
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Online Classification of RTC Traffic / Perna, Gianluca; Markudova, Dena; Trevisan, Martino; Garza, Paolo; Meo, Michela;
Munafò, Maurizio; Carofiglio, Giovanna. - ELETTRONICO. - (2021), pp. 1-6. (Intervento presentato al convegno 2021
IEEE 18th Annual Consumer Communications & Networking Conference tenutosi a Las Vegas, NV, USA nel 9-12 Jan.
2021) [10.1109/CCNC49032.2021.9369470].

Original

Online Classification of RTC Traffic

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/CCNC49032.2021.9369470

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2874753 since: 2021-03-16T15:45:06Z

IEEE

Online Classification of RTC Traffic
Gianluca Perna†, Dena Markudova†, Martino Trevisan†, Paolo Garza†,

Michela Meo†, Maurizio M. Munafò †, Giovanna Carofiglio ‡,
†Politecnico di Torino, ‡Cisco Systems Inc.

first.last@polito.it, gcarofig@cisco.com

Abstract—Real-time communication (RTC) platforms have
become increasingly popular in the last decade, together with
the spread of broadband Internet access. They are nowadays
a fundamental means for connecting people and supporting
the economy, which relies more and more on forms of remote
working. In this context, it is particularly important to act at the
network level to ensure adequate Quality of Experience (QoE) to
users, where proper traffic management policies are essential to
prioritize RTC traffic. This, in turn, requires in-network devices
to identify RTC streams and the type of content they carry.

In this paper, we propose a machine learning-based application
to classify, in real-time, the media streams generated by RTC
applications encapsulated in Secure Real Time Protocol (SRTP)
flows. Using carefully tuned features extracted from packet
characteristics, we train a model to classify streams into an ample
set of classes, including media type (audio/video), video quality
and redundant streams. To validate our approach, we use traffic
from more than 88 hours of multi-party meeting calls made
using the Cisco Webex Teams application. We reach an overall
accuracy of 97% with a light-weight decision tree model, which
makes decisions using only 1 second of traffic.

I. INTRODUCTION

In recent years, real-time communication (RTC) platforms
for video calls and virtual meetings have become a funda-
mental pillar of leisure and business, helping people to stay
connected and companies to save substantial travel costs.
Their value was especially manifested during the months of
self-isolation due to the COVID-19 pandemic, where online
conferencing made it feasible for a lot of businesses to
continue operations using remote working, with big econom-
ical benefits. This has been made possible by the Internet
becoming ubiquitous and available bandwidth continuously
growing [1]. During the early 2000s, Skype opened the busi-
ness for RTC applications, in a scenario where most of the
users were connected via cable modems, offering in general
poor bandwidth and high latency. Nowadays, the market offers
countless competing platforms for video calls, benefiting from
the widespread adoption of broadband access. Each of them
employs different technical solutions and network protocols
despite the recent efforts for standardization, with WebRTC
as the notable example1.

In this context, it is fundamental to maximize the Quality
of Experience (QoE) of users at the network level to avoid
impairments, service misbehavior and, in turn, users’ churn.

This work has been supported by the SmartData@PoliTO center on Big
Data and Data Science and Cisco Systems Inc.

1https://webrtc.org/

The QoE depends on many factors, such as the quality of
the connection of the participants, the network architecture
and the in-network management. Classification of RTC traffic
is the first and most important step towards effective traffic
management, allowing in-network devices to monitor users’
perceived QoE, and, if classification is made in real-time,
to take proper actions to cope with possible deterioration.
The widespread encryption of the Internet [2], with HTTPS
carrying more than 90% of web traffic, has made it difficult
for routers and middleboxes to separate traffic based on port
numbers or mere deep packet inspection (DPI), which is the
traditional way [3]. Indeed, most of the RTC platforms still
rely on the RTP protocol [4] to stream the multimedia content
in its encrypted version, Secure RTP (SRTP). It employs in-
clear packet headers, but encrypts the media payload, making
it hard to guess the type of content it carries. This calls
for novel techniques, based on machine learning (ML), to
re-obtain visibility on application traffic and help decision-
making at routers. In real-time communication this could
amount to distinguishing top priority flows from possibly less
critical data exchange – e.g., audio as more important than
video, presenter’s media as more valuable than audience’s.

