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Abstract: A new approach for the nondestructive determination of the elastic properties of composite
laminates is presented. The approach represents an improvement of a recently published experi-
mental methodology based on the Impulse Excitation Technique, which allows nondestructively
assessing local elastic properties of composite laminates by isolating a region of interest through a
proper clamping system. Different measures of the first resonant frequency are obtained by rotating
the clamping system with respect to the material orientation. Here, in order to increase the robustness
of the inverse problem, which determines the elastic properties from the measured resonant frequen-
cies, information related to the modal shape is retained by considering the effect of an additional
concentrated mass on the first resonant frequency. According to the modal shape and the position
of the mass, different values of the first resonant frequency are obtained. Here, two positions of the
additional mass, i.e., two values of the resonant frequency in addition to the unloaded frequency
value, are considered for each material orientation. A Rayleigh–Ritz formulation based on higher or-
der theory is adopted to compute the first resonant frequency of the clamped plate with concentrated
mass. The elastic properties are finally determined through an optimization problem that minimizes
the discrepancy on the frequency reference values. The proposed approach is validated on several
materials taken from the literature. Finally, advantages and possible limitations are discussed.

Keywords: material properties determination; vibrational analysis; laminated composites; modal
shape characterization; Rayleigh–Ritz method

1. Introduction

Manufacturing defects, low reproducibility of manufacturing process, and in situ
material damages due to in service loads are some of the most critical factors that limit the
widespread diffusion of composite materials, whose mechanical and weight characteristics
are extremely desirable for structural applications. In this context, nondestructive tech-
niques for the determination of the health state of composite components are becoming
more and more important. Among the others, thanks to rather simple and rapid testing
applications, vibrational methods are increasingly adopted for manufacturing quality
control or damage assessment [1,2]. Furthermore, differently from other techniques, such
as the micro-computed tomography, these methods are able to quantitatively assess the
material properties of a component. Vibrational methods usually adopt an inverse problem
formulation that intends to determine the elastic properties from the measured resonant
frequencies [3–6]. In this regard, material constants are calculated through an optimiza-
tion process based on Finite Element models, Rayleigh–Ritz formulations, and analytical
formulas. Four resonant frequencies are usually sufficient to obtain a reasonable set of
elastic estimates [7]. The robustness of the assessed elastic properties is a critical aspect
of vibrational methods. Therefore, further information is usually considered within the
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inverse problem, such as the modal shape and/or further frequencies. However, multiple
resonant frequencies can be difficult to recognize, while the investigation of the modal
shape can require expensive equipment developed for laboratory [8].

Furthermore, vibrational methods usually account for the global response of the
component [9]. Thus, the presence of local defects can be concealed or averaged by the
global behavior of the component. Indeed, the local assessment of material properties
still represents a challenging field [10–12]. Recently, a new experimental methodology has
been presented that allows nondestructively assessing local elastic properties of composite
laminates [13]. The methodology aims to:

(i) Isolate a region of the component through a specific equipment, which clamps the
extremities of the region without damaging the material;

(ii) Adopt the Impulse Excitation Technique to measure the first resonant frequency of
the retained region;

(iii) Exploit the material anisotropy to obtain at least four different measures of the first
resonant frequency, particularly by varying the relative orientation between the
clamping system and the material;

(iv) Assess the elastic properties of the investigated region from the measured resonant
frequencies through an optimization process.

The methodology adopts a testing machine to compress two rectangular frames on the
plate and isolate the region to investigate. Thus, the use of the testing machine represents
a preliminary setup. However, even though this clamping system is not suitable for real-
world composite structures, it is particularly useful to investigate the methodology in
laboratory testing conditions.

In particular, it was possible to investigate the inverse problem, which intends to
assess the elastic properties from the measured first resonant frequencies. The inverse
problem can be undetermined, i.e., the measured frequencies can be obtained with multiple
sets of elastic estimates. In order to increase the accuracy of the methodology, the number
of relative orientations can be increased. Instead, the use of higher mode frequencies
is limited by the proximity of the clamped boundaries, whose noninfinite stiffness can
consistently affect the result. Indeed, the higher modes increasingly involve in the modal
displacement the material in proximity of the clamped boundaries. As a consequence, the
effect of the nonfinite stiffness, which is for the first mode as shown in [13], increasingly
affects the measurement of the higher resonant frequencies. Furthermore, in order to
guarantee the robustness of the methodology, limits on the design domain of the elastic
properties, i.e., E11, E22, G12, and ν12, are to be considered, which is undesirable, especially
when assessing damage level. Here, the design domain identifies the space where the
aforementioned material properties can vary, while the optimization problem minimizes
the discrepancy between the measured and the numerical resonant frequencies. Indeed, if
the methodology has to be adopted for detecting local material variations, limitations on
the material properties can be particularly inconvenient.

In this paper, a new approach based on this experimental methodology is presented,
which allows increasing the robustness of the inverse problem. In particular, information
related to the modal shape is retained within the inverse problem only by considering
the effect of a concentrated mass on the first resonant frequency. The modal shape strictly
depends on the material properties and, when dealing with anisotropic material, its isolines
are not necessary parallel to the clamped boundaries, as also observed in other works
in literature [14–16]. It is the case of an orthotropic material whose axes of orthotropy
are not parallel to the boundaries. The modal response is here analyzed with the use
of a concentrated additional mass, whose effect on the first resonant frequency depends
on its position on the plate in accordance with the modal shape. Indeed, according to
the modal shape and to the position of the mass, different values of the first resonant
frequency are obtained. Here, two positions of the additional mass, i.e., two values of
the resonant frequency, in addition to the unloaded resonant frequency of the clamped
plate, are considered for each material orientation. Thus, the modal response is accounted
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within the optimization process, which consistently enhances the sensitivity of the inverse
problem to the elastic properties.

