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A Critical Assessment of Design Tools for Stress Analysis of Adhesively 
Bonded Double Lap Joints  

 

Despite the proliferation of high fidelity finite element (FE) models, lower fidelity models 
remain commonly used in adhesively bonded joint design.  These design models can save both 
computational and user time due to their simplicity and ease of use.  In this study, a detailed 
assessment of local stress fields predicted by five design models: A4EI, HyperSizer, Joint 
Element Designer, Carrera Unified Formulation, and a Continuum Solid Shell FE model.  All 
models were compared with a high fidelity, dense mesh FE model.  Six double lap joint cases 
with different combinations of features like different adhereds, a core, and tapers.   

Keywords:  Adhesively Bonded Joints, Design, Modeling, Finite Element Analysis, Composite 

Materials, Sandwich, Honeycomb Core 

1. Introduction 

With the increasing demand for fiber reinforced composites in lightweight structures, adhesively 
bonded joints are becoming more prevalent than ever. Bolts and rivets require holes, which cut fibers and cause 
significant stress concentrations and can cause premature failure in composite materials. Adhesives spread the 
load more evenly over the composite while facilitating a lighter overall structure. Reductions in part count and 
touch labor can also result in significant cost reductions for adhesively bonded joints. The structural adhesive 
market in Europe has been forecasted to reach 67,000 tons by 2015, a growth of over 13 % since 2008.1 

Analytical models for stress analysis have long been a part of initial adhesive joint design, analysis, and 
sizing. Despite the rise of general finite element software and methods, analytical design models remain a 
preferred method for fast and simple joint analysis due to stress singularities that are typical in bonded joints 
near reentrant corners. These models are constructed on the foundation of kinematic, geometrical, and material 
simplifications, along with assumptions that allow closed form or semi-closed form solutions. While the results 
are often relatively accurate, the primary value provided by these rapid tools is the ability to conduct sensitivity 
studies and assess criticality of various bonded joint geometries quickly. Because they typically require much 
less expertise and time commitment to generate high-quality results when compared to higher-fidelity methods, 
these tools fill a gap in the toolset of many stress engineers and designers. 

This study compares and contrasts three semi-analytical methods and two relatively efficient finite 
element models.  The semi-analytical methods are: (1) the A4EI code based on the methods of Hart-Smith2,3, 
(2) the HyperSizer joints analysis capability based on extensions of the methods of Mortensen and Thomsen4, 
and (3) the joint element designer (JED) based on the methods of Stapleton and co-workers5. The two efficient 
finite element models are: (4) a one-dimensional finite element model based on Carrera Unified Formulation 
(CUF), a variable kinematic higher-order 1D models that can produce high-fidelity solutions6, and (2) a 
parametric continuum solid shell finite element model7. The results from these methods are compared with high-
fidelity 3-D finite element results to show the implications of the assumptions used in each method for several 
exemplar bonded joint configurations. The joint configurations considered are: (1) double lap joint with 
aluminum adherends, (2) double lap joint with composite adherends, (3) stepped double lap joint with composite 
adherends, (4) double lap joint with composite adherends containing a honeycomb core, and (5) stepped double 
lap joint with composite adherends containing a honeycomb core. 

2. Joint Configuration 

Different joint configurations were analyzed in order to compare the joint analysis tools. The analyzed 
joint configurations, discussed in this section, range from simple to increasingly complex to pinpoint differences 
in the results from the various methods compared with the benchmark high-fidelity finite element results. In 



this section, the material properties, geometries, and boundary conditions employed for the bonded joint cases 
are presented. 

A. Materials  

Material properties for the composite system and adhesive were obtained from open literature when 
possible. If data was not readily available for certain properties, notional values were assumed. Because this 
study sought to compare the behavior of several tools for identical problems rather than determine their absolute 
accuracy, notional values are acceptable. Table 1 through Table 5 provide the material properties for all material 
systems used in this study. All properties are the average of tension and compression unless otherwise noted. 

B. Geometries and Boundary Conditions 

 As stated previously, the cases were conceived to progressively include increasing complexity to 
compare different features of the models. The final geometry (Cases 5 and 6) resembles a joint of interest for 
lauch vehicle primary structure, and the other examples were created by dropping one feature. The geometries 
are shown in Figure 1 and the corresponding boundary conditions are shown in Figure 2. Due to symmetry of 
the geometry and loading, only one half of each joint was modeled with symmetry boundary conditions in the 
middle. 

Figure 1 here 
Case 1 is a double lap joint with aluminum adherends under compression with the adherend restricted 

from rotation and vertical displacement at the point of loading. Case 2 has layered composite materials as the 
adherends, with the layups and materials noted in the Figure 1. The adherend was made by putting the two 
facesheets from the sandwich cases (Cases 4-6) together in one layup. Case 3 is a replica of Case 2 except that 
the doublers are stepped, dropping one ply per step. Case 4 is like Case 2 except with a core, the load split 
between two facesheets, and only the lower facesheet is restricted from vertical displacement at the point of 
loading. Finally, Cases 5 and 6 are the same geometry as Case 4 except with stepped doublers, and Case 6 is in 
a 3-pt bending configuration rather than axial compression.  

Looking at the cases, Case 1 is the simplest, Case 2 adds composite adherends, Case 3 adds a taper, 
Case 4 adds a core with no taper, Case 5 adds a taper and core, and 6 adds load case complexity. In this way, 
differences in models can be isolated to specific features of the joints, one feature at a time. 

Figure 2 here 

C. Simplifying Assumptions 

Although a total of six cases are studied in this work, several design features typical of double 
lap/double strap joints used in practice are not considered. First, the gap between the adherends (right side in 
Figure 1) is treated as a void herein whereas it is common to use a polymer filler material for manufacturability, 
which may affect the local stress distribution and the failure process. A second simplification is that the adhesive 
layer is treated with a linear elastic constitutive behavior when it is known that plastic deformation and fracture 
may occur. To be consistent with assuming a linear behavior in the adhesive, the applied loads are relatively 
low such that no significant plastic deformation or other nonlinearities are expected. It should be noted that all 
methods considered herein are capable of including nonlinear adhesive behavior. Another simplifying 
assumption is that an explicit adhesive layer is included in all cases; in some instances, a co-cured design is 
used where the doubler resin adheres the doubler to the adherend and no separate adhesive layer is used. A 
fourth simplifying assumption is that the doubler drop-off sequence is held at a constant taper angle with the 
same ply drop sequence for all cases such that the stresses due the ply drops are relatively low. In some designs, 
the doubler ply drop region may introduce much higher stress and therefore be more critical12. Lastly, it should 
be recognized that in practical structures, joints experience combined load conditions. Therefore, this paper 
represents a study of only elastic stress fields predicted by several rapid analysis tools in response to relatively 
simple loading conditions. It is of great interest to extend and apply rapid joint analysis tools to address several 
of the practical joint design features that have been omitted from this study. 

