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Abstract 

The paper presents a review of Haar Wavelet Methods and an application of the Higher-Order Haar 

Wavelet Method to study static and buckling loads of multilayered composite beams.  Refined Zigzag 

Theory (RZT) is used to formulate the governing differential equations (equilibrium/stability 

equations and boundary conditions). This theory is based on the superposition of a global first-order 

kinematic and local layer-wise correction of the in-plane displacements. To solve numerically the set 

of governing differential equations, the recently developed Higher-Order Haar Wavelet Method 

(HOHWM) is used. This method uses the Haar wavelet expansion to approximate the derivatives of 

the unknown kinematic variables that form the equilibrium equations. Static and buckling load results 

are compared with those obtained by applying the widely used Haar Wavelet Method (HWM) and 

the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of 

these numerical methods are assessed and validated against the exact analytical solution. 

Furthermore, a detailed convergence study is conducted analyzing the convergence characteristics 

(absolute errors and order of convergence) of the method presented. It is concluded that the 

HOHWM, when applied to RZT beam equilibrium equations for static and linear buckling problems, 

is capable of predicting with good accuracy the unknown kinematic variables and their derivatives 

with relatively few points. The HOHWM is also computationally competitive with the other compared 

numerical methods. 

 
DOI: 10.1007/s11029-021-09929-2 
 

 
Keywords: Refined Zigzag Theory; Higher-Order Haar Wavelet Method; multilayered composite 
beam; bending; buckling; 

* Corresponding Author: Matteo Sorrenti, email: matteo.sorrenti@polito.it Tel. +39 3337120343.  



2 
 

1. Introduction 
 

In the last decades, multilayered structures have been widely used in various engineering 

fields (automotive, aerospace, marine, civil, military, etc.). Their extensive use in different 

applications is due to excellent specific properties, high stiffness-to-weight and strength-to-weight 

ratio. On the other hand, some drawbacks (typically of multilayered composite structures), i.e. 

transverse shear deformability and transverse anisotropy, need to be accurately described in order to 

correctly predict the structural response. 

The most common approaches used to analyze these structures are based on some kinematic 

assumptions that lead to a displacement field. Among these axiomatic theories, the widely used ones 

are the Equivalent Single Layer (ESL) theories, in which the displacement field is assumed smoothly 

continuous through-the-thickness, regardless of the number of layers. ESL theories generally provide 

accurate global result quantities such as transverse displacements, vibrational frequencies and critical 

buckling loads, but they often produce inaccurate through-the-thickness distributions of in-plane 

displacements, strains and stresses. Especially in multilayered structures, the ESL theories are not 

capable of predicting accurately transverse shear strains and stresses, responsible for damage and 

interlaminar failures. The Bernoulli-Euler Theory (BET) cannot predict accurate results for thick 

beams. The Timoshenko Beam Theory (TBT) is more accurate than BET, but it requires an additional 

shear correction factor to correct the approximated values for an uncorrected transverse shear stress 

distribution. The Higher-Order theories, like the Reddy’s Third Order Theory, are accurate and can 

predict the parabolic distribution of transverse shear stress but they show some inconsistencies for 

some boundary conditions, i.e null transverse shear stress distribution at the clamped edge. Moreover, 

the transverse shear stress continuity is not satisfied. Nevertheless, such theories due to their low 

computational cost are very attractive and widely used in Finite Element commercial codes. For a 

more detailed review of these theories, the reader is addressed to the review of Abrate and Di Sciuva 

[1]. 

An alternative approach to the ESL theories is represented by the Layer-Wise (LW) theories, 

in which a displacement field is assumed independently for each layer and the compatibility 

conditions are imposed at the interfaces. The most interesting aspect of LW theories is that they can 

produce more accurate predictions for displacements and stresses than ESL theories. However, the 

computational cost is as expensive as the number of layers is higher, thus these methods become 

prohibitive for composite beam with several number of layers. The reader interested in these topics 

is addressed to see the works of Liew et al. [2] and Abrate and Di Sciuva [3]. 

It is commonly accepted that a good compromise between the accurate, but computationally 

expensive, LW theories and the less accurate, but computationally less expensive, ESL theories, is 
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given by the so-called zigzag theories (ZZT). In such theories, the typical zigzag distribution of in-

plane displacements shown for a multilayered structure is obtained by a superposition of a general 

through-the-thickness polynomial distribution, such as the ESL theories, and a piecewise linear 

continuous function called local or zigzag contribution. As a result of this approach, the kinematic of 

ZZT has a fixed number of unknown variables, that not depends on the number of layers (like the 

ESL theories). At the same time, they provide more accurate results (generally comparable with the 

LW theories), maintaining reduced computational costs. The first researches on ZZT are represented 

by the work of Di Sciuva [4–6], Murakami [7], Cho and Parmerter [8]. 