A numerical validation of the proposed approach is here performed, which considers
materials with different elastic constants. A Rayleigh–Ritz formulation based on higher
order theory is adopted to compute the first resonant frequency of the clamped plate
loaded by a concentrated mass. The use of Rayleigh–Ritz formulation indeed allows
consistently decreasing the computational cost with respect to the finite element-based
optimization adopted in [13]. Thus, the Rayleigh–Ritz formulation represents a further
step toward the application of the proposed methodology to real-world composite struc-
tures. After validating the Rayleigh–Ritz formulation on experimental data taken from
the literature, for each retained material, the frequencies are calculated for the different
material orientations and mass positions, thus constituting the reference values. Then, the
elastic properties are handled as the design variables of an optimization process, which
minimizes the discrepancy between the resonant frequency calculated at each iteration
and the corresponding reference value. Results show that with the proposed approach,
the modal shape can be identified only through a concentrated mass positioned in two
different spots, thus avoiding the need for costly equipment. Finally, by accounting for the
modal response within the optimization process, the sensitivity of the inverse problem to
the elastic properties is particularly enhanced.

2. Methods

This section firstly presents the Rayleigh–Ritz formulation here adopted to calculate
the first resonant frequency of clamped laminates loaded by a concentrated mass. Then,
the proposed approach for retaining the modal shape through the added mass is detailed.

2.1. Rayleigh–Ritz Formulation

A Rayleigh–Ritz formulation is here presented in order to calculate the first resonant
frequency of clamped plates made of laminated composites and loaded by a concentrated
mass. A rectangular plate of dimensions a and b and constituted by N orthotropic layers
for a total thickness h is considered, as shown in Figure 1.
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Figure 1. Scheme of the clamped plates made of laminated composites.

The displacements in x, y, and z directions are denoted with u, v, and w, respectively.
Thus, the strain energy for the entire laminate is expressed as:

U =
1
2 ∑N

k=1

∫
Vk

εT
k ·σkdVk, (1)



Appl. Sci. 2021, 11, 101 4 of 16

where subscript k refers to k-th lamina, N is the total number of layers, Vk is the volume of
each lamina, and εk and σk are the strain and stress vectors at the lamina level.

Due to the presence of the concentrated mass, the kinetic energy is given by the
following sum:

T =
1
2

N

∑
k=1

∫
Vk

ρk

[(
δu
δt

)2
+

(
δv
δt

)2
+

(
δw
δt

)2
]

dVk +
M
2

[(
δulm

δt

)2
+

(
δvlm

δt

)2
+

(
δwlm

δt

)2
]

(2)

where ρk is the mass density of the k-th lamina and M is the concentrated mass located
at x = l and y = m. Therefore, for example, ulm indicates the displacement in the x
direction in correspondence of the mass location. Here, the effect of the concentrated mass
on rotary inertia is neglected, and it is assumed for simplicity that the mass is located on
the mid-plane, i.e., at z = 0.

The Rayleigh–Ritz formulation is here based on the higher-order shear deformation
theory for laminated composites proposed by Reddy [17]. According to the Reddy’s theory,
the displacements u, v, and w of an arbitrary point of the plate are represented as

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t)− 4·z3

3·h2

(
ϕx(x, y, t)− δw(x, y, t)

δx

)
,

v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t)− 4·z3

3·h2

(
ϕy(x, y, t)− δw(x, y, t)

δy

)
,

w(x, y, z, t) = w0(x, y, t),

(3)

where u0, v0, and w0 are the displacements of the mid-plane, and ϕx and ϕy are the rotations
around the x and y axes, respectively. Hence, the stress and strain vectors of Equation (1)
are σk =

[
σx, σy, σxz, σyz, σxy

]T and εk =
[
εx, εy, γxz, γyz, γxy

]T , respectively. The congruent
equations for each lamina can be written as follows:

εk = B·u, (4)

where u =
[
u0, v0, w0, ϕ0x, ϕ0y

]
and the matrix B is defined as

B =



δ
δx 0 − 4z3δ2

3h2δx2

(
z − 4z3

3h2

)
δ

δx 0

0 δ
δy − 4z3δ2

3h2δy2 0
(

z − 4z3

3h2

)
δ

δy

0 0
(

1 − 4z2

h2

)
δ

δy 0
(

1 − 4z2

h2

)
0 0

(
1 − 4z2

h2

)
δ

δx

(
1 − 4z2

h2

)
0

δ
δy

δ
δx − 8z3δ2

3h2δxδy

(
z − 4z3

3h2

)
δ

δy

(
z − 4z3

3h2

)
δ

δx


. (5)

At the lamina level, the constitutive equations are as usual:

σk = Dk·εk, (6)

where Dk is related to the elastic constants through the rotation matrix, as follows:

Dk = Tk·Q·TT
k , (7)

