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Abstract—Deep learning has shown outstanding performance
in several applications including image classification. However,
deep classifiers are known to be highly vulnerable to adversarial
attacks, in that a minor perturbation of the input can easily lead
to an error. Providing robustness to adversarial attacks is a very
challenging task especially in problems involving a large number
of classes, as it typically comes at the expense of an accuracy
decrease. In this work, we propose the Gaussian class-conditional
simplex (GCCS) loss: a novel approach for training deep robust
multiclass classifiers that provides adversarial robustness while
at the same time achieving or even surpassing the classification
accuracy of state-of-the-art methods. Differently from other
frameworks, the proposed method learns a mapping of the input
classes onto target distributions in a latent space such that
the classes are linearly separable. Instead of maximizing the
likelihood of target labels for individual samples, our objective
function pushes the network to produce feature distributions
yielding high inter-class separation. The mean values of the
distributions are centered on the vertices of a simplex such that
each class is at the same distance from every other class. We
show that the regularization of the latent space based on our
approach yields excellent classification accuracy and inherently
provides robustness to multiple adversarial attacks, both targeted
and untargeted, outperforming state-of-the-art approaches over
challenging datasets.

I. INTRODUCTION

In recent years, deep neural networks have reached accuracy

comparable with or even greater than that of humans in

visual tasks such as recognizing traffic signs [1], handwritten

digits [2], and faces [3]. Also, they have shown excellent

performance at learning complex mappings [4] and addressing

difficult classification tasks [5]. However, as their integration

in contemporary society grows, they become ever more subject

to the action of malicious adversaries.

In fact, despite the success of deep neural networks, many

obstacles still hinder their use in fields where security is

essential, such as systems for autonomous driving and medical

diagnostics [6, 7]. A major threat is represented by adversarial

perturbations, a set of techniques used to tamper with the in-

puts of a neural network. The modifications are often invisible

to the human eye but may still be able to disrupt the algorithm

operation and cause unexpected, undesired outputs. Malicious

attackers could exploit such fallacies to cause malfunctions in

systems, and the attack would be very hard to detect.

Although many countermeasures have been proposed, an

effective defence mechanism against the broad spectrum of

adversarial perturbations is not available yet. In particular, a

downside of deep learning techniques is that the learned deci-

sion boundaries in the feature space are highly complex and

non-linear [8]. Works addressing this specific problem [8, 9]

concluded that most of the mass of the data points gathers

close to the decision boundaries and this may strongly affect

the robustness of the classifier against perturbations. Recent

techniques tackling this problem can be found in [10] and

[11], where logit regularization and curvature regularization

methods are deployed as adversarial defense respectively, and

also in [12] and [13], where theoretical insight is given on

the effect of the use of unlabeled data and noise injection at

inference time, respectively. At the same time, new techniques

are also being developed to craft more successful adversarial

attacks [14]. In the present paper, adversarial training is not

considered as it entails the cost of generating and training on

a substantial amount of additional input samples; moreover,

adversarial training typically provides robustness against a

specific type of attack, whereas we are interested in tackling

the robustness problem with a more general approach.

In order to improve the robustness of a classifier in the

presence of adversarial perturbation of the inputs, we propose

a novel classifier design that goes beyond the cross-entropy

loss function. The proposed method employs a new objective

function enabling learning of features that maximize inter-class

separation and decision variables exhibiting simple and well-

defined distributions that are linearly separable in the latent

space. The proposed objective function provides state-of-the-

art classification while at the same time ensures robustness

against adversarial attacks as it is. To correctly evaluate

the robustness against adversarial examples, we follow the

methodological foundations established in [15] and [16].

The resulting classifier employs simple threshold-based de-

cisions in the regularized latent space. This design provides

several benefits: on one hand, the accuracy is typically im-

proved with respect to cross-entropy even in the case of no

attacks. On the other hand, such classifier exhibits remarkably

improved robustness against adversarial attacks; indeed, due to

the uniformity of the distributions of the features in the latent

space and the lack of a short path towards a neighboring deci-
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Fig. 1: The GCCS architecture takes input data and learns discriminative features that are mapped onto Gaussian target

distributions in the latent space.

sion region, the attack strength must be much larger in order

to generate a misclassification. Finally, the proposed method

can be easily applied to an existing pre-trained cross-entropy

based classifier, by continuing the training of the features and

classification stage using our proposed loss function.