Recently, a new refined zigzag theory (RZT) has been developed by Tessler and co-workers 

[9–11] in order to analyze multilayered composite and sandwich structures (beams, plates and shells). 

This RZT has some great advantages compared to the previous zigzag theories: it requires only C0 

continuity in the finite element formulation (FEM), that makes it very attractive from a computational 

point of view, differently from the classical Di Sciuva’s ZZT that requires C1 continuity; no shear 

correction factors are required and there are no inconsistency on the transverse shear stress 

distributions at clamped edges. The reliability and accuracy of RZT to predict the structural behavior 

of multilayered composite and sandwich beams have deeply investigated by various researchers. 

Gherlone et al. [12] a and Oñate et al. [13] developed and assessed various RZT beam elements to 

analyze the static behavior of composite beams. Furthermore, Eijo et al. [14] used the RZT beam 

elements to model and study the delamination in composite laminated beam structures. In Gherlone 

[15], a comparison between the results obtained using different zigzag functions has been made with 

particular attention to the effect of external weak layers. Di Sciuva et al. [16], on the basis of RZT 

specialized for beam structures, developed higher-order finite elements guaranteeing accurate results 

for the kinematic variables and their derivatives. The accuracy of RZT to predict the through-the-

thickness transverse shear stress distributions has been further increased by using the Reissner’s 

Mixed Variational Theorem (RMVT) [17–20] in which the transverse shear continuity is satisfied a 

priori. Moreover, RZT has been also used to study the timber beam structures with interlayer slip by 

Wimmer et al [21,22]. A recent application of RZT and perydinamic differential operator to study the 

stresses of laminated composite beams has be done by Dorduncu [23]. RZT has been also successfully 

applied to static, stability and free vibration analyses of functionally graded structures [24,25]. The 

accuracy of RZT has also been demonstrated by Ascione and Gherlone [26] to study the non-linear 

static analysis of sandwich beams, in which the RZT-FEM solution has been compared with the high 

fidelity FE codes. 

In the above research works, different numerical methods have been used to solve the system 

of differential equation in terms of unknown kinematic variables. The eight-order system of ordinary 
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differential equations, with constant coefficients, given by RZT theory, can be solved exactly for 

some simplest cases with the Navier’s method or integrating the equations using the standard 

technique for ordinary differential equations as is shown in Tessler et al. [9]. In the previously 

mentioned literature review on RZT, other approximated methods have been used, such as the finite 

element method [12], the Ritz method [27] and the perydinamic differential operator [23]. 

Recently, a new numerical approach has been increasingly used to solve the governing 

equations for beam structures. This method is the Haar Wavelet Method (HWM). The HWM 

introduced by Chen and Hsiao [28] has been used to solve lumped and distributed parameter system 

problems. This method has been assessed and used to solve a wide range of differential, integro-

differential, as well as integral equations [29–34]. Moreover, the HWM has been used to solve also 

some structural problems such as free vibration analysis of cylindrical shells [35] and functionally 

graded conical shells and annular plates [36]. The HWM has been applied also to elastodynamic 

problems of orthotropic plates and shells by Majak et al. [37] and in the detection of delamination in 

conjunction with the artificial neural networks [38]. The accuracy of HWM has been accurately 

assessed by Majak et al. [39], and the order of convergence of the method has been studied, in Ref. 

[40], for various cases demonstrating to be equal to two. Further studies and comparisons on axially 

functionally graded beam have been made by Kirs et al. [41] considering different numerical methods. 

Results obtained by using HWM (for more details, see Ref. [41]) have been compared with results 

obtained by using widely spread methods based on strong formulation of the governing equations, 

i.e. the differential quadrature method (DQM), finite difference method (FDM) and the 3D solid finite 

element modelling. In Ref. [41] it has been concluded that the HWM needs to be improved in order 

to compete numerically with DQM and the other methods. Thus, the HWM has been actually 

improved, resulting in the newly Higher-Order-Haar-Wavelet-Method (HOHWM) [42] in which the 

order of convergence has been increased and the error reduced. Currently, the HOHWM has been 

implemented with success in recent studies [43–45]. 

Aim of the present investigation is to assess the relative numerical performances of the 

HOHWM in solving the governing equations of the static response and bucking loads of the 

multilayered composite beams, based on the RZT.   

The present work is organized as follow. 

In Section 2, the kinematic assumptions of RZT are presented. The differential equilibrium 

equations in terms of unknown kinematic variables for a multilayered composite beam are obtained 

using the principle of virtual work. 

In Section 3, the main steps of the solution procedure using HOHWM are presented. 
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In Section 4, numerical studies are performed to critically assess the accuracy of the present 

method in conjunction with RZT. The static and stability behaviors are analyzed for some sample 

problems in which the exact analytical solution can be obtained. In order to assess the numerical 

merits of HOHWM, a comparison is done with the Haar Wavelet Method and the Generalized 

Differential Quadrature Method (GDQM). 