With

Tk =


cos2 θk sin2 θk 0 0 −2· cos θk· sin θk
sin2 θk cos2 θk 0 0 2· cos θk· sin θk

0 0 cos θk sin θk 0
0 0 − sin θk cos θk 0

cos θk· sin θk − cos θk· sin θk 0 0 cos2 θk − sin2 θk

 (8)
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and

Q =


E11

(1−ν12·ν21)
ν12·E22

(1−ν12·ν21)
0 0 0

ν12·E22
(1−ν12·ν21)

E22
(1−ν12·ν21)

0 0 0
0 0 G23 0 0
0 0 0 G13 0
0 0 0 0 G12

. (9)

where, as usual, E11 is the Young’s modulus in the longitudinal direction, E22 is the Young’s
modulus in the transverse direction, G12, G13, and G23 are the shear moduli, and ν12 is the
Poisson’s ratio. Here, the angle θk accounts for both the stacking angle of the lamina and
the relative orientations between the clamped boundaries and the material. Furthermore,
it is assumed that G13 = G23 = G12. The assumption, for which the three material
properties are equal, is certainly coarse for some composite materials as well as it is exact
for some others [18,19]. Furthermore, the G23 material property cannot be assessed from
the measurements of the first resonant frequency. Therefore, it is assumed here that the
three properties are equal.

As clamped boundaries do not admit an exact solution, the displacements u, v, and w
are approximated through a set of admissible functions. The plate is firstly assumed to be
in harmonic motion, which allows writing the displacement vector u as:

u0 = U(x, y) sin ωt,

v0 = V(x, y) sin ωt,

w0 = W(x, y) sin ωt,

ϕx = Φx(x, y) sin ωt,

ϕy = Φy(x, y) sin ωt,

(10)

where ω is the natural angular frequency. Then, the displacements and rotations are
approximated with the following polynomial functions:

U(x, y) = ∑I1
i=1 ∑J1

j=1 cu
ij

( x
a

)i(y
b

)j(
1 − x

a

)(
1 − y

b

)
,

V(x, y) = ∑I2
i=1 ∑J2

j=1 cv
ij

( x
a

)i(y
b

)j(
1 − x

a

)(
1 − y

b

)
,

W(x, y) = ∑I3
i=2 ∑J3

j=2 cw
ij

( x
a

)i(y
b

)j(
1 − x

a

)2(
1 − y

b

)2
,

Φx(x, y) = ∑I4
i=1 ∑J4

j=1 cϕx
ij

( x
a

)i(y
b

)j(
1 − x

a

)(
1 − y

b

)
,

Φy(x, y) =
I5

∑
i=1

J5

∑
j=1

c
ϕy
ij

( x
a

)i(y
b

)j(
1 − x

a

)(
1 − y

b

)
(11)

Here, the extremities of the summations are considered as I1 J1 = I2 J2 = (I3 − 1)(J3 − 1)
= I4 J4 = I5 J5. These products define the number of terms n of the polynomials. In par-
ticular, parameters I and J represent the grades of the polynomial functions, which are
adopted to approximate the modal shape of the resonant frequencies. Finally, substituting
Equations (11), (10), (6), and (4) into Equations (1) and (2), the strain and kinetic energies
can be written as

U =
1
2
[C]T [K][C], (12)

T =
1
2

ω2[C]T [M][C],

where [K] and [M] are the stiffness and mass matrices of dimensions R = I1 J1 + I2 J2 +
(I3 − 1)(J3 − 1) + I4 J4 + I5 J5 and are related to the functions of Equation (11) adopted to
describe the displacements field. [C] is the vector of coefficients, i.e.,:
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[C]T =
[
cu

11, cu
12, . . . , cu

I1 J1
, cv

11, cv
12, . . . , cv

I2 J2
, cw

11, cw
12, . . . , cw

I3 J3
, cϕx

11 , cϕx
12 , . . . , cϕx

I4 J4
, cw

I3 J3
, c

ϕy
11 , c

ϕy
12 , . . . , c

ϕy
I4 J4

]
(13)

Finally, equaling the strain and kinetic energy, as prescribed by the Rayleigh–Ritz
method, the following eigenvalue problem can be written:(

[K]− ω2[M]
)
[C] = 0, (14)

which allows calculating the resonant frequencies by zeroing the determinant of the matrix.
For further details on the matrix elements, the reader can refer to Chen et al. [18].

2.2. Modal Shape Information through Mass Position

The proposed approach is based on a recently presented experimental methodology,
which allows nondestructively assessing local elastic properties of composite laminates [13].
In particular, the methodology consists of

(i) Isolating a rectangular region of the component through a specific equipment, which
clamps the extremities of the region without damaging the material;

(ii) Measuring the first resonant frequency of the retained region through the Impulse
Excitation Technique;

(iii) Repeating the frequency measurement after rotating the clamping system with respect
to the material. Thus, the material anisotropy is exploited to obtain at least four
different measures of the first resonant frequency;

(iv) Assessing the elastic properties of the investigated region from the measured resonant
frequencies through an optimization process.

The methodology assumes that the investigated composite plates are laminates whose
stacking sequence is known and whose stacked plies are made of the same material. Thus,
the methodology intends to determine the elastic properties at the lamina level.

