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Abstract1—General Purpose Graphic Processing Units (GPGPUs) 

are becoming a promising solution in safety-critical applications, 

e.g., in the automotive domain. In these applications, reliability and 

functional safety are relevant factors in the selection of devices to 

build the systems. Nowadays, many challenges are impacting the 

implementation of high-performance devices, such as GPGPUs. 

Moreover, there is the need for effective fault detection solutions to 

guarantee the correct in-field operation of a GPGPU, such as in the 

branch management unit, which is one of the most critical modules 

in this parallel architecture. Faults affecting this structure can 

heavily corrupt or even collapse the execution of an application on 

the GPGPU. In this work, we propose a non-invasive Software-

Based Self-Test (SBST) solution to detect faults affecting the 

memory in the branch management unit of a GPGPU. We propose 

a scalar and modular mechanism to develop the test program as a 

combination of software functions. The FlexGripPlus model was 

employed to evaluate the proposed strategies experimentally. 

Results show that the proposed strategies are effective to test the 

target structure and detect up to 98% of permanent faults. 

Keywords—General Purpose Graphics Processing Units (GPGPUs) 

Software-Based Self-Test (SBST), Divergence Stack Memory 

I. INTRODUCTION 

Currently, General Purpose Graphic Processing Units 
(GPGPUs) represent effective solutions for data-intensive 
applications, such as multimedia, multi-signal analysis, and high-
performance computing (HPC). Moreover, these devices are also 
increasingly considered for safety-critical applications with 
substantial requirements in terms of reliability and functional 
safety. In the automotive field, safety-critical applications (such 
as sensor-fusion systems and Advanced Driver Assistance 
Systems (ADAS)[1]) usually require real-time execution and high 
reliability. For this purpose, GPGPUs are implemented in cutting-
edge technologies to maximize performance and reduce power 
consumption. Nevertheless, some studies [2, 3] proved that the 
latest transistor technologies are prone to be affected by faults 
during the operative life of the device. The most critical 
challenges arise when permanent faults affect a module (caused 
by wear-out or aging [4]), so altering the functionality and the 
reliability of the device. 

A parallel processor, such as a GPGPU, is particularly 
efficient when executing embarrassingly parallel programs. 
Nevertheless, real applications are far from this behavior, and 
most of them are composed of non-easily-parallelizable 
algorithms. Thus, these applications usually contain Intra-Warp 
Divergence (IWD), which is produced when a group of threads 
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(warp) has different execution paths with different instructions. In 
[5], the authors report that sample applications in the CUDA 
Software Development Kit (SDK), including IWD, use 
approximately 33% of the total execution time in processing these 
conditions. Similarly, in [6], the authors profile a divergence map 
of typical programs and workloads in GPGPUs. Results show that 
most applications might produce thousands or millions of 
divergence conditions during the operation of the applications. 

The architecture of a GPGPU includes a particular module to 
manage the IWD. This specific module is often called Divergence 
Management Unit (DMU), Branch Divergence Controller, Branch 
Controller, or Divergence Controller. DMU is devoted to 
controlling the operation of multiple paths in the same group of 
threads. Internally, the DMU evaluates control-flow instructions 
and uses a stack memory to store relevant information concerning 
the execution paths. Most DMUs can manage divergences 
composed of two paths. However, other locations in the stack 
memory can be employed to manage more than two divergence 
paths. Thus, the DMU is crucial for the correct operation of an 
application in the GPGPU, and a fault affecting this unit can 
propagate through the modules and collapse the entire operation 
of the device and the executed application. 

Currently, test engineers propose some structures and 
mechanisms targeting the in-field test of a GPGPU and face the 
new reliability and technology challenges. Current solutions are 
sometimes based on the addition of Design for testability (DfT) 
structures, such as Memory Built-in Self-Test (MBIST)[7], which 
can be activated during idle times of the operation and 
stimulate/observe the internal modules of a device detecting 
possible faults [8]. Other solutions are based on designing special 
software programs to test a target functionally. These non-
invasive and flexible mechanisms are also called Software-Based 
Self-Test (SBST). The last approach is based on hybrid 
mechanisms, combining hardware structures and software (i.e., 
custom instructions) to detect [9] or mitigate [10] faults of 
internal modules in a device. Both solutions (DfT and hybrid) are 
costly when targeting small modules in a GPGPU and should be 
developed and included in a design before the production phase. 

