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Abstract. Polynomial chaos (PC) expansion meta-model has been wildly employed and 
investigated in the field of uncertainty quantification (UQ) and sensitivity analysis (SA). 
However, the majority of the multi-fidelity polynomial chaos expansion (MF-PC) models in 
the literature are still focused on using high-fidelity (HF) PC model to correct low fidelity (LH) 
model directly, without cross-correlation between PC models of different fidelities. To address 
this shortcoming, a multi-fidelity sparse polynomial chaos expansion (MF-sPC) model is 
proposed based on least angle regression (LAR) and recursive Gaussian process regression 
(GPR) in this paper. From low to high degree of fidelity, the autoregressive scheme in MF 
GPR is employed to construct MF-sPC model, in which the sparse polynomial chaos (sPC) 
model of each fidelity is built iteratively coupling with GPR, LAR and cross validation (CV), 
as gradually expanding the design of experiment (DoE) to reach a given CV error. This 
recursive scheme finally yields a MF-sPC model with highest fidelity which takes advantage of 
all sPC models of the lower fidelities. And the proposed MF-sPC model is validated by a test 
example in detail, and the results reveal that this MF meta-model performs outstanding both in 
convergence speed and model accuracy. 

1. Introduction 
In engineering practice, there are data usually available with multiple fidelities. High-fidelity (HF) 
models are more accurate but more time-consuming, while low-fidelity (LF) ones are less accurate but 
more accessible. This has inspired the development of multi-fidelity (MF) models, which aim to build 
HF models using multi-fidelity data. The first MF model was the multi-fidelity Gaussian process 
regression (MF-GPR) by Kennedy and O'Hagan [1]. To apply the MF model to uncertainty 
quantification (UQ) and sensitivity analysis (SA), the multi-fidelity polynomial chaos expansion (MF-
PC) model has been well developed in the last decade. Ng and Eldred [2] first put forward the MF-PC 
model, which was a fully expanded LF model based on stochastic configuration, with HF data to 
correct the one made from the LF data. On the basis of Ng's work, a few works have been carried out 
to further explore this corrected MF-PC model. First of all, Eldred [3] compared the MF-PC model 
constructed by stochastic configuration method and compressed sensing, and demonstrated three cases 
when the MF-PC model converges more rapidly than a single-fidelity PC. Palar [4] obtained this MF-
PC model based on regression method and then applied it to sensitivity analysis. This MF model 
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successfully passed the tests of several analytic functions and engineering examples and the results 
revealed that when the correlation R2 between LF and HF model is large (larger than 0.9), the accuracy 
of MF model is higher than that of single-fidelity model. In addition, the accuracy of the MF model 
also depended on the magnitude of the corrections. When the absolute error between the high and low 
fidelity models was large, the single-fidelity model could be more accurate than MF model. In the 
meantime, several researchers have constructed MF-PC models in their unique ways, and successfully 
applied it to different fields, such as inverse problems [5] and aeroelastic flutter analysis [6]. Further 
on, considering previous corrected MF-PC models ignores the mutual correlation between high and 
low-fidelity model, Cheng [7] established a MF-PC model based on recursive Gaussian process 
regression (GPR) to corelate different fidelity PC models, in which an iterative algorithm was 
proposed to obtain sparse polynomial chaos expansion (sPC) of different levels of fidelity in ascending 
order. However, this iterative algorithm did not build a high-precision sPC model for each fidelity, and 
it took lots of iterations to converge. To improve the accuracy of this MF-PC and accelerate 
convergence, in this paper, an adaptive approach based on least angle regression (LAR) algorithm is 
added into this MF-PC method to build an effective sPC representation. This adaptive method was 
first proposed by Blatman and Sudret [8], showing excellent sparse reconstruction of PC model.  
 Above all, this paper is devoted to develop a multi-fidelity sparse polynomials chaos expansion 
(MF-sPC) meta-model for arbitrary inputs, in which LAR constructs sPC model of each fidelity, GPR 
corelates different fidelity sPC models, and cross validation (CV) judges the accuracy of different sPC 
models and estimates hyper-parameters in the process. The remainder of this paper is organized as 
follows. The detailed methods to construct MF-sPC model based on GPR, LAR are summarized in 
section 2. Then section 3 displays a benchmark test in detail to illustrate the outstanding performances 
of proposed MF-sPC model. In the end, this paper is concluded in section 4. 

2. Multi-fidelity sparse polynomial chaos expansions (MF-sPC) 
In this section, the corrected multi-fidelity polynomial chaos expansions meta-model is firstly 
introduced, which is a common way to construct MF-PC. Then we present the sparse polynomial 
chaos expansions based on GPR and LAR, in which PC models of different fidelities are cross-
correlated.  

