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Abstract: The emerging of the fourth industrial revolution, also known as Industry 4.0 (I4.0), from
the advancement in several technologies is viewed not only to promote economic growth, but also
to enable a greener future. The 2030 Agenda of the United Nations for sustainable development
sets out clear goals for the industry to foster the economy, while preserving social well-being
and ecological validity. However, the influence of I4.0 technologies on the achievement of the
Sustainable Development Goals (SDG) has not been conclusively or systematically investigated. By
understanding the link between the I4.0 technologies and the SDGs, researchers can better support
policymakers to consider the technological advancement in updating and harmonizing policies
and strategies in different sectors (i.e., education, industry, and governmental) with the SDGs. To
address this gap, academic experts in this paper have investigated the influence of I4.0 technologies
on the sustainability targets identified by the UN. Key I4.0 element technologies have been classified
to enable a quantitative mapping with the 17 SDGs. The results indicate that the majority of the
I4.0 technologies can contribute positively to achieving the UN agenda. It was also found that the
effects of the technologies on individual goals varies between direct and strong, and indirect and
weak influences. The main insights and lessons learned from the mapping are provided to support
future policy.

Keywords: Industry 4.0; I4.0; sustainability; Sustainable Development Goals; 2030 Agenda

1. Introduction

The fourth industrial revolution, or so-called Industry 4.0 (I4.0), is emerging from the
introduction of several advancements in a way that substantially and rapidly transforms
the design, manufacturing, operation, and services related to manufacturing systems or
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products [1]. One important dimension of this transformation is that for the first-time
technology is not seen simply as a new means to promote economic growth, but also as a
pivotal element that will enable a more sustainable future. In the literature, the sustain-
ablity implications of the I4.0 are investigated by several studies including implication
on the flow of raw materials, energy, products, waste, assets, information, and supply
chain [2–5]. However, the focus of these works is on some technological or sustainability
aspects and there is a need to investigate these implications systematically and in a more
comprehensive view.

In 2015, the United Nation (UN) adopted a 2030 Agenda for Sustainable Development,
which intended to guide the global economy considering social equality and ecological
boundaries [6]. The agenda composes of 17 Sustainable Development Goals (SDG) shown
in Figure 1. The goals are supported by 168 targets and 330 indicators, which are detailed
on the UN website (https://sdgs.un.org/ (accessed on 25 February 2021)). The 193 member
states of the UN have committed to implement these ambitious goals by 2030. Since 2015,
growing research dedicated to investigate different SDGs aspects, including indicators’
assessments [7], goals integrations [8], energy-related targets [9], soils and soil science
impacts [8], Artificial Intelligent (AI) impact [10–12], bibliometric investigation of research
in business and management field on the goals [5], and whether the goals focus is on the
poor and ecological concerns or on economic growth [13].
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I4.0 technologies have a significant impact on the achievement of the SDGs. This influ-
ence is explicitly stated in the 8 targets of SDG9; industry, innovation, and infrastructure,
and can be implicitly deduced from the majority of the other 161 targets. As the SDGs aim
to provide a blueprint for peace and prosperity for humanity and the earth, the influences
of the I4.0 technologies are not equal on all these goals. While the influence is significant
and straightforward for some goals, it is minor and indirect on others. Additionally, not
all the I4.0 technologies contribute positively toward the achievement of the SDGs, where
the implications of a few I4.0 technologies contradict with some SDGs targets [3]. Under-
standing the complex influence of the I4.0 technologies on the SDGs allows researchers and
educators to better consult policymakers, in order to think systematically about exploiting
new technologies toward the achievement of the 2030 UN Agenda, including how to gear
some of these technologies toward sustainability. To date, the effects of I4.0 technologies on
the SDGs has not yet been systematically investigated to bridge the gap between policy
and technology development.

https://sdgs.un.org/
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Enhancing the awareness of how I4.0 technology development impacts the SDGs is
one of the most powerful tools to help future engineers to work towards a sustainable
world. MAnufacturing Education for a SusTainable fourth Industrial RevOlution project
(MAESTRO) is an ongoing research collaboration under the Erasmus+ of the European
Commission [14]. Experts from diverse engineering disciplines and seven European
institutions from Sweden, United Kingdom, Italy, Portugal, Poland, and Slovenia are
putting together efforts to investigate the sustainable influence of the I4.0 technologies.
This initiative aims to define and deliver new competences required by the future engineer
to work in the I4.0 revolution, focusing on the aspects of the SDGs. To do so, the first step is
to quantify the sustainable influence of the I4.0 technologies by mapping these technologies
to the SDGs, which is presented in this paper.

I4.0 is enabled by a collection of technologies across a variety of fields related to
industry [15]. These different fields span from computer science and communication, into
robotics and additive manufacturing. In the literature, I4.0 technologies have been classified
at a higher level of granularity such as Internet of Thing (IoT), Cloud Computing (CC),
and Virtual Reality (VR) [16,17]. Indeed, each of these higher-level technology areas is a
combination of a set of technologies. This high level of abstraction makes it difficult to
study the influence of specific technology development on the SDGs. Hence, there is a
need to define I4.0 technologies at a lower level of granularity beyond currently available
classifications. To address this, the first part of the paper proposes a new break down of
high level I4.0 enablers into technology elements.

The paper presents the first formative attempt to: (i) identify and classify the elements
of I4.0 enabling technologies, and (ii) map these I4.0 technologies into the SDGs. The effect
of the I4.0 technologies on each goal is identified using a consensus-based quantitative
assessment and enriched by a deep discussion of selected evidence. The aim of this work is
to provide a foundation for systematic exploration of the sustainable influence of the I4.0
technologies to achieve the UN SDGs from the perspective of academic experts.

The remainder of the paper is structured as follows. Section 2 presents the suggested
methodology to systematically map the influence of the I4.0 technologies to the SDGs,
organizing the experts brainstorming meeting and describing the developed quantitative
measure. In Section 3, the technology elements of the I4.0 are identified and classified. The
elements are defined, and their challenges are highlighted. Section 4 presents the mapping
result and intensively discusses the experts’ opinions along with a variety of supporting
arguments. Section 4 closed with a summary of learned lessons from the result. Section 5
concludes the paper, drawing the finding, and opening further research directions.

2. Method

Figure 2 shows the methodology used to map the influence of the I4.0 technology to
the SDGs using a consensus-based quantitative assessment. This work is carried out by the
MAESTRO team: seven groups, as a body of academic experts, from diverse engineering
disciplines spanning industrial, mechanical and electrical engineering, computer science,
automation, sustainable production, and engineering management. Each group consists of
three to four experts and is headed by one senior expert. The work is carried out in two
main tasks: (i) identify and define the I4.0 technologies and (ii) map and discuss the effect
of these technologies to the SDGs. The following two subsections explain the method of
tackling these two tasks, respectively.

2.1. Identifying I4.0 Technologies

The I4.0 realization and implementation are based on several key technologies from
interdisciplinary areas. In total, nine key enabling technologies are described in the liter-
ature. These nine enablers are adapted in many research articles, such as in [15–17], and
also reported by publications of world consultant bodies such as [18]. This study builds
on these recognized classifications. These technologies are, also, called pillars or building
blocks of I4.0. In this article, they will be called Enablers due the semantic meaning of this
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word as these technologies make the realization of I4.0 possible rather than supporting
its existence. The E letter will be used along with the number of the enabler to denote to
specific enablers (i.e., E1 and E2).
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By studying the classification of I4.0 technologies, it was found that the classification
of the I4.0 enabling technologies into nine enablers is at a high granularity level, where each
enabler represents a collection of several enabling technologies. Therefore, the enablers on
their own are not sufficient to understand and investigate the effect of I4.0 on the SDGs.
A lower level of granularity for these enabling technologies is required as the first step
to achieving a meaningful mapping. In the remainder of this paper, these sub-enablers
are called technology elements and denoted by adding number and dot after the enabler
notation (i.e., E1.1 and E1.2).

To identify the I4.0 technology elements, each group of experts was assigned to be
responsible for one or two enablers during the identification process. The assignment was
based on the expertise of the groups on the enabled technologies. The identification process
is carried out in four steps: (i) identification, (ii) reviewing and discussion, (iii) updating,
and (iv) approving (cf. Figure 2). In the first step, the responsible group identified the
technology elements for the enabler(s) they are responsible for.

The identified elements were then reviewed and discussed by the seven groups in the
second step individually and in a team discussion. After that, each group commented on
the elements identified by the other groups and then, the MAESTRO team met to discuss
these elements. In the third step, the responsible group refined the elements according
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to the received comments and submitted the final list of elements for the approval in the
fourth step. The consensus list of elements is discussed in detail in Section 3.

2.2. Mapping Method

After identifying the I4.0 technology elements, mapping the influence of these ele-
ments to the SDGs is the second task. The mapping started by developing an effective
quantitative measure to assess such a complicated influence. The measure is designed to
reflect the effect nature of the I4.0 technology elements on the SDGs, which can be direct
(strong), indirect (weak), or no influence. Direct or strong influence is when the technology
specifically contributes and touches the SDG targets, such as the effect of the big data and
analytics on the sustainable industry, innovation, and infrastructure (SDG9), which strongly
contribute to optimize its performance and outputs by intelligent decision making. On the
other hand, an indirect or weak influence is when the technology does not contribute or
touch the SDG targets, but it has a direct influence on another element, which has a direct
influence on the SDG targets. An example of such a non-straightforward influence is the
effect of cybersecurity on SDG9. Cybersecurity does not contribute directly to improve the
sustainability of the goal targets, but it is a crucial enabler for other I4.0 technology (i.e.,
the big data and analytics), which have a direct influence on the goal. No influence is when
the technology neither directly nor indirectly influences the goal.