In this paper, we propose a novel ML-based application
for classifying, in real-time, the RTC media flows carried by
RTP streams. Our approach is based on a few, yet well-chosen
features, derived from the statistical properties of the traffic,
which allow us to classify RTP streams to the type of content
they carry. Our application identifies not only audio or video
streams but also other properties of the media such as the video
resolution or the use of Forward Error Correction (FEC). Our
solution works with minimal delay, making a decision on a
stream with as little as 1 second of traffic. It is designed to
work as a software module to be plugged in network devices
(e.g., routers), enabling fine-grained traffic management.

We build our study on the Cisco Webex Teams RTC appli-
cation, which allows multi-party meetings with audio, video
and screen sharing2. Using more than 88 hours of network
traffic captured during real calls, we evaluate the impact of
the feature choice and different classification algorithms. After
a careful feature selection and using a light-weight decision
tree classifier, we obtain an overall accuracy of 97%, with
no big differences across classes. This work is the first step
towards a comprehensive traffic management system for RTC
based on ML, which enables application-level visibility at the

2https://www.webex.com/team-collaboration.html

network control plane, providing highly-detailed information
about the ongoing RTC sessions, the employed applications
and the perceived QoE.

II. DATASET

In this section, we briefly describe the dataset we use
throughout the paper. We focus on the Webex Teams RTC
application, which allows calls between multiple participants
with audio, video and screen sharing media. It is available
as a standalone application for PC and mobile devices and it
can also be used via browsers that support the WebRTC API
set. Webex Teams uses the Selective Forwarding Unit (SFU)
approach, in which participants send their multimedia content
to a centralized server. The server then forwards the data,
deciding which stream to send to each participant. The media
streams are encapsulated using the SRTP protocol [4].3 Each
client opens a single UDP flow towards the server, in which
multiple streams are multiplexed via a unique Synchronization
Source Identifier (SSRC).

Using Webex Teams, we capture real calls made under
different conditions, with a diverse number of participants
(from two to ten), multimedia content (audio, video, screen
sharing) and user equipment (PC, tablet or phone). The calls
are made in a real environment in which the participants are
connected on different networks, from various countries and
employ different classes of devices, from Windows PCs to
iPhones and Android phones. During each call, a participant
captures the exchanged traffic and saves it in a pcap file.

In our classification problem, we target RTP streams defined
as the tuple: source IP address, source port, destination IP
address, destination port and RTP SSRC. In other words, we
target a single stream, each carrying a particular multimedia
content. We divide the streams into 7 classes: Audio, Low
Quality (LQ) Video - 180p, Medium Quality (MQ) Video -
360p, High Quality (HQ) Video - 720p, Screen Sharing, FEC
audio and FEC video. Indeed, Webex Teams uses FEC to
mitigate packet losses, sending streams containing redundant
information to be used by the receiver in case some packets
are lost or contain errors. We observe FEC streams both for
audio and video, and we are interested in identifying them as
separate classes.

To obtain the ground truth, which maps each RTP stream
to the content type, we employ the application logs of Webex
Teams, that are automatically generated during each call. They
contain per-second details on each stream, such as the type of
media (audio, video or screen sharing), the video resolution,
the number of frames per second etc. During each call, the
participant who captures the traffic also stores the log file, that
we later use to extract the ground truth. Note that we cannot
use the RTP Payload Type field for this, since it is assigned
dynamically.

In total, we collected approximately 88 hours of media
traffic, exchanged during 27 calls. Each of them presents a

3In the remainder, we use the term RTP regardless it is used in its encrypted
version SRTP, which maintains all the original headers in clear.

TABLE I: Dataset summary

Class No. of seconds
Training Testing

Audio 214 359 103 098
Video LQ 203 275 98 855
Video MQ 45 291 16 817
Video HQ 68 947 34 324

Screen Sharing 41 178 11 249
FEC Audio 146 705 51 393
FEC Video 50 341 3 486

different mixture of the above classes and contains the traffic
generated by all participants as captured from the perspective
of a single individual. Ten calls have only two participants,
two are made with three participants and fifteen include more
than three participants. In Table I we provide a breakdown of
the dataset. For each class, we report the amount of data we
collected, in seconds. The most represented classes are Audio,
FEC audio and LQ video. While for audio this is somehow
expected, the prevalence of LQ video is caused by the video
thumbnails used by Webex Teams for showing inactive partic-
ipants during calls with more than three participants. The least
represented class is Screen Sharing, but the overall imbalance
of the dataset is still limited, with the ratio between the support
of the most and the least represented class being less than 6.

