of quantum reading as a function of the lower transmissivity 0 and total mean number of photons N (higher transmissivity is set to 
1 = 1). The information gain is computed assuming a TMSV-state transmitter with large number of copies (M ≈ 1013) and a receiver based on photon counting. In (A), the 
classical benchmark is the photon-counting performance with classical states of Eq. 6. In panel (B), the benchmark is the optimal classical limit in Eq. 1. In both panels, the red curve 
represents the MED strategy described in the text, marking the limit after which the channels are classically indistinguishable. In (C) and (D), we consider the case 
of imperfect quantum efficiency  = 0.76 for both the signal and idler systems (so that u → u for u = 0,1). We show the gain over the photon-counting classical bound 
in (C), and the gain over the optimal classical limit in (D). In (C) and (D), the dashed lines indicate the regions where experimental data were collected. These data points 
are those reported in Fig. 4.
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Intuitively, this is explained by the fact that the gain becomes larger 
when classical strategies start to fail. For example, although nonop-
timal, another classical discrimination strategy can be used to mea-
sure the mean photon number, that is, either N or 0N (assuming 
1 = 1). This approach of mean energy discrimination (MED) 
fails when the difference in the average photon counts becomes 
smaller than the noise associated with the Poisson fluctuations, i.e., 
when 0 > 1 − N −1/2. The saturation of this inequality defines the red 
line in Fig. 2.

In Fig. 2A, this curve follows the contour lines of the plot, denoting 
the start of the maximum gain region. Of course, when 0 is ap-
proaching 1 = 1, there is no way to distinguish among the chan-
nels, neither classical nor quantum, and the information gain 
drops to zero. The competition between these two tendencies 
determines the maximum of the gain. When comparing with the 
optimal classical bound in Fig. 2B, the regions are in general nar-
rower, and the maximum deviates from the MED curve. However, 
note that Eq. 1 represents a theoretical lower bound, which may 
be nontight.

The biggest limitation in an experimental realization of this pro-
cedure is given by photon losses of different nature, interaction with 
the environment and optical components, and the intrinsic quan-
tum efficiency of the detectors. Their combined effect can be ac-
counted with a unique coefficient, the detection efficiency 0 ≤  ≤ 1, 
that can be estimated with high precision in the characterization of 
the setup. This quantity expresses the fraction of generated photons 
that are actually detected. Moreover, in case of bipartite correla-
tions, it may include the efficiency in detecting correlated photons, 
which can be lower than the efficiency in detecting the photons in a 
single arm. Its effect is indistinguishable from the effect of any other 
attenuator, such as the memory storing the value of a bit in its 
coefficient.

The composition property of two binomial processes implies 
that two consecutive pure-loss channels, ℰ and ℰ, commute and 
their total effect is given the composite pure-loss channel ℰ. Be-
cause of this indistinguishability, the classical limits, in this scenario 
can be computed performing the substitution u → u in Eqs. 1 and 
6, resulting in a decreased accuracy for discrimination. An equiva-
lent way to obtain these classical limits is to consider the signal 
energy reduction caused by , yielding the same result. When quantum-
correlated systems are considered, however, aside from the energy 
reduction, an additional effect induced by losses is the worsening of 
the correlations, therefore decreasing the advantage that can be ob-
tained. This drop in the gain can be seen from Fig. 2  (C and D), 
where the scenario with an efficiency  = 0.76 is reported. The max-
imum gain is reduced to ≃1/3 or ≃1/6, depending on the classical 
benchmark considered. Still, this is a macroscopic amount of infor-
mation due to the fact that it refers to gain per cell.

Experimental results
A scheme of the experimental setup is reported in Fig. 3A. The multi-
mode state ​​∣ TMSV⟩​S,I​ 

​⊗​​ M​​  ​is experimentally produced exploiting 
the spontaneous parametric down-conversion process in a non-
linear crystal. We pump a 1-cm3 type II -barium borate (BBO) 
crystal with a continuous-wave laser of p = 405 nm and power of 
100 mW. An interferential filter at (800 ± 20) nm performs a 
spectral selection of the down-converted photons around the 
degenerate frequency (d = 2p = 810 nm). The correlation in 
momentum of two down-converted photons is mapped into spatial 

correlations at the back focal plane of a lens with fFF = 1 cm 
focal length. This plane is then imaged to the detection plane by a 
second lens.

The detector is a charge-coupled device (CCD) camera (Princeton 
Instruments, PIXIS:400BR eXcelon), working in linear mode, with 
high quantum efficiency (nominally >95% at 810 nm) and few e−/
(pixel · frame) of electronic noise. The physical pixels of the camera 
measure 13 m. A 12 × 12 hardware binning is performed on them 
to lower the acquisition time and increase the readout signal-to-
noise ratio. The total photon counts nS and nI are obtained integrat-
ing the signal over the two spatially correlated detection areas 
SS and SI, for signal and idler, respectively. The total number of 
spatial modes collected is Ms ∼ 103 and the temporal modes can 
be estimated to be Mt ∼ 1010 [for a deeper discussion on these esti-
mates, see (58)]. Since NI ∼ 105, the mean occupation number is NI/
(Ms · Mt) ∼ 10−8 ≪ 1, meaning that the marginal distributions are 
well approximated by Poissonian ones.