This paper presents a detailed assessment and analysis of

the proposed method in several image classification problems,

providing accuracy results on well-known datasets such as

MNIST [17], FMNIST [18], SVHN [19], as well as more

challenging datasets such as CIFAR10 and CIFAR100 [20].

In particular, we show that our loss function is inherently

more robust than cross-entropy. We support our claim by

following state-of-the-art robustness evaluation frameworks

[15]. We validate our approach comparing it to state-of-the-

art techniques for adversarial robustness and show that GCCS

outperforms those methods under both targeted (PGD [21])

and untargeted attacks (JSMA [22], TGSM [23]).

II. RELATED WORKS

The concept of adversarial perturbation was first introduced

for spam email detection [24, 25]. In the following years,

Szegedy et al. [26] showed how neural networks can easily be

tricked into wrong classification if fed with specifically altered

inputs produced considering the sign of the loss function

gradients with respect to the inputs. In works such as [27–

29] adversarial samples are used in the training phase as a

particular form of data augmentation in order to improve ro-

bustness. However, such adversarial training does not prevent

adversaries to effectively tamper with the final classification

stage [16]. Rather, it has been proven that universal adver-

sarial perturbations can be crafted so as to induce wrong

classification with high probability independently of the used

dataset [30], and also to generalize well over different network

structures [23, 31, 32]. Recent theoretical works have also

demonstrated that the robustness to adversarial attacks for a

classification problem is bounded by limits that cannot be

escaped by any classifier since they are dependent on the used

datasets, the strength of the attack, and the way perturbations

are measured [33].

The authors in [34] investigated how the effectiveness of

adversarial attacks can transfer to models other than the

targeted one, and they showed that adversarial examples that

are generated to fool a specific model are likely to impact all

the models that are trained on the same dataset. Also, [23]

concluded that adversarial-generated images are misclassified

even when printed out on paper and digitally re-acquired,

proving that the phenomenon is relevant in both the digital and

the physical domains. Further, [35] showed that deep learning

methods for face recognition may wrongly classify faces when

users are wearing ad-hoc designed adversarial glasses. Finally,

[36] described a method for generating image patches to be

placed on input target images in order to cause the neural

network to output the desired class. This kind of attack is

constructed and performed without knowledge of the targeted

image, and it potentially allows the adversarial patch to be

widely used with malicious intent after it is distributed over

the Internet.

Several papers have also investigated defense techniques

against attacks. The authors in [34] propose the input gra-

dient regularization method, which is employed during the

training phase to force the model to have smooth gradients.

They hypothesize that a model trained with gradients that

exhibits fewer extreme values is more resistant to adversarial

perturbations and that its behavior in response to those attacks

is also more easily interpretable. Moreover, [37] calculates

instance-specific lower bounds on the norm of the input

perturbation necessary to alter the decision of the classifier,

providing a formal characterization of its robustness. The

article also introduces the Cross-Lipschitz regularization func-

tional which forces the differences of the classifier functions

at the data points to be constant. Jakubovitz et al. [38]

instead suggest a low-complexity regularization technique that

uses the Frobenius norm of the Jacobian of the network,

which is applied to already trained models as post-processing,

robustness-improving step. In particular, while not being an

active defence method, the proposed GCCS method ensures

improved robustness against adversarial perturbations as it is.

If standard approaches focus on learning the classification

boundaries, the proposed GCCS approach instead learns a

mapping of the input classes onto target distributions in the

latent space. Specifically, an encoder maps features of each

class onto Gaussian distributions on a simplex for an arbitrary

number of classes, maximizing inter-class separability. Other

papers also propose to learn a mapping onto a regularized

space, such as [39] and [40] that respectively introduce tech-

niques based on adversarial and variational autoencoders. In

[41] Stuhlsatz et al. present an approach to feature extraction

that generalizes the classical Linear Discriminant Analysis

(LDA) employing neural networks. The authors in [42] nonlin-

early extend LDA by putting it on top of a deep neural network
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Fig. 2: Classification accuracy (%) for GCCS and cross-

entropy on MNIST with ResNet-18.

and maximize the eigenvalues of LDA on the last hidden

representation. The primary objective of most discriminant

analysis methods is dimensionality reduction [43]. One of the

shortcomings of these methods is that they tend to maximize

the distance of the classes that are already well separated, at

the expense of poorly-separated neighboring classes, leading

to a nonhierarchical pattern in terms of inter-class separabil-

ity. Another relevant work is RegNet [44], a deep learning

technique for biometric authentication that deals with the one-

vs-all classification problem of separating authorized users

from non-authorized ones. This technique regularizes a two-

dimensional latent space through a loss function based on

a simplified equation for the Kullback–Leibler divergence;

however, this approach is not suitable for high-dimensional

classification problems as addressed by GCCS.