III. METHODOLOGY

Our goal is to classify the RTP streams that we observe
on the network to one of the seven classes reported in the
previous section. We aim at achieving this in real-time – i.e.,
making a decision based solely on the traffic observed in a
short time interval. Thus, our classification target is an RTP
stream as observed during a short time bin (from 200 ms
to 4 s). We recognize RTP with straightforward deep packet
inspection matching the protocol headers. We then separate
multiple media streams via their SSRC. We are not interested
in the control traffic for e.g., session setup or login, and, as
such, we neglect it. A single RTP stream typically results in
several entries (one per each time bin), that we shall classify.
We follow the typical machine learning approach. We first
extract meaningful features from the data, guided by domain
knowledge on network traffic and the RTP protocol. Then, we
perform a two-step feature selection process, by first filtering
out highly correlated features and then performing a recursive
feature elimination. Finally, we train a machine learning clas-
sifier and evaluate its performance on an independent test set.
The feature selection and algorithm training are done offline,
while the system is designed to calculate features and classify
new samples in real-time. The time it takes is equivalent to the
chosen time bin plus the feature computation and algorithm
run, whose execution time is negligible. Our code is written
in Python and exploits the scikit-learn library [5] for machine
learning.

Train/test methodology. To avoid overfitting and obtain ro-
bust results, we split our set of calls in a training set and a test

set. As such, we evaluate the performance on data which are
never used at training-time. Out of 27 calls, we use data from
22 calls for training and data from the remaining 5 calls for
testing. We verify that each class is well-represented in both
sets, and the test set accounts for approximately 30% of the
overall duration of the calls. We perform feature selection and
hyper-parameter tuning of the algorithms on the training set
and we evaluate classification performance on the test set. As
a performance indicator, we use the macro average (a simple
mean) of the F1-scores of each class.4 For some analysis, we
also consider the accuracy as a concise index for the overall
performance, since the classes are not strongly imbalanced.5

Feature extraction. We extract features from the raw packets,
separately for each RTP stream and time bin. Our features
are built upon the fields of the RTP protocol and take into
account its operation. We sketch our approach in Figure 1. We
consider five groups of features, reported in the central column
of the figure, in bold. They include packet characteristics
(length, timing, volume) and the RTP timestamp field which
indicates the instant at which the content is generated. RTP has
a few other fields, which indicate mainly header extensions,
and we do not include them, as they are very application-
specific. Since two of the selected quantities represent time,
we only consider their relative variation across packets, as the
absolute values are useless in our context. For packet size,
we use both absolute and relative values. We extract these
values for all packets and compute various statistical indexes
to build the final features, such as range, mean, standard
deviation, percentiles, third and fourth moments, etc. Since
we observe that the same values often recur over packets,
we also include features to measure the number of unique
values, the percentage of occurrences of the most common
value (mode) and the ratio between the minimum value and
the range. Finally, we also consider the traffic volume in terms
of the number of packets and bits seen in the time bin.

Note that our classifier is designed to work in real-time, so
we build features that can be computed on-the-fly considering
only the packets observed in a time bin. Intuitively, the smaller
the time bin is, the faster the stream is classified. However,
with larger time bins, the features are more significant, since
they are computed on a larger set of packets. In Section IV,
we explore this trade-off. Finally, note that we also avoid
features that require the association of multiple flows to keep
our design simple and scalable.

Feature selection. In total, we extract 95 features, derived
from the four empirical distributions and traffic volume of the
RTP stream. To remove those that are redundant and shrink
the overall number of features, we perform a two-step feature
selection process:

1) Correlation analysis: We perform a first selection of
the features by measuring the correlation between each
pair of them. Whenever we find a Pearson correlation

4The F1-Score is the harmonic mean between Precision and Recall of
a class.