Some previous works demonstrated that SBST solutions [11] 
could be successfully integrated into safety-critical applications, 
such as the automotive ones [12]. Most previous works applied to 
GPGPUs proposed SBST solutions for some data-path modules 
[13], including the execution units [14, 15], the register files [16], 
the pipeline registers [17] and some embedded memories [18]. 
Moreover, solutions targeting other critical modules in the 
control-path have been proposed (the warp scheduler [19] and 
their internal memories [20, 21]). However, to the best of our 
knowledge, practical solutions to test the DMU using the SBST 
mechanism are still missing. 



 

In the present work, we propose, for the first time, a functional 
test strategy based on an SBST approach targeting permanent 
faults in the DMU located inside a GPGPU. The proposed SBST 
strategy has been implemented and evaluated, resorting to the 
FlexGripPlus model, which is a simplified open-source version of 
the NVIDIA GPU architecture. 

This work is organized as follows. Section II introduces a 
basic overview of the architecture of an NVIDIA GPGPU, as with 
the special emphasis on the one used to validate the proposed 
strategy. Section III describes the SBST strategy proposed to test 
a permanent fault. Section IV reports the implementation details. 
Section V reports the experimental results, and Section VI draws 
some conclusions and outlines future works. 

II. THE FLEXGRIPPLUS GPGPU MODEL 

FlexGripPlus is a GPGPU model fully described in VHDL 
[22]. It is an improved version of the original FlexGrip model 
developed by the University of Massachusetts FPGA [23]. This 
model implements the Nvidia G80 micro-architecture, and it is 
also compatible with the commercial programming environment 
(CUDA under the SM_1.0 compatibility). FlexGripPlus supports 
28 instructions of either 32 or 64 bits in 64 formats. The number 
of parallel execution units is configurable among 8, 16, and 32. 

The architecture of an NVIDIA G80 GPU (and of 
FlexGripPlus) is based on the SIMT (Single-Instruction Multiple-
Thread) paradigm. It exploits a custom Streaming Multiprocessor 
(SM) core with five stages of pipeline (Fetch, Decode, Read, 
Execution/Control-flow and Write-back), as shown in Fig. 1. This 
special-purpose parallel processor executes the same instruction 
(warp instruction) into a group of multiple threads using the 
available Execution Units (EUs), or Streaming Processors (SPs), 
in the SM. One warp is defined as a group of 32 threads. 
Furthermore, one controller and a warp scheduler controller 
(WSC) control the submission and execution of the warps into the 
SPs. In the SIMT paradigm, one warp instruction is fetched, 
decoded, and distributed to be processed on an independent SP. 
The Read and Write-back stages load and store data operands 
from/to Register Files (RFs), shared, global, or constant 
memories. 

The Execution/Control-flow stage includes one DMU, which 
controls and traces the IWD, which is manifested in a program 
when the threads of the same warp execute different instructions, 
so generating multiple execution paths. The DMU can handle two 
paths in the same level of divergence and up to n levels of nested 
divergence, where n represents the number of threads in a warp. 
The DMU is located in parallel to the Execution/Control-flow 
pipeline stage and can support inter-warp branching at the 
hardware level. This module manages the control-flow operations 
to start or retake the flow from conditional branches with multiple 
paths. This unit also supports up to n-1 levels of nesting 
branching. 

