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Abstract
In geological mapping activities, geomatics can facilitate data collection during field survey and 
avoid practical problems related to the transposition of these data onto maps for GIS production. 
The Solid True Orthophoto (STOP) can reduce these difficulties using a dedicated instrument 
developed by the Authors called GSTOP. It can run on laptops or tablets, managing a direct 
connection with low cost navigation sensors in real time, to define its location and attitude. 
The user can produce a 3D solid image in order to compare the effective scene to record 
notes and to acquire evidence. GSTOP has been used to produce a geomorphological map 
of the Rodoretto Valley (Germanasca Valley, NW Italy), reconstructing its Quaternary 
evolution.
Keywords: Geomorphological survey, solid true orthophoto, in field data acquisition, 
quaternary map.

Introduction
Geological mapping is an interpretive process involving multiple types of information, 
from analytical data to subjective observations, collected and synthesised by a researcher. 
With field experience, geologists generally develop effective personal styles of relatively 
efficient mapping. This “traditional” geological mapping can be accomplished by a 
geologist almost as effectively in inclement weather and when surrounded by mosquitoes 
as in ideal conditions [Athey et al., 2008]. Each geologic map, regardless of scale, requires 
a certain level of field mapping, where data are recorded on a topographic plot, on aerial 
photographs and in a field book. Traditionally, geological elements are hand-transferred 
to a topographic base, on which the final map is prepared for publication using known 
cartographic techniques [Brown and Sprinkel, 2008].

http://creativecommons.org/licenses/by/4.0/
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Digital Geological Mapping (DGM) is the process of collecting and mapping geological data 
using some form of portable computer and Global Navigation Satellite System (GNSS), rather 
than a traditional approach based on notebook and paper map [McCaffrey et al., 2005]. Digital 
mapping is rapidly becoming accepted and established as a valuable tool for geoscientists. 
Recently, numerous papers have discussed the methodology, software development, 
applications and merits of DGM [Jones at al., 2004; Wilson et al., 2005; Clegg et al., 2006]. 
Many geoscientists have used a palm-sized Personal Digital Assistant (PDA) or similar device 
and customised software applications [Brodaric, 1997; Walsh et al., 1999; Brimhall et al., 2002; 
Edmondo, 2002]. Furthermore, other researchers have chosen systems based on larger rugged 
tablet computers [De Donatis et al., 2005; Sprinkel and Brown, 2008] that offer the following 
distinct advantages despite its encumbrance [Brown and Sprinkel, 2008]:

1) improved precision in placement of geologic features and outcrop location using 
Global Navigation Satellite System (GNSS) and on-screen display of geospatially 
corrected imagery and topographic base of reference;
2) increased efficiency in drawing field-attributed geologic lines because they do not 
need to be hand-transferred or redrawn on another map in the office and then digitised;
3) possibility of graphical notation on digital photographs with geological data;
4) opportunity to access key publications in a digital library.

These papers document the ongoing technological development that has allowed the relatively 
unwieldy computer equipment that was available to the early digital pioneers, to be replaced 
by lightweight and user-friendly DGM systems. Most modern users favour a DGM setup 
based around a palm-sized Personal Digital Assistant (PDA) or a larger Tablet PC.
The actual DGM systems expose some limits due to the lack of 3D visualisation and 
collection. In fact, the basic data of commercial DGM is a 2D map or an orthophoto, which 
constitutes the reference coordinate system for data recording and visualisation. Despite 
using GNSS and a compass, the user has difficulty in correctly locating the information 
because he must compare what he sees (a natural 3D perspective view) with a 2D mapping 
data (some contour lines, mapping details, orthophotos, etc.). Moreover, the acquired data 
are located using the GNSS position, which has a metrical level of accuracy in stand-alone 
method. This position has to be considered less than accurate for 3D positions due to GNSS 
precision, ellipsoidal height and others aspects.
To fill these gaps, the authors propose the use of a Solid (True) OrthoPhoto (STOP) [Dequal 
and Lingua, 2003], which provides a complete 3D land data set [De Agostino et al., 2012] 
and correct aerial photographic information in a geo-referenced form directly on-site during 
the survey [Forno et al., 2011].