The memory cell is implemented inserting in the focal plane of 
the first lens a coated glass slide with a deposition of variable trans-
mission 0.990 < 0 < 1. The bit of information is stored in the pres-
ence ( = 0) or absence ( = 1 = 1) of the deposition.

The effect at the base of the quantum enhancement can be visu-
alized comparing Fig. 3 (B and C). The joint distributions of nS 
and nI for 0 and 1 = 1, due to their squeezed shape, are less 
overlapped with respect to the marginal distributions of nS only, 
increasing their distinguishability. Note that the squeezed shape of 
the joint distributions in Fig. 3B is purely due to quantum correla-
tions and cannot be achieved by any classical source.

CB

A

Fig. 3. Simplified schematic of the experimental setup and photon number 
distributions. (A) In the -barium borate (BBO) crystal, the multimode TMSV 
source is generated. The signal beam passes through the memory cell investigated, 
whose transmissivity can be either 0 or 1 and is then detected in the SS region of 
the charge-coupled device (CCD) camera. The idler beam goes directly to the 
SI region of the CCD. nS and nI are the total photon counts over SS and SI. IF, inter-
ferential filter (800 ± 20) nm. (B) nS in function of nI, for 1000 frames. Blue dots cor-
respond to 0 ∼ 0.996, while red dots correspond to 1 = 1. (C) nS relative frequency 
distribution for 0 ∼ 0.996 (blue histogram) and 1 = 1 (red histogram).
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A

B

C

Fig. 4. Experimental gain G of quantum reading (bits) as a function of the lower transmissivity 0. The three panels refer to different mean photon number in the 
signal beam: (A) N = 1.15 · 105, (B) 3.1 · 105,and (C) 5.2 · 105. Blue data refer to the gain with respect to the classical optimal bound in Eq. 1. Red data refer to the 
gain with respect to the classical photon-counting bound given in Eq. 6 obtained from the marginal distribution of the signal. The experimental parameters, estimated 
independently in a calibration step, are the mean signal energy N, the detection efficiency of signal and idler channel S and I, and the electronic noise e. Apart for the 
value of N, which is intentionally different in the three panels, the other parameters are kept fixed to:S = 0.78 and I = 0.77 e ∼ 104.
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The parameters necessary for the subsequent analysis (N, 0, S, 
I, and electronic noise e) are estimated in a calibration phase. In 
particular, the channels efficiencies are estimated using the absolute 
calibration method presented in (59–61). The error probability in the 
discrimination between 0 and 1 is evaluated on two sets of frames 
(10,000 frames per set are acquired), one for each known value of 
the transmittance. For each frame, we compute PN, M(nS, nI∣u), using 
the values of the parameters estimated in the calibration, and we assign 
to the frame the value of u that makes this probability higher. The 
comparison of the true known value of u over each set with the 
guessed ones, allows estimating the error frequency ​​p​err​ 

exp​​ for each set.
The experimental gain G evaluated from ​​p​err​ 

exp​  ​is reported in 
Fig. 4, both with respect to the optimal classical bound (blue curves) 
and to the classical photon-counting bound (red curves). The three 
panels are obtained for a different number of photons in the signal 
beam, i.e., N ∼ 1.15 · 105, 3.1 · 105, and 5.2 · 105 respectively, corre-
sponding to the sections lines in the theoretical Fig. 2 (C and D). In 
Fig. 4, the error bands on the theoretical curves have been obtained 
via numerical simulation. Experimental data show a good accor-
dance with the theoretical model, with the majority of the data 
falling in the confidence region at 1 SD. In all three cases, we find a 
clear quantum advantage. In perfect accordance with theory, we 
find that the maximum gain increases with the mean signal energy 
but at the expenses of a narrowing of the region in which the quan-
tum enhancement can be found.

DISCUSSION
In this work, we have provided an experimental demonstration of 
the quantum reading protocol, showing how entanglement is able 
to boost the retrieval of classical information from an optical mem-
ory cell, outperforming any classical strategy for the same number 
of input photons. We have shown, theoretically and experimentally, 
that quantum advantage can be achieved by means of a simple 
receiver strategy based on photon-counting measurements followed 
by a maximum likelihood decision test. In this way, we were able to 
demonstrate values, for the quantum advantage, which are close to 
the performance originally foreseen by using optimal but highly 
theoretical, joint quantum measurements.

In our experiment, we considered the realistic scenario where 
only a single output from the cell is accessible for detection, and 
we were able to show quantum advantage despite the presence of 
extra optical losses on both the signal and idler paths. Because of all 
these aspects, our results pave the way for a realistic and practical 
implementation of quantum reading techniques, whose implica-
tions go beyond the memory model and may involve spectroscopic 
applications. For instance, our results implicitly show the feasibility 
of a quantum-enhanced detection of absorbance at some frequency 
of a spectrum. Thus, this work represents a substantial step in the 
progress of quantum technology, demonstrating the feasibility 
with easily accessible resources of a quantum scheme of huge prac-
tical interest.
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