3. Models 

A. A4EI 



A4EI is software developed based on the methods of Hart-Smith2,13, which consider a 1-D semi-closed 
form solution for bonded joints. The adherends, which may be stepped, are modeled as truss members (with no 
bending) with homogenized section stiffnesses as input. The adhesive is treated as a bed of shear springs that 
can have an elastic-perfectly plastic shear response. The formulation involves application of equilibrium 
conditions to arrive at closed-form expressions for the axial deformation along the adherends. Integration 
constants appearing in these expressions, however, are determined via an iterative approach that can have 
convergence difficulties2. The A4EI solution provides the adhesive shear stresses and strains, as well as an 
average axial stress in the adherends, along the bonded joint. Given corresponding strength values as input, 
these can then be used to determine the strength of the joint. Notably, many versions of the code (including that 
used herein) do not include the adhesive peel stress in the formulation, although Hart-Smith does provide a 
simple solution for the approximate peak peel stress at the end of the joint3. Additionally, no ply-level stresses 
are calculated in the case of composite adherends. This limits A4EI’s ability to predict delamination in the 
adherends, which is a common failure mode in composite bonded joints. Nevertheless, while the software dates 
from the 1970’s, it is still used and can provide a reasonable estimate of adhesive shear stresses that can be used 
to size a joint given adhesive allowables. 

B. HyperSizer 

The bonded composite joint analysis capability within the HyperSizer structural sizing software14 is 
based on Mortensen and Thompsen’s4 unified approach with extensions to compute ply level in-plane and 
interlaminar stresses, application of pressure loading, determine margins of safety based on a wide array of 
bonded joint specific failure criteria, and evaluate bond-line cracks with the Virtual Crack Closure Technique, 
see refs15–17 for details. The joint adherends are treated as plates in generalized cylindrical bending, which allows 
for application uniform strain and uniform curvature in the direction normal to the joint analysis plane (i.e., the 
y-direction in Figure 1). The adherends are arbitrary composite laminates governed by classical lamination 
theory. The adhesive is treated as a continuously distributed layer of normal and shear springs whose 
constitutive response may be nonlinear. Boundary conditions are applied in the form of displacements/rotations 
or force/moment resultants.  

The joint is divided into regions whose governing linear first-order differential equations are developed 
based on direct application of equilibrium. These equations are solved via the multi-segment method of 
integration presented by Mortensen and Thompsen4. The joint regions are each divided into small segments, 
and the solution of each segment is determined using direct integration. Continuity between these segments and 
between the joint regions is enforced, while accounting for any midplane shifts because of changes in thickness. 
This solution procedure provides the adherend level results (mid-plane displacements, strains, and curvatures 
and force and moment resultants) along the joint x-direction (see Figure 1). The ply level in plane stresses are 
then determined via Classical Lamination Theory, and the interlaminar stresses are calculated via integration of 
the equilibrium equations (see 18 for details). 

Cases 1 – 3, considered herein, represent standard non-stepped and stepped double lap joints that were 
considered by Mortensen and Thompsen4 and that have been included within the HyperSizer bonded joints 
capability for some time. Cases 4 and 5, in which one adherend is a honeycomb sandwich panel, could be 
analyzed using the standard double lap joint capability provided the core material is simply treated as a ply and 
the honeycomb sandwich panel treated as a laminate. However, it is also possible to treat the core material as 
an additional layer of normal and shear springs, similar to how the adhesives are treated in the formulation. This 
better captures the physics of the core behavior as it enables the core material to deform in the through-thickness 
direction. As such, a new sandwich double lap joint concept that treats the core as an additional adhesive was 
formulated and implemented within the HyperSizer joints capability. 

Figure 3 here 
The HyperSizer geometry for the Cases 5 and 6 joint is shown in Figure 3. The grids shown in the 

geometry details actually represent analysis points (locations where outputs are evaluated) in the model 
adherends (as opposed to elements typically shown for finite element models). In the x-direction, Regions 1 and 
3 were divided into 25 segments, each with 5 points. In Region 2, each of the four steps were divided into 5 
segments, each with 5 points. In the z-direction, 15 analysis points were used per ply. Again, these z-direction 
analysis points were used to determine the interlaminar stresses through numerical integration. The adhesives 
and core do not participate in this integration as they are modeled as distributed layers of normal and shear 
springs. Thus, three output points were used for the adhesive and core: one at the top and bottom and one in the 
middle. 



C. Joint Element Designer (JED)  

The Joint Element Designer (JED) software was originally created to integrate finite element software 
and semi-analytical joint models 5,19. The model uses the same assumptions for the adherends as the HyperSizer 
method: beams under cylindrical bending, although the beams can be Euler-Bernoulli or Timoshenko with shear 
deformations. Multiple models have been implemented for the core/adhesive layers, with distinctions having to 
do with the interpolation of displacements through the thickness or the constitutive model. Linear interpolation 
through the thickness is generally used for adhesives due to their thin nature, while sandwich cores typically 
require higher order quadratic functions20. Though not utilized here, options such as nonlinear geometry 
(through co-rotational formulation), crack growth, adaptive shape functions, and graded adhesives are 
available21–23. The model utilizes a standard finite element solution procedure for beam elements, with a few 
key differences. Rather than polynomial functions chosen for shape functions along the axial axis, the structural 
model is solved using the matrix exponential24. This results in shape functions that are determined rather than 
prescribed. This means that a single element is sufficient for a joint with linear elastic materials as the shape 
functions are customized to the joint problem being considered. However, more elements may be needed along 
the length so improve solution stability. Finally, complex joints can be made by joining different elements at 
nodes like standard finite element software.  