2.1. Corrected multi-fidelity polynomial chaos expansions 
In Ng and Eldred’s MF-PC, the HF model can be regarded as a combination of the LH model and a 
correction model 

 h l cy y y   (1) 

where hy , ly and cy represent HF, LF and correction term respectively,  indicates the scaling factor . 

In other words, the key point of this method is using HF data to correct LF model. Here we insist that 
the polynomials in correction model is a subset of the LF PC, because it is convinced the polynomials 
used in LF PC can approximate the HF model in the same way. The polynomial expansions model can 
be expressed as 

 ( ) ( )
i ih l c i

i

y a a X


    (2) 

where the multi-index is determined by the hyperbolic truncation of the lowest fidelity sPC model.   

2.2. Sparse polynomial chaos expansions based on GPR and LAR 
To deduce a MF-PC based on GPR, one must infer a sPC model based on GP at first. And to this end, 
a covariance function by the inner product of PC basis functions is defined as 

 2( , ) ( ) ( )i j i i jCov x x x x 





    (3) 
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where   are weight factors. Then the response is regarded as a Gaussian process (GP) 

( ) ( ( ), ( , ))Z X N X Cov X X  , where ( )X  and ( , )Cov X X   is the mean and covariance function of 

( )Z X respectively. For the sake of simplicity, here we set the mean as zero and the weight factors in 

covariance function as one. Next given a date set 1 1 2{ , ... }mX x x x and its evaluation 1 1 2{ , ... }mY y y y , 

we can infer that the posterior distribution of ( )Z X  given 1 1,X Y  is still Gaussian distribution 

( ( ), ( , ))N x Cov x x   , in which  

 
1

1 1 1 1

1
1 1 1 1

( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )T

x Cov x X Cov X X Y

Cov x x Cov x x Cov x X Cov X X Cov x X

 





   




 (4) 

where ( , )Cov x x , 1( , )Cov x X and 1 1( , )Cov X X  are the covariance matrix for given samples in brackets. 
Further deduction shows that the posterior mean value is a PC model. We hold 

 1
1

( ) ( , ) ( ) ( ) ( ) ( )
m

i i
i

x Cov x X x X X a X 


   
 

          (5) 

in which m is the sample size, 1
1 2 1 1 1[ , ... ] ( , )T

m Cov X X Y      , 
1

( )
m

i ii
x 


  and ( )X are 

the vectors of coefficients and orthogonal polynomials respectively.  
 Cheng in ref [7] adopted an iterative algorithm to update weight factors of covariance function 
and finally yield the sPC model. However, this iterative algorithm did not build a high-precision sPC 
meta-model for each fidelity, and it took lots of iterations to converge. To improve the accuracy of 
MF-PC and accelerate convergence, an adaptive approach based on LAR algorithm is employed to 
build an effective sparse representation and then inspire the posterior distribution of ( )Z X . The whole 

algorithm for constructing sPC model based on LAR and GPR is given in pseudocode below. 

Algorithm 1. sPC model based on LAR 
1:  Initialization. 10K  , 0 10m d , 0 0int(0.25 0.3 )m m m   , 0.001CV  , 0m m  

2:  while stop-sampling conditions are not met do 
3:        for max1,2,...,p p  do 

4:            for 0.1,0.2,...,1q   do 

5:                Run LAR for a set of PCE model and compute coefficients by least square method, 
calculate  CV  for each PCE and find the one with minimal  min

CV  

6:        Discard some  ( , )p q combinations with large CV consecutively 

7:        m m m        
8:        Record  ( , )p q , polynomials coefficients  and CV  for the best model selected 

Algorithm 2. posterior distribution of ( )Z X  given 1 1,X Y , with mean of final sPC model 

9:  1k  , = sign( )u  , (1) ( , ) ( ) ( )i j j jCov x x u x u x    , (1) 1
1 1 1( , )Cov X X Y  , 

(1)

1
( )

m

i ii
x 


   and (1) (1)

1 1
l  ,  1   

10:  while 0.001   do 

11:        1k k  ,
1

( )

1

k
i

i

u a




 ,  ( ) ( , ) ( ) ( )k
i j j jCov x x u x u x    , ( ) 1

1 1 1( , )kCov X X Y   

      ( ) 2

1
( )

mk
i ii
u x 


  , ( ) ( )