Figure 2 shows the experimental setup. The boundaries of the retained region are
obtained by means of two rectangular frames, which are compressed to the plate through
the testing machine equipped with compression blocks. A silicon rubber layer of 0.5 mm has
been interposed between the frames and the plate in order to compensate the nonuniform
thickness of the composite plate. Indeed, the variation of the thickness can result in a local
loss of clamped boundaries, which affects in turn the measured first resonant frequency.
Even though the rubber layer decreases the out-of-plane stiffness of the system, results
show that the boundaries of the retained region can be approximated with high fidelity as
fully clamped.

The inverse problem can be undetermined, i.e., the measured frequencies can be
obtained with multiple sets of elastic estimates. In this regard, limits on the design domain
of the elastic properties can be considered; however, this is undesirable, especially when
assessing damage level. Furthermore, the use of higher mode frequencies is limited by the
proximity of the clamped boundaries, which can consistently affect the result. Therefore, in
order to increase the accuracy of the methodology, information related to the modal shape
can be considered within the optimization problem.

Modal shapes can be investigated through a concentrated mass. Low et al. [20] firstly
proposed to move a concentrated mass on the plate and to measure the resultant resonant
frequencies. As it is well known, due to the presence of an added mass, the resonant
frequencies of the plate decrease. In particular, the reduction of a considered resonant
frequency is function of the corresponding modal shape. According to the location of
the concentrated mass, the higher the modal displacement in correspondence of the mass
position, the lower the resultant resonant frequency. Therefore, by moving a mass on a
clamped plate, the first modal shape can be investigated by considering the reduction of
the first resonant frequency.
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Figure 2. Experimental setup adopted in [13], with (a) and (b) dimensions of the retained rectangular region. Here, it is
assumed that the first resonant frequency is measured through a microphone, which allows avoiding the contribution of the
added mass of the accelerometer.

In the case of anisotropic materials, the modal shape is particularly dependent on
the elastic parameters. For anisotropic material, the isolines of the modal shape are not
necessarily parallel to the clamped boundaries. For instance, it is the case of an orthotropic
material whose axes of orthotropy are not parallel to the boundaries. As reported in [13]
and as shown in Figure 3, with reference to a unidirectional fiber plate, the first mode shape
rotates in accordance with the orientation of the unidirectional reinforcement with respect
to the x axis.

In particular, for 0◦ and 90◦, material axes of orthotropy are parallel to the boundaries
and so the isolines of the modal shape. Instead, for 30◦ and 60◦, whereas the material
anisotropy is enhanced, the isolines are not parallel to the boundaries. This also shows
that the modal shape strictly depends on the material properties and on its anisotropy. As
the modal shape relates to the material anisotropy, information on the modal shape can be
exploited to assess the elastic parameters with increased accuracy and robustness.

To this aim, a concentrated mass can be adopted. Two locations are sufficient to
investigate the isolines of the first modal shape and hence the material anisotropy. In
particular, the two positions are to be symmetric with respect to one of the axes of symmetry
of the rectangle, while not lying on the other axis. For an example of mass locations, the
reader can refer to Figure 4.
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When the isolines are not parallel to the boundaries, the modal displacement is
different in correspondence of the two mass locations. As a consequence, the reduction
of the first resonant frequency is different. Instead, when the isolines are parallel to the
clamped boundaries, the first resonant frequency equally decreases, as the two mass
positions are symmetric with respect to one of the axes of the rectangular plate. Thus, the
discrepancy between the reductions of the first resonant frequency due to the two mass
locations represents a measure of the material anisotropy.

The methodology presented in [13] is completed as follows:

(i) Isolate a rectangular region of the component through a specific equipment, which
clamps the extremities of the region without damaging the material;
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(ii) Measure the first resonant frequency of the retained region, fre f ,i, through the Impulse
Excitation Technique;

(iii) Measure the first resonant frequency for each location of the concentrated mass,
fre f ,m1,i and fre f ,m2,i;

(iv) Repeat the frequency measurements after rotating the clamping system with respect
to the material;

(v) Assess the elastic properties of the investigated region from the measured resonant
frequencies through an optimization process.

Thus, the information related to the modal shape is accounted within the inverse
problem, which can be formulated as follows

min
x=[E11,E22,G12, ν12]

∑
i

∣∣∣ fre f ,i− fi
fre f ,i

∣∣∣+ ∣∣∣ fre f ,m1,i− fm1,i
fre f ,m1,i

∣∣∣+ ∣∣∣ fre f ,m2,i− fm2,i
fre f ,m2,i

∣∣∣ , (15)

where fre f ,i, fre f ,m1,i, and fre f ,m2,i constitute the reference frequencies for the i-th mate-
rial orientation, while fi, fm1,i, and fm2,i are the values of the first resonant frequencies
computed at each iteration of the optimization process.

Here, the reference values fre f ,i, fre f ,m1,i, and fre f ,m2,i are calculated with the Rayleigh–
Ritz method for the considered material. Furthermore, according to the values assumed by
the elastic constants at each iteration of the optimization process, the Rayleigh–Ritz method
is also used to calculate the three frequencies fi, fm1,i, and fm2,i for each material orientation.
Thus, the discrepancy between the reference values and the calculated frequencies is
minimized by varying the material parameters x. Hence, the elastic constants are assessed
as the result of the optimization process.

3. Results

The Rayleigh–Ritz formulation is firstly validated on experimental data reported in the
literature. Then, the proposed approach is applied on four different laminated composites.