Inside the DMU, one special purpose memory stores the 
starting (divergence point) and ending points (convergence point) 
of the divergence paths of a warp. This information is stored as a 
stack and processed by the DMU when executing control-flow 
instructions. More in detail, the memory is organized as a set of 
32 Line-Entries (LEs) using the format presented in Fig. 2. The 
number of LEs directly related to the threads in a warp and the 
maximum nesting divergence per warp. A divergence point is a 
location in a parallel program where two paths (Taken and Not-
Taken) are generated to be executed by a warp. Similarly, a 
convergence point is a location in a program where the IWD 
paths finish, and the program retakes one execution path. 

Each LE in the stack is composed of three fields. Those fields 
are the thread mask (TM), the flow ID, and the program counter 

of the actual warp under execution (SPC). The TM stores the 
status of the active threads in a warp. An active logic state 
represents the number of active threads executing a path (Taken 
or Not-Taken). The flow ID represents the actual state of the 
execution of an IWD. This value can be “01” (for a branch 
condition) or “00” (for a synchronization point or embarrassingly 
parallel condition). The SPC can store the starting address of the 
paths or the synchronization point address after paths execution. 

The CMU employs two LEs to manage the operations when 
IWD is produced. The first LE stores the synchronization point 
(also known as convergence point) in the SPC field and the 
number of active threads at the moment of starting the divergence 
in the TM field. The second LE stores the starting address for the 
not-taken path in SPC and the threads to execute this path in TM. 
It is worth noting that when nesting divergence is produced, the 
CMU uses a new set of LEs to store the status information for the 
further divergence. 

The execution of a synchronization instruction (SSY) affects 
the address pointer in the memory, and it is moved to the next LE. 
When the program reaches the convergence point, the pointer 
returns to the previously addressed LE. During the execution, the 
first LE is used only for storing purposes. In contrast, the second 
LE is employed during the management of the divergence, and 
control-flow instructions can affect this LE with writing or 
reading operations. In this way, when the operation of the first 
path ends, the information in the second LE is employed to start 
the not-taken path until the convergence point is reached. 

Two main operations can be employed to manage the LEs in 
the stack memory. Initially, a new LE is addressed with SSY, 
during divergence or nesting divergence generation. The return 
from an addressed LE to the previous one can be performed using 
exit control-flow instructions, such as (NOP.S). 

III. PROPOSED METHOD TO TEST THE DIVERGENCE STACK 

The proposed approach employs the functionality of the CMU 
and the stack memory to generate self-test routines for each LE in 
the memory. These self-test routines are compacted into modular 
functions to propose scalable and modular test solutions. The 
modularity provides the required controllability and observability 
features to inject test patterns and propagate the fault effect, 
respectively. 

A.  Controllability 

The injection of test patterns is performed by forcing the 
execution of divergence paths targeting each one of the threads in 

 Fig.  1. A general scheme of the SM architecture in FlexGrip and the control-

flow structure 
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Fig.  2. Organization format of one LE in the stack memory of the GPGPU 

 



 

a warp, so a sequence of divergence paths is generated to detect 
permanent faults in the TM bit field of each LE. As an effect of 
the divergence procedures, the TM field stores the threads 
following the not-taken path. Moreover, the SPC field stores the 
starting address of the not-taken path. 

We propose two possible methods to control the address 
pointer of the LEs and inject test patterns in both fields (TM and 
SPC) of the LEs. 

The first method (Nesting), see Fig. 3 (Top), can generate test 
patterns by using a sequence of nesting IWD routines, where the 
generation of each divergence produces as an effect, the 
movement of the address pointer to a deeper LE. The divergence 
is produced by comparing the Thread.id of each thread in a warp 
with a constant value. The main idea is to generate an ordered 
number of comparisons and follow a specific path, so causing the 
required test pattern in the TM field of each LE. 

On each comparison, one or a group of threads is disabled, so 
defining a pattern to be stored into the deeper LE and generating 
two execution paths. This method is useful in managing the 
addressing of the LEs and injecting patterns into the TM field. 
Moreover, it can be described in the CUDA programming 
environment without significant modifications. The routines on 
each path (Taken and Not-taken) expose the presence of a 
permanent fault in the TM. The previous process is repeated for 
half the number of threads in a warp. Once, Taken routine 
finishes, the DMU submits the Not-taken path routine for 
processing purposes.  