Another important aspect of the measure is to reflect the direction of the influence
toward the achievements of the SDGs either positive or negative. Not all the I4.0 technology
elements contribute positively to all the SDGs achievements [3], where some elements
influence positively on some SDGs, and at the same time, negatively on other SDGs. A
good example of such a conflict influence is the contribution of autonomous robots and
automation to SDG9 and reduced inequality (SDG10), affecting positively on the former
and negatively on the latter. The autonomous robots and automation plummet the demand
of human workforce, especially low skill workers, causing a decrease in their wages, and
an increase in income inequalities [19]. Considering all the aforementioned aspects, a
quantitative measure is developed to have five levels: (3)—strong positive influence; (1)—
weak positive influence; (0)—no influence; (−1)—weak negative influence; (−3)—strong
negative influence.

Using this scoring measure, the mapping task was carried out by the seven groups
individually and blindly. The mapping process was carried out in three steps: (i) mapping,
(ii) aggregating and analyzing, and (iii) discussing (cf. Figure 2). In the first step, experts
from the same group met to score the influence of the full technology elements list to all the
17 SDGs. Consensus scores were elicited based on the opinions of experts. The outcomes
of this step were seven mapping files, which then aggregated and analyzed in the second
step. The average values of the seven scores and the standard deviations were calculated,
providing more rigorous and credential scores. The full result of the mapping is reported
in the Supplementary File. In the final step, the MAESTRO teams were met to discuss and
interpret the results, which are presented in Section 4.

3. Industry 4.0 Enabling Technologies

As explained in the method section (cf. Section 2), the groups of experts (the MAE-
STRO team) have collaborated to identify and define these elements according to the
growing I4.0 literature. The consensus list of elements is presented in Figure 3 and will be
discussed in the following sub-sections.
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3.1. Industrial Internet of Things

Internet of Things (IoT) semantically is the connection of two words “internet” and
“things”. The “internet” means the networks that provide the connectivity of “thing”,
which refers to a person, a physical object or logical agent. The IoT can be defined simply as
“IoT allows people and things to be connected anytime, anyplace, with anything and anyone, ideally
using any path/network and any service” [20]. Although the concepts of IoT exists decades
before the I4.0 initiative, an Industrial Internet of Things (IIoT) is introduced to leverage
and realize the IoT in the context of the I4.0 revolution. To achieve the functionality of IIoT
enabler (E1), six technology elements are identified (E1.1 to E1.6):

E1.1. General identification: General identification is the explicit designation of all the
entities within the IIoT network, where entities can be internal in the system or
external that are related to internal entities. Identification technology focuses on two
main processes: naming, which refers to assign a specific name to the entity [21],
and addressing, which specifies the entity unique address [22]. The key challenge of
identification in IIoT is the applicability of the technology in heterogeneous platforms
or networks, which facilitates the connection between industrial things.

E1.2. Ubiquitous sensing: Sensing is the process of detecting events or change in the status
of an object or system and sending this information into IIoT to enable deducing
effective reactive actions or efficient future decisions. A variety of sensing devices
exist including Radio-frequency identifier (RFID)tags, smart sensors, and wearable
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sensing devices [23]. These devices will be ubiquitous in wider contexts in IIoT, giving
a digital nervous system for the industry [24].

E1.3. Seamless and real-time communication: A seamless communication refers to sending
or receiving information (i.e., message, files) between heterogeneous devices via any
IIoT network at any bandwidth or speed. The connection in IIoT networks supposed
to be with zero latency and has an unlimited throughput [25]. Many communication
technologies can be utilized in IIoT including RFID [26], Near-field communication
(NFC) [27], Bluetooth [28], Long-Term Evolution (LTE), and 5G Wi-Fi [29].

E1.4. Embedded and edge computation: Products, machines, and even tools will be equipped
with embedded boards and systems designed to perform a specific function, and it
will be supported by processing hubs or cores located close to the endpoints of data
source or usage. IIoT systems rely widely on embedded and edge computation to
address the limitation of centralized computation such as latency, bandwidth, data
privacy, and autonomy [30].

E1.5. Service-Oriented Architecture (SOA): SOA refers to the availability of information or
functions as services in the IIoT cloud, exerting ubiquitous services collaboration [31].
Services usage and collaboration are offered in a context-aware manner, where the
identity of the objects who request the service is accessed, aggregated, and processed,
as well as any related information. Services are available on time to respond to
requests without rigidity about time or location [23].

E1.6. Interoperable semantic-based communication: I4.0 devices are supplied by different
manufacturers, connected to different domains, or use different communication
protocols. This heterogeneity creates a lack of interoperability between these devices
and means that achieving a flexible digitalization between such devices is a challenge.
Semantic technology is the solution that enabling the interoperable and flexible
communication between these seamless devices, as well as between human and
artificial agents [32]. Semantic web technologies offer a standardized representation
of knowledge (i.e., RDF, RDF Schema, and OWL) and a semantic query language
called SPARQL [33].

3.2. Big Data and Analytics

The second enabler puts emphasis on data, information, and knowledge. One of the
pillars of I4.0 concerns devices that generate data. “Big Data (BD)” is defined as large sets of
heterogeneous data, coming from various sources, having different formats, and flowing in
real time [34]. BD attributes are: volume—continuous data growth [35]; velocity—fast data
processing; variety—data in various forms. Conventional analytical tools for analyzing
industrial datasets are inappropriate because the analyst will not be able to capture the
whole value of the data [36]. Due to this, the term “analytics” is also crucial for I4.0.
Analytics includes various methods for discovering meaningful patterns in data. It uses
data science to support making right decisions [37]. To achieve the functionality of BD and
analytics enabler (E2), eight technological elements are identified (E2.1 to E2.8):

E2.1. Sensors: Sensors are one of the most important data sources in the industry, e.g., sen-
sors in industrial devices and machines recorded values of parameters of production
processes, as well as sensors in medical healthcare, and in public utilities recording
data on media consumption or failures. The variety of domains is a characteristic
of BD sensing. Sensing is also associated with deploying sensor clouds, automation
of data sensing, and ensuring sensors’ infrastructure scalability. In the context of
BD, an important challenge is the creation of sensors networking and sensors cloud
computing, which are needed to gain highly efficient BD services.

E2.2. Data collecting: Dealing with continuous data growth is crucial for collecting large
amounts of data. The basis for collecting BD is clusters of servers (nodes) and Dis-
tributed File Systems (DFS). Computational nodes allow for distributed processing.
It provides high scalability and high fault tolerance [38]. Whereas DFS can handle
hundreds of nodes in a cluster. It manages files on distributed nodes, reduces network
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congestion, and increases system performance. BD can also be collected in their native
formats and uses flat architecture, thanks to “data lakes” [39].

E2.3. Data processing: Processing BD based on two functions: Map and Reduce, that are
combined as “MapReduce”–programming model, which allows creating applications
running simultaneously on many computers. Other concepts that enable parallel
execution of applications and use thousands of nodes at one time are “YARN” and
“Dryad” [40,41]. BD can generate data streams at extremely high speed, so it will not
be feasible or cost effective to store whole datasets. Therefore, a real-time processing
of data streams is important challenge for modern data processing [42].

E2.4. Data querying: In the case of BD, it is important to support data processing due to
converting high level queries into MapReduce tasks, reducing MapReduce complex-
ity, and simplifying exploration in parallel, especially in massive datasets. These
challenges are met, e.g., by high level scripting language “Pig Latin” or declara-
tive language “JAQL”. However, the above mentioned issues that concerning data
querying optimization are still open challenges [40,43].

E2.5. Data access: Technologies related to data access enable efficient data transfer between
BD clusters of nodes and structured data stores (relational databases, enterprise data
warehouses). Due to variety of BD sources, an integration of that data sources is a
core challenge both for data collecting and data access. Other technologies provide in-
memory data access that enable run applications many times faster, as well as support
real-time processing, on-line machine learning, and continuous calculations [44,45].

E2.6. Data analytics: In total, four types of analytics have been defined: descriptive
—summarizing existing datasets in order to get insight into the past; diagnostic—
determining why something happened in the past; predictive—using a model devel-
oped based on existing data to predict future data; prescriptive—using optimization
methods to recommend a specific course of action. Despite the fact that listed types ex-
isted before the era of BD, they can also be used for large industrial datasets [35]. How-
ever, generating insights in a timely manner is still a core challenge for BD analytics.

E2.7. Decision-making support: From the viewpoint of I4.0 and BD, machine learning, and
deep learning can be crucial to support the decision-making process. They allow
discovering information from large volumes of uncategorized data. This is confirmed
by many real world applications, such as recommendation engines, recognition
systems, autonomous control systems [46], and decision support systems for reducing
production costs [47]. Data mining methods are complemented by visualization that
helps present the information more intuitively and efficiently [41].