Finally, in conclusions the main advantages of HOHWM are highlighted, with respect the 

other numerical methods, in the analysis of multilayered composite beams and further considerations 

are provided. 

 
2. Governing equations 

2.1 Geometrical preliminaries 

We consider a multilayered straight beam made of a finite number NL of perfectly bonded layers. L 

is the length of the beam, h the thickness, and b the width. The thickness across the beam length is 

assumed constant as well as the thickness of each layer. The material of each layer is assumed to be 

orthotropic with a plane of elastic symmetry parallel to the reference surface and whose principal 

orthotropy directions are arbitrarily oriented with respect to the reference frame. The points of the 

beam are referred to an orthogonal Cartesian co-ordinate system    ( 1,2,3)jx j X , where 

   ( 1, 2)x  x is the set of in-plane co-ordinates on the reference plane (𝑥ଵ ≡ 𝑥, 𝑥ଶ ≡ 𝑦), here 

chosen to be the middle plane of the beam, and 𝑥ଷ ≡ 𝑧 is the co-ordinate normal to the reference 

plane (see Figure 1 for the general beam notation); the origin of the reference frame is fixed at left 

edge of the beam, so that, 𝑥ଵ  is defined in the range 𝑥ଵ ∈ [0, +𝑙], 𝑥ଶ in the range 𝑥ଶ ∈ ቂ−
௕

ଶ
, +

௕

ଶ
ቃ, and 

𝑥ଷ in the range 𝑥ଷ ∈ ቂ−
௛

ଶ
, +

௛

ଶ
ቃ. If not otherwise stated, in the paper the superscript (k) is used to 

indicate quantities corresponding to the kth layer (k=1,…,NL), whereas the subscript (k) defines 

quantities corresponding to the kth interface (k=1,…,NL-1) between the k and (k+1) layer. So, in the 

following, the symbol ( )(.) k  stands for (.) valued for 3 ( )kx z , i.e., at the k-th interface. Also, we use 

the subscript b and t to indicate the top and bottom surfaces of the beam; specifically,  (0) bz z  and 

( )LN tz z denote the co-ordinates of the bottom and top surfaces of the whole beam; thus, t bh z z 

is the beam thickness and ( )
( ) ( 1)  ( 1, 2,..., )k L

k
kh z z k N   ,  the thickness of the kth layer (see Figure 1). 

The beam is acted upon by transverse distributed loads (forces per unit length) on the top ( zq ) surface 

(see, Figure 1). 
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The symbol (•),௜ =
డ(•)

డ௫೔
 refers to the derivative of the function ( )  with respect to the coordinate ix . 

Figure 1 shows the multilayered beam scheme considered in this study. 

 

 
Figure 1 – General beam notation (a) beam geometry and co-ordinate system, (b) layer numbering 

and (c) transverse load configuration. 
 

2.2 RZT kinematic  

In this study, the kinematic of Refined Zigzag Theory is adopted [9,12]. The RZT displacement field 

is based on the superposition of a global (G) first–order kinematics (the one of the Timoshenko’s 

beam theory) and a local (L) layer-wise correction of the in-plane displacements (see, Figure 2 for a 

detailed representation of various contributes). Thus, the displacement field is written as follows 

 
( )

( )
3 3

( , ) ( , ) ( , )

( , ) ( , )

G Lk

k G

u x z u x z u x z

u x z u x z

 



  
 

 (1) 

where 

 
3 )

( )( , ) ( )

( , ) (G

Gu x z u x z

u x z w x

x 






 (2) 

gives the contribution, which is continuous with its first derivatives with respect to the z-coordinate 

and 
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 ( ) ( ) ) ( )( , ) (k kL xu x z z   (3) 

gives the contribution to the axial displacement, which is continuous with respect to z, but with jumps 

in the first derivative at the interfaces between adjacent layers. 

In the previous equations, 𝑢 is the uniform displacement along the x−  axis  (coincident to that of a 

point belonging to the longitudinal axis of the beam, for symmetric laminate); 𝜃  is the bending 

rotation of the normal to the beam axis along the directions +𝑥ଶ, and w is the transverse deflection, 

assumed to be constant along the thickness;  𝜓  represents the spatial amplitudes of the zigzag 

functions 𝜙(௞). It should be noted that Timoshenko’s beam theory (TBT) is a special case of the RZT, 

i.e. when in Eq. (1) 𝑢෤௅(௞)
= 0. 

 

Figure 2 – Contributions to the in-plane RZT kinematic for a three-layered laminate. 