Since the HyperSizer method uses linear variation of displacements through the core/adhesive 
thickness, to draw more of a distinction, the JED model in this study used the quadratic variation of 
displacements through the adhesive/core. The displacements in the core (or adhesive), 𝑤𝑤𝑐𝑐(𝑥𝑥, 𝑧𝑧) and 𝑢𝑢𝑐𝑐(𝑥𝑥, 𝑧𝑧), 
are assumed to be in the form of: 

 𝑢𝑢𝑐𝑐(𝑥𝑥, 𝑧𝑧) = 𝑎𝑎0(𝑥𝑥) + 𝑧𝑧𝑎𝑎1(𝑥𝑥) + 𝑧𝑧2𝑎𝑎2(𝑥𝑥) 1 

and 
 𝑤𝑤𝑐𝑐(𝑥𝑥, 𝑧𝑧) = 𝑏𝑏0(𝑥𝑥) + 𝑧𝑧𝑏𝑏1(𝑥𝑥) + 𝑧𝑧2𝑏𝑏2(𝑥𝑥) 2 

where the functions 𝑎𝑎𝑖𝑖(𝑥𝑥) and 𝑏𝑏𝑖𝑖(𝑥𝑥) can be found in terms of the the displacements at the interface between the 
adherend above and below the adhesive/core (assuming perfect bonding) and the displacement of the 
adhesive/core centerline. Thus, the energy can be formulated in terms of centerline displacements, which are 
only unknown in x, and the system of ODEs can be solved. Additionally, for this model, the stresses in the 
adhesive/core were assumed to be uncoupled, meaning that  
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where  
 𝝈𝝈𝒄𝒄 = 𝐃𝐃𝐜𝐜𝝐𝝐𝒄𝒄,  

𝝈𝝈𝒄𝒄 = [ 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐]Tand 𝝐𝝐𝒄𝒄 = [ 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 4 

Here, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐, and 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐 are the elastic properties of the adhesive/core, whereas, 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐, 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐, 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐, 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐, 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐, 
and 𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐 are the stress and strain components of the adhesive/core. 

While analyzing the sandwich joints (Cases 4-6), the combination of a thin adhesive layer and thick 
core in the same element caused instabilities due to vastly different magnitudes of eigenvalues in the coefficient 
matrix of the system of ODEs to be solved. Therefore, very small elements were needed in the x-direction in 
order to achieve a converged solution. Globally, a nominal element size of 0.01 in. was used, which translates 
to 226 elements total.  

D. Carrera Unified Formulation (CUF) 

One-dimensional Carrera Unified Formulation (CUF) decomposes the three-dimensional field into an 
axial displacement function 𝒖𝒖𝝉𝝉(𝑥𝑥) along the beam axis and a cross-section expansion function 𝐹𝐹τ(𝑦𝑦, 𝑧𝑧) along 
the y-z plane6. Therefore, the generalized displacement field can be expressed as follows: 

 𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝜏𝜏(𝑦𝑦, 𝑧𝑧)𝒖𝒖𝜏𝜏(𝑥𝑥) 5 

where the index τ corresponds to the expansion terms of the structural theory. Repeated indices denote 
summation as per Einstein notation which means τ is summed from 1 to M expansion functions. The choice of 



𝐹𝐹τ defines the adopted structural theory and the current work adopts Lagrange polynomials as expansion 
function (LE)25. The component-wise (CW) modeling approach, an extension of LE models, allows modeling 
of multi-component structures through a compact and unique 1D formulation26 and will be used throughout this 
study.  Figure 4 illustrates the CW modeling approach adopted for Case 5. Different components of the 
adhesively bonded joint are decomposed into individual 1D beam elements and the compatibility along the 
interfaces of different components is enforced by superimposing the degrees of freedom associated with the 
given interface. Different cross-sectional expansion configurations are assigned to individual beams based on 
their design layout.  

Figure 4 here 
The standard finite element approach is adopted to discretize the beam axis along the x-direction, and 

the displacement field (Equation 5) can be reformulated as: 
 𝒖𝒖 = 𝐹𝐹𝜏𝜏(𝑦𝑦, 𝑧𝑧)𝑁𝑁𝑖𝑖(𝑥𝑥)𝒖𝒖𝜏𝜏𝑖𝑖 6 

where 𝑁𝑁𝑖𝑖 is the ith shape function of order p, 𝒖𝒖𝜏𝜏𝑖𝑖 is the generic finite element nodal vector, and i is summed from 
1 to p+1. The choice of shape function 𝑁𝑁𝑖𝑖 remains independent of the kind of expansion function 𝐹𝐹τ. Using the 
principle of virtual work, the invariant form of the structural stiffness matrix is formulated as: 

 𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝒖𝒖𝑗𝑗𝑗𝑗 �𝑁𝑁𝑗𝑗(𝑥𝑥)𝐹𝐹𝑗𝑗(𝑦𝑦, 𝑧𝑧)𝑫𝑫𝑇𝑇𝑪𝑪𝑫𝑫
𝑉𝑉

𝑁𝑁𝑖𝑖(𝑥𝑥)𝐹𝐹𝜏𝜏(𝑦𝑦, 𝑧𝑧)𝒖𝒖𝜏𝜏𝑖𝑖𝑑𝑑𝑑𝑑 = 𝛿𝛿𝒖𝒖𝑗𝑗𝑗𝑗𝒌𝒌𝑖𝑖𝑗𝑗𝜏𝜏𝑗𝑗𝒖𝒖𝜏𝜏𝑖𝑖      7 

where 𝑫𝑫 is the differential operator matrix of size 6 x 3, 𝑪𝑪  is the constitutive material matrix and 𝒌𝒌𝑖𝑖𝑗𝑗𝜏𝜏𝑗𝑗 is the 
fundamental nucleus of the stiffness matrix of size 3 x 3, whose formal expression remains the same irrespective 
of the choice of shape function and expansion function. The indices (𝑖𝑖, 𝑗𝑗) and (𝜏𝜏, 𝑠𝑠) correspond to the finite 
element nodes and expansion terms of the structural theory, respectively. Readers are referred to the book by 
Carrera and coworkers for detailed information on the formulation as well as implementation of CUF models6. 
CUF models are part of a suite of high-fidelity numerical models for solving a variety of structural problems 
including, but not limited to, progressive failure analysis in composite27, large deflection and post buckling 
analysis28, and global-local approach29. 