3.1. Validation of the Rayleigh–Ritz Formulation

In order to validate the Rayleigh–Ritz described in Section 2.1, literature data [14,20,21]
on clamped plates have been considered. For convergence and validation studies, the
comparison concerns six different laminates with unidirectional reinforcement plies. Fur-
thermore, the Rayleigh–Ritz formulation has been validated on the experimental results of
an isotropic aluminum plate loaded by a concentrated mass.

In regard to the laminated composites, data and results are taken from Chow et al. [14]
and Lam and Chun [21]. In these works, the dimensions of the plates were a = b = 1270 mm
with thickness h = 25.4 mm. Hence, the plate was relatively thin with the aspect ratio, i.e.,
the ratio between the in-plane dimension and the thickness, equal to 50. The laminated
composites were clamped at the extremities, and the first resonant frequency was acquired.

The laminated composites were constituted by four layers with unidirectional rein-
forcement and present symmetric stacking sequences ([0◦, 0◦, 0◦, 0◦], [15◦, −15◦, −15◦, 15◦],
[30◦, −30◦, −30◦, 30◦], and [45◦, −45◦, −45◦, 45◦]), an anti-symmetric stacking sequence
([30◦, −30◦, 30◦, −30◦]), and a non-symmetric sequence ([0◦, 30◦, 60◦, 90◦]). Material
properties of the unidirectional plies are reported in Table 1 with reference to the axes of
orthotropy.

Table 1. Material properties at ply level.

E11 [GPa] E22 [GPa] G12 [GPa] ν12 [-] ρ
[
kg/m3]

Unidirectional ply 131.69 8.55 6.76 0.3 1610

Firstly, the convergence study has been addressed. Results of the convergence study
are reported in Table 2 in terms of frequency parameter λ for different numbers of terms
n of the polynomials in Equation (11). Indeed, as the polynomial degree increases (i.e.,
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the number of terms n increases), the exact solution is better approximated through the
Rayleigh–Ritz method. Table 2 shows that the convergence is reached even for n = 36.
However, for a better approximation, in this paper, a degree of the polynomial equal to 7
has been assumed in the calculations, with the number of terms n equal to 49.

Table 2. Convergence results of frequency parameter λ and comparison to the experimental data

presented in the literature - λ =
(

ρhω2a4

D11

) 1
2
, D11 = E11h3

12(1−ν12ν21)
.

Stacking Sequences Present–36
Terms

Present–49
Terms

Present–64
Terms

Literature
Result

[0◦, 0◦, 0◦, 0◦] 23.42 23.41 23.41 23.86 1

[15◦, −15◦, −15◦, 15◦] 22.89 22.89 22.89 23.29 1

[30◦, −30◦, −30◦, 30◦] 21.91 21.90 21.90 22.22 1,2

[45◦, −45◦, −45◦, 45◦] 21.44 21.42 21.42 21.75 1

[30◦, −30◦, 30◦, −30◦] 21.56 21.56 21.56 21.94 2

[0◦, 30◦, 60◦, 90◦] 15.82 15.80 15.80 16.23 2

1 Chow et al. [14]; 2 Lam and Chun [21].

Table 2 also reports a comparison of the results obtained with the formulation proposed
in Section 2.1 with those obtained by Chow et al. [14] and Lam and Chun [21] in their
works. The discrepancy is very limited. The frequency parameter λ calculated through
the proposed formulation is always smaller than those calculated in the literature. This is
mainly due to the different shear deformation theories. Indeed, the present Rayleigh–Ritz
formulation is based on the higher-order shear deformation theory. Instead, the first order
shear deformation theory was adopted in the considered works. Indeed, the higher order
of the presented formulation increases the compliance of the plates, thus resulting in lower
values of the frequency parameter λ [18].

The Rayleigh–Ritz formulation has been also validated with respect to the experi-
mental results reported by Low et al. [20], who analyzed the first resonant frequency of a
clamped rectangular plate made of aluminum for different positions of a concentrated mass
of 96 g. Particularly, the mass was moved along the axes of symmetry of the rectangle, and
the resultant first resonant frequency was measured. The clamped plate had dimensions
of a = 600 mm and b = 300 mm. Therefore, while moving the mass along the x direction,
its y coordinate was equal to b

2 = 150 mm. Instead, while moving the mass along the y
direction, the x coordinate was 300 mm.

Even though the Rayleigh–Ritz formulation of Section 2.1 is specifically developed
for angle-ply laminates, an isotropic material can be considered as a particular case. The
longitudinal and transverse Young’s moduli are equal to 69 GPa, as the Young’s modulus
of the aluminum plate, while the Poisson’s coefficient is 0.3. Finally, the shear modulus
can be related to the Young’s modulus and to the Poisson’s coefficient as usual, G =
E/
(
2
(
1 + ν2)).