E2.8. Data management techniques and methods: BD requires appropriate data manage-
ment methods and techniques that will make it possible to: coordinate applications
and nodes in clusters, replicate services to protect data and nodes from failures, and
recover system automatically. Management tools also allow for making interface
where developers can view the system, create and manage user accounts, and monitor
cluster health [48]. Different enterprises may have their own transmission protocols,
data storage procedures, data formats, etc. This can be a serious challenge that hinders
the creation of a universal data management system.

3.3. Cloud Computing

Cloud computing (CC) is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction [49]. It provides a sharable
approach in which the computing resources can be accessed from different platforms and lo-
cations, with low computing load at the front end. Even though I4.0 has high requirements
of Information and Communications Technology (ICT) capabilities of the stakeholders,
the local factories, and companies normally do not maintain sufficient knowledge and
expertise for the latest technologies. Thus, CC provides the feasible solution to provide
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the computing resource in different terms, i.e., Software as a Service (SaaS), Platform as
a Service (PaaS), and Infrastructure as a Service (IaaS). Eventually, the cloud users can
distribute the Information technology IT tasks to the cloud provider based on their needs,
to focus on the actual value-adding process in their core business. This section discusses
the key technology elements of CC (E3.1–3.4).

E3.1. Computing: CC technology is the delivery of computing resources and power from re-
mote locations, which do not require high facility investments for the user. In the past
years, many successful commercial CC solutions like Microsoft Azure [50], Amazon
web services [51], IBM Cloud [52], Google compute engine [53], etc. Meanwhile, there
are also open cloud platforms like Openstack [54], Apache CloudStack [55], Apache
Mesos [56], and so forth. These platforms provide different options of the industry to
facilitate the computing structure within a private, community or public domain. For
cloud users, the challenge is to identify the proper computing solution that is suitable
for the business and safety requirements.

E3.2. Interoperability: Interoperability refers to the capability of different systems, compo-
nents, or products to understand and work with each other. In practice, a feasible
engineering system needs to guarantee the interoperability at different levels, i.e.,
semantic, syntax, database, hardware, protocol, system, etc. [57–59]. In an I4.0 sce-
nario, multiple novel technologies must be able to communicate and work with each
other [60].

E3.3. Servicelisation: (on the Cloud): cloud-based servicelisation is the delivery of the
computing resources in terms of service. Service user can use and pay based on
the exact amount of service that is needed, i.e., pay-as-you-go principle. In the past
years, different approaches have been proposed to offer the engineering resource and
capability on the cloud in terms of services [61,62]. Both the hardware and software
are capable to be encapsulated in terms of scalable services, and provided in the cloud
resource pool [63].

E3.4. Cloud Manufacturing: based on the success of CC and servicelisation, the cloud
concept is further extended to the manufacturing domain, thus forming cloud man-
ufacturing technology. Cloud manufacturing refers to network access to a shared
pool of configurable manufacturing resources [64–66]. In cloud manufacturing, the
manufacturing hardware and software can be servicelised and offered on the cloud to
provide accessible and elastic manufacturing capabilities with a low initial investment
for the users.

3.4. Simulation

Due to the complexity of I4.0 and the difficulties that are associated with the imple-
mentation and coordination of this concept, simulation can be helpful to facilitate the use of
all components of such systems, e.g., robotics, IT, manufacturing, logistics. Simulation is a
representation of operations that take place in the real world in a given function of time [67].
Besides, the network connection of certain I4.0 components, their mutual optimization is
important, which is increasingly performed using simulation to present optimal or nearly
optimal solutions to the decision-makers. This approach greatly reduces the waste of time
for an experiment that would have to take place in the absence of simulation [68]. In total,
three technology elements (E4.1 to E4.3) are identified for the simulation enabler (E4):

E4.1. Product and processes: Product and processes simulation is crucial and provides
the basis for simulating larger systems that creates I4.0. Simulation in this part
includes Finite Element Analysis (FEA) [69], simulation of acoustics performance of
the product [70,71] simulation of composites structures behavior and the progressive
degradation [72,73] and fluid dynamics simulation [74] can be distinguished. One of
process simulation challenges is the development of Computer Aided Manufacturing
(CAM) to automate a manufacturing process [75].

E4.2. Production lines, workstations, and internal logistics: The key role to create a virtual
factory is to use Discrete Event Simulation (DES). According to [76], the virtual factory
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that also known as digital twin is an extended use of simulation not just in the design
state and planning phase, but also in the entire lifecycle of manufactured products [77].
There is also a growing interest in implementing Virtual Reality (VR) to improve
existing work procedures and factory layout planning [78].

E4.3. Enterprise and its operational environment: Simulation allows for a better under-
standing of the dynamics of business complex systems, such as enterprises, supply
chains, and networks. The main simulation approaches used in this area are system
dynamics (SD), DES and agent-based simulation (ABS). The DES is highly mature and
applied in many fields across enterprises [79,80]. Unlike SD and DES, ABS focuses
on individual activities of system components [81]. These simulation techniques are
often combined to enable simulating the work of the entire system of enterprises,
which in fact a challenging in developing harmonized and reliable models [82].

3.5. Augmented Reality

Industry 4.0 emphasizes the use of ICT and aims to promote the enormous potential
of virtualization and the exchange of information. Augmented Reality (AR) represents a
perfect combination of the real world with the virtual one, making it possible to enhance
human perception by superimposing a computer that generates information on the real-
world environment. With technological development, it has become possible to solve
critical problems by simulating, assisting, and improving production processes before they
are carried out. By using mobile platforms, such as smartphones, tablets, and smart glasses,
it is possible to add relevant information directly to the worker’s field of vision, providing
assistance in the performed tasks [83,84]. Overall, five elements technology related to AR
have been identified (E5.1–E5.5):

E5.1. Machineinteraction: Through augmented reality devices, operator can perform com-
plex actions and interact directly with machines. For example, in [85], a system
including augmented reality to operate a crane was studied, or in [86] for real-time
programming of collaborative robots.

E5.2. Human interaction: The possibility of interaction between human beings is improved.
It is possible to collaborate in an immersive manner even if the collaborators are not
present in the same place. Anticipation long ago [87] is now pervasive by fast internet
and cheaper devices.

E5.3. Training: AR is also an enabling technology from the point of view of teaching and
learning new tasks. For example, it is possible to directly support the operator during
his operations by providing him or her with detailed information on the assembly or
maintenance procedures for machinery [84,88]

E5.4. Communication: Using optical devices, it is possible to superimpose images, text,
and symbols on the operator’s visual field to facilitate and improve communication
and the perception of the surrounding environment [84,89].

E5.5. Simulation: Augmented reality is a useful tool for design, as it enables the simulation
of production processes before they are performed. Using completely immersive
virtual environments, it is possible, for example, to design industrial plants in detail,
or to program computer numerical control machines by virtualizing the production
process [83,84,86].

3.6. Additive Manufacturing

Additive Manufacturing (AM) is the term used to refer to a group of production
technologies that contrapose to traditional subtractive or mass-conserving manufacturing
techniques [90]. AM technologies are natively digital, since they were born after the advent
of the personal computer, and their manufacturing workflow is based on the use and
processing of digital data. The digital data stream flows from the virtual 3D model of
the product through the completion of the build of the physical object. The opportunity
of creating an infinite number of different shapes of (almost) any complexity, with one
machine and without the use of any mold or die, makes mass customization economically
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viable [91]. AM has been identified as one of the key enabling technologies for I4.0 and the
newest industrial revolution [92]. In the case of the AM enabler (E6), six key elements were
identified as follows:

E6.1. Processesfor polymers: AM processes for polymers exploit different physical princi-
ples for the layer-wise fabrication of parts made of thermoplastic or thermosetting
materials. Composite parts with a polymeric matrix can also be manufactured with
short or continuous reinforcement fibers. In the I4.0 framework, the digital workflow
and process allow to constantly monitor the state of part production. Sustainability is
promoted by the optimal use of material with low production waste and no specific
production tools. Process productivity and a wider material range are the challenges
for the future development of these technologies.

E6.2. Processes for metals: AM processes for metals include direct and indirect technolo-
gies. Direct processes include powder bed fusion (PBF) with laser or electron beam
sources and directed energy deposition (DED), also known as cladding. Nowadays,
the application of powder-bed fusion technologies is consolidated in many industrial
sectors as an alternative to traditional manufacturing for small production batches
or single components [93]. Indirect processes are based on binder jetting or material
extrusion and involve post-processing operations including a final sintering phase to
fabricate dense metal parts [94]. Process productivity and a wider material range are
the future challenges for these technologies.

E6.3. Processes for ceramics: AM techniques for ceramic materials are not widely spread
because of the limited industrial interest that often comes from niche sectors. Al-
though most of AM processes are characterized by small build volumes, this limitation
is even more stringent in the case of ceramics [95]. Ceramics are mainly processed
by laser powder bed fusion or by binder jetting, an indirect process that requires
post-processing phases and sintering to get dense parts [96]. Larger build volumes
and productivity are the challenges for the future developments of AM processes
for ceramics.

E6.4. Materials: Raw materials for AM are supplied in the state of viscous liquid, powder
or solid (pellets, filament, or wire) feedstock [97]. The variety of materials that can be
processed by AM techniques is narrow if compared to that of traditional processes.
However, R&D activities are continuously focused on developing new materials
for AM, so the variety is constantly increasing. Optimal usage and exploitation of
materials with lower production scraps are the potential benefits of AM [98]. Better
process reliability and operator knowledge are the challenges for future improvements
within the sustainability framework.