The Solid True OrthoPhoto (STOP)
Definition
A digital orthophoto is a geometrically corrected photographic representation of a territory. 
It has the same accuracy as a traditional topographic map [Kraus, 1997] but contains much 
more information, such as aerial photographic details.
Whether natural or manually modified, a territory is realistically represented without the 
codes or the symbology used in a digital map production. Each pixel of an aerial image is 
orthogonally projected onto a cartographic plane, producing a geometrically correct map. 
The orthophoto functions like a traditional map; angles, distances and coordinates can be read 
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and measured. While the correct interpretation of a digital map requires technical training, 
an unskilled user, to a basic easy level, can correctly read and interpret an orthophoto.
Orthophotos may be employed in land-planning applications such as infrastructural planning, 
land-use monitoring and geological mapping. In fact, through the use of orthophotos, it is 
possible to recognise and interpret several geological details in 2D [Barnes and Lisle, 2004] 
clearly detectable at different viewing scales.
Adding 3D information by means of a dense digital surface model (DSM), it is possible 
to enhance the quality of the geomorphological information surveyed, to optimise the 
understanding of the geo-phenomena and their evolution. However, difficulties may be 
encountered where the land surface is characterised by discontinuities and hidden areas. 
In these situations, commercially available software may be ineffective in producing an 
acceptable orthophoto [Kraus, 1997] and thus, a DDSM, acquired for example, with light 
detection and ranging (LiDAR) techniques [Dequal and Lingua, 2003; Pirotti et al., 2012], 
becomes necessary.

Figure 1 -The schema of STOP.

A true orthophoto can be displayed, analysed and queued in a georeferenced manner using 
GIS software. The height values derived from the DDSM can be merged with the orthophoto 
to create the STOP. As shown in the schema of Figure 1, the result is a correct 3D location 
of the coloured pixels of the true orthophoto.



237

European Journal of Remote Sensing - 2013, 46: 234-249

The structure of STOP
The STOP is a set of various matrices with the same pixel size, number of rows and number 
of columns. Thus, it is possible to record for each pixel of a STOP (Fig. 2):

1) one height value derived from the DDSM and recorded as a short integer (C variable 
type, 2 bytes/pixel can represent a value between -327.67 and +327.68 m) or a float (C 
variable type for single precision, 4 bytes/pixel, 32 bit/pixel, which can represent any 
possible value);
2) three colour values (Red, Green and Blue, RGB) related to colour image extracted 
from the orthophoto (3 bytes/pixel);
3) additional matrices that contain other radiometric data as nearest, medium or thermal 
infrared, multispectral or hyperspectral bands (1 bytes/pixel for each band).

Figure 2 - The structure of STOP.

The viewer of STOP
An experimental software tool has been developed in Visual Fortran (with GINO and GINOMENU 
graphic libraries, version 7.5) to manage the STOP application. This user interface includes simple 
query functions, zoom and pan features, a 3D coordinate viewer and some measurement tools 
(e.g., angles, 3D distances, areas, volumes). These features are useful during geomorphological 
field surveys. As shown in Figure 3, specific commands prompt STOP to: (a) measure 3D distances 
and angles; (b) determine areas; (c) directly calculate (with a least squares procedure) and record 
dip and dip direction of planes using the 3D coordinates of their surface points; (d) extract the 
intersection between planes and the land surface; (e) define complex volume calculations from 
the intersection of the topographic surface with several planes.
When STOP is uploaded on a tablet PC, the interface will permit the use of an electronic pen 
to directly map geomorphological features in the field. Thus, STOP replaces the traditional 
topographic map.
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Recently, a newly incorporated feature permits an ODBC connection to a simple 
GeoDataBase for directly recording data in a structured way in the field.

Figure 3 - The main functions of STOP viewer.

The GNSS Solid True OrthoPhoto (GSTOP)
The STOP viewer has been recently improved by the inclusion of some new features based 
on connectivity with low cost navigation sensors. These devices (Fig. 4) have been derived 
from Mikrokopter units developed from an Unmanned Aerial Vehicle: MK-Navictrl (CPU), 
MK3mag (3-axis magnetic field sensor as a low cost Inertial Measure Unit, IMU), MKGPS 
(based on the LEA-6S receiver chipset by Ublox) and MKUSB/XBee wireless link to the 
PC.