In this work, a sixteen node (L16) LE expansion function corresponding to a bi-cubic approximation is 
utilized for modeling various components within the cross-section. A four-node cubic beam element (B4) is 
employed to discretize the beam with varying mesh density, which is biased towards the vicinity of geometric 
and material discontinuities. All the components of the beam are modeled as continuum elements with a 
combination of L16-B4 configurations. Although not utilized in this study, the model also has the capability of 
modeling nonlinear adhesive layers using continuum damage27 as well as cohesive elements29.  

E. Parametric Continuum Solid Shell (CSS) FE 

A parametric 3-D finite element model was developed using the python scripting interface for Abaqus 
for the joint cases with a sandwich adherend. By automating the finite element modeling process from pre to 
post-processing, the script enables relatively quick evaluation of joints with varying parameters. 

The model is intended to be fast running for preliminary design evaluations. Therefore, the mesh 
refinement and element type were chosen to balance run time and stress field fidelity as follows. The mesh is 
shown in Figure 5 colored by component. The doubler, adhesive, and facesheet were each modeled with one 
layer of continuum solid shell elements (CSS8) per ply. The continuum solid shell element is a formulated with 
seven incompatible modes to improve bending behavior and an assumed strain to mitigate locking7,30. The core 
was modeled with continuum solid elements with reduced integration (C3D8R) and enhanced hourglass control. 
The in-plane element edge length varied from 0.004 to 0.04 inches in the doubler region. In general, the mesh 
refinement used was found to be converged except immediately at the reentrant corners where stress 
singularities exist in linear analyses. 

To facilitate comparison with the 2-D analysis methods, additional assumptions and approximations 
specific to this study were required. The dimension of the model along the joint axis (y-direction) was arbitrarily 
set to one inch and plane strain was assumed by enforcing zero y-direction displacement at all nodes. Linear 
analysis was conducted using Abaqus 2017. 

Figure 5 here 

F. Benchmark: High Fidelity FEM 



In order to establish a reference for the various comparisons, full 3-D continuum mechanics finite 
element analyses with high mesh density were carried out using the commercial finite element analysis program 
Abaqus. The finite element meshes are shown in Figure 6. The objective for these models was to find 
‘converged’ stress fields – time or computational efficiency were low priority. The metallic adherends, as well 
as the adhesive layers, were discretely modeled as isotropic, homogeneous continua. Individual plies were 
discretely modeled as transversely isotropic and orthotropic continua for unidirectional and fabric composite 
layers, respectively. Each ply had individual material orientations assigned to capture the ply stacking and 
anisotropic effects. Ply drops were idealized as abrupt steps. 

Figure 6 here 
Biased mesh generation in both the longitudinal and thickness direction was utilized. In order to capture 

high stress gradients, the mesh density in the proximity to geometric discontinuities in longitudinal direction, 
such as ply drops, and in proximity to material discontinuities in thickness direction, such as interfaces between 
individual plies, core, or adhesive materials, was increased. At least ten three-dimensional linear continuum 
mechanics reduced integration elements (C3D8R) were used through the thickness of each ply, adhesive layer 
or metallic adherend. At least 20 elements were used through the thickness of the core. The convergence of the 
mesh density through the thickness was judged by observing the transverse shear and normal stress continuity 
through the thickness at the center of the width of the joint at the characteristic distance ‘inward’ from both 
reentrant corners. The characteristic distance (half ply thickness) was chosen since it is a commonly used 
measure to step away from the stress singularity occurring at the edge of the reentrant corner. Similarly, the 
mesh density in joint longitudinal direction was judged by the continuity of the peel and shear stress along the 
adhesive centerline at half width and thickness. The aspect ratios of the elements were kept less than 1:4 in areas 
of high gradients to keep locking effects at a minimum.  

Similar to the CSS finite element models, the width of the joint was arbitrarily chosen to be one inch. 
All nodes were restrained in width direction to simulate plane strain conditions. Loads and boundary conditions 
were introduced using reference points and kinematic coupling constraints such that the conditions could 
effectively be applied to the neutral axis of the adherends in addition to effectively maintaining “plane remains 
plane” (plate) conditions at the boundary. 

4. Results 

Results are presented in two forms: line plots and contour plots. The line plots show the stress along 
the centerline of the top adhesive layer. The peel (𝜎𝜎𝑐𝑐𝑐𝑐) and shear (𝜏𝜏𝑐𝑐𝑐𝑐) stresses are considered critical for the 
adhesive and are each plotted for the six cases in Figures 7, 9, 11, 13, 15, and 17. For the adherends, the axial 
stress (𝜎𝜎𝑐𝑐𝑐𝑐) is the primary component. Additionally, delamination can be a major concern for composite 
adherends and the interlaminar stresses (𝜎𝜎𝑐𝑐𝑐𝑐 and 𝜏𝜏𝑐𝑐𝑐𝑐) have been considered. A contour plot of these stresses at 
critical regions for the six cases is presented in Figures 8, 10, 12, 14, 16, and 19. The results for each of the six 
cases are presented here, followed by a discussion of the results in the next section. 
 

Figure 7 here 

Figure 8 here 

Figure 9 here 

Figure 10 here 

Figure 11 here 

Figure 12 here 

Figure 13 here 

Figure 14 here 



Figure 15 here 

Figure 16 here 

Figure 17 here 

Figure 18 here 
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5. Discussion 

A. Comparison of Joint Configurations 

One can compare the six considered cases with one another and observe what effect incremental 
changes in joint configuration can have on the stress distributions. First, looking at the difference between Cases 
1 and 2 shows not only the difference between using composite and homogenous materials, but materials with 
different stiffnesses. The bending stiffness (𝐷𝐷11) of Case 2 is 10% and 7% lower than Case 1 in the adherend 
and doubler respectively. Similarly, the axial stiffness (𝐴𝐴11) is 5% and 7% lower in the adherend and doubler. 
As a result, the stress magnitudes for almost all stresses were lower and generally in the adherend/doubler 
(Figures 8 and 10). Even the peel and shear stresses in the adhesive were lower for Case 2 as shown in Figures 
7 and 9. This is particularly clear in the benchmark finite element peel stress results in the adhesive. The “trough” 
just before the stress begins to rise to the peaks are much lower in magnitude for Case 2. This is because the 
benchmark finite element model captures the effects of the 45° facesheet ply adjacent to the adhesive. The 
analytical models determine the adhesive stresses based on the homogenized adherend laminate properties and 
therefore do not capture these effects. 