E6.5. Design for AM: The key success for AM adoption is to identify a specific benefit
that can provide an added value to the AM product by enhancing its performance
and functionality. AM achieves its full potential (even under the environmental
perspective) when the component is re-designed for the AM technology and the main
benefit of the improved product performance is capitalized upon during the use
phase [99]. The main challenge for this key element is the promotion and diffusion of
this innovative way of designing and conceiving new products to be fabricated by
AM technologies.

E6.6. Software: Throughout the AM workflow, different software packages are generally
employed. A 3D modeling package is used to define the virtual solid model of
the product. Generative design or topology optimization are tools that compute
the best material distribution within an assigned design volume while considering
engineering constraints and loads [100]. A slicing software is used to generate the
manufacturing path for each layer and to convert the path in the proprietary code or
open ISO G-code to be sent to the AM machine. The main challenge for the software
is to achieve a higher reliability in the simulation of AM processes for predicting part
deformation and quality [101].
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3.7. Horizontal and Vertical System Integration

In I4.0, systems and system components should not only communicate, but also,
integrate and build a collaborative environment to improve the product and related services
throughout the whole lifecycle. This integration is in two directions: horizontal and
vertical. The horizontal integration is in three domains: within the shop floor (i.e., machine
to machine) [102,103], within multiple production facilities [104], and across the entire
value creation network [105]. The vertical integration is intra-company and focuses on
the collaboration between different levels of the enterprise hierarchy from sensors to the
company business level [17]. Overall, seven elements have been identified for this enabler.

E7.1. ReferenceArchitecture: Integration needs common models and architectures to define
a communication structure. To enable effective integration, a common language with
signs, alphabets, vocabulary, syntax, grammar, semantics, and pragmatics cultures are
essentials. When we are talking about vertical and horizontal integration reference
architectures, such as the old CIM-OSA, PERA, GERAM, ISA-95 are those that imme-
diately come to mind [106]. The Reference Architecture Model Industrie 4.0 (RAMI
4.0) is very important and will be discussed in the next point. However, other models
exist such as the Industrial Internet Reference Architecture (IIRA), and the Internet of
Things Reference Architecture (IoT RA) [107]. However, interoperability and secu-
rity are open challenges for such reference architecture, especially in heterogeneous
systems [108].

E7.2. RAMI4.0: German ‘Platform I4.0’ developed a service-oriented architecture special
for I4.0 so-called RAMI 4.0 [109]. It defines the domains of industry 4.0 represented
in a three-dimensional model: Layers, Lifecycle and Value Stream, and Hierarchy
Levels [110]. The layers represent various perspectives, including assets and hardware,
data and communication, and functional description and business process. The
Lifecycle and Value Stream cover the whole product lifecycle from the development
stage into the end life (i.e., recycle and scrap). The third dimension describes the
hierarchical levels in the I4.0 system, starting from the product and field devices
through control devices and stations into the workstation and enterprises [111].

E7.3. SystemsIntegration: System integration is one of the major difficulties in traditional
automation systems. Different interoperability technologies and standardize models
were developed to tackle these issues. This technology includes Electronic Device
Description, Filed Device Integration, OPCU UA, Gateway and Mediator, Automa-
tionML and semantic standardization, such as eCl@ss [112]. However, in the I4.0
environment, the integration problem is more complicated. I4.0 systems are intended
to bring together sub-systems (i.e., machines, robots, sensors) that could be heteroge-
nous, supplied by different manufacturer and have different interfaces [113]. Different
models represent data information, functions, and diverse interfaces are used to access
data. These heterogeneities make adaptation and mediation between models a major
challenge [114].

E7.4. DigitalTwins: Digital Twin (DT) is the effective tool to realize I4.0 smart manufactur-
ing with dynamic modeling, real time simulation, and smart decision-making [115].
DT reflects the physical status of the factory in a virtual space using Computer-Aided
Design models in high fidelity. It provides real-time 2-way communication, vari-
ous scenario simulation, and interactive decision-support [116]. DT is a hot topic
in both academia and industry, and many aspects has a room for improvements
including modular based DT, modeling consistency and accuracy, VR integration into
DT, efficient mapping between virtual and real data [117].

E7.5. Cyber PhysicalSystem (CPS): CPS is a complex and multidimensional system that
integrates the system physical resources into cyber world. CPS provides a real-time
sensing, information and data feedback, dynamic control and more services through
the collaboration and integration of communication, computing, and control [118].
The integration in CPS is in both the horizontal and vertical integrations, with more
focus on the vertical direction [119]. Towards the realization of CPS, a lot of effort is
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needed in many areas, especially in modelling (i.e., CPS platform), models integration,
verification and testing [120,121].

E7.6. Systemof Systems (CPSs): CPSs are a collection of task-oriented or dedicated systems
that pool their resources and capabilities together to create more complex systems,
which offer more extended functionality and performance [112]. CPSs become alive by
exchanging information and capabilities between systems’ constituents in both virtual
and the physical environments via interfaces in a service oriented manner [118]. Inter-
faces are the enabler for many functionalities of CPSs and, therefore, need detailed
attention in terms of authentication and security, as well as in data sovereignty and
ownerships [108]. This intended system solidarity rises many challenges, especially
in the horizontal direction such as integration and collaboration between CPSs [120].

E7.7. CollaborativeNetworks (CNs): Collaboration exists and is needed for almost all the
enablers and technological elements of I4.0, either explicitly or implicitly. CNs are
applied to many domains and supported by variety of collaboration forms, which
ranges from industry dynamic structure to supply chain and extended services [122].
CNs can be a goal-oriented or long-term strategic network. While the former charac-
terizes by an intense interaction among participants to reach a common goal, the latter
characterizes as a strategic alliance to act as a source breeding environment for the
former, aiming to provide supportive networks [123]. Research in CNs are directed
towards human-machine and machine-machine collaboration, development of collab-
oration platforms, enhancing resilience and sustainability, and building collaboration
culture and awareness [124].

3.8. Autonomous Robots

Autonomous robots (AR) “are intelligent machines capable of performing tasks in
the world by themselves, without explicit human control” [125]. They are the core of
the autonomous production, which is an important part of the Smart Factory initiative.
Smart Factory is one of the fundamental concepts of Industry 4.0 [126]. To achieve the
functionality of the Autonomous Robot enabler (E8), three technological elements are
identified (E8.1 to E8.3):

E8.1. Perception: The key element in the development of ARs is perception, which consists
of data acquisition and consequent extraction of useful information about the envi-
ronment in which ARs operate. Due to the increased requirements for the ARs related
to I4.0, this element is getting more challenging. The most basic task that robots
can do, is positioning themselves relatively to some reference point in the environ-
ment. This can be done using various technologies: 2D and 3D digital cameras [127],
GPS [128], lidar [129], ultrasonic and infrared sensors [130], magnetic sensors, etc. In
addition, with the development of the soft robotics [131], new sensing principles are
emerging [132].

E8.2. Deliberation: In I4.0, there is an increasing need for flexible ARs that can be adapted
to various tasks and interact to different situations, as well as integrated in any
environment. In such a setting, the need for deliberation is highly expressed. Acting
deliberately is related to the “actions that are motivated by some intended objectives
and that are justified by sound reasoning with respect to these objectives” [133]. To act
deliberately, the following functions are required [133]: planning, acting, observing,
monitoring, goal reasoning, and learning. Descriptive, operational, open environment
models, model acquisition, model verification issues, integration of the observing
function with other deliberation functions and integration, as well as architecture
issues are all open challenges within this element [133].

E8.3. Autonomy: Autonomy in ARs is defined as “the extent to which a robot can sense
the environment, plan based on that environment, and act upon that environment,
with the intent of reaching some goal (either given to or created by the robot) without
external control” [134]. Artificial Intelligence is of enormous importance for this
purpose [135]. However, striking the right balance between robot autonomy and
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human control is a core challenge, in both technical and ethical terms [136]. An
important concept related to autonomy is dependability—the “ability to deliver
trusted services” [137]—which mainly focuses on fault management in terms of
prevention, removal, forecasting, and tolerance [138].

3.9. Cybersecurity

Cybersecurity is “the ability to protect or defend the use of cyberspace from cyber-
attacks” [139]. The International Telecommunication Union reports, in its Global Cybersecu-
rity Index 2018 [140], that 42% of the 193 member states do not have a national cybersecurity
strategy. This is alarming since the performance of most of the I4.0 enablers strongly rely
on the applied cybersecurity measures. As a result, cybersecurity represents one of the
major hurdles for the adoption of IIoT [141]. In addition, “digital development without
cybersecurity is unsustainable” [142]. To achieve the functionality of the Cybersecurity
enabler (E9), two technological elements are identified (E9.1 and E9.2):

E9.1. Threat identification and detection: As the number and sophistication of cyber
threats increases, security systems are being improved in detection capabilities [143].
In general, cyber threats can be of various kinds: malware, phishing and spear
phishing, man-in-the-middle attacks, trojans, ransomware, denial or distributed
denial of service attacks, attacks on IoT devices, data breaches, etc. All of these
are related to Industry 4.0 at various degrees and also ways of fighting them are
quite diverse [141,144–146]. These security threats are one of the biggest and ever-
growing challenges for IIoT, and it is essential to substantially mitigate them for its
success [147].