Figure 4 - The navigation sensors of GSTOP.
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The integrated portable GNSS (with Hybrid GPS/SBAS engine for WAAS, EGNOS, 
MSAS) determines the surveyor’s position in the mapping coordinate system (X0,Y0,Z0) 
and a low cost IMU measures the attitude angles , ,~ z l^ h of the Tablet PC with respect to 
(X, Y, Z), as shown in Figure 5. This information can be displayed in real time in the STOP 
viewer using a circle (user’s position) and a red arrow (horizontal direction of his point of 
view).
Furthermore, the navigation data are useful for generating a natural 3D perspective view, 
similar to that which the user sees, in order to assist and improve the geological detail 
collection; this product is a Solid Image (SI) defined below [Bornaz and Dequal, 2003].
The navigation data can also be acquired using other kinds of higher specification GNSS/
IMU sensors, in order to obtain data that are more precise.

Figure 5 - The main view of GSTOP.

Definition of Solid Image 
To a good approximation, any image can be considered as a central perspective of the 
photographed object. If the internal orientation parameters of the digital camera (position 
of perspective centre in image coordinate system ζ, η) are known, it is possible to establish 
a direction (α, θ) in the object coordinate system (x, y, z) for each pixel I of the image (see 
Fig. 6a) measuring its image coordinates (ζI, ηI):
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where c is the principal distance of the photographic camera that generates the image.
One image is not sufficient to determine the 3D position of an object point. If a single 
image is used, it is only possible at best, to establish its direction in the space. In order to 
reconstruct objects in three dimensions, it is necessary to use at least two images according 
to the classical principles of photogrammetry.

Figure 6 - Definition of Solid Image.

A valid alternative to the well-known photogrammetric restitution techniques is offered 
by the knowledge of the distance d between the centre of perspective of an image and the 
object itself for each direction in the space (Fig. 6b). In this way, it is possible to establish 
the position of any object point O in the (x, y, z) coordinate system, using simple geometric 
equations:
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where θ, α are determined as previously shown [1].
The coordinates (xo, yo, zo) can be transformed into the mapping coordinate system (X, Y, 
Z) by means of a simple 3D roto-translation that can be defined using the navigation data 
(point of view position and attitude).
The structure of the SI is similar to the STOP; the traditional RGB colour data (and other 
radiometric band) of the image are completed with a supplementary “range matrix” that has 
the same size as the RGB matrices, in terms of pixel size, number of rows and columns and 
contains distance data for each pixel.
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Solid Image generation using STOP
In order to generate an SI, the orthophoto and the DDSM contained in a STOP can be used.
First, it is necessary to define the characteristics of a “virtual” digital camera that supposedly 
produced the photographic image: focal length, pixel size, number of rows and columns. 
The SI matrices can be created and filled with zero values. In this case, the lens distortion 
and other camera calibration parameters are considered null.
The second step consists of projecting each pixel of the STOP onto the SI. This operation 
consists in calculating for each pixel of the STOP, the corresponding image coordinates ξ, 
η using collinearity equations:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

c
r X X r Y Y r Z Z
r X X r Y Y r Z Z
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where:	 (X0, Y0, Z0) are the mapping coordinates of projection centre (GNSS);
	 (X, Y, Z) are the mapping coordinates of a STOP pixel;
	 rij are the 9 elements of a 3×3 rotation matrix defined by , ,~ z l^ h (IMU);
	 c is the focal length;
	 (ξ, η) are the (solid) image coordinates of a projected STOP pixel.
The distance between the STOP pixel and projection centre can be calculated by:

( ) ( ) ( )d X X Y Y Z Z 40
2

0
2

0
2= - + - + - 6 @

The relative pixel of the SI is defined using (ξ, η) and the SI pixel size and then the 
STOP data (RGB, d and other radiometric data) can be written into the SI matrices in this 
corresponding position.
The density of the pixels in the digital image is usually much higher than that of the STOP 
data. For this reason, when the STOP data is projected onto the digital image, the matrices 
that compose the SI are not completely filled; the distance and the RGB values are only 
associated to some pixels (this quantity depends on the density of the STOP data and on the 
image resolution in terms of dpi). In order to fill these gaps, it is necessary to integrate the 
missing values with an interpolation process. The “inverse distance weighted method” has 
been used for faster processing [Biasion et al., 2005]. The four nearest pixels, of which the 
value (distance or RGB values) is known, are considered.