The effect of tapering the doubler can be seen by comparing Cases 2 and 3 and Cases 4 and 5. For the 
adhesive stresses, the taper decreases the peel and shear stress concentrations near the taper as would be 
expected. The stresses in the middle of the joint (x = 2.05 in.) do not appear to be heavily influenced by the 
taper, which for this particular joint is the critical region. In practice, inserts or gap fillers are applied in the gaps 
to lower the stress concentration, but this gap area remains a critical region. For the adherend/doubler stresses, 
the taper lowers the peak shear near the taper but has little impact elsewhere. There is an even more drastic 
reduction in interlaminar peel stress (𝜎𝜎𝑐𝑐𝑐𝑐) due to the taper. The peak axial stresses didn’t appear to be largely 
affected.  

Similarly, comparing Cases 2 and 4 and Cases 3 and 5 can lead to general observations about the 
difference in stresses by adding a core. For adhesive stresses, the peel stress becomes slightly more concentrated 
in at the ends and even changes signs in the middle for the sandwich joints from tension to compression. The 
adhesive shear stress is more spread out for the sandwich joints, but the magnitude of the peak is not greatly 
impacted. For the adherend stresses, the sandwich cases generally had lower out-of-plane stresses. This is to be 
expected, because the core is relatively soft in shear and transversely, which relieves much of the peel and shear 
stress built up in the adherend/doubler of the non-sandwich joints. The adherend/doubler axial stresses seem to 
be a bit higher for the sandwich cases, but not drastically. 

B. Discussion of A4EI 

The A4EI results reflect the fact that this legacy tool is considerably more limited than the other analysis 
tools included in the study. A4EI does not predict adhesive peel stresses nor the stress fields in the adherends, 
and thus A4EI results can only be compared for the adhesive shear stress. In addition, the shear loading of Case 
6 cannot be applied in A4EI, so no results are shown for the tool in that case. The adhesive shear stress predicted 
by A4EI is in reasonably good agreement with the benchmark FEA and the other tools. As with JED and 
HyperSizer, A4EI’s non-continuum spring representation of the adhesive does not allow it to predict the 
reversals in the shear and peel stress at the free edge that are predicted by the benchmark FEA. In the cases with 



the core, A4EI overpredicts the peak adhesive shear stress at the right edge. This tendency to be conservative 
might explain why the tool has been successfully employed for bonded joint design for many years despite not 
providing any of the details of the other tools considered herein. 

C. Discussion of HyperSizer 

For most of the cases examined, JED and HyperSizer produced very similar results, and both are in 
reasonably good agreement with the benchmark solution. This is due to similar underlying assumptions of beam-
like behavior for the adherends and distributed springs to represent the adhesive and core. The benchmark finite 
element analysis, in contrast, is a full continuum solution, which illustrates some effects not captured by the 
more simplified models. Of particular interest is the behavior of the transverse shear stress 𝜏𝜏𝑐𝑐𝑐𝑐  at the re-entrant 
corners of the cases studied. The benchmark solution clearly demonstrates that this 𝜏𝜏𝑐𝑐𝑐𝑐 traction must equal zero 
at the free edge (of both adherends and adhesives), whereas neither HyperSizer nor JED enforce this behavior 
at free edges normal to the x-direction. The result is, at times, appreciably higher peak stresses at the edges 
predicted by the simplified tools in both 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐, the latter of which being affected by the former. 

In Case 1 (Figure 7 and Figure 8), the in-plane 𝜎𝜎𝑐𝑐𝑐𝑐 appears to vary quadratically through the thickness 
of the center adherend in the benchmark case, while being represented as constant through the thickness for 
JED and HyperSizer. Both of the rapid tools use classical lamination theory assumptions of linear in-plane 
stresses through the thickness of each ply. In the case of a single “ply” with no bending (as in Case 1 center 
adherend), the result is a constant through-thickness 𝜎𝜎𝑐𝑐𝑐𝑐. For both Cases 1 and 2 (Figure 7 - Figure 10) , the 
lower-order representation of 𝜎𝜎𝑐𝑐𝑐𝑐 results in some differences in the details of the derived 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐 fields 
when compared to the benchmark FEA. It is also of note that the over-prediction of the peak 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐 in the 
adhesive (and related under-prediction of the “trough” prior to the peak in the adhesive 𝜎𝜎𝑐𝑐𝑐𝑐) is much greater in 
the Case 2, in which the adherends are composites rather than isotropic aluminum. This is because, as mentioned 
previously, the HyperSizer method cannot capture the effect of the compliant 45° facesheet ply adjacent to the 
adhesive. 

 For Case 3 (Figure 11 and Figure 12), although both JED and HyperSizer capture the effect of the 
moment introduced at ply drop locations, they overpredict the peak stresses and re-entrant corner 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐. 
This difference is again due to the benchmark FEA capturing the zero 𝜏𝜏𝑐𝑐𝑐𝑐 at x-direction free-edges, whereas 
this cannot be achieved for the other tools. Still, both JED and HyperSizer do quite a good job of reproducing 
the benchmark FEA stress fields. 