E9.2. Data loss prevention: Data Loss Protection (DLP) denotes a set of tools and processes
used to ensure that sensitive data is not lost, misused, or accessed by unauthorized
users. In the vision of I4.0 a lot of processes are taking place in clouds, which makes
DLP and cybersecurity in general even more challenging. A potential technology
that gets mentioned often in relation to DLP is blockchain technology [148]. It is
a promising technology from various aspects [149]: authentication, confidentiality,
accountability and non-repudiation, traceability, and revocation.

4. Mapping Result

To help readers interpret this section and follow the discussion of the mapping result,
Table 1 lists the SDGs and the corresponding abbreviations. The aggregated result of
mapping the I4.0 enablers (E1–E9) into the 17 SDGs is shown inFigure 4. From each group
result, each individual enabler score is calculated by summing the values of the elements
scores and dividing it by the number of enabler elements and, then, the average of these
calculated values is recorded inFigure 4. While the last row indicates the overall average
influence of individual enabler on achieving the SDGs, the last column indicates the
expected overall effect on individual SDG influenced by the nine enablers. In general, the
I4.0 technological enablers are contributing positively towards achieving the sustainability
goals as it can be deduced from the dominance of green color variants in Figure 4.

Table 1. Abbreviations of the UN Sustainability Development Goals.

Table Abbreviation Sustainability Development Goals Abbreviation Sustainability Development Goals

SDG1 No Poverty SDG10 Reduced Inequality
SDG2 Zero Hunger SDG11 Sustainable Cities and Communities
SDG3 Good Health and Well-being SDG12 Responsible Consumption and Production
SDG4 Quality Education SDG13 Climate Action
SDG5 Gender Equality SDG14 Life Below Water
SDG6 Clean Water and Sanitation SDG15 Life on Land
SDG7 Affordable and Clean Energy SDG16 Peace, Justice and Strong Institutions
SDG8 Decent Work and Economic Growth

SDG17 Partnerships to achieve Goals
SDG9 Industry, Innovation, and Infrastructure
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The influences of the enablers on the SDGs lies between 1.49 and 0.54 scores, indicating
the experts believe that the enablers contribution are between mild weak to mild strong
positive effects. This is, also, noticeable from the homogeneity of colors in the last column
in Figure 4. In contrast, the whole Figure 4shows a heterogeneity of colors, indicating the
enablers differences in bestowing the SDGs.

E2: BD and analytics has the maximum overall effect on the SDGs at 1.49 score value.
Indeed, this result is not surprising as decision making based on big data helps rigorously
to achieve the SDGs (cf. Section 4.2). AM (E6) has the minimum influence at 0.54 score.
This, in fact, noticeable as the AM row shows a strong positive influence only on industry,
innovation, and infrastructure (SDG9) and either weak positive or no influence on the other
SDGs (cf. Section 4.6).

The experts believe that the influence on the SDGs will be significantly different from
one goal to another as it can be deduced from the variant of colors in the last row in Figure 4.
So far, the strongest influence is recorded for the industry, innovation, and infrastructure
(SDG9) at 2.48. This is followed by three goals: sustainable cities and communities (SDG11),
responsible consumption and production (SDG12), and good health and well-being (SDG3)
at 1.49, 1.41, and 1.37, respectively. There is a significant gap between the gained score for
SDG9 and the second influenced goal (SDG3) at around one score value. This substantial
gap reflects the fact that the I4.0 revolution focuses on reforming and empowering the
industrial sectors and the UN sustainable agenda covers, not only this specific sector, but
all the global economy aspects, maintaining human and environmental sustainability.

In contrast, the weakest influence is scored for reduced inequality (SDG10) at 0.32.
Experts believe that I4.0 technologies will increase the income gap and so increase inequality.
The gender equality (SDG5), peace and justice strong institutions (SDG16), and no poverty
(SDG1) gained lowest scores after SDG10 at 0.35, 0.46, and 0.49, respectively. For these
goals, experts think that the I4.0 technologies itself does not have a significant effect on
these goals, and it could be employed to contribute either positively or negatively toward
achieving these goals.

Looking at the scores of the individual cells in Figure 4, three scores are detectable
and worth to discuss. Firstly, the maximum positive score is recorded for the influence of
cloud computing (E2) to the industry, innovation, and infrastructure (SDG9) at 2.79. This
value did not gain much consensus among the expert panel as deduced by a high standard
deviation of 1.16 (cf. Figure 5). Secondly, a score of zero is recorded for the influence of AM
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enabler (E6) on both the peace and justice strong institutions (SDG16) and partnerships
to achieve the goal (SDG17). It is worth to mention that these are the only cell that reach
a strong consensus as concluded from the zero standard deviation (cf. Figure 5). Thirdly,
the only negative score is recorded for the effect of the ARs (E8) on the reduced inequality
(SDG10). This believe do not share a wide consensus among the experts as shown by the
high standard deviation of 1.19.
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Figure 5 shows the Standard Deviation (SD) of the scores carried out by the seven
groups. Overall, the SD values indicate that the expert’s panels share a consensus about
the influences of enablers on the SDGs as deduced from around 55% of the scores have SD
values less than one. These values are shown in the table in green and lime colors. This
implication is supported by the values in the last row, which indicate the overall effect
of enablers on individual SDG. In total, 13 SDGs have average SD values less than one
and only four goals have SD values between 1.11 and 1.24. The average SD values in the
last column, which point out the overall influence of each enabler, are indicating the same.
Only BD and analytics (E2) and ARs (E8) have average SD values greater than one at 1.01
and 1.13, respectively.

The two most controversial individuals’ scores are recorded for the influence of ARs
(E8) and AM (E6) on decent work and economic growth (SDG8) at 2.1 and 1.51 SD, re-
spectively. The 45% of scores that have SD values greater than one, which to some extent,
indicates disagreement among the expert panels about these influences. This discrepancy re-
flects the diversity of engineering disciplines in the panels and the academic perspective in
the seven countries, which to somehow manifest the overall perspectives in these countries.

4.1. Industrial Internet of Things

The result of mapping the IIoT elements (E1.1–E1.6) into the sustainability goals
is shown in Figure 6, which shows the average scores of the IIoT technology elements
provided by the seven groups. In general, the IIoT technology elements are contributing
positively towards achieving the sustainability goals as it can be concluded from the
dominance of green color variants in Figure 6. This positive influence is expected as
the IIoT empowers the outputs of the industrial sector that has a substantial impact on
achieving most of the sustainability goals.
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Looking at the average column, IIoT elements contribute to achieve the goals, on
average, between 0.82 and 1.29 scores, which means they have a positive influence, to some
extent, lies between mild weak to mild strong influences. They enable other technologies to
contribute on achieving the goals. For example, general identification (E1.1) and ubiquitous
sensing (E1.2) enable AI applications to improve farming activities, especially animal
and fish farming, and so reduce hunger (SDG2). The animals are tracked and monitored
to gather data that enable taking effective decisions to increase food productivity, and
quality, improving animals’ health, as well as taking proactive decisions when diseases are
identified at early stages.

SOA (E1.5) and semantics communication (E1.6) have the highest and the lowest
influences, respectively, at average scores of 1.29 and 0.8. Services collaboration of SOA
contributes significantly to improve human health and well-being (SDG3), industry (SDG9),
and sustainable and smart cities (SDG1). In industry, for example, services collaboration
allows manufacturers to produce products without the need to have all the equipment
in their shop floor, where some functionalities can be accessed by using suitable services
offered in the IIoT. SOA initiates synergies between components of the industrial sector,
similarly in the health sector and smart cities. In the other hand, the influence of semantics
communication (E1.6) on the goals is indirect, where it stimulates and strengthens the influ-
ence of other elements including seamless and real-time communication (E1.3), embedded
and edge computation (E1.4), and SOA (E1.5). The interoperable semantics communication
is the hidden spine of the IIoT that provides structural support and connectivity to other
I4.0 technological elements.

Looking at the average scores shown in the last row, the overall effect of IIoT element
technologies noticeably vary between goals. The industry, innovation, and infrastructure
(SDG9) and the sustainable cities and communities (SDG11) gain the most benefits from
these technologies as it can be noticed from the average scores of 2.57 and 2.05, respectively.
This effect is expected as the focus of IIoT in fostering the industrial sector and stepping
forwards the realization of smart and sustainable cites. In contrast, the IIoT elements
do not have a significant influence on reducing the gender equality (SDG5) and income
inequality (SDG10). In fact, IIoT offers many potentials that can consequently improve
the living conditions sustainably, but the key issue is the way these technologies are used
and integrated.

4.2. Big Data and Analytics

The influence of BD and analytics (E2) on the sustainability goals is presented in
Figure 7, which shows the average scores of the BD and analytics elements provided by
the seven groups. From the figure, in all cases, the technology has positive influences.
Moreover, the overall influence is the highest between all the I4.0 enabling technologies
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(cf. Figure 7). The most influencing element is “Decision-making support” (E2.7). This is
because decision-making technologies can be used in processes that help to reach any of
the sustainability goals. Although, modern technologies are most often used to achieve
sustainable industry, innovation, and infrastructure goal (SDG9). For example, sensors
(E2.1) are used to collect data concerning energy consumption by machines, temperature
of working engines, vibration of working equipment, condition of equipment construction
elements, etc. [150,151]. The collected data is analyzed to identify the anomalies that
can lead to failures, threaten the health and life of employees, cause additional costs or
ecological disasters.