III. PROPOSED METHOD

The proposed method is based on the architecture shown

in Fig. 1. Labeled training data X for a D-class classification

problem is given as input to a neural network that is composed

of a feature extractor and a latent space mapper. The goal of

the feature extractor is to learn nonlinear transformations from

arbitrary data distributions and extract distinctive and highly

separable features. The latent space mapper consists of one

or more fully connected layers with the goal of mapping the

output z onto specific target distributions in a D-dimensional

latent space (i.e. as many dimensions as the number of classes);

no non-linear activation function is employed in the last layer

of the mapper. It is worth noting that the proposed method

does not depend on a specific feature extraction architecture,

so existing state-of-the-art architectures can be used for this

task.

In order to achieve the desired target, the proposed method

needs to define three main components: a target model for the

distribution of features in the latent space; a loss function to

achieve that distribution; finally, a decision rule. The details

are as follows.

A. Model for the target distributions

GCCS aims to learn the most discriminative features and

maximize the inter-class separability by finding a nonlinear

projection of high-dimensional observations onto a lower-

dimensional space. This is obtained by regularizing the latent

space to D different statistical distributions, where D is the

number of classes the data belongs to. Let us first define the

desired target distribution Pi for class Ci, i = 1, . . .D, as a

D-variate Gaussian distribution, i.e. Pi = N (µTi,ΣT ), with

µTi = µT ei and ΣT = σ2
T ID , where ei is the ith standard

unit vector and ID is the D × D identity matrix. µT and

σT are user-defined parameters that are related to inter-class

separation and are discussed later in the manuscript. Here, it

should be noted that in order to have separable distributions

we should have µT /σT >
√
2D, otherwise as D grows the

classes will inevitably mix.

Since each distribution Pi has mean value proportional to

ei, the statistical distributions are centered on the vertices

of a regular (D − 1)-simplex at µT ei, as shown in Fig. 1.

This target model has several advantages. First, this choice

guarantees that each class is at the same distance from all other

classes. Due to the uniformity of the feature distributions in

the latent space and the consequent lack of a short path, the

attack strength must be much larger in order to generate a

misclassification, leading to improved robustness. Moreover,

since the distributions are Gaussian, the decision boundaries

are straightforward to compute. This is in contrast with the

typical behavior of neural networks, which tend to yield very

complex boundaries, and it promotes accuracy as well as

adversarial robustness.

B. Loss function

In order to train the network, we need to introduce a loss

function that allows us to minimize a suitable distance metric

between the distributions of the output latent variables and the

target distributions.

Let us refer to the output of the encoding neural network

as z = H(x), where [z1, . . . , zD] ∈ R
D indicates the latent

mapping, and x ∈ R
n denotes the input data belonging to D

different classes. The goal is to learn an encoding function of

the input z = H(x) such that z ∼ Pi if x ∈ Ci.
During the training phase, the network is given as input a

batch of samples X ∈ R
b×n, where b is the batch size, and it

computes the encoded outputs Z ∈ R
b×D. We are interested in

their first and second order statistics, which can be estimated as

sample mean µOi and sample covariance ΣOi for each class.

Considering that the target statistics are known and the sample

statistics for the batch have been computed, we can proceed

to define a suitable loss to measure how far the distributions

are from each other. More in detail, we employ the Kullback-

Leibler divergence (KL).