 

2.3 Strain-displacement and constitutive relations  

The linear strain expressions associated with the displacement field in Eq. (1) are the followings 

 ( ) ( )k k
x m bz         (4) 

 ( ) (0) ( ) (0) ( )
,3

k k k         (5) 

where 

 ( ) ( ) ( ) (0)
, , , , , ,;       ;       ;       ;       k k k

m x b x x xz z x xu u w w                (6) 

In order to recast the previous equations in matrix format, let us introduce the following matrices 

 (0)T
m b        e  (7) 

  T u w d  (8) 

So,  
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, ,

, ,

, ,

(0)
,x ,

(.) 0 0 0

0 (.) 0 0

0 0 (.) 0

0 1 0 (.)

0 0 1 0

x xm

x xb

x x

x

u
u

w
w













     
      
                   

                      

e  (9) 

In compact matrix format, 

 e d  (10) 

For the 𝑘th layer of thickness ℎ(௞), the refined zigzag functions have the following expressions [15]: 

 
4

44

4

44

(1) 4
(1)

( ) ( 1) 4
( ) ( 1)

4
)

42 4
(

4

1     ( 1)
2

1     ( 2,..., )

)

2

(

( )
k

k q
Lk q k

q

Qh
z k

Q

Q Q Qh
z h k N

Q

z

z
Q Q



 




 
 
 

       
  

         
  


 (11) 

where 

 
( )

( )

1

4 ( )
1

1 kL
t

k
b

N
z

kz
k jj

dz
Q

h Q





 
   
 
  (12) 

and 𝑄തସସ
(௞) is the transformed reduced transverse shear stiffness modulus of the kth layer. 

The constitutive equations for a generally orthotropic layer are 

 ( ) ( ) ( ) ( ) ( ) ( )
11 44;        k k k k k k

x x xz xzQ Q        (13) 

where 𝑄തଵଵ
(௞)  and 𝑄തସସ

(௞) are the transformed plane stress reduced stiffness moduli of the kth layer. 

 

2.4 Equilibrium equations and boundary conditions in terms of stress resultants 

The equilibrium equations can be derived using the principle of virtual work, defined as follows: 

 0extU W    (14) 

where 𝛿 is the variational operator, 𝛿𝑈 is the work done by internal forces (stresses) and 𝛿𝑊௘௫௧ is the 

virtual work done by the applied forces. 

The virtual work done by the internal stresses can be expressed as 

  ( ( ) ( )(

0

) )l k k
x x x

k k
xz z

S

U dSdx           (15) 

where S stand for the area of the cross-section of the beam. 

The virtual work done by the applied transverse load per unit length zq  and the virtual variation strain 

energy related to the applied axial compressive force N  at the ends of the beam, is given by 
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 , ,

0 0

l l

ext z x xxqW wd Nw w dx      (16) 

In Eq. (16), 𝑁ഥ = 0 for bending analysis and 𝑞ത௭ = 0 for buckling analysis. 

Substituting Eqs. (4), (5) and (13) into Eq. (15) and integrating by parts Eq. (14) yields to the 

following equilibrium equations 

 

,

,

, ,

( ) ( )
,

)   0

)   0

)   

)   0

x

x

x z xx

x

u N

M T

w T q Nw

M T 











 

 

 

 (17) 

along with the variationally consistent boundary conditions 

On x=0,l, specify one element of the following two pairs : 

                                  

 
,

      or        

     or        

      or        

     or        

x

u N

w T Nw

M

M 






 (18) 

In Eqs. (17) and (18) the following force and moment stress resultants have been introduced 

        ( ) ( ) ( ) ( ), , 1, , ;      , 1,k k k

S

k
x xz

S

N M M z dS T T dS         (19) 

The RZT beam constitutive relations are derived by substituting the constitutive relations of Eq. 

(13) into the Eq. (19), and integrating over the beam cross-section S. The resulting beam constitutive 

relations are expressed in matrix format as follows 

 R Se  (20) 

where 

 

0 0

0 0

;    0 0

0 0 0

0 0 0

N A B A

M B D B

M A B D

T A B

T B D





   

 


 

  
  
       
  
  
     

R S  (21) 

and 

 
     
    )

(2 ( ) ( )
11 1

(

) ( )

( ) ( )

1

44
2

, , ( )(1, , ) ,  , , ( ) 1, ,

, , ( ) 1, ,

kk k

k

k

k k

A B D b z z z Q A B D b z z Q

A B D b z Q

  

  



 

 


 (22) 
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In Eq. (22), b(z) is the width of beam cross section that for generality is assumed to be variable 

along the z-axis. Moreover, 

 
( )

( 1)

1

... (...)
sL

s

N
z

z
s

dz




  (23) 

 

2.5 Equations of motion and boundary conditions in terms of generalized displacements  

Substituting the beam constitutive relations (20) inside the equilibrium equations expressed in terms 

of forces and bending moments, Eq.s (17), the same equations can be rewritten in terms of generalized 

displacements as follows 

 
 

,,

, ,

, , ,

,

, ,

,

, ,

)   0

)   0

)   

)   0

xx xx xx

xx xx xx x

x z xx x

xx xx xx

x

x

x

u Au B A

Bu D B A w B

w A A w B q Nw

A u B D B B w D





  

  

  
  





 

    

 

    

  

     

    

     

 (24) 

with the boundary conditions given by Eq. (18) together with the constitutive equations (20) for the 

mechanical boundary conditions. 