Sustainability 2021, 13, x FOR PEER REVIEW 18 of 35 
 

influence of other elements including seamless and real-time communication (E1.3), em-
bedded and edge computation (E1.4), and SOA (E1.5). The interoperable semantics com-
munication is the hidden spine of the IIoT that provides structural support and connec-
tivity to other I4.0 technological elements.  

Looking at the average scores shown in the last row, the overall effect of IIoT element 
technologies noticeably vary between goals. The industry, innovation, and infrastructure 
(SDG9) and the sustainable cities and communities (SDG11) gain the most benefits from 
these technologies as it can be noticed from the average scores of 2.57 and 2.05, respec-
tively. This effect is expected as the focus of IIoT in fostering the industrial sector and 
stepping forwards the realization of smart and sustainable cites. In contrast, the IIoT ele-
ments do not have a significant influence on reducing the gender equality (SDG5) and 
income inequality (SDG10). In fact, IIoT offers many potentials that can consequently im-
prove the living conditions sustainably, but the key issue is the way these technologies 
are used and integrated. 

4.2. Big Data and Analytics 
The influence of BD and analytics (E2) on the sustainability goals is presented in Fig-

ure 7, which shows the average scores of the BD and analytics elements provided by the 
seven groups. From the figure, in all cases, the technology has positive influences. More-
over, the overall influence is the highest between all the I4.0 enabling technologies (cf. 
Figure 7). The most influencing element is “Decision-making support” (E2.7). This is be-
cause decision-making technologies can be used in processes that help to reach any of the 
sustainability goals. Although, modern technologies are most often used to achieve sus-
tainable industry, innovation, and infrastructure goal (SDG9). For example, sensors (E2.1) 
are used to collect data concerning energy consumption by machines, temperature of 
working engines, vibration of working equipment, condition of equipment construction 
elements, etc. [150,151]. The collected data is analyzed to identify the anomalies that can 
lead to failures, threaten the health and life of employees, cause additional costs or eco-
logical disasters.  

 
Figure 7. Average scores of the effect of big data and analytics elements on the UN-SDGs. 

The least influencing element on SDGs is “Data querying” (1.24) as the querying pro-
cess alone cannot make significant change for example for reduced inequality (SDG10) 
although, wrongly performed process can influence on further made decisions. It was as-

Figure 7. Average scores of the effect of big data and analytics elements on the UN-SDGs.

The least influencing element on SDGs is “Data querying” (1.24) as the querying
process alone cannot make significant change for example for reduced inequality (SDG10)
although, wrongly performed process can influence on further made decisions. It was as-
sessed that the goal most influenced by BD and analytics is the SDG9: industry, innovation,
and infrastructure (2.32). Moreover, apart from “Data querying” (1.86) all other enablers
received the scores higher than 2 for the SDG9.

BD and analytics also contributes to achieve zero hunger and clean water and sanita-
tion (SDG2 and SDG6). Sensors can be used, for example, to monitor crops or to monitor
water quality and to identify hazards [152]. The collected data can be used for analyzing
the existing situation to identify regions with risk and predict future trends. Situations
include water contamination or water level.

Technologies supporting decision-making process are also very important to achieve
good health and well-being (SDG3). With the use of sensors that are embedded in different
devices (i.e., Holter), human health can be monitored, providing vital signs such as the
pulse. Such helpful functions are provided in small and common devices (i.e., smart
watches). Gathering such data enable monitoring and predicting trends of human health in
societies. In addition, availability of individuals’ health date enables physicians to diagnose
diseases at early stages more accurately and track and monitor drugs effect, which speeds
up the disease recovery time and drugs improvements [153].

The experts believe that the impact of BD and analytics on gender equality (SDG5)
and reduced inequality (SDG10) goals is less than the other SDGs. The score in both cases
is 0.82. Especially, when we are talking about sensors application, it is worth to emphasize
that equality cannot be simply measured with the use of sensors and, moreover, the data
can be collected with the use of other means. Generally, it can be concluded that BD and
analytics is very important for sustainable development, which is also presented in other
publications [154]. In addition, the implementation of its technology elements can lead to
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better understanding of the current situation and support identification of activities, which
effectively and efficiently allows to achieve the SDGs.

4.3. Cloud Computing

The mapping results of the cloud computing technologies (E3) to the SDGs are shown
in Figure 8, which shows the average scores of the cloud computing elements provided by
the seven groups. It is noticeable that among all SDGs, the impact is very high in building
resilient infrastructure, promote inclusive and sustainable industrialization and foster inno-
vation (SDG9). It is a common understanding that cloud technology provides accessible and
sustainable computing (E3.1) resources for a wide distribution of the users over the network.
It thus offers a strong ICT support for the infrastructure development of industrialization
and innovation, especially for the developing areas and small-and-medium enterprises.
The cloud stakeholders do not need to heavily invest on the fundamental ICT facilities,
while the computing resources in need can be hired from the cloud resource pool, which
has a positive impact on the business in both developed and non-developed countries.
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From the interoperability’s perspective (E3.2), the cloud system also provides strong
support to guarantee that the heterogeneous components and technology modules in a com-
plex I4.0 infrastructure can communicate and interact with each other smoothly. The cloud
functions are integrated and servicelised in the same cloud structure under pre-defined
protocols and interfaces when they are added to the cloud (E3.3). Hence, it guarantees
the interoperability and accessibility of these functionalities and resources. Moreover, the
technology extending cloud concept to the manufacturing domain (E3.4) is identified as
the top impact to the affordable and clean anergy (SDG7), as the CC provides physical
manufacturing services in the cloud as well. The manufacturing hardware and facilities are
normally expensive, and, in many cases, the essential equipment must be invested but not
frequently used. In the CC context, the missing manufacturing resource can be temporarily
hired from the cloud, while the overall sustainability of the infrastructure development
is achievable. From the bigger scale, the CC contributes to high energy efficiency and
sustainability (SDG7) via global scheduling and optimization.

In addition, the impact of cloud computing technology is also identified on the
sustainable cities and communities (SDG11). They make cities and human settlements
inclusive, safe, resilient, and sustainable. In the I4.0 context, smart devices, monitors,
cameras are needed in all places in the smart cities, as well as in human settlements. Thus,
strong computing power is needed to support the huge amount of data and requests.
Interoperability (E3.2) is especially important as the smart cities deploy more kinds of
devices and data than industrial applications. Eventually, the cloud offers different types
of services to process the data and request submitted from the smart cities and deliver
the results in terms of scalable services (E3.3). It offers the fundamental knowledge and
information structure for the development of sustainable cities and communities.
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4.4. Simulation

The team of experts believe that overall impact of simulation enabler (E4) on SDGs
achievement is positive as shown in Figure 9, which shows the average scores of the
simulation elements provided by the seven groups. The aggregated value of the impact is
0.82 and is slightly lower than the arithmetic mean for all Industry 4.0 enablers, which is
0.91. This assessment shares a wide consensus by the experts as shown by the low SD of
0.72 (c.f. Figure 9), which is the second lowest SD among all I4.0 enablers after AM (E6).
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Figure 9 shows the result of mapping the effects of simulation technology elements
(E4.1–E4.3) into the SDGs. Average results indicate positive to moderate positive effects.
Figure 9 shows that simulation has the greatest impact towards the achievement of SDG9:
build resilient infrastructure, promote inclusive and sustainable industrialization, and
foster innovation. The reason for such a high assessment is widely justified in the literature
through the applications of simulation methods to the validation of new products and
processes [155], workstations and manufacturing lines modeling and analysis [156], supply
chains analysis [157] and better understanding of the dynamics of business systems [76].

Experts also highly rated the impact of simulation on SDG12: ensure sustainable
consumption and production patterns and SDG8: promote sustained, inclusive, and sus-
tainable economic growth, full and productive employment and decent work for all at
score values around 1.9 and 1.81, respectively. This is probably since both goals relate to
productive employment and sustainable production patterns, which are often analyzed
and improved by means of simulation methods. In contrast, the lowest impact of simu-
lation is agreed to be on SDG16: promote peaceful and inclusive societies for sustainable
development, provide access to justice for all and build effective, accountable, and inclusive
institutions at all levels at score value of 0.05. This is because the goal does not refer to
industry but focuses on building legal solutions to ensure sustainable development at
national and international level. The influences of achieving gender equality and empower-
ing all women and girls (SDG5) and strengthen the means of implementation and revitalize
the global partnership for sustainable development (SDG17) have gained the same scores
at 0.14.

The last column of Figure 9 shows that the overall influence of the three elements
technology of simulations (E4.1–E4.3) is mild positive on all the SDGs ranged between
0.76–0.89. In summary, it can be stated that experts indicate a significant positive impact of
simulation on those sustainable development goals that are related to I4.0 and its impact
on environment (employment, consumption, use of natural resources).

4.5. Augmented Reality

Figure 10 shows the average scores of the AR elements provided by the seven groups.
As shown in Figure 10, the overall influence of AR (E5) is quite related to the goals that need
innovation in communication by the senses of sight and hearing, which are the core and
key channels of VR. In fact, for this reason, it is understandable why E5.2–E5.4 technology
elements have an average score higher than E5.1 and E5.5.



Sustainability 2021, 13, 2560 21 of 33

Sustainability 2021, 13, x FOR PEER REVIEW 21 of 35 
 

processes [155], workstations and manufacturing lines modeling and analysis [156], sup-
ply chains analysis [157] and better understanding of the dynamics of business systems 
[76]. 