Solid Image generation using additional digital camera and DTM of STOP
If the surveyor uses an additional digital camera, then the SI generation becomes easier.
In fact, the photographic image acquired with the digital camera can be used as the RGB 
matrices. Therefore, the SI inherits the RGB image from the digital camera that must be 
calibrated to define:
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1) internal orientation parameters: focal length c, image coordinates of principal point 
(ξ0, η0);
2) image sensor characteristics as pixel size, number of rows and columns;
3) lens distortion and sensor calibration ( , )p hD D  that give the difference of the real 
photographic image with respect to ideal perspective [McGlone et al., 2004].

The external orientation parameters X0, Y0, Z0 (GNSS receiver) and , ,~ z l  (IMU) can be 
determinate supposing that the camera is one with the Tablet PC.
In order to define the range matrix of the SI, the DDSM of STOP can be used by applying 
modified collinearity equations:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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As described in the previous paragraph, the range matrix is not completely filled; it is 
necessary to integrate the missing values with an interpolation process using the “inverse 
distance weighted method”. The four nearest pixels, of which the distance value is known, 
are considered.

The Solid Image viewer included in GSTOP
An example of the SI generated in this way is shown on the right side of Figure 7 (SI).
The surveyor observes a 2D perspective image (as a photographic image) similar to what he 
sees in the field, then he can measure and record the features of some evidences (distance, 
angle, area, dip, dip direction) in a 3D way using the hidden information of the range matrix.
Moreover, the user can acquire points, polylines, polygons and annotations with associated 
codification simply by picking with the mouse or digital pen into the SI window; these 
entities are directly geo-referenced in the 3D mapping coordinate system using the range 
matrix and the external orientation parameters of the SI.
In order to save the height information, it is possible to use a simple model of the local geoid 
(a plane) that defines local geoid height; this model is useful for correcting the ellipsoid 
height defined by the GNSS receiver into orthometric height.

The case study
The GSTOP application has been tested by producing a digital map of the Quaternary 
sediments and landforms in a sector of the alpine Rodoretto Valley (Fig. 8), a tributary of 
the Germanasca Valley (northwestern Italy).
The Germanasca Valley is located along the north-south tectonic thrust between the Dora 
Maira Massif, which outcrops on the valley’s right side and the Greenstone and Schist 
Complex visible on the left side [Sandrone et al., 1993; Compagnoni and Hirajima, 2001]. 
These nappe systems include the Penninic Domain (Lower, Medium and Upper Penninic 
units) and the Piedmont Zone [Compagnoni, 2003]. 
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Figure 7 - The generation of SI using STOP data (b) with and (a) without 
additional digital camera.

Figure 8 - The location of Rodoretto Valley (the case study).

The Dora Maira Massif is essentially constituted of garnet micaschists with chloritoid and 
blue-green amphiboles. The Greenstone and Schist Complex is a metamorphic system with 
Jurassic marine protolith sediments. The more diffuse lithotypes are schist, quartz schist, 
prasinite and serpentinite [Borghi et al., 1984]. The landforms and surficial sediments 
in this valley have resulted from the combinate effects of the Quaternary alpine glacial 
phases and deep-seated gravitative slope deformations. Therefore, the production of 
the geomorphological map has been focused on the relationships among landforms and 
sedimentary bodies developed during this period of the valley’s evolution.
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Figure 9 - Quaternary map of the Rodoretto Valley in the Germanasca Valley. 1: bedrock 
(greenstone schist complex); 2: subglacial sediments; 3: glacial till; 4: landslide main bodies; 
5: rockfall main bodies; 6: debris flow and avalanche sediments; 7: lacustrine sediments; 
8: glacial cirques; 9: roches moutonnées; 10: moraines; 11: glacial spillway channels; 12: 
landslide crowns; 13: minor scarps; 14: deep-seated gravitational slope doubled ridges; 
15: linear trenches; 16: open tension cracks ((a) principal, (b) minor); 17: alluvial and 
avalanche fans; 18: palaeochannels ((a) principal, (b) minor); 19: groundwater springs; 
20: geographical reference point; A, B, C, D: sectors [Forno et al., 2011].
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The STOP of this area was produced using the following data provided by the government of 
Turin Province:

1) a true orthophoto with ground sample distance (GSD) of 50 cm generated from a set of 
images acquired by a digital aerial mapping camera (DMC by Zeiss/Intergraph);
2) a DDSM with 1 m GSD generated from aerial LiDAR data (2 points/m2) by means of 
geometric regularisation, filtering and resampling. With these data, no further (expensive) 
data acquisition operations have been required but the obtained representation is only in 
2.5D. A professional user skilled in geomatics produced the STOP in 2 h.