Figure 5 shows the comparison of the experimental results with those obtained with
the present formulation. Results are reported in normalized form, where f0 is the frequency
obtained without the mass loading and the position x and y of the concentrated mass are
normalized with respect to a and b, respectively. Results of the Rayleigh–Ritz formulation
have been obtained by moving the concentrated mass along the plate axes of symmetry
with a step of 2 mm and calculating the resultant first resonant frequency. An acceptable
agreement is obtained, with the Rayleigh–Ritz formulation able to catch the global trend of
the experimental results. Furthermore, it can be appreciated that by moving a mass on the
plate and measuring the resultant resonant frequency, the modal shape can be obtained.
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3.2. Calculations of the Reference Frequencies

Four different materials are here considered for the validation of the proposed method-
ology. In addition to the unidirectional ([0◦, 0◦, 0◦, 0◦]), the symmetric ([30◦, −30◦,
−30◦, 30◦]), and the asymmetric materials ([30◦, −30◦, 30◦, −30◦]) already presented
in Section 3.1, a woven fabric laminate is considered. The woven laminate is also consti-
tuted by four layers, with the material properties reported in Table 3 with reference to
the axes of orthotropy. These materials have been chosen to show the applicability of the
proposed approach to the limited selection of laminates, whose stacked plies are made of
the same material.

Table 3. Material properties at the ply level of the woven fabric.

E11 [GPa] E22 [GPa] G12 [GPa] ν12 [-] ρ
[
kg/m3]

Woven fabric 59.0 59.0 3.4 0.04 1432.5

The reference frequencies are here calculated through the Rayleigh–Ritz formulation.
Dimensions of the rectangular region are a = 150 mm and b = 100 mm, as in the as-
sumption of assessing local elastic properties, according to the methodology described
in Section 2.2. The thicknesses of the four laminates are 1 mm for the unidirectional,
1.5 mm for both the symmetric and anti-symmetric laminates, and 2.5 mm for the wo-
ven fabric. With respect to the reference axes shown in Figure 1, the mass locations are
(x1, y1) = (50, 60) and (x2, y2) = (100, 60), which are symmetric with respect to the verti-
cal axis of symmetry of the rectangle. It is worth noting that in order to obtain a measurable
discrepancy in the reduction of the first resonant frequency, the two locations must not be
located far from the center of the of the plate. The mass is assumed equal to 1 g.

For the unidirectional, the symmetric, and anti-symmetric plates, the reference values
have been calculated considering the material orientated at 0◦, 30◦, 60◦, and 90◦ with
respect to the clamped boundaries. For the woven fabric, the assumed rotations are 0◦, 15◦,
30◦, and 45◦. Indeed, after 45◦, the frequency values are repeated as the longitudinal and
transverse Young’s moduli are equal. Results of the reference values of the first resonant
frequencies are reported in Tables 4–7.
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Table 4. First resonant frequency values with and without the 1 g mass load of the unidirectional
plate ([0◦, 0◦, 0◦, 0◦]) for different material orientations.

0◦ 30◦ 60◦ 90◦

fre f [Hz] 505.1 535.5 773.1 948.3
fre f ,m1 [Hz] 472.3 507.8 720.8 855.2
fre f ,m2 [Hz] 472.3 494.0 705.9 855.2

Table 5. First resonant frequency values with and without the 1 g mass load of the symmetric plate
([30◦, −30◦, −30◦, 30◦]) for different material orientations.

0◦ 30◦ 60◦ 90◦

fre f [Hz] 850.2 1117.4 1361.7 1191.8
fre f ,m1 [Hz] 817.3 1070.3 1283.9 1126.8
fre f ,m2 [Hz] 808.1 1054.9 1283.2 1136.4

Table 6. First resonant frequency values with and without the 1 g mass load of the anti-symmetric
plate ([30◦, −30◦, 30◦, −30◦]) for different material orientations.

0◦ 30◦ 60◦ 90◦

fre f [Hz] 843.6 931.8 1100.4 1151.4
fre f ,m1 [Hz] 806.6 894.6 1050.8 1095.5
fre f ,m2 [Hz] 806.6 885.4 1045.4 1095.5

Table 7. First resonant frequency values with and without the 1 g mass load of the woven fabric plate
([0◦, 0◦, 0◦, 0◦]) for different material orientations.

0◦ 15◦ 30◦ 45◦

fre f [Hz] 1793.8 1757.9 1686.7 1650.5
fre f ,m1 [Hz] 1738.0 1702.0 1633.8 1600.5
fre f ,m2 [Hz] 1738.0 1705.2 1636.6 1600.5

As expected, the presence of the concentrated mass reduces the value of the first
resonant frequency. Furthermore, when the isolines are parallel to the clamped boundaries,
as in the case of the unidirectional laminate with fibers oriented at 0◦ or at 90◦ with respect
to the clamped boundaries, the first resonant frequency equally decreases for the two mass
locations. This is particularly due to the modal shape combined with the choice of the
mass positions, which are symmetric with respect to one of the axes of the rectangular
plate. Instead, when the isolines are not parallel to the boundaries, the mass affects the
first resonant frequency differently in the two locations. As a consequence, the discrepancy
between the reductions of the first resonant frequency due to the two mass locations is a
measure of the material anisotropy. Furthermore, in regard to the resultant first frequency,
it is important to notice that its value is higher for the mass disposed in the first position.
Indeed, the modal shape follows the rotations of the material with respect to the clamped
boundaries.

Furthermore, the discrepancy between the first resonant frequencies for the two
mass positions is inversely proportional to the mass of the concentrated mass, while it is
enhanced by the thickness of the laminate. An added mass reduces the resonant frequencies,
and higher values of concentrated mass lead to higher reduction of the resonances, thus
flattening any discrepancy. On the contrary, the thickness plays a key role in the bending
stiffness of the laminate, which in turn affects the resonant frequency. As the thickness
increases, the first resonant frequencies for the two mass spots proportionally increase
and so does the discrepancy. It is the case of the woven laminate, whose anisotropy is
particularly limited but still recognizable, as shown in Table 7.