Experts also highly rated the impact of simulation on SDG12: ensure sustainable con-
sumption and production patterns and SDG8: promote sustained, inclusive, and sustain-
able economic growth, full and productive employment and decent work for all at score 
values around 1.9 and 1.81, respectively. This is probably since both goals relate to pro-
ductive employment and sustainable production patterns, which are often analyzed and 
improved by means of simulation methods. In contrast, the lowest impact of simulation 
is agreed to be on SDG16: promote peaceful and inclusive societies for sustainable devel-
opment, provide access to justice for all and build effective, accountable, and inclusive 
institutions at all levels at score value of 0.05. This is because the goal does not refer to 
industry but focuses on building legal solutions to ensure sustainable development at na-
tional and international level. The influences of achieving gender equality and empower-
ing all women and girls (SDG5) and strengthen the means of implementation and revital-
ize the global partnership for sustainable development (SDG17) have gained the same 
scores at 0.14. 

The last column of Figure 9 shows that the overall influence of the three elements 
technology of simulations (E4.1–E4.3) is mild positive on all the SDGs ranged between 
0.76–0.89. In summary, it can be stated that experts indicate a significant positive impact 
of simulation on those sustainable development goals that are related to I4.0 and its im-
pact on environment (employment, consumption, use of natural resources). 

4.5. Augmented Reality 
Figure 10 shows the average scores of the AR elements provided by the seven groups. 

As shown in Figure 10, the overall influence of AR (E5) is quite related to the goals that 
need innovation in communication by the senses of sight and hearing, which are the core 
and key channels of VR. In fact, for this reason, it is understandable why E5.2–E5.4 tech-
nology elements have an average score higher than E5.1 and E5.5. 

 
Figure 10. Average scores of the effect of augmented reality elements on the UN-SDGs. 

Therefore, focusing on the SDGs, the higher impact of this enabler is related to indus-
trial, innovation, and infrastructure sectors (SDG9), as well as quality education (SDG4) 
in which an immersive real time simulation in a collaborative CPS boosts the productivity 
and the engagement of the users [83]. Other interesting outcomes emerged from econom-
ical (SDG8) and health (SDG3) frameworks reinforce the use of AR for enhancing the 
productivity and the ability of the workers as well as the mental workload (remote assist-
ing and communication). 

Figure 10. Average scores of the effect of augmented reality elements on the UN-SDGs.

Therefore, focusing on the SDGs, the higher impact of this enabler is related to indus-
trial, innovation, and infrastructure sectors (SDG9), as well as quality education (SDG4) in
which an immersive real time simulation in a collaborative CPS boosts the productivity and
the engagement of the users [83]. Other interesting outcomes emerged from economical
(SDG8) and health (SDG3) frameworks reinforce the use of AR for enhancing the pro-
ductivity and the ability of the workers as well as the mental workload (remote assisting
and communication).

However, we argue that the remaining lower marks for the SDGs are due to a not
completely direct influence of this technology. In fact, the fundamentals technology el-
ements of AR allow the users to increase and improve his or her communication (E5.4)
and collaboration (E5.2) skills, and this can certainly have an indirect influence on all the
SDGs. For example, a documentary with AR on marine life can increase awareness of the
care of life in the oceans (SDG14), a guided tour in AR of a wind or solar plant can help
understand the importance of renewable energy (SDG7), or an installation in the public
space that uses augmented reality to evoke empathy and build sustainable behavior among
people regarding climate change (SDG13). Considering these aspects, we believe that AR
can be used as a big tool either from an economical perspective both to communicate and
raise awareness on urgent environmental aspects that affect our planet.

4.6. Additive Manufacturing

The aggregate mapping of AM on SDGs displays a slightly positive impact of this
technology on the achievement of the 2030 Agenda ( Figure 11). AM got an overall average
score of 0.54, which is the lowest among all the I4.0 enablers. This statement shares a
wide consensus among the expert panel as shown by the low standard deviation results in
Figure 11. Furthermore, looking at the disaggregated results of Figure 11, which shows the
average scores of the AM elements provided by the seven groups, it is apparent that the low
impact on SDGs regards all the technology elements of the AM, either the ones referring to
the production technology or the ones concerned with product design methodology.

Nevertheless, considering the specific goals, it is possible to verify that AM has high
impact on the SDG9: build resilient infrastructure, promote inclusive and sustainable
industrialization and foster innovation. The average impact of all the AM technology
elements on SDG9 is 2.62, indicating a strong positive influence. This result was expected,
as AM will transform some old and disadvantageous manufacturing paradigms, allowing
small factories in less favored areas of the world to be established, with limited resources
and few infrastructures to produce complex and innovative products releasing from strict
supply-chain requirements. It will be even possible to produce parts by cloud manufactur-
ing, with lower concerns about where the production facility is and its adequacy to cope
with an ever-changing demand.
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It is important to point out that AM is a disruptive technology. Therefore, its impact
on SDGs is not an automatic outcome of the additively manufactured products but requires
a consistent effort to shift from present production and supplying practices to new ways
of designing mass-customized products, supplying raw and semi-finished materials, and
manufacturing them [158]. AM will be more likely for traditional manufacturing. The
physical supports to production such as tools, fixtures, and dies will become redundant.

A recent occurrence of the impact of AM on SDG9 happened during the COVID-
19-related crisis, in which several supply chains of essential medical devices have been
interrupted, depriving some nations of fundamental tools to control the epidemic. Several
factories had to reorganize their production to make these tools available [159], and AM
provided them with the required flexibility [160].

4.7. Horizontal and Vertical System Integration

Figure 12 depicts the overall impact of Horizontal and Vertical System Integration
(HVSI) enabler (E7), which shows the average scores of its seven elements provided by the
seven groups. As shown in the figure, the team of experts concluded that the technology
elements of this enabler (E7.1–E7.7) have positive influences. The experts believe E7 is a
base ground for the other eight I4.0 enablers, which can be deduced from intermediate
influences of score values around a positive one for most of the E7 elements. These opinions
shared a good consensus among the experts, which can be concluded from the average SD
of 0.89 (cf. Figure 5).
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Looking to the effects of individual elements, shown in the last column of Figure 12,
it is clear that CNs element (E7.7) is believed to have the highest influence among the
E7 elements at 1.27 score. This result is justified in the literature from the importance of
CNs to enable the realization of the I4.0 and achieve sustainability, especially in industry
and innovation (SDG9) [122], partnership and collaboration (SDG17) [123], reasonable
production and consumption (SDG12), and reduce extreme hunger and malnutrition
(SDG2) [161]. System integration (E7.3), DT (E7.4), CPS (E7.6), and CPSs (E7.7) are followed
at average scores values of 1, 0.91, 1.01, and 0.8, respectively. The experts believe that
these four digital elements have a strong positive influence at scores around 3 and 2. This
believe is shared undoubtedly among the experts for sustainable industry and innovation
(SDGG9), and reasonable production and consumption (SDGG12). In contrast, the two
reference related architecture elements (E7.1 and E7.2) are believed to have mild week
influences at around 0.5. This is justified by the fact that architecture is a base ground of
other I4.0 technological elements, including elements that have an indirect influence on
the SDGs.

The effect of HVSI enabler (E7) on the UN-SDGs varied substantially from strong
direct, and weak into very weak positive influences, as can be seen from the last row of
Figure 12. The average impact on industry, innovation, and infrastructure (SDG9) has a
2.67 score, which indicates that almost all the elements of E7 have a strong positive influence
to foster the industry and promote innovation environment. This result is not surprising,
as the core objective of the I4.0 vision is to deploy existing technology and stimulate more
advancements to improve the industrial sector [118]. HVSI enabler is also believed to have
a mild positive impact on reasonable production and consumption (SDG12). This can be
justified from the focus of the research on HVSI, enabling the development of technologies
towards eco-friendly production and sustainable energy consumption [161]. The experts
believe that HVSI has also mild positive impact, at around 1.3 score, on enhancing descent
work and economic growth (SDG8) and sustainable cities and communities (SDG11). In
contrast, the impact of HVSI on goals related to gender equality (SDG5) and social equality
(SDG10) are believed to be limited.

4.8. Autonomous Robots

The results mapping the ARs elements (E8.1–E8.3) into the sustainability goals are
pictured in Figure 13, which shows the average scores of the ARs elements provided by the
seven groups. The prevailing green color variants indicate the positive effect of the three
ARs elements on the SDGs.
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Average scores for the ARs elements (last column in Figure 13) indicate indirect pos-
itive influence, with the autonomy element (E8.3) having the lowest and deliberation
element (E8.2) the highest influence. Average scores for each SDG (last row in Figure 13)
vary substantially and range from −0.1 for reduced inequality (SDG10) to 2.38 for indus-
try, innovation, and infrastructure (SDG9). The strongest positive influence on SDG9 is
expected since ARs enabler contributes to the development of quality, reliable, sustainable
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resilient infrastructure, and to sustainable industrialization, as well as enhance scientific
research, which are all targets provided by the Inter-Agency and Expert Group on SDG
Indicators (IAEG-SDGs) [6]. The second strongest positive effect is on good health and
well-being (SDG3) due to the potential use of ARs in assisting elderly or ill people by
monitoring their health, as well as in various clinical settings (e.g., surgeries). It is to be
noted that when it comes to the ARs in broadest possible sense, autonomous weapons [162]
can negatively affect not only SDG3 but also other SDGs. The ARs has a negative effect on
SDG10, which is mainly due to the possible outsourcing of human duties (often the less
paid ones) to the ARs.