Cases 4 and 5 (Figure 13 - Figure 16) exhibit the same free-edge 𝜏𝜏𝑐𝑐𝑐𝑐 effects noted for Case 3, but also 
demonstrate the impact of core compliance. The HyperSizer solution treats the core as an additional adhesive, 
resulting in zero core 𝜎𝜎𝑐𝑐𝑐𝑐, constant 𝜏𝜏𝑐𝑐𝑐𝑐, and linear 𝜎𝜎𝑐𝑐𝑐𝑐 through the core thickness. In contrast, the employed 
JED formulation results in quadratic 𝜎𝜎𝑐𝑐𝑐𝑐 through the core thickness. FEA, being a continuum solution with high 
density piecewise linear approximations of shape and displacements in either direction, may produce more 
complex distributions in both the core and the adherends. For example, for Case 4, HyperSizer matches the 
stresses in the adhesive quite well, but misses the reversal just adjacent to the free right edge (see Figure 13). 
Examining the Case 4 stress fields in this vicinity (Figure 14), HyperSizer predicts a positive 𝜏𝜏𝑐𝑐𝑐𝑐 peak in the 
top facesheet at the right free edge. In reality, 𝜏𝜏𝑐𝑐𝑐𝑐 is a traction at this free edge and must be zero. The benchmark 
FEA captures this as, when approaching the right free edge in the top facesheet, the 𝜏𝜏𝑐𝑐𝑐𝑐 first rises slightly and 
then rapidly approaches zero. In HyperSizer, the adherend 𝜎𝜎𝑐𝑐𝑐𝑐 is calculated by integrating 𝑑𝑑𝜏𝜏𝑐𝑐𝑐𝑐/𝑑𝑑𝑥𝑥 (see ref 17), 
therefore, directly at the right free edge of the top facesheet, HyperSizer predicts compressive 𝜎𝜎𝑐𝑐𝑐𝑐, whereas the 
benchmark FEA indicates that this stress is tensile. It should be noted, however, that, in practice, the joint 
geometry will not match the idealized geometry employed by any of the tools. Particularly at a free edge in the 
vicinity of the bondline, imperfections and features like the spew filet will influence these very local stress 
features described above. 

Case 6 (Figure 17 - Figure 20) was chosen to be quite challenging for the HyperSizer solution. The 
loading mimics three-point bending, but the aspect ratio of the joint is approximately 4:1, thus the simulation is 
actually closer to short beam shear. The HyperSizer formulation is based on plates in bending connected by 
continuous normal and shear springs. Furthermore, the load path is through the core (which is usually avoided 
in practice), further amplifying the impact of the core formulation. That being said, HyperSizer still does a 
decent job of reproducing the benchmark FEA stresses, particularly for the top of the joint in the vicinity of the 
load application. In concordance with the previous cases, HyperSizer still over predicts the peak stresses and 
predicts a peak 𝜏𝜏𝑐𝑐𝑐𝑐 at the right free edge of the top facesheet. At the right bottom of the joint, the disparity 



between HyperSizer and the benchmark FEA is greater. Examining the 𝜎𝜎𝑐𝑐𝑐𝑐 fields predicted by the benchmark 
FEA in this vicinity (Figure 18), it is interesting that the z-direction distribution of 𝜎𝜎𝑐𝑐𝑐𝑐 in the free hanging 
portion of the bottom adherend is opposite of what one would expect if the joint were dominated by bending. 
That is, the peak tensile 𝜎𝜎𝑐𝑐𝑐𝑐 is at the top face rather than the bottom face. HyperSizer, on the other hand, predicts 
the trend that would be expected based on its bending formulation. This difference in 𝜎𝜎𝑐𝑐𝑐𝑐 then results in further 
discrepancies in the 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐 predicted by HyperSizer near the bottom right of the joint. However, examining 
the stress fields throughout the joint in Case 6, HyperSizer generally still does quite a good job of reproducing 
the benchmark FEA results. 

D. Discussion of JED 

The previous discussion on the HyperSizer model is mostly applicable for the JED model as well. One 
of the main differences is the quadratic distribution of the adhesive/core displacements in the z-direction. This 
difference means that the adhesive shear stress falls to near zero at the ends of the adhesive (see for example 
Figure 9), and the peel stress rises near the reentrant corner (top corner of the adhesive) and falls in the other 
direction (bottom corner of adhesive). Since the out-of-plane stresses are calculated based on integrating from 
the stress state of the neighboring adhesive, the extreme stress gradient at the corners results in large stresses in 
the doubler (see for example 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐 for Case 4, Figure 14).  

E. Discussion of CUF 

The CUF model performs well in comparison to the benchmark solution for all six cases. Good 
agreement can be observed with the benchmark solution for the distribution of adhesive peel and shear stresses. 
Certain shear stress 𝜏𝜏𝑐𝑐𝑐𝑐 contour plots (such as 𝜏𝜏𝑐𝑐𝑐𝑐 in Figure 8) exhibit slight discontinuity at the interface 
because CUF models are displacement-based formulations which do not guarantee stress continuity.  Such 
shortcomings can be alleviated through a mixed formulation such as Reissner’s mixed variational theorem31. In 
addition, CUF models are post-processed at nodal points using the strain-displacement relations based on the 
structural theory and the material constitutive law rather than interpolation based on the surrounding Gauss 
points (a default procedure in commercial software). The piecewise-cubic kinematic approximation 
incorporated within the CUF models can accurately capture the stress reversals observed along free surfaces, 
such as 𝜏𝜏𝑐𝑐𝑐𝑐 in Case 5 (Figure 15). It can also be observed that CUF results are consistent with the benchmark 
solution in capturing the traction-free conditions of 𝜏𝜏𝑐𝑐𝑐𝑐  at free surfaces for all six cases. A slight trough in 
adhesive stress before peaking is observed in Case 1 and Case 2 (Figure 7 and Figure 9). The lowering of the 
peak due to the presence of 45° ply in Case 2 is accurately captured by CUF. Predictions of stress peaks at ply 
drop locations can also be observed for Case 3, Case 5 and Case 6 (Figure 11, Figure 15 and Figure 17) and are 
consistent with the benchmark solution.  In Case 6 the loading conditions emulate three-point bending, thereby 
leading to significant shear deformation in the core. In contrast to the analytical models, the cubic kinematic 
approximation of the core in CUF tends to capture the stress gradients without any abnormally high stress 
gradients in the vicinity of corners and the corresponding core and facesheet (Figure 19 and Figure 20). The 
requirement of multiple linear elements along the thickness to capture transverse distribution combined with 
aspect ratio constraints can severely increase the computational size in benchmark models whereas the 1D finite 
element analysis combined with high-order approximation of CUF nullifies such aspect ratio constraints.  