 

3. The fundamentals of Higher-Order Haar Wavelet Method (HOHWM) 

 
The numerical solution is based on the Higher-Order Haar Wavelet Method (HOHWM). Here below, 

a summary of the main steps is given. For more  details of the method, the reader is encouraged to 

refer to  a detailed description of this method, see Refs [42,45].  

Let us consider the n-th order ordinary differential equation as sample,  

 ( 1) ( )( , , , ,..., , ) 0n nG x u u u u u    (25) 

According to Ref. [42], the Higher-order Haar wavelet expansion is expressed as 

 
2

2
1

( )
( ),       1, 2,...

n s

i in s
i

d u x
a h x s

dx

 




   (26) 

In Eq. (26), )(xhi  and ia  are the Haar functions and coefficients, respectively (see details in Ref. [42] 

). n is the order of the highest derivative included in the differential equation. In the simplest case, 

where 1s , the derivative of order 2n  is expanded into Haar wavelets.  

Integrating Eq. (26) 2n  times with respect to x, the resulting expression of the general unknown 

variable u, can be written as follows  
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2 2 1

1
2 1 2 ,2 1

0 0

( ) ( ) ( ) ( )
( 2 )!

j

j j

n s

BT BTk n s k
j k

a x
u x a p x S x H x

n s

  

    
 

   
   (27) 

where ( )BTS x  and )(xH BT
 stand for the boundary conditions terms, given as 

 
1

0

( )
!

rn

BT r
r

x
S x c

r





  (28) 

 
2 1

( )
!

rn s

BT r
r n

x
H x c

r

 



   (29) 

As described in Ref. [42], the higher-order wavelet expansion as expressed by Eq. (26), does not lead 

to improved accuracy. The accuracy of the solution significantly depends on the conditions used for 

determining the integration constants. From Eqs. (28) and (29), n integration constants are determined 

using the boundary conditions and the remaining 2s constants require to use an appropriate procedure. 

Herein, two algorithms can be used to compute the integration constants of Eq. (27) as referenced by 

Majak et al. [42]; the first one is based on using uniform grid points and the second one uses the 

Selected Chebyshev–Gauss–Lobatto grid points. In this case, the simplest approach for HOHWM, 

i.e. with the parameter s=1 in Eq.(26), the exposed two main algorithms for determining 

complementary integrations constants coincide. Thus, the two complementary integration constants 

are determined by satisfying the differential equation in the boundary points, in addition to the 

collocation points. 

 

4. Numerical results 

In this section, numerical results on bending, and buckling under axial compressive end-load of a 

beam with symmetric rectangular cross-section are presented. In order to assess the reliability of the 

High Order Haar Wavelet Method (HOHWM) in conjunction with RZT, several numerical 

comparisons are made. 

For a symmetric rectangular cross-section, the equilibrium equations (24) in terms of generalized 

displacements can be further simplified, resulting  

  , ,xx xx xD B A w B RHS
            (30) 

 , ,, wx xx xA A w B RHS       (31) 

 , , ,xx xx xB D B B w D RHS 
            (32) 

where the RHS  of the equilibrium equations reads for the different cases: 

P1a) Bending under sinusoidal pressure (𝑞ത௭) and simply supported boundary conditions 

0RHS  ;                    0 sinwRHS q x
l


  ;        0.RHS   
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P1b) Bending under tip load (F) and clamped-free boundary conditions 

0RHS  ;                    0wRHS  ;         0.RHS   

P2a) Buckling under axial compressive end-load (𝑁ഥ) and simply supported boundary conditions 

                    0RHS  ;                    ,w xxRHS Nw ;            0.RHS   

In our numerical investigation, we consider the following boundary conditions: 

a) Simply-supported at x=0,l 

0w M M     

where  , ,;     x x x xM D B M B D   
         

 

b) Cantilever beam under transverse tip load F 

x=0) Clamped end   0w     ;   

x=l) Free end 0;   M M T F   . 

Figure 3 shows a schematic representation of previous load configurations and boundary conditions 

considered in this analysis. 

 

Figure 3 – Beam dimensions, boundary conditions and load configurations: P1a) simply supported 
under transverse sinusoidal pressure, P1b) cantilever beam under transverse tip load F and P2a) 

simply supported under axial compressive end forces 𝑁ഥ. 
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The material considered in this analysis is Carbon/Epoxy, and their mechanical properties are 

expressed in Table 1. In Table 2 is shown the laminate stacking sequence from bottom to the top 

surface. 