1 1

k kl  , ( ) ( 1) ( 1)
1 1 1/k k kl l l     

12:  Output.  ( )k  , ( )( , ) ( , ) ( ) ( )k
i j i j j jCov x x Cov x x u x u x     , ( )x , ( , )Cov x x  
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2.3. Multi-fidelity sparse polynomial chaos expansions (MF-sPC) 
Consider the autoregressive  model 1 1( ) ( ) ( )t t t tZ X Z X g X   in MF GPR, and give multiple data 

sets 1 2, ... sX X X and their realization 1 2, ... sY Y Y , initialize the GP 1( )tg X  with zero mean and its 

weight factors k is equal to 1, then it can be deduced that the HF model 2 ( )Z X   

2 2( ( ), ( , ))N X Cov X X   is a GP, and its inferior mean and covariance are expressed as 

 
2

2 1 1

2
2 1 1

( ) ( )

( , ) ( , ) ( , )g

x x

Cov x x Cov x x Cov x x

  





   




 (6) 

These two equations work to map the mean and covariance from model of low to high fidelity. Given 
training data set 2X and its realization 2Y , the posterior distribution of 2 ( )Z X is still a GP, whose 

posterior mean and covariance are expressed as 

 
1

2 1 1 2 2 2 2 2 2 1 1

1
2 2 2 2 2 2 2 2 2

( ) ( ) ( , ) ( , ) ( ( ))

( , ) ( , ) ( , ) ( , ) ( , )T

x x Cov x X Cov X X Y x

Cov x x Cov x x Cov x X Cov X X Cov x X

    



  

   

  


 (7) 

Note the weight factors of GP 1( )tg X is updated by the sPC algorithm given above, and the posterior 

mean 2 ( )x in Eq. (7) of final HF model 2 ( )Z X is still a sPC model. Following this procedure, a sparse 

MF-PC meta-model can be constructed recursively from a low to high level of fidelity. 
 Another key point of this algorithm is how to estimate the hyper-parameters. For a problem with 
s fidelities, one must determine the scaling factor t and maximal degree of polynomials tp for each 

fidelity. In sum, the hyper-parameters 1 1 2 2 1 1, , , ... , ,s s sp p p p    with a number of 2 1s   need to be 

estimated gradually. As we said before, the polynomials in HF model is a subset of that in the LH PC, 
thus this inequality 1 2 1... s sp p p p     is valid. In the present study, CV is employed to estimate 
the optimal hyper-parameters, with which the current MF-PC model has the minimal CV error.  

3. Benchmark tests 
In this section, an eight-dimensional borehole function is employed to examine the capabilities of the 
multi-fidelity method in detail, from the perspective of convergence and accuracy.  
 The borehole function models water flow through a borehole [4], and the HF and LF functions 
are expressed as 

 

2

2 ( )
( )

2
ln( / )(1 )

ln( / )

u u l
h

u u

l

T H H
f x

LT T
r r

r r r K T
  

 


 
 (8) 

 

2

5 ( )
( )

2
ln( / )(1.5 )

ln( / )

u u l
l

u u

l

T H H
f x

LT T
r r

Tr r r K
  




 
 (9) 

respectively, where the various parameters and their distributions can be found in ref. [4]. To analyse 
the similarity and discrepancy of those two-fidelity functions, the 2R correlation with a value of 
0.9999 indicates that these functions are highly correlated, while the mean absolute relative error 
MARE is equal to 0.204 means that the LF function is extremely inaccurate.  
 To dealing with this problem, the first thing is to construct an accurate LH sPC model, in which 
the number of samples required and the optimal truncation parameters ,p q need to be estimated. 
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Execute Algorithm 1 to construct sPC, we obtain the convergence curves of error as increasing the 
number of samples in figure 1. 

 
Figure 1: Relative K-fold CV error and relative generalization error for different truncated sets 

As expanding the size of design of experiment (DoE), the relative K-fold CV error CV  and relative 

generalization error gen  for all truncated sets begin decreasing sharply as first, until the sample 

number 1m reaches 100, then errors declines slowly and the algorithm converges. The polynomial 

truncated set generated by truncated parameters 16, 0.4p q   proves to construct the most accurate 

sPC model among those candidate sets when 100m  , which is adopted ultimately in this paper. For 
the truncated parameters 16, 0.4p q  , then LAR algorithm meets its convergence conditions when 

1 140m  , at this point 50.0045, 5. 089 -05 CV gen e   .  

 Furthermore, the trends of the K-fold CV error CV are consistent with that of generalization 

error gen for all truncated sets while increasing samples, which indicates CV is an efficient approach to 

select the optimal sPC model and truncation parameters. We must emphasize that the relative 
generalization error gen  cannot be acquired in the engineering practice due to lack of information 

about the true model. In the case that gen is unobtainable, it is proved that CV  can work as excellent 

metrics of the model accuracy in this algorithm. 
 When the best PC model is found, then run Algorithm 1 to obtain the GP 1( )Z X , as well as its 

ultimate weight factors and the covariance function. Next we construct the GP 2 ( )Z X  by the 

autoregressive model 2 1 1 2( ) ( ) ( )Z X Z X g X  , in which the hyper-parameters including scaling 

factor 1 and maximal degree of polynomial 2p are estimated by CV, as shown in figure 2. 