Figures 10 and 11 show some occurrences that surveyors identified and recorded in an SI view 
generated using GSTOP, during field reconnaissance. On the right side, these features have been 
directly located into the GIS geomorphologic map with correct codes and symbolisation types.

Figure 10 - The SI viewer generated by GSTOP to record some moraines. 

Analysis of obtained accuracy/precision
The accuracy/precision of data extracted using GSTOP has not been defined for general 
cases because:

1) the GSTOP is an idea that can be realised in various ways: you can use different 
types of GNSS/IMU sensors to obtain different accuracy/precision of navigation data 
and therefore, different accuracy/precision of extracted data;
2) the quality (Ground Sample Density/Accuracy) of available data (DSM/DTM and 
orthophotos) substantially influences the final accuracy of the collected data.

Using the sensors described earlier, the nominal accuracy of this solution is about 2 m (4 
m of tolerance) with:

1) a GPS position defined from EGNOS-WASS differential correction for a sub-
metrical accuracy;
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2) an accuracy of 1 gon of attitude angles;
3) the distance from object is limited to 100 m.

Figure 11 - The SI viewer generated by GSTOP to acquire linear trenches and roches moutonnées.

The practical definition of the accuracy/precision of GSTOP has been performed only for 
the described configuration of GNSS/IMU sensors and the specific quality of available data 
(DTM/orthophotos in nominal scale 1:5000).
A specific procedure of in field survey has been realised to obtain a comparison set of correct 
data; several geodetic details collected by GSTOP have been surveyed using geodetic GNSS 
receivers in RTK (Real Time Kinematic) configuration connected to the GNSS permanent 
network of the Piedmont region. As is well known, this positioning technique ensures an 
accuracy of about 1-2 cm for planimetric coordinates (x, y) and 5 cm for the altimetric 
component (z). The discrepancies (Δx, Δy, Δz) from the coordinates acquired by RTK/GNSS 
and the coordinates of the corresponding details acquired by GSTOP have been determined, 
as shown in Figure 12. 
Statistical parameters of these discrepancies (Tab. 1) demonstrate that the data collected by 
GSTOP are practically coherent with the precision/tolerance of a digital map of a nominal 
scale 1:10000, without significant systematic errors.
About 100 dips and directions estimated using GSTOP have been compared with the relative 
values obtained by manual surveys using a geological compass with an inclinometer. The 
compass bearing has been corrected using local magnetic declination and local convergence of 
the meridian. The angular discrepancies have been calculated to evaluate the accuracy of dips 
(rms = 3.125 gons) and directions (rms = 3.214 gons). The results are comparable with similar 
low cost instruments for navigation purposes, in accordance with [Guarnieri et al., 2011].
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Figure 12 - Distributions of discrepancies.

Table 1 - Statistical parameters of discrepancies.
Δx
[m]

Δy 
[m]

Δz
[m]

Mean 0.45 -0.23 1.08

Dev.st. 1.80 1.78 2.86

Min -6.30 -9.50 -10.70

Max 7.50 8.50 9.55

Min (95%) -3.95 -3.87 -4.23

Max (95%) 3.76 3.92 4.65

Conclusions
A new, detailed geomorphological map of the Rodoretto Valley Quaternary cover has been 
produced. The investigation recorded previously unmapped glacial tributary evidence, such 
as lateral and frontal moraines and outwash incisions connected to small local Pleistocene 
glaciers. A wide, deep-seated gravitational slope deformation has been also defined, forming 
many trenches of various sizes, doubled ridges and slide scarps.
Geologists unskilled in geomatics have efficiently used the STOP viewer on a Tablet PC 
during field surveys. The 3D visualisation tools offered by the STOP viewer software have 
facilitated the immediate interpretation of relict landforms with:

1) time savings during acquisition and loading into GIS software;
2) minor number of blunders that limits repeated reconnaissance and accelerates map
productions;
3) better understanding of the morphological evidence with the availability of 3D
geometric information integrated with 2D views similar to what the surveyor sees.

The future development of the system involves its implementation in multiplatform 
smartphones, tablet PC and iPAD using lighter and precise GNSS/IMU sensors that 
microelectronic technology is developing.
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