Appl. Sci. 2021, 11, 101 13 of 16

Finally, it can be argued that as the material properties do not change after a rotation
of 90◦ for the unidirectional reinforcement laminates or 45◦ in the case of woven fabric,
further information can be considered within the optimization process without the need
of other replications of the first resonant frequency measure. In particular, in the case of
unidirectional reinforced laminates, the results obtained for 30◦ and 60◦ are respectively
equal to those obtained for rotations equal to 150◦ and 120◦, respectively. However, the
results obtained with the concentrated mass must be switched, as the modal shape follows
the rotations of the material with respect to the clamped boundaries. The same can be
applied to the woven fabric, thus extending the acquired information to the range 45◦–90◦.
This provides further information to the optimization process, which can further increase
its robustness.

3.3. Optimization Results

Material properties for the four considered materials are determined through Equa-
tion (15). The Nelder–Mead zero-order algorithm has been considered for the optimization
process [22]. As the algorithm can fail in reaching the optimal solution, several repetitions
of the optimizations have been performed. In particular, the result of an optimization
process has been used as a starting point for the next. After few iterations, the algorithm
was able to reach the optimal solution.

Table 8 reports the elastic constants calculated through Equation (15) for each analyzed
material.

Table 8. Optimized material properties at ply level for each material.

E11 [GPa] E22 [GPa] G12 [GPa] ν12 [-]

Unidirectional
[0◦, 0◦, 0◦, 0◦] 131.72 8.56 6.74 0.29

Symmetric
[30◦, −30◦, −30◦, 30◦] 131.7 8.55 6.75 0.29

Anti-symmetric
[30◦, −30◦, 30◦, −30◦] 131.7 8.55 6.75 0.30

Woven fabric 59.0 59.0 3.4 0.04

The difficulty in reaching an optimal solution was mainly due to the limited depen-
dency of the first resonance frequency on the Poisson’s coefficient ν12 and on the shear
modulus G12. Indeed, the first resonant frequency of a clamped composite plate partic-
ularly depends on the longitudinal and transverse Young’s moduli. In this regard, the
rectangular shape of the analyzed region enhances the sensitivity of the first resonant
frequency on the elastic properties in the direction of the short edge of the rectangle, i.e.,
the transverse direction [13].

Indeed, the dependency of the inverse problem on the shear modulus and on the
Poisson’s coefficient represents a critical aspect, particularly when the elastic properties are
calculated considering only the first resonant plate without disposing the mass load. In this
case, limits on the design domain are necessary. Instead, by considering further information
related to the modal shape, the optimization is able to catch all the four elastic constants
without the need of limiting the domain of the elastic properties. This is particularly
useful when damage level, i.e., residual elastic properties, are to be assessed. Indeed, in
order to guarantee the robustness of the methodology, limits on the design domain of the
elastic properties, i.e., E11, E22, G12, and ν12, were considered in [13]. This is particularly
undesirable if the methodology has to be adopted for detecting local material variations.
The results of the optimization problem can be constrained by the limits of the design
domain, i.e., the space where the aforementioned material properties can vary, and, in
the end, be wrong. Furthermore, as shown in Table 8, even though the objective function
of Equation (15) is equal to zero, very limited discrepancies from the nominal values are
obtained. Only the shear modulus and the Poisson’s ratio are slightly different from the
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nominal values of Tables 1 and 2, with discrepancies lower than 0.3% for the shear modulus
and 3% for the Poisson’s ratio.

By way of example, the optimization has been also performed without retaining the
modal shape information for the symmetric and anti-symmetric stacked laminates. The
results are reported in Table 9 with relative errors with respect to the elastic properties of
Table 1. It is worth noting that even though the resultant first resonant frequencies without
mass load for the different material orientations are those reported in the first line of Tables
5 and 6, respectively, the relative errors can be very high. This particularly shows that the
inverse problem can be undetermined, i.e., multiple solutions are allowable. Furthermore,
the limited dependency of the first resonant frequency of a clamped plate on the shear
modulus and on the Poisson’s ratio is evident. A decrease of the Poisson’s ratio seems to
be compensated by an increase of the shear modulus. Furthermore, the errors on these
properties can affect in turn the determination of the Young’s modulus in the transverse
direction. Instead, the Young’s modulus in the longitudinal direction is assessed with very
limited discrepancy.

Table 9. Optimized material properties at the ply level and relative errors for the symmetric and
anti-symmetric laminates without considering the modal shape information.

E11 [GPa] - εrel E22 [GPa] - εrel G12 [GPa] - εrel ν12 [-] - εrel

Symmetric
[30◦, −30◦,
−30◦, 30◦]

132.0%–0.24% 8.55%–0.0% 7.586%–12.2% 0.129%–57%

Anti-symmetric
[30◦, −30◦,
30◦, −30◦]

132.5%–0.615% 8.85%–3.51% 7.2%–6.51% 0.073%–76%

By comparing the results obtained in Tables 8 and 9, it is clear that by increasing the
amount of information retained within the optimization problem, the two low-influencing
material parameters, i.e., G12 and ν12, can be correctly assessed. The proposed approach
intends to retain the modal shape within the optimization process. In particular, the
modal shape is simply identified through the use of a concentrated mass positioned in two
different points. In accordance with the methodology described in [13], other possibilities
to increase the number of information retained in the optimization problem as well as its
robustness, could consist of:

(i) Increasing the number of relative orientations between the clamping system and the
plate;

(ii) Considering higher modes, with the limitations described in the introduction of this
paper.