For the sample distribution of any class Ci, the KL diver-

gence with respect to the Gaussian target distribution can be

written as:

Li = log
|ΣT |
|ΣOi|

−D + tr(Σ−1

T ΣOi)+

(µTi − µOi)
⊺
Σ

−1

T (µTi − µOi)

(1)



Method
MNIST FMNIST SVHN CIFAR-10 CIFAR-10 CIFAR-100

ResNet-18 ResNet-18 ResNet-18 ResNet-18 Shake-Shake-96 Shake-Shake-112

GCCS - regular training 99.58 92.69 94.20 82.97 96.19 76.53
GCCS - fine tuning 99.64 93.83 95.58 81.52 97.06 77.48

No Defense - cross-entropy 99.35 91.91 94.12 78.59 95.78 76.30
Jacobian Reg. - regular training [38] 98.99 91.79 94.11 70.09 - -

Jacobian Reg. - fine-tuning[38] 98.53 92.43 93.54 82.09 - -
Input Gradient Reg. - regular training [34] 97.98 88.45 93.77 78.32 96.50 74.89

Input Gradient Reg. - fine-tuning [34] 99.11 92.55 93.17 76.15 96.90 75.68
Cross Lipschitz regular training [37] 96.78 92.54 91.42 80.10 - -

Cross Lipschitz - fine-tuning [37] 98.77 92.41 93.50 79.39 - -

TABLE I: Maximum test accuracy obtained through regular training vs fine-tuning over different benchmark datasets with

different competing techniques in the case in which no adversarial attack is performed.

We consider the cumulative loss L =
∑D

i=1
Li. This loss

reaches its minimum when the sample statistics of the D en-

coded distributions match the target ones. However, for a small

batch size, it can be difficult to control the behavior of the tails

of the obtained distributions relying only on KL. Hence, we

also consider the Kurtosis Ki,j , [45] of the jth component of

the ith target distribution, defined as Ki,j =
(

zi,j−µOi,j

σOi,j

)4

.

In the case of multiple i.i.d. univariate normal distributions

such as those we are enforcing at training, the target Kurtosis

for each class is Ki,j = 3. This can be added to the cumulative

loss, obtaining the loss LGCCS as follows:

LGCCS =

D∑

i=1

[Li + λ(Ki − 3)] , (2)

where Ki = 1/D
∑

j Ki,j and λ determines the strength of

the Kurtosis term and is set to λ = 0.2.

C. Decision Rule

Once the preconditions are fulfilled, GCCS allows to define

optimal decision boundaries in the resulting latent space.

For the given target distributions, the optimal boundaries are

obtained by partitioning the space into Voronoi regions such

that all points in a region are closer to the respective centroid

(the mean vector µTi) than to any other centroid in the (D−1)-
simplex. The resulting decision rule consists of computing the

distance of the feature point from all centers and choose the

class with the minimum distance. To determine which class a

test image belongs to, the following decision rule is employed:

ŷ = argmax
i

zi, (3)

which returns the index of the predicted class for the test

image.

IV. EXPERIMENTS

A. Datasets and Training Parameters

The performance of classifiers trained using the GCCS loss

was tested on MNIST [17], FMNIST [18], SVHN [19], CIFAR-

10 and CIFAR-100 [20]. For less complex datasets such as

MNIST, FMNIST, and SVHN, the experiments were con-

ducted using ResNet-18 [46] as the feature extraction network.

For the more challenging CIFAR-10 and CIFAR-100 datasets,

the Shake-Shake-96 and Shake-Shake-112 [47] regularization

networks have been employed respectively, using a widen

factor equal to 6 for the former and 7 for the latter. The

encoder’s last layer is followed by a fully-connected layer that

outputs a vector with dimension D. We trained each network

for a total of 1800 epochs. For better network convergence, we

employed cosine learning rate decay [48] with an initial value

of 0.01 as well as weight decay with a rate set to 0.001. Finally,

dropout regularization [49] with a 0.8 keep probability value

was applied to all the fully connected layers in the network.

1) Target Distributions Parameters: In this section, we

perform an experiment to explore the behavior of the target

distributions for different mean and variance values. Since

we fix the mean µT and variance σT values for the target

distributions so that they are centered on the vertices of a

regular (D − 1)-simplex, the only parameter affecting our

design is the µT /σT ratio, i.e., how far apart the distributions

are with respect to the chosen variance.

In this experiment we set σT = 1, so that the target

distributions are Pi = N (µT ei, ID); then, we compute the

classification accuracy as a function of µT ∈ [0.5, 300]. Fig.

2 shows the accuracy as a function of µT /σT for MNIST-10

dataset. It can be observed that in the µT ≥ 20 region the

accuracy is even higher than that obtained with the traditional

cross-entropy loss.