5The accuracy is the share of correct predictions over the total.

RTP
FLOWn

TIME
 BIN mean

standard deviation
3rd, 4th moment
percentile 10 - 90
skewness
kurtosis
maxXi - minXi% unique values
% occurrences of mode

Packet time (delta)
Packet length (delta)
RTP timestamp (delta)
Packet length
Volume

RAW
 PACKETS

Fig. 1: Features derived from packets.

Packet length

Packet length (delta)

Packet time (delta)

RTP timestamp (delta)

Volume

Discarded (after correlation analysys)

Discarded (after RFE)Final

Fig. 2: Graph representing the correlation between features.
The color indicates the feature set, the shape whether the
feature is kept after feature selection, the distance represents
the correlation.

coefficient higher than 0.9, we keep only one of the
two features at random. Roughly half of the features are
eliminated in this step.

2) Recursive Feature Elimination using the ExtraTree al-
gorithm: We use the Recursive Feature Elimination
(RFE) approach [6] to further refine our list of features,
maintaining only those that are most useful for our
classification problem. Using RFE, we train an Extra-
Tree classifier on the training set and rank the features
by importance, as provided by the algorithm. We then
eliminate the one with the lowest value. This procedure
is recursively repeated until we reach the minimum
number of features and the best performance. Note that
tree-based feature ranking is known to be biased in the
case of groups of correlated features [7]. As such, our
first step (correlation analysis) is of key importance to
make RFE work properly.

We illustrate the whole process graphically with Figure 2,
which shows the initial 95 features in the form of a graph.
Each node represents a feature, and the length of edges is
(roughly) inversely proportional to the correlation among pairs

1 5 10 15 20 25 30 35 40 45
Number of features selected

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

F
1

sc
or

e
(m

ac
ro

av
er

ag
e)

Fig. 3: Mean accuracy when varying the number of features

in absolute value – i.e., highly correlated features reside close
to each other. For the sake of visualization, we show only
edges for which the correlation is higher than 0.5 (in absolute
value). The feature sets are represented with different colors,
while the shape of each node indicates whether a feature is
maintained or discarded at one of the selection steps: a circle
means the feature has been discarded after the correlation
analysis, a double circle indicates feature discarded with RFE,
and an octagon means it passed both steps and has been kept
in the final phase.

We first notice that the correlation analysis step maintains
all features which are poorly correlated with other ones – all
nodes without edges are either double circles or octagons. On
the contrary, among groups of highly correlated features, only
a few samples are kept. For example, the dense community on
the top right of the figure groups the percentiles of the packet
inter-arrival time and RTP timestamp delta. We keep only a
few of them.

The first step of the feature selection shrinks our set from
95 to 45 features. We then run RFE to find only those that
prove to be useful for our classification problem. We start by
training an ExtraTree classifier on 45 features, running a 3-
fold cross-validation to evaluate how accurate the obtained
model is. Then, we eliminate the feature ranked as least
important and repeat this operation until we notice that the
classification performance starts decreasing. In Figure 3, we
show how the average F1 score varies when removing an
increasing number of features. When we use all 45 features,
we obtain approximately 95% accuracy. The performance is
almost stable (with minimal variations) until we reach 10 – i.e.,
we eliminate 35 features. Then, the accuracy starts decreasing
consistently. Analyzing the curve, we decide to set the final
number of features to 10. Interestingly, we notice that each
feature group is represented in the set of the final features
(there is an octagon for each group of features with the same
color in Figure 2). Among the final features, we find the packet
length (40th percentile), the range of the RTP timestamp delta,
the range of packet length delta and the number of packets.
Intuitively, for each characteristic of the packets, we keep one
statistical property of its distribution.