Finally, it is worth noting that as shown in Table 8, even in the numerical analysis
here pursued with the further information of the modal shape, the shear modulus and
the Poisson’s ratio can still present very limited discrepancies with respect to the nominal
values. The sensitivity of the first resonant frequency on these parameters is low but not
null. Therefore, by increasing the information retained within the optimization problem,
the allowable solutions of the inverse problem accordingly decrease, thus allowing to also
estimate the two low-influencing parameters with very limited discrepancy.

4. Conclusions

In this paper, a new approach for the nondestructive determination of the elastic
properties of composite laminates is presented. The approach represents an enhancement
of a recently presented experimental methodology. The experimental methodology is
based on the Impulse Excitation Technique and allows nondestructively assessing local
elastic properties of composite laminates by isolating a region of interest through a proper
clamping system. In order to take into account the material anisotropy, different measures
of the first resonant frequency are obtained by rotating the clamping system with respect



Appl. Sci. 2021, 11, 101 15 of 16

to the material orientation. The methodology particularly refers to laminated composites,
whose stacked plies are made of the same material.

As the inverse problem, which intends to assess the elastic properties (i.e., E11, E22, G12,
and ν12) from the measured first resonant frequencies, can be undetermined, further
information are required within the optimization process. Apart from the obvious solution
of increasing the number of relative orientations between the clamping system and the plate,
the use of higher modes is limited by the noninfinite stiffness of the clamped boundaries,
which could affect in turn the measure of the resonant frequencies.

The proposed approach intends to increase the number of the retained information
and therefore the accuracy of the methodology by identifying the modal shape of the
clamped plate. In particular, a concentrated mass has been exploited, whose effect on
the first resonant frequency depends on its position on the plate in accordance with the
modal shape. According to the location of the concentrated mass, the higher the modal
displacement in correspondence of the mass position, the lower the resultant resonant
frequency. Only two mass positions, i.e., two measures of the first resonant frequency, are
sufficient to investigate the modal shape, as the reduction of the first resonant frequency is
different for the two mass spots. Particularly, mass locations have to be symmetric with
respect to one of the axes of symmetry of the rectangle, while not lying on the other axis. In
turn, the modal shape is a function of the material properties, which allows increasing the
accuracy and the robustness of the optimization problem.

A numerical validation of the proposed approach is performed, which considers four
different laminated composites, particularly a unidirectional, a symmetric angle-ply, an
anti-symmetric angle-ply, and a woven fabric. A Rayleigh–Ritz formulation based on
higher order shear deformation theory is adopted to compute the first resonant frequency
of the clamped plate loaded by a concentrated mass. Indeed, the use of the Rayleigh–Ritz
formulation allows consistently decreasing the computational cost with respect to the
finite element-based optimization adopted in [13]. Thus, the Rayleigh–Ritz formulation
represents a further step toward the application of the proposed methodology to real-world
composite structures. The Rayleigh–Ritz formulation is firstly validated with experimental
data taken from the literature and then, for each retained material, it is used to calculate
the frequencies for the different material orientations and mass positions, which constitute
the reference values. Then, the elastic properties are handled as the design variables of the
optimization process, which minimizes the discrepancy between the resonant frequency
calculated at each iteration and the corresponding reference value.

The results show that according to the material orientation, the mass differently affects
the first resonant frequency in two locations. When dealing with anisotropic materials,
the isolines of the modal shape are not parallel to the clamped boundaries, as in the case
of an orthotropic material whose axes of orthotropy are not parallel to the boundaries.
Particularly, in the case of the unidirectional laminate, the modal shape follows the rotation
of the material with respect to the clamped boundaries. Hence, the discrepancy between
the reductions of the first resonant frequency for the two mass spots is a measure of the
material anisotropy. Thus, information related to the modal shape can be obtained only
through a concentrated mass, without the need for expensive equipment. Furthermore,
results show that by increasing the number of information, particularly by retaining the
modal shape, the accuracy in the assessment of the four elastic properties is increased. In
particular, it is shown that even in the numerical analysis here pursued with the further
information of the modal shape, the shear modulus and the Poisson’s ratio can still present
very limited discrepancies with respect to the nominal values. In particular, these are 0.3%
for the shear modulus and 3% for the Poisson’s ratio. Instead, when the information related
to the modal shape is not accounted, the discrepancies reach the values of 12% for the
shear modulus and 76% for the Poisson’s ratio. Indeed, the sensitivity of the first resonant
frequency on these parameters is low but not null. Therefore, by increasing the information
retained within the optimization problem, the allowable solutions of the inverse problem
accordingly decrease, thus allowing also estimating the two low-influencing parameters
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with very limited discrepancy. Thus, the optimization is able to catch all the four elastic
constants for all the considered materials without the need of limiting the domain of the
elastic properties. The promising results of this study can increase the robustness of the
previously described experimental methodology for the nondestructive, quantitative, and
local assessment of damage level, i.e., of residual elastic properties, in composite laminates.
The local characterization of the health state of composite components allows evaluating
the quality of a manufacturing process or damages due to in-service loads with consistently
enhanced confidence.
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