In the following, we choose µT = 70 and σT = 1. This

choice ensures that we operate in that region, and also that the

target distributions are sufficiently far apart from each other.

B. Classification accuracy

As a first experiment, we compared the classification accu-

racy of GCCS with that obtained by an equivalent network

trained with cross-entropy loss (no defense) and with state-

of-the-art defense techniques such as Jacobian Regularization

[38], Input Gradient Regularization [34], and Cross Lipschitz

regularization [37], in the case in which no adversarial attack is

performed. As shown in Table I, GCCS yields high classifica-

tion accuracy both when the networks are trained from scratch

(regular training) and when they are first trained using regular

cross-entropy loss and then fine-tuned with either GCCS loss

or the other defense techniques (fine-tuning). In particular,

Table I shows that the proposed technique outperforms the

standard cross-entropy loss and other existing approaches

[38], [34], and [37] over the considered datasets. In more

detail, it can be seen that other techniques generally cause

a small decrease in classification accuracy with respect to the

standard cross-entropy loss function, whereas GCCS provides



(a) GCCS (b) No defense (c) Jacobian Reg. (d) Input Reg. (e) Cross Lipschitz

(f) GCCS (g) No defense (h) Jacobian Reg. (i) Input Reg. (j) Cross Lipschitz

Fig. 3: (a-e) Visual representation of latent space output distributions on MNIST for regular training in the case that no

adversarial attack is applied. For better visualization of the separability, only three classes are shown, and an appropriate scale

is used for each plot. (a) GCCS; (b) standard cross-entropy; (c) Jacobian Regularization [38]; (d) Input Gradient Regularization

[34]; (e) Cross Lipschitz Regularization [37]. (f-j) Visual representation of latent space output distributions on MNIST for

TGSM (5 steps, ǫ = 2e−3) is applied. For better visualization, only three classes are shown. (f) GCCS; (g) standard cross-

entropy; (h) Jacobian Regularization [38]; (i) Input Gradient Regularization [34]; (j) Cross Lipschitz Regularization [37].

an improvement in testing accuracy, especially for challenging

datasets such as CIFAR-10 and CIFAR-100.

The higher classification accuracy yielded by GCCS is due

to the high separability of the target distributions in the latent

space, as opposed to the other methods. To better highlight this,

we refer to Fig. 3 in which the output distributions for three

different MNIST classes [0, 1 and 9] are reported. Looking at

Fig. 3-a against Fig. 3-b, Fig. 3-c, Fig. 3-d, and Fig. 3-e, one

can immediately observe that the output distributions of the

three classes are less spread out and more separated than the

other cases.

Also, Fig. 3 shows that GCCS provides lighter distribution

tails, compared to the other methods.

C. Robustness Evaluation

In this section, we evaluate how the classification accuracy

of GCCS and the other competing techniques degrades under

both targeted attacks (TGSM, JSMA) and non-targeted attack

(PGD). The accuracy is evaluated as a function of a tunable

parameter ǫ that indicates how strong the applied attack is.

Namely, the noise vector n added by the attack to the input

signal x satisfies ‖n‖∞/‖x‖∞ ≤ ǫ.

1) Non-targeted Attacks: We start by evaluating the per-

formance of all methods when subjected to the non-targeted

PGD attack on the MNIST, SVHN, CIFAR-10, and CIFAR-

100 datasets. Projected Gradient Descent (PGD) [21], is an

iterative version of FGSM in which noise is added in multiple

steps. In particular, PGD is the strongest adversarial attack that

exploits first-order local information about the trained model.

In this work, for PGD we apply a 5-iterations attack, i.e. PGD-

5 as done in [33, 50, 51].

For MNIST, we set 0 ≤ ǫ ≤ 10e−2, while for SVHN,

CIFAR-10, and CIFAR-100 we set 0 ≤ ǫ ≤ 6e−3, since

MNIST is, in general, a less challenging dataset. As illustrated

in Fig. 4, GCCS outperforms by a large amount the competing

approaches on all the considered datasets. Our approach proves

to be much more robust than the others, especially for stronger

attacks. The performance gap is particularly evident in the

case of PGD, which is indeed the strongest adversarial attack

utilizing the local first-order network information.
2) Targeted Attacks: We also consider targeted adversarial