Multi-class classification. Using the features that we obtain
from the previous steps, we try different classification algo-
rithms to find the one that properly trades-off performance and

A
u

d
io

V
id

eo
L

Q

V
id

eo
M

Q

V
id

eo
H

Q

S
cr

ee
n

S
h

ar
in

g

F
E

C
A

u
d

io

F
E

C
V

id
eo

Predicted label

Audio

Video LQ

Video MQ

Video HQ

Screen Sharing

FEC Audio

FEC Video

T
ru

e
la

b
el

103094 2 0 0 1 1 0

11 96714 1800 4 311 0 15

0 2125 14168 357 145 0 22

1 277 2717 31015 161 0 153

0 25 66 11 11074 0 73

0 0 0 0 0 51392 1

0 0 0 0 3 0 3483

R
ec

al
l

F
1

sc
or

e

1.00 1.00

0.97 0.97

0.82 0.79

0.92 0.95

0.98 0.96

1.00 1.00

1.00 0.96

Precision 1.00 0.97 0.76 0.98 0.94 1.00 0.92

Fig. 4: Confusion matrix when using a Decision Tree classifier
with 1 s time bins.

simplicity. The algorithms we consider are: tree-based classi-
fiers [Decision Tree (DT) and Random Forest (RF)], k-Nearest
Neighbors (k-NN), which classifies points based on proximity
to other data points and Gaussian Naı̈ve Bayes (GNB) as
a generative probability model. For each one, we perform
hyper-parameter tuning with a 3-fold cross-validation, using
uniquely the training set. We then assess their performance on
the separate test set, using the macro-averaged F1-score as a
performance indicator. Indeed, in Section IV, we show to what
extent the algorithm choice impacts the classification results.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results for the
entire classification problem. We first discuss the overall classi-
fication performance and then focus on the impact of the time
bin duration and algorithm choice. Finally, we quantify the
amount of training data required to achieve good performance.
All the presented results are obtained training classification
models on the training set and evaluating their performance
on the independent test set.

We try different classification algorithms and finally opt to
use a Decision Tree classifier which provides good perfor-
mance and a simple model. Running hyper-parameter tuning,
we find that best results are achieved when using the Gini
index as a purity measure and posing a minimum of 45 entries
to allow a node split, to avoid overfitting. In Figure 4 we show
the confusion matrix obtained on the test set using a 1 s time
bin. By definition a confusion matrix C is such that Cij is
equal to the number of observations known to be in group i and
predicted to be in group j. The diagonal represents the number
of correctly classified samples. We also show the per-class
recall and F1 score in the last two columns, as well as precision
in the bottom row. Looking at the figure, we observe that 6
out of 7 classes have an F1-Score above 0.95, and as such,
high precision and recall. Audio and FEC audio are the classes
with the best permanence, and only a handful of samples
are misclassified, suggesting that audio streams are in general

200ms 500ms 1s 2s 3s 4s
Time bin

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
F

1
sc

or
e

(m
ac

ro
av

er
ag

e)
GNB k-NN RF DT

Fig. 5: Performance of the four algorithms for different time
bins.

easy to isolate. The class with the worst performance is video
LQ, with an F1 score of 0.79. Indeed, the confusion matrix
reveals that the three different video qualities are sometimes
confused. Although this is a flaw of our classification model,
we tolerate this behavior given the similar nature of the three
classes. Moreover, Cisco Webex (and most RTC applications)
employs variable bitrate video codes that result in diverse
network traffic. Overall, 97.3% of the samples are correctly
classified, and the average F1 score is 0.94.

We now illustrate the impact of the time bin duration on
the classification performance. Indeed, we are interested in
classifying a stream as quickly as possible, without sacrificing
accuracy. Figure 5 shows how the performance varies with
different time bin durations, from 200 ms to 4 s. We provide
results when using 4 classification algorithms, and the y-axis
reports the F1-score we obtain, averaged over the classes. We
notice that, in general, we get better results with larger time
bins. This is no surprise, as the features are calculated over
more significant sets of packets. For example, in 200 ms of an
audio stream, typically only 10 packets are generated. How-
ever, this effect stabilizes for values larger than 1 s, meaning
that such a time frame is enough to gather precise information
about a stream. Looking at the figure, we can also compare the
performance of different classification algorithms. We notice
no significant differences, except for Gaussian Naı̈ve Bayes
which shows somewhat worse performance, likely rooted in
the simplicity of the model – note that the lowest F1 score is
0.62. This confirms that our careful feature engineering and
selection make the results robust to the choice of algorithm.
We finally opt to use a Decision Tree for its simplicity,
interpretability and speed. Random Forest leads to similar
results but requires the use of several trees in parallel, 100
in our case. k-NN performs similarly as well, but requires the
model to store the entire training set with significant memory
consumption. Using a decision tree, instead, the model has
size of only a few kB.