F. Discussion of CSS FE 

The CSS FE model performed very well as compared with the benchmark results for the three cases in 
which it was exercised (Cases 4, 5, and 6). Generally good agreement with the benchmark FEA was expected 
since the two models are similar in many respects, with the main differences being the discretization and element 
types. For Case 4, the adhesive stresses showed excellent quantitative agreement with the only discrepancies 
being located immediately at the reentered corners (see Figure 13). Since CSS FE mesh included a single 
element through the thickness of the adhesive, it was unable to predict the stress reversals in 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐 in the 
adhesive near the free edge. The contour plots show very good agreement with the benchmark results in general. 
Minor differences are noted in 𝜎𝜎𝑐𝑐𝑐𝑐 and 𝜏𝜏𝑐𝑐𝑐𝑐 in the composite facesheets as compared with the benchmark FEA. 
In cases where the CSS FE differs from the benchmark it appears to be in good agreement with HyperSizer and 
JED, likely due to the relatively coarse (as compared to the benchmark) approximation of the continuum 
solution afforded by using one CSS8 element per ply. Cases 5 and 6 exhibit similar features as Case 4 in terms 
of the comparison of the CSS FE with the benchmark. In some cases the stress is overpredicted (e.g., peak 
values of 𝜎𝜎𝑐𝑐𝑐𝑐 near the reentered corner) whereas in other cases the stress is underpredicted (e.g., 𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑐𝑐𝑐𝑐 at 



ply terminations). Although the model generally predicts the stress fields accurately, the locations where 
differences between the CSS FE results and the benchmark results occur are the hotspot locations where local 
minimum margins would be calculated for the purpose of design. Therefore, careful selection and interpretation 
of the stress fields and peaks is required. 

A simplification of the CSS FE model where the composite facesheets and doublers were each modeled 
with one layer of continuum solid shell elements through the thickness was also explored for Case 4. The plies 
in the facesheet and doubler were represented using a composite section definition with three integration points 
per ply. Comparison of the results from the two versions of the model highlights the effect of treating the 
laminates like beams (as is done by HyperSizer and JED) vs. continuum on the adhesive stresses as show in 
Figure 21a. The shear stress predicted in the adhesive agrees with HyperSizer and JED predictions when one 
element through the thickness of the laminates is used. When one element per ply is used, the shear stress in the 
adhesive matches the benchmark result. The same trends were found for the peel stress and for the other cases. 
The stress fields in the adherends show a starker contrast between the two versions of the CSS FE model. Since 
the continuum solid shell elements assume a constant peel and shear strain through the thickness, simplifying 
the model to one element through the thickness of the laminate yields in a significant loss of fidelity in the 
adherend stress shear and peel fields as shown in Figure 21b. Therefore, in most cases, simplifying to one 
continuum solid shell element per laminate appears invalid. 

Figure 21 here 

G. Comparing Peak Adhesive Stresses 

One aspect worthy of discussion is the comparison of adhesive stresses near the stress concentrations. 
The continuum-based FE models have stresses that vary through the thickness of the adhesive and stress 
singularities at the reentrant corner, which can never be resolved with a refined mesh. Meanwhile, spring-based 
models like the HyperSizer and JED models do not have the problem of stress singularities since the adhesive 
is given an interpolation function through the thickness (linear for HyperSizer, quadratic for JED) and do not 
enforce stress-free boundary conditions at the ends of the adhesive. To compare these two types of models is 
problematic at best, and tradition has dictated that stresses at the centerline of the continuum models are used 
for the comparison, although continuum-based FE models show that there is a strong stress gradient through 
the thickness at the ends of the adhesive, which makes the comparison somewhat arbitrary. The root of the 
problem lies in the fact that the most critical point of the adhesive is the point at which a rigorous comparison 
cannot be made.  

To overcome this limitation and to dispel some of the ambiguity of stresses in this region, many have 
used the concept of a “characteristic distance”. In this approach, the stresses are compared at a characteristic 
distance from the edge, with one of many definitions of this distance being the thickness of a ply. For the cases 
shown here, the distance would be around 0.007 in., and some cases look like the stresses are independent of 
edge effects at the distance (for example Figure 13) but for others, the stress predictions have already diverged 
due to the boundary (Figure 11). This may be a good example of why using the characteristic distance for 
comparing continuum-based FE models with spring-based models may be problematic. 

Furthermore, the characteristic distance has been used to predict strength for spring-type design models 
such as the HyperSizer or JED models. In this approach, a joint is tested experimentally, and based on the failure 
load a characteristic distance is found such that the predicted ultimate strength correlates with the test result. 
This is then used for other joints of the same material, with the characteristic distance considered to be a material 
property. One of the lessons of this study should be the that such methods should be considered with caution.  

6. Conclusions 

This study compared five bonded joint design tools with a benchmark high fidelity FE model for six 
different joint configurations. Three of the design models were ODE-based models (A4EI, HyperSizer, and 
JED), where beam theory and springs were used for the through-thickness interpolation of displacements, and 
the structural response was found by solving equilibrium in the axial direction. The fourth model is based on 
hierarchical higher-order one-dimensional theory (CUF) formulated within the scheme of the finite element 
method. The fifth model (CSS FE) was an automated coarse-mesh FE model with continuum elements for the 
adhesive/core and solid shell elements for the adherends. The six different joint configurations were derived 
from one joint configuration with a bonded sandwich panel under axial compression loading (Case 5), with 



Case 6 being the same configuration under bending, and the other four configurations derived by removing 
either the doubler stepped ply drop (Case 4, Case 2), sandwich core (Case 3 and 2) , or layered composite 
adherends (Case 1).  

The capabilities of A4EI are considerably fewer than the other tools, and it is able only to predict the 
adhesive shear stress for inclusion in the comparisons. These comparisons showed that A4EI’s adhesive shear 
stress prediction was reasonable, but not in as good agreement with the benchmark solution as the other design 
tools. Generally speaking, all of the other models were able to represent the stresses in the adhesive and 
adherend/doubler fairly consistently and accurately. When discrepancies arose, they were typically found in the 
regions of the reentrant corners, which are always problematic and, unfortunately, the most critical. The fact 
that the JED and HyperSizer models do not enforce traction-free boundaries for the core/adhesive meant higher 
stresses at the ends of the adhesive than the benchmark. Similarly, the CSS FE model only represented the 
adhesive with one element, which could not resolve the traction-free boundary either and matched up closely 
with the other models. 