 
Figure 2: Relative K-fold CV error and relative generalization error for different hyper-parameters 
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Figure 2 depicts the trend of relative K-fold CV error CV  and relative generalization error gen  for 

various scaling factor 1 and maximal degree of polynomial 2p when number of LF and HF samples are 

set as 140lm  , 40hm   respectively. Here we discover that the general trend of CV  is in line with 

the trend of gen for different 1 while varying 2p . When CV reaches its least value, the gen is exactly at 

its minimum. And in this test, the optimal hyper-parameters are found to be 1 1  , 2 16p  , by this 

time gen  is equal to 7.5492e-05. 

 Hereto, the MF-sPC model has been constructed successfully, on the strength of LAR and GPR. 
To further analyse the effects of LAR and GPR, firstly a comparative study of convergence for two 
methods named MF-PC with LAR (LAR-MF) and original MF-PC without LAR (Ori-MF) is carried 
out. Figure 3 illustrates the convergence for Algorithm 2 for sPC model of each fidelity when given 

400lm  , 80hm  . 

 
Figure 3: Convergence of Algorithm 1 for PC model of each fidelity 

It is obvious that LAR accelerates the convergence of the whole algorithm, the convergent iterations 
decrease from 10 to 2 and 3 for low and HF sPC model respectively. And the various convergent 
values of 1l norm indicate model accuracies differ for LAR-MF and Ori-MF PC model. Here figure 4 

gives the accuracy of the sPC model generated by three methods as increasing hm for given 400lm  : 

LAR-MF, LAR and Ori-MF, in which LAR means using LAR construct sPC solely. 

 Figure 4: Error convergence for 
three different sPC methods as 
increasing hm  when fixing lm  

 Figure 5: Error Convergence for two 
multi-fidelity models and different 

lm  as increasing hm  

 

According to figure 4, when constructing sPC model, it is revealed that Ori-MF method cannot reduce 
the gen observably, while only using LAR algorithm based on HF samples deceases gen  significantly 
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as increasing hm  for given lm . However, Ori-MF behaves better when hm is small because this 
method takes advantage of the accurate LH sPC model while LAR does not. Therefore, LAR-MF 
combines the advantages of LAR and Ori-MF effectively and performs outstanding for all the different 
values of hm , which is exactly what we want. And we can conclude that LAR speeds up the decline of 

gen  as increasing hm . Another phenomenon is gen  fluctuates along with hm  for LAR-MF method 

within a pretty small value, this volatility may stem from diverse hyper-parameters 1 and 2p for 

different hm . 

 Finally, to illustrate the impact of GPR, in other words, to show the effect of the cross-correlation 
between sPC of different fidelity, the performances of proposed MF-PC based on LAR and GPR 
(LAR-MF) with corrected MF-PC based on LAR(LAR-cMF) are compared for three different lm as 

increasing hm  in figure 5. The three different 40,  80,  400lm   represent three LF sPC models whose 

gen  are equal to 0.4614,  0.5457 -2,  0.4892 -4e e  respectively. It can be found that even when the LF 

sPC models are different, our proposed LAR-MF method is able to construct a more accurate MF-PC 
model than LAR-cMF, especially when hm is small. And the accuracy of LF sPC model influences the 

accuracy of MF-PC model for both methods, as we can see, a high-accuracy LF sPC model determines 
a high-precision MF-PC model. 

4. Conclusions 
In this paper, a multi-fidelity sparse polynomial chaos expansion meta-model based on GPR, LAR and 
CV has been proposed for dealing with UQ problems, in which GPR guarantees the cross-correlation 
between sPC models of different levels of fidelity, LAR accelerates the algorithm convergence and 
improves model accuracy, meanwhile CV estimates the accuracy of sPC model and determines the 
hyper-parameters in the algorithm. The body of this algorithm is to construct sPC model by regarding 
it as GP, then the MF-sPC meta-model can be obtained by implementing autoregressive model from 
low to high fidelity.  
 The benchmark test illustrates that the proposed method is able to construct high-accuracy MF-
PC meta-model, even when the HF samples are scarce. Compared with corrected MF-PC method, the 
proposed method constructs more accurate MF-PC meta-model due to the cross-correlation between 
sPC models of different fidelities. In comparison with original MF-PC method based on GPR, the 
introduction of LAR algorithm successfully promotes the algorithm convergence as well as model 
accuracy.   
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