Finally, we investigate how much training data we need to
obtain good performance. To this end, we train a classification
model multiple times, increasing the number of samples from

0 30k 60k 90k 120k 150k 180k 210k 240k 270k
Training samples

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

F
1

sc
or

e
(m

ac
ro

av
er

ag
e)

Fig. 6: Learning curve: Relationship between the number of
training samples and the score.

the training set every time. In this experiment, we use a
Decision Tree classifier with time bins of 1 s. Figure 6 shows
the classification performance versus the size of the training
set. For a fair comparison, we always use the same number
of entries per each class. Indeed, for each value n on the
x-axis, we sample n entries equally distributed among the
different classes. As such, the x scale is limited by the support
of less represented class of the training set (Screen Sharing),
multiplied by the number of classes.6 The y-axis reports the
macro average of the F1 scores we obtain when classifying
the test set. For each value on the x-axis, we perform 50 runs
and plot the average (blue line) and the standard deviation
(blue area) of the metric. Watching the figure, we notice that
the performance improves quickly with the training set size.
With only 60 k samples, the F1 score is already above 0.92.
This suggests that the features we extract and the nature of
the problem do not require a large dataset to obtain a reliable
model. Indeed, 60 k samples correspond to approximately 16
hours of media streams, less than 2.5 hours per class. With
a larger dataset, the F1-score increases further, but without
drastic improvements. When using the maximum number of
training samples, the performance reaches an average F1 score
of 0.94, reproducing what we detail in Figure 4. We conclude
that a training set including a few hours of call is enough to
train a robust model.

V. RELATED WORK

Network traffic classification has been extensively studied
since the introduction of the Internet [3]. Due to widespread
encryption and proprietary use of protocols, traditional ap-
proaches based on DPI and port numbers fall short, and the
current research tends to leverage statistical traffic character-
istics and machine learning techniques [8]. Recent efforts aim
at identifying the web services [9] or mobile applications [10]
behind network traffic, predicting the QoE of web [11],
video [12] or smartphone [13] users.

6Since our training set includes approximately 40 k seconds of screen
sharing, the x-axis ends with 280 k samples.

Regarding RTC traffic, many works propose techniques
for identification among other traffic categories. The authors
of [14] use a stochastic characterization of Skype traffic
to obtain an ML-based model to be used for classification.
In [15], UDP flows are classified with SVM models using
statistical signatures of the payload, to various classes, in-
cluding Skype and RTP-based traffic. The authors of [16] use
statistical properties of RTP to differentiate between voice
and data traffic. The authors of [17] propose a method to
detect WebRTC sessions at run-time based on statistical pattern
recognition. Finally, some approaches target application sig-
naling mechanisms, for identifying e.g., Skype traffic through
in-clear headers exchanged during session setup [18].

Fewer works focus on the classification of the media streams
carried by RTP flows. In [19], the authors use packet length as
a discriminator between audio, video streaming, browser and
chat traffic. As a model, they opt for an interpretable Decision
Tree. Authors of [20] target three Variable Bit Rate (VBR)
audio codecs, using packet size and packet payload entropy
as features and comparing a k-NN, C4.5 and Naı̈ve Bayes
algorithms. The authors of [21] identify the codecs used for
compression of audio/video, again based on statistical features
and RTP Payload Type. Our work goes in this direction,
aiming at unveiling the nature of media streams. Differently
from previous works, we classify streams into a rich set of
classes including media type (audio and video), video quality
and redundant data (FEC). Moreover, we are the first to
explicitly target real-time applications with a 1 second (or
shorter) classification delay, while the past approaches base
their decision on the characteristics of the entire flow.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an ML-based system for clas-
sifying, in real-time, the media streams generated by RTC
applications. Given a media stream carried inside the RTP
protocol, we can distinguish seven different classes of media,
including different video qualities and redundant data used to
mitigate losses (i.e., FEC). We carefully engineered features
based on packet characteristics and designed the system to
work with a minimal set of features using a light yet accurate
tree-based model. We used Cisco Webex Teams as a case study
and showed that we obtain high classification accuracy with
only 1 s of classification delay.