 

Table 1 – Mechanical properties of Carbon/Epoxy material used 

Material 

Name 
𝑬𝟏 (𝐌𝐏𝐚) 𝑬𝟐 (𝐌𝐏𝐚) 𝑬𝟑 (𝐌𝐏𝐚) 𝑮𝟏𝟐 (𝐌𝐏𝐚) 𝑮𝟏𝟑(𝐌𝐏𝐚) 𝑮𝟐𝟑 (𝐌𝐏𝐚) 𝝂𝟏𝟐 𝝂𝟏𝟑 𝝂𝟐𝟑 𝝆 (

𝐊𝐠

𝐦𝟑
) 

CE 110000 7857 7857 3292 3292 1292 0.33 0.33 0.49 1600 

 

Table 2 – Laminate stacking sequences (from bottom to top surface) 

Laminate Name h(k)/h Lamina orientation [°] Materials 

B 
ଵ

ଷ
/
ଵ

ଷ
/
ଵ

ଷ
 0/90/0 CE/CE/CE 

The non-dimensional quantities defined in this paper, if not otherwise specified, are defined as 

follows 

 
32 2

2 2
3 2

0 0
4

0 0

;       100 ;       ;       x x xz xz

E h E h h h
u u w w

q l q l q l q l
        (33) 

In the remaining part of the paper, the “Analytical solution” acronym refers to the RZT solution 

obtained solving analytically the equilibrium equations (30)-(32). For simply supported bending and 

buckling analyses the Navier-type solution has been used (Ref. [46]), for cantilever beam under 

transverse tip load the analytic solution of Ref. [9] has been used.  The order of convergence (OC) 

can be computed using the following formula (Ref. [40]) 

  

 
 

1log

log 2

anal

i

i

i

ytic

analyt c

V V

V V
OC

 
     (34) 

where Vi is the computed value at ith step, Vi-1 is the computed value at (i-1)th step and Vanalytic the 

exact analytical computed value. The absolute error is computed as follow 

 numeric analyticerr V V   

where numericV is the numeric solution using one of the numerical method considered in this paper, and 

analyticV is the solution using the analytical method. If not otherwise specified, the parameter s=1 

expressed in Eq.(26) is used to solve our numerical problems, thus the two algorithms are coincident 

and an uniform grid points is used. 
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4.1 Bending problem 

In this first analysis, we consider two simple problems: a simply supported beam under sinusoidal 

transverse pressure (Problem P1a) and a cantilever beam under tip load (Problem P1b). For these 

cases, the span-to-thickness ratio here considered is l/h=1 (thick beam). We also consider the width 

of beam b=1mm. 

In order to assess the accuracy of the HOHWM in conjunction with RZT in Table 3 is shown the 

convergence analysis for the non-dimensional maximum deflection of a simply supported beam under 

sinusoidal transverse pressure, where NP is the number of collocation points used in the present 

method. For comparison purpose, in Table 3 are also shown the results using the Haar Wavelet 

Method (HWM) developed by Chen and Hsiao [28] in conjunction with RZT. 

 

Table 3 – Convergence analysis for non-dimensional maximum deflection using the HOHWM and 

RZT. 

 Present method (HOHWM) HWM [28]  

NP 𝑤ഥ  
Absoslute 

error 

Order of 

convergence 
𝑤ഥ  

Absoslute 

error 

Order of 

convergence 

Error 

ratio 

4 34.762379179 4.35E-02 
 

34.009910998 7.96E-01  18.3 

8 34.803324480 2.53E-03 4.1027 34.618821536 1.87E-01 2.0894 73.9 

16 34.805699567 1.55E-04 4.0256 34.759825451 4.60E-02 2.0227 296.2 

32 34.805845274 9.67E-06 4.0064 34.794392842 1.15E-02 2.0057 1185.6 

64 34.805854339 6.04E-07 4.0016 34.802992242 2.86E-03 2.0014 4742.7 

128 34.805854904 3.77E-08 4.0000 34.805139444 7.15E-04 2.0004 18966.0 

256 34.805854939 3.14E-09 3.5871 34.805676079 1.79E-04 2.0001 56979.1 

512 34.805854940 1.91E-09 0.7166 34.805810227 4.47E-05 2.0000 23408.6 

1024 34.805854945 3.20E-09 -0.7447 34.805843763 1.12E-05 2.0000 3492.5 

Analytical solution 34.805854942 

 

It can be observed from the last column of Table 3 that the error of the widely used HWM is 18 up to 

18966 times bigger than of the HOHWM. The accuracy achieved by HWM using mesh 1024 

(collocation points) is achieved by applying HOHWM in the case of 32 collocation points. 