attacks such as TGSM and JSMA. Similarly to Sec. IV-C1, we

present curves of the classification accuracy against the attack

strength ǫ.
TGSM Attack: In TGSM [23] the input samples are

perturbed by adding noise in the direction of the negative

gradient with respect to a selected target class. Fig. 5 presents

the results for TGSM-5, a 5-iterations TGSM attack, over the

MNIST, SVHN, CIFAR-10, and CIFAR-100 datasets. In this

attack, the targeted output class is yl+1 when the true class is

yl.
It can be observed from Fig. 5 that GCCS yields signif-

icantly higher performance compared to the other methods,

throughout different datasets and with different attack strength

ǫ. In order to gain a better understanding of why the proposed

method works much better than the others, in Fig. 3 we show

a visual representation of the target distributions in the latent

space after the TGSM-5 attack ǫ = 2e−3 has been performed.

Fig. 3-g shows clearly the effectiveness of the attack when
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Fig. 4: Test accuracy for PGD (5 steps) attack on (a) ([MNIST, ResNet-18]); (b) ([SVHN, ResNet-18]); (c) ([CIFAR-10,

ResNet-18]); (d) ([CIFAR-10, Shake-Shake-96]) for different values of ǫ.
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Fig. 5: Test accuracy when applying the TGSM attack (5 steps) for (a) ([MNIST, ResNet-18]) ; (b) ([SVHN, ResNet-18]); (c)

([CIFAR-10, ResNet-18]) (d) ([CIFAR-10, Shake-Shake-96]), for different values of ǫ.
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(a) MNIST@ ResNet-18
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(b) SVHN@ ResNet-18
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(c) Cifar10@ ResNet-18
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Fig. 6: Test accuracy when applying the JSMA attack (200 steps, 1 pixel) on (a) ([MNIST, ResNet-18]); (b) ([SVHN, ResNet-

18]); (c) ([CIFAR-10, ResNet-18]); (d) ([CIFAR-10, Shake-Shake-96]), for different values of ǫ.

no defense mechanism is employed, in the sense that the

output distributions are shifted so as to replace the output

distribution of the next class. Fig. 3-h, Fig. 3-i, and Fig. 3-

j report the output distributions under TGSM in the case of

Jacobian, Input Gradient, and Cross-Lipschitz regularization

respectively, showing that, despite the defense mechanism, the

distributions still tend to move their position in the latent space

towards the adjacent classes, causing a very important drop in

classification accuracy as seen in Fig. 5. In the GCCS case

instead (Fig. 3-f), even if the tails of the output distributions

become heavier, their positions are not swapped with the

neighboring classes, allowing for better separability and hence

improved classification accuracy and robustness.

JSMA Attack: The other targeted attack we consider is

JSMA [22], which consists in iteratively computing the Jaco-

bian matrix of the network function to form a saliency map;

this map is used at every iteration to choose which pixels

to tamper with so that the likelihood of changing the output

class towards a selected one is increased. In our case, we

consider JSMA-200 with a 1-pixel saliency map. Similarly to

the TGSM case, Fig. 6 shows the classification accuracy for

increasing attack strength ǫ. The proposed method confirms its

robustness even to JSMA attack, achieving better robustness

than other methods especially on the challenging CIFAR-10

dataset.



V. CONCLUSIONS

We have presented an approach that goes beyond cross-

entropy, employing a loss function that promotes class sep-

arability and robustness by learning a mapping of the decision

variables onto Gaussian distributions. Our work was motivated

by the idea that mapping the centroids of the distributions on

the vertices of a simplex could lead to the uniformity of the

feature distributions in the latent space and the lack of a short

path towards a neighboring decision region. Experiments on

different multi-class datasets show excellent performance of

the classifiers trained using the GCCS loss both in terms of

accuracy and robustness of the classifier against adversarial

attacks, outperforming existing state-of-the-art methods, both

when used to train a network from scratch and when applied

as a fine-tuning step on pre-trained networks. The performance

is analyzed both for targeted and non-targeted adversarial

attacks. We have shown that regularizing the latent space

onto target distributions significantly increases the robustness

against adversarial perturbations. Indeed, an analysis of the

distributions in the latent space for the proposed GCCS method

shows that the different classes tend to remain separated

even in the presence of targeted attacks, whereas a similar

attack strength invariably mixes the distributions achieved by

competing methods.
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