This work is only a first step towards a thorough system
designed to gather fine-grained information from the RTC
traffic at the network level. We aim at making it possible for
the network control plane to make decisions on traffic with
the awareness of RTC traffic and its characteristics. We would
first identify and then provide detailed information about all
RTC sessions on the network, like the type of applications in
use, number of concurrent meetings going on, and finally the
QoE perceived by the users.

REFERENCES

[1] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia,
“Five years at the edge: Watching internet from the isp network,”
IEEE/ACM Trans. on Networking, vol. 28, no. 2, pp. 561–574, 2020.

[2] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the” s”
in https,” in Proc. of the 10th ACM International on Conf. on emerging
Networking Experiments and Technologies, pp. 133–140, 2014.

[3] M. Finsterbusch, C. Richter, E. Rocha, J. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE
Communications Surveys Tutorials, vol. 16, no. 2, pp. 1135–1156, 2014.

[4] R. Frederick, S. L. Casner, V. Jacobson, and H. Schulzrinne, “RTP: A
Transport Protocol for Real-Time Applications.” RFC 1889, Jan. 1996.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[6] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[7] L. Toloşi and T. Lengauer, “Classification with correlated features:
unreliability of feature ranking and solutions,” Bioinformatics, vol. 27,
no. 14, pp. 1986–1994, 2011.

[8] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE communications
surveys & tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[9] M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi, “What:
A big data approach for accounting of modern web services,” in 2016
IEEE Int. Conf. on Big Data (Big Data), pp. 2740–2745, IEEE, 2016.

[10] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in 2018 Network Traffic
Measurement and Analysis Conference (TMA), pp. 1–8, IEEE, 2018.

[11] A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Seshan,
S. Venkataraman, and H. Yan, “Modeling web quality-of-experience
on cellular networks,” in Proceedings of the 20th annual international
conference on Mobile computing and networking, pp. 213–224, 2014.

[12] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A ma-
chine learning approach to classifying youtube qoe based on encrypted
network traffic,” Multimedia tools and applications, vol. 76, no. 21,
pp. 22267–22301, 2017.

[13] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, and R. Schatz, “Predicting qoe in cellular networks using
machine learning and in-smartphone measurements,” in Ninth Interna-
tional Conf. on Quality of Multimedia Experience, pp. 1–6, IEEE, 2017.

[14] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing
skype traffic: when randomness plays with you,” in Proceedings of
the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 37–48, 2007.

[15] A. Finamore, M. Mellia, M. Meo, and D. Rossi, “Kiss: Stochastic
packet inspection classifier for udp traffic,” IEEE/ACM Transactions on
Networking, vol. 18, no. 5, pp. 1505–1515, 2010.

[16] A. S. Buyukkayhan, A. Kavak, and E. Yaprak, “Differentiating voice and
data traffic using statistical properties,” in 2013 International Conference
on Electronics, Computer and Computation (ICECCO), pp. 76–79, 2013.

[17] M. Di Mauro and M. Longo, “Revealing encrypted webrtc traffic via
machine learning tools,” in 2015 12th International Joint Conference on
e-Business and Telecommunications, vol. 04, pp. 259–266, 2015.

[18] T. Sinam, I. T. Singh, P. Lamabam, N. N. Devi, and S. Nandi, “A
technique for classification of voip flows in udp media streams using
voip signalling traffic,” in 2014 IEEE International Advance Computing
Conference (IACC), pp. 354–359, 2014.

[19] M. C. S, S. H, and T. E. Somu, “Network traffic classification by packet
length signature extraction,” in 2019 IEEE International WIE Conference
on Electrical and Computer Engineering, pp. 1–4, 2019.

[20] P. Choudhury, K. R. Prasanna Kumar, G. Athithan, and S. Nandi,
“Analysis of vbr coded voip for traffic classification,” in 2013 Inter-
national Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 90–95, 2013.

[21] P. Matousek, O. Rysavy, and M. Kmet, “Fast rtp detection and codecs
classification in internet traffic,” Journal of Digital Forensics, Security
and Law, 01 2014.