Furthermore, the order of convergence tends to 2 in the case of HWM and to 4 in the case of HOHWM 

as confirmed by Majak et al. [42,44,45]. As expected, in the case of HOHWM, the limit of double-
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precision computing is reached with NP =256, thus further increasing of mesh will lead to reduced 

accuracy. 

The accuracy of HOHWM to compute the other kinematic variables and their derivatives is evaluated 

comparing the strain and stress distributions in some points along the beam. The HOHWM results 

are obtained using NP=256 collocation points. 

  

 

 
Figure 4 – Comparison between analytic and HOHWM-RZT results for through-the-thickness 

distribution of in-plane displacement, strains and stresses at various point of simply supported beam 
(problem P1a)  
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Figure 5 - Comparison between analytic and HOHWM-RZT results for through-the-thickness 
distribution of in-plane displacement, strains and stresses at various point of cantilever beam 

(problem P1b). In this case, the non-dimensional expressions use 𝑞଴ = 𝐹/𝑙. 
 

Figure 4 and Figure 5 reveal the ability of HOHWM to compute the kinematic variables and their 

derivatives, which are necessary to obtain the through-the-thickness distributions typical for a three-

layered beam using RZT. As can be seen from Figure 4 and Figure 5, the solution obtained by 

applying HOHWM (s=1) is in good agreement with the analytic one.  

One of the most accurate strong formulation numerical method widely used in the open literature is 

the Generalized Differential Quadrature Method (GDQM) [41,47–51]. This method is based on the 

use of high order polynomials and typically achieves excellent accuracy. Some shortcomings of the 

GDQM known are low accuracy with coarse mesh and problems with finer mesh. A comparison of 
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HOHWM in conjunction with RTZ is made with the GDQM. In Table 4 the HOHWM (s=2) and 

GDQM results for maximum deflection of a simply supported beam under sinusoidal load (problem 

P1a) are compared. 

Table 4 – Comparison between convergence analysis for non-dimensional maximum deflection 
(problem P1a): HOHWM (s=2) and GDQM. 

 Present Method (HOHWM) GDQM 

NP 𝒘ഥ  
Absoslute 

error 

Order of 

convergence 
𝒘ഥ  

Absoslute 

error 

Order of 

convergence 

4 34.804771336088 1.08E-03  30.779603526824 4.03E+00  

8 34.805838045983 1.69E-05 6.0030 34.805242348179 6.13E-04 12.6822 

16 34.805854679113 2.63E-07 6.0053 34.805854942158 3.06E-12 27.5757 

32 34.805854938054 4.10E-09 6.0033 34.805854942158 3.06E-12 -0.0000 

64 34.805854942025 1.30E-10 4.9806 34.805854942150 4.80E-12 -0.6472 

Analytical solution 34.805854942154 

 

As expected, the order of convergence of the HOHWM (s=2) is six (see Table 4). In case of GDQM, 

the first two values of the order of convergence are very high but it quickly become negative at 

increasing of NP (reduction of accuracy). Such behaviour is common for GDQM [41,47–49]. It can 

be observed from Table 4 that in the case of small mesh (NP =4 and NP =8), the absolute error of the 

HOHWM is less than that of GDQM. In the case of finer mesh (NP =16, 32, 64) the absolute error of 

the GDQM is smaller. Note that in the case of GDQM, the loss of accuracy starting already from NP 

=32. The latter fact may cause problems with covering local behaviour of the solution. In the case of 

HOHWM, an uniform mesh is used and in the case of GDQM a non-uniform mesh, based on 

Chebyshev–Gauss–Lobatto points, has been considered.  

 

4.2 Buckling problem 

In this section, the buckling problem of simply supported beam is considered. In the same way, we 

assess the accuracy of the HOHWM in conjunction with RZT for computing the critical buckling 

force. Similarly to the previous static bending case, the span-to-thickness ratio here considered is 

l/h=1 (thick beam) and the width of beam b=1mm. 

In Table 5, the convergence analysis for the first critical buckling force is shown. For comparison 

purpose, in Table 5 are also shown the results using the Haar Wavelet Method (HWM) developed by 

Chen and Hsiao [28] in conjunction with RZT. Table 5 also includes the order of convergence values 

and the absolute errors for each number of collocation point used. 
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Table 5 – Convergence analysis for critical buckling load using the HOHWM and RZT. 