The effect of the ARs elements is agreed to be less substantial on peace and justice
strong institutions (SDG16) and partnerships for the goals (SDG17) SDGs. This can be ex-
plained by potential use of ARs for mentioned autonomous weapons and potential human
rights violation [11]. The insignificant effect is also observed on no poverty (SDG1) and on
clean water and sanitation (SDG6). The former effect is due to the potential negative effect
of ARs on the employment rate especially in poor countries and on the overproduction
and underemployment problem, while in the case of SDG6 one could argue that producing
a robot also influences the environment. On the other hand, ARs, when operating, can
be programmed in a way to lessen the ecological footprint. So, the overall effect could
be balanced.

In comparison to the results of the mapping of other enablers to the SDGs, ARs enabler
is not the key one when it comes to fulfilling the SDGs. This might be due to the above
reasoning, as well as due to the fact that with an increasing number of ARs implemented in
our everyday lives the chance of them to malfunction or getting hacked [163] is increasing.
This can, of course, negatively impact all SDGs.

4.9. Cybersecurity

The results mapping the Cybersecurity technology elements (E9.1–E9.2) into the
sustainability goals is depicted in Figure 14, which shows the average scores of the Cy-
bersecurity elements provided by the seven groups. Like most of the other enablers, the
results indicate an overall positive effect of these elements on SDGs.
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Average scores for the Cybersecurity elements (last column in Figure 14) indicate
indirect positive influence, with both elements having a similar influence. Average scores
for each SDG (last row in Figure 14) range from 0.14 for gender equality (SDG5) and
reduced inequality (SDG10) to 1.86 for industry, innovation, and infrastructure (SDG9),
and sustainable cities and communities (SDG11). The strong influence on SDG9 is due to
the contribution of the elements E9.1–E9.2 to quality, reliable, sustainable, and resilient
infrastructure, and to the increase in access to information and communications technol-
ogy. The strong influence on SDG11 is related to the concept of smart city, which mainly
emphasizes issues related to sustainable transport system, sustainable urbanization, re-
duction in the adverse per capita environmental impact of the cities, and universal access
to green and public spaces for all citizens. The lowest effect of Cybersecurity is on SDG5
and SDG10, which is most likely due to the existing gender bias in cybersecurity [164].
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However, unequal access to cybersecurity tools increases the social, economic, and political
inequalities, so this result is rather controversial for SDG10. Last, results show that average
scores higher than or equal to one are achieved in SDGs that directly cover social aspect of
sustainability (except for SDG9).

Cybersecurity has the second lowest score in comparison to the other enablers, which
is due to its markedly indirect effect on the SDGs. In addition, part of this result might
be due to the slight underestimation of the importance of this enabler. Such a case is not
only within the research and pedagogic community, but also within the larger part of the
society. This was confirmed during the ongoing coronavirus pandemic, which resulted in
a wave of cyber-attacks, due to many people working and studying remotely while not
being equipped with enough knowledge and resource to tackle these attacks [165].

4.10. Result Summary

This section summarizes the result of the mapping and interprets the main lessons
learned from the study. The first lesson learned is depicted in Figure 15, which pictures
the overall influence of I4.0 technologies on the 17 SDGs. The average normalized scores
of the mapping are used to draw the graph. The graph shows significant differences of
the influences on the 17 goals, ranged from very strong influence at around 0.9 for SDG9
to very weak influence at around 0.1 for SDG10. To interpret the result, the 17 goals can
be grouped, based on the gained normalized scores, into four groups: high, middle, and
low influenced goals at normalized scores of above 0.5, between 0.5 and 0.3, and below
0.3, respectively.
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SDG9: sustainable industry and innovation is the only goal in the high influenced
category, which is the core focus of the I4.0. In the middle-influenced category, there are six
goals: SDG3, SDG11, SDG12, SDG8, SDG7, and SDG4. However, these goals are focused
on fields that are strongly related to the industry either by using industry output as their
inputs (i.e., using manufactured equipment in health sector) or vice versa (i.e., the output
of education supply the industry workforce). On the other hand, the remaining 10 goals
in the lowest influenced group focus on thematic issues that do not have direct relations
to the industry (i.e., justice, poverty, and hunger). The realization of I4.0 is promising to
towards the achievements of the 7 goals that lays within the first and second categories.
However, it is not expected to have substantial influences on the remaining goals.

The second lesson is learned from the expected contribution of I4.0 enabling tech-
nologies toward the achievement of the UN 2030 Agenda. The radar graph in Figure 16
outlines the expected influences of the nine enablers of I4.0. Normalized scores of the
average mapping are used to draw this graph. E2: Big Data and Analytics enabler is
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believed to have the highest contribution and E6: Additive Manufacturing the lowest. The
highest influence of the E2: Big Data and Analytics driven by the fact that it is applied in
almost all the human aspects, from economy and social life to the environment. In contrast,
E6: Additive Manufacturing contribution is confined to part of the economy, namely on
industry and infrastructure. This is also noticeable from the remaining five enablers, where
the scope of application is larger for technologies gained the highest scores (i.e., IIoT) and
smaller for those gained quit lower scores (i.e., ARs). To achieve the sustainable agenda,
more focus should be directed towards technologies that are applicable in wider fields.
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The third lesson is about the contribution of I4.0 element technologies towards the
sustainability. Figure 17 represents the elements that have average score above 1. Around
43% of the elements (19 out of 44) gained these high scores. These promising elements
are mainly focused on five areas: decision making, data collection, processing and usage,
communication, systems integrations, and human-machine collaboration. The summarize
lesson from this figure is that the key success of I4.0 towards the goals’ achievement is the
wide implementation of intelligent decision making (decision-making based on data) and
exploit the ability of both human and machines, which could not be realized without human-
machine collaboration, effective organization cooperation and efficient communication.
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5. Conclusions

The paper presents the first formative attempt to investigate the sustainable influence
of the I4.0 technologies in accordant with the 2030 Agenda of the United Nation. A
panel of academic experts from different engineering disciplines investigated this complex
influence. The paper contributes to a deeper perception of the fourth industrial revolution
by identifying and defining 44 technology elements, as well as classifying these enabling
elements into nine main categories. The influences of these heterogeneous elements
are quantitatively mapped to the 17 sustainable development goals, consolidating the
understanding of the relation between I4.0 and the SDGs.

This paper shows that I4.0 is enabled by a variety of technologies, which are known
decades before the emerge of I4.0 vision, but the new in this area is how these technologies
are being developed and applied in more intelligent, ubiquitous, and collaborative manners.
Even though there are advancements in all the I4.0 technologies, there are still many
challenges standing as barriers on the realization of the whole vision. Tremendous ongoing
research efforts are trying to overcome these challenges.

The mapping shows that I4.0 technologies have a prominent influence toward the
achievements of the SDGs. The expert’s panels believe that the influence varies between
technologies and on different SDGs. The experts strongly believe that from the 17 goals
SDG9: industry, innovation, and infrastructure, is the most influenced goal by I4.0 technolo-
gies. Additionally, a consensus has been reached that E2: Big Data and Analytics enabler
has the highest contribution toward the achievement of the SDGs. This is driven by the fact
that data-based technologies are widely applied in different fields from industry, education,
and economy into social life, health, and the environment. Generally, the mapping showed
that the majority of the I4.0 technologies are positively influencing the 2030 Agenda, and
only very few elements are expected to negatively influence goals related to reducing
inequality (SDG10). For such negative effect, the experts believe that the technology should
be geared to comply with the SDGs, which can be achieved by initiating policies to turn the
influences from negative into positive. Automation tax is an example of such an effective
policy [19].

This work opens several further research opportunities. It is worth to study the
influence of I4.0 technologies on individual goals, particularly goals that did not share
wide consensus among the experts, which have standard deviation values greater than one.
It is worth to investigate the reasons of the controversy mapping and discover whether it is
caused by lack of explicitly in defining the SDGs, targets, or indicators, or by the ambiguity
of the foreseeable influence of the technology.

Another direction is to extend this study by involving more experts from the academia
and beyond. As this work is carried out by seven experts’ groups from seven institutions in
six European countries, it is worth to extend the study to wider experts’ panels. This could
be achieved by increasing number of experts, including more institutions and investigate
it in other countries in Europe and overseas. In addition, as this work focuses on the
academic view, it would be worth to conduct the mapping from the perspective of experts
from industry, the economy as well as form human rights and environmental protection.
Investigating the influence from different perspectives provides a complete picture and
should help policymakers to initiate policies and actions that consider and compromise
different views.

Our next step is to evaluate the current maturity level of I4.0 technologies, especially
technologies that have high positive influence on the SDGs, which is essential to enable
policies update in many sectors, including education, industry, and governmental. For
industry, it helps to make plans to apply mature technologies and to prepare the infras-
tructure for transformation into semi-mature technologies soon. In education, knowing
the maturity level of technologies enables updating curriculum such that the level of
taught knowledge is linked to the technology maturity level. For government, it allows
rules initiation that enforce using more sustainable and mature technologies (i.e., tax), and
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to encourage initiatives toward adopting and advancing non-matured technologies (i.e.,
bonuses, or loans with low-interest rate).
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