For the adherend stress predictions, discrepancies with the benchmark were due to the assumption of 
displacement variation through the thickness. HyperSizer and JED assume linear axial displacements through 
the thickness, and the CSS FE model assumes the same when one element through the adherend thickness is 
used. The error arising from this limitation were demonstrated by running the CSS FE model for one integrated 
layered element over the adherend thickness vs. one element per ply. The model with one element per ply 
showed much better agreement with the benchmark. Similarly, the CUF model uses a user-specified, higher 
order interpolation through the thickness of the adherend, which results in agreement similar to the CSS FE 
model. 

Although adherend through-thickness stresses are assumed to be negligible for beam theory, an 
equilibrium-based approach for finding these stresses has been implemented in HyperSizer and JED with the 
results presented throughout the paper. The out of plane stress, 𝜎𝜎𝑐𝑐𝑐𝑐, is based on through-thickness integration 
of the x-derivative of the shear stress, 𝜏𝜏𝑐𝑐𝑐𝑐, making it sometimes sensitive to grid spacing.  

The interpolation of displacements within the core and adhesive layers was another source of error. The 
HyperSizer model used linear interpolation, while the JED model used a quadratic interpolation. For Cases 1-
5, this did not appear to make much of a difference other than the fact that the shear stresses for the JED model 
went near zero at the ends of the adhesive. However, when shear in the core was the dominant mode as in Case 
6, the core was not sufficiently represented with linear displacements and larger discrepancies with the 
benchmark resulted. 

Although there are discrepancies between the design models and the benchmark, it is important to keep 
two things in mind. 1) It is very unlikely that joints in practice have completely sharp re-entrant corners and ply 
drops, which lead to a stress singularity in models, so spending effort to resolve this difference may not be 
worthwhile. 2) These models are design models, so they are built for speed rather than purely for accuracy. The 
design models all had runtimes in the order of seconds to minutes, orders of magnitudes faster than the 
benchmark. The ranking of runtimes of the design models appeared to be inversely proportional to the ranking 
of model accuracy, although this was not rigorously assessed.  Additionally, when evaluating runtime, one must 
also consider pre and post processing time, which can dwarf processing time. All of the design models featured 
here have been automated in some form with easy and clear methods for extracting results. Therefore, as long 
as limitations highlighted here are kept under consideration, these design models can enable parametric studies, 
sizing studies, and joint configuration comparisons for adhesively bonded joints. 
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9. Tables 

Table 1. Aluminum properties (all notional) 
Property Value Units 

E11 10.0 Msi 
E22 10.0 Msi 
E33 10.0 Msi 
G12 3.85 Msi 
ν12 0.300 - 
G13 3.85 Msi 
G23 3.85 Msi 
ν23 0.300 - 
ν13 0.300 - 

 

Table 2. Average IM7 / 8552-1 ply properties9 
Property Value Units 

E11 21.3 Msi 
E22 1.26 Msi 
E33 1.26 Msi 
G12 0.749 Msi 
ν12 0.320 - 
G13 0.749 Msi 
G23 0.435 Msi 
ν23 0.450 - 
ν13 0.320 - 
tply 0.0072 in 

 

Table 3. Plascore 3/16” 3.1 pcf Honeycomb Core (PAMG-XR1 5056) properties11 
Property Value Units 

E11 100
* psi 

E22 100
* psi 

E33 97000 psi 
G12 100

* psi 
ν12 0.5

+ - 
G13 45000 psi 
G23 20000 psi 
ν23 0.001* - 
ν13 0.001* - 
tcore 1 in 

* Notional, assumed to be low 
+ Assumed incompressibility in this plane 
 
 



Table 4. Average T650 / 5320-1 plain weave ply properties10 
Property Value Units 

E11 9.28 Msi 
E22 9.28 Msi 
E33 1.26

* Msi 
G12 0.735 Msi 
ν12 0.053 - 
G13 0.592

+ Msi 
G23 0.592

+ Msi 
ν23 0.106

ǂ - 
ν13 0.106

ǂ - 
tply 0.0077 in 

* Assumed to be equal to E33 for the IM7 / 8552-1 system 
+ Assumed equal to the average of IM7 / 8552-1 G12 and G23 
ǂ Assumed to be equal to 2ν12 
 

Table 5. Film adhesive properties (all notional) 
Property Value Units 

E11 234000 psi 
E22 234000 psi 
E33 234000 psi 
G12 87800 psi 
ν12 0.330 - 
G13 87800 psi 
G23 87800 psi 
ν23 0.330 - 
ν13 0.330 - 

tadhesive 0.005 in 
 



10. Figures 

 
Figure 1. Geometry, materials, and layup of the six cases used to compare the design models. 

  
Figure 2. Boundary conditions for six cases used to compare the design models. 
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Figure 3. HyperSizer bonded joint analysis geometry for Case 5. 

 

 
Figure 4. Illustration of component-wise modeling for CUF model for Case 5  

 
Figure 5. Parametric continuum solid shell FEM 
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Figure 6. High Fidelity FEM used as a benchmark, showing details of the mesh at regions of highest refinement.  

 

 
Figure 7. Peel (left) and shear (right) stresses along the top adhesive centerline of Case 1. 
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Figure 8. Axial, out-of-plane, and shear stress contours for Case 1. 
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Figure 9. Peel (left) and shear (right) stresses along the top adhesive centerline of Case 2. 
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Figure 10. Axial, out-of-plane, and shear stress contours for Case 2. 
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Figure 11. Peel (left) and shear (right) stresses along the top adhesive centerline of Case 3. 
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Figure 12. Axial, out-of-plane, and shear stress contours for Case 3. 
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Figure 13. Peel (left) and shear (right) stresses along the top adhesive centerline of Case 4. 
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Figure 14. Axial, out-of-plane, and shear stress contours for Case 4. 
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Figure 15. Peel (left) and shear (right) stresses along the top adhesive centerline of Case 5. 
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Figure 16. Axial, out-of-plane, and shear stress contours for Case 5. 
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Figure 17. Peel (left) and shear (right) stresses along the top adhesive centerline of Case 6. 
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Figure 18. Axial stress contours for Case 6. 
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Figure 19. Shear stress contours for Case 6. 
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Figure 20. Out-of-plane stress contours for Case 6. 
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Figure 21. Effect of through the thickness mesh refinement on the CSS FE model stress fields for Case 4. 
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