 Present method (HOHWM) HWM [28]  

NP 𝑵𝒄𝒓𝒊𝒕 [N] 
Absoslute 

error 
Order of 

convergence 
𝑵𝒄𝒓𝒊𝒕 [N] 

Absoslute 
error 

Order of 
convergence 

Error 
ratio 

4 2287.546315 3.43E-01  2293.066739 5.86E+00  17.1 
8 2287.224008 2.11E-02 4.0271 2288.732707 1.53E+00 1.9385 72.5 

16 2287.204256 1.31E-03 4.0074 2287.589212 3.86E-01 1.9856 294.7 
32 2287.203028 8.17E-05 4.0019 2287.299750 9.68E-02 1.9965 1184.8 
64 2287.202952 5.11E-06 4.0005 2287.227162 2.42E-02 1.9991 4735.8 

128 2287.202947 3.19E-07 3.9987 2287.209002 6.05E-03 1.9998 18965.5 
256 2287.202947 5.96E-09 5.7448 2287.204461 1.51E-03 1.9999 253355.7 
512 - - - 2287.203325 3.78E-04 2.0000 - 
1024 - - - 2287.203041 9.46E-05 2.0000 - 

Analytical solution 2287.202947 

 

Table 5 shows that the error ratio of the widely used HWM is 17 up to 253355 times bigger that of 

the HOHWM. Like the static problem, the accuracy achieved by HWM using mesh 1024 (collocation 

points) is achieved by applying HOHWM in the case of 32 collocation points only. The numerical 

order of convergence tends to 2 in the case of HWM and to 4 in the case of HOHWM, which confirms 

the previous static results. As expected in the case of HOHWM, the limit of double precision 

computing is reached with NP =256, thus further increasing of mesh will lead to reduced accuracy 

and negative convergence rates. 

Table 6 shows the convergence analysis for the first four buckling critical loads of simply supported 

beam. 

Table 6 - Convergence analysis for the first four buckling critical loads of simply supported beam 
(problem P2a). 

NP 𝑵𝒄𝒓𝒊𝒕
𝟏  [𝑵] 𝑵𝒄𝒓𝒊𝒕

𝟐  [𝑵] 𝑵𝒄𝒓𝒊𝒕
𝟑  [𝑵] 𝑵𝒄𝒓𝒊𝒕

𝟒  [𝑵] 

4 2287.546315 2522.723160 2580.990931 2596.649113 
8 2287.224008 2520.626692 2576.870636 2598.049786 

16 2287.204256 2520.499433 2576.548143 2597.452619 
32 2287.203028 2520.491625 2576.528614 2597.416282 
64 2287.202952 2520.491140 2576.527407 2597.414053 
128 2287.202947 2520.491109 2576.527332 2597.413914 
256 2287.202947 2520.491108 2576.527327 2597.413905 

Analytical 
solution 

2287.202947 2520.491107 2576.527327 2597.413905 

  

Table 6 shows that the HOHWM provides a very good accuracy, with relatively few collocation 

points, in the computation of the first four critical buckling loads. Also, high accuracy is achieved 

already with small meshes (NP =4 or NP =8). 
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5. Conclusions  

This research study is focused on the use of the High Order Haar Wavelet Method (HOHWM) 

to solve the governing equation of multilayered composite beams for static and buckling analysis 

using the Refined Zigzag Theory (RZT). In RZT a global first-order kinematic is combined with a 

local layer-wise correction of the in-plane displacements to better describe the through-the-thickness 

behavior. In the RZT, the Timoshenko’s beam theory (TBT) is verified as a particular case and the 

theory does not require any shear correction factors. Once the equilibrium equations for bending and 

buckling problems are determined by means of the RZT, the HOHWM is used to solve them. 

The numerical analysis has been performed comparing the HOHWM results with the Haar 

Wavelet Method (HWM) ones, revealing for both static and buckling problems the high order of 

convergence of HOHWM with relatively few collocation points. Moreover, the same accuracy of 

HOHWM can be obtained by HWM with more collocation points (generally, the HWM uses 512 

collocation points versus the HOHWM which uses 16 or 32 points). Furthermore, using HOHWM 

with the method parameter s=2, the same accuracy can be achieved by means of 8 collocation points 

only and the order of convergence is further increased up to six. 

A further comparison has been made between the HOHWM (s=2) and the Generalized 

Differential Quadrature Method (GDQM). Although the GDQM has a greater order of convergence 

than HOHWM, especially for coarse meshes, the GDQM fails to determine the unknowns using finer 

meshes. The HOHWM reaches the limit of double-precision, but it is more stable and the order of 

convergence is still good for finer meshes. 

The unknown kinematic variables and their derivatives computed using the HOHWM are also 

in good agreement with their analytical counterparts; this is proved by the good matching between 

the through-the-thickness distributions for the static problems considered. 

Furthermore, considering the buckling problem, the HOHWM is very good to predict, with 

high accuracy, the first four critical buckling loads without using a finer mesh. 

It can be concluded that the HOHWM is a good numerical method to solve the RZT beam 

equilibrium equations for bending and buckling problems, with a relatively high order of convergence 

and high accuracy. Moreover, considering the advantages and the drawbacks of the presented 

methods, the HOHWM is computational competitive and can be used to solve structural problems. 

Further studies will see this method applied to multilayered composite plates/shells and to problems 

based on nonlocal theories combined with RZT. 
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