As it can be observed in the scheme in Fig. 3, the main idea is 
to always execute the routine in the Taken path, which generates 
new divergence paths and forces the test of other levels of LEs. 
The fault detection can be explained considering that once a 
divergence is generated, two LEs store the synchronization point 
and the address to start the not-taken path (as test patterns). Thus, 
a fault can be detected when retrieving the stored values, or when 
the number of threads executing a path is different from the 
expected one, so making the fault effects visible. The total 
number of possible nesting divergences is 16 when targeting any 
architecture with a warp composed of 32 threads. Nevertheless, 
this mechanism is scalable to more threads in a warp. 

The Nesting strategy can inject test patterns on the even LEs 
of the stack memory. However, the odd ones are missing. The 
generation of test patterns for these fields requires the explicit 
addition of one synchronization instruction SSY before start the 
comparisons causing the divergence. The effect of the SSY 
instructions is the movement of the address pointer to the next or 
deeper LE in the stack memory. Then, the same previous 
procedure can be applied again, so testing the odd LEs. The 
comparison values are loaded using immediate instructions. 

Nevertheless, the main issue of this strategy is the disabling 
state of the threads. When a thread is disabled, this cannot be 
turned active again until the divergence paths are executed, and a 
convergence point is reached. Thus, it is not possible to test or 
detect a permanent fault in a deeper LE location if a thread is 
disabled. This restriction implies that the comparisons should be 
performed multiple times, targeting different threads in the TM 
field. Thus, the strategy may suffer from considerable code length 
and excessive execution times. 

The second method called Sync-Trick, see Fig. 3 (Center), 
exploits the functionality of SSY instruction to deceive the DMU 
when testing the stack memory. This method allocates SSY 
operations in strategically selected locations in the test program of 
the CMU to generate the change in the address pointer of the LEs. 

More in detail, the SSY is explicitly located before each 
sequence of controlled divergence functions to test the TM of a 
LE. Then, this instruction forces the controller to allocate a new 
level of LE in the memory without the need to generate the IWD 
explicitly. The advantage of this mechanism is that each LE can 
be addressed without the need of disabling specific threads to 
create new addressing in the memory with the address pointer. 
Thus, this strategy replaces the generation of nesting divergence 
by the management of the address pointer in the memory. A 
sequence of simple IWD operations, generating the Taken and 
Not-taken paths, is employed to test the target LE. This process 
can be repeated N times to use different active threads and 
memory addresses (as test patterns). Then, a new SSY instruction 
is generated addressing a deeper LE and restarting the test 
procedure. It is worth noting that this mechanism is effective to 
move across one direction and reach deeper LEs in the memory. 
However, the returning phase (to a previous LE) requires the 
achievement of the convergence point address, which is initially 
stored by the SSY instruction. This strategy cannot be directly 
described in the high-level programming environment, and 
modifications at the assembly level are required. 

B. Observability 

The fault effect propagation is obtained by using the Signature 
per Thread (SpT) mechanism [17, 20]. This mechanism uses a set 
of signatures to map and to propagate the effect of a permanent 
fault in the stack memory into the global memory. Each SpT is 
updated, taking advantage of the paths in the controlled 
divergence routines. Thus, the same mechanism employed to 
perform the fault injection is used to increase its observability in 
the structure under test. Each SpT computes and accumulates 
intermediate results for each verified LE. The SpTs are finally 
grouped and stored in global memory for later analyses. 

C. Modular test strategies 

The observability and controllability methods for the TM field 
are complemented with some check-pointing routines, which are 

PC 
† 

SSY 

No-Taken 

Fault-free 

Taken 

Faulty 

… 

SPC2 SPC1 

Check-

point 
SSY … 

(xN) (xN) 

SPC0 

SPC2 

PC 
† 

PC 
† 

PC 
† 

SPC0 

SPC1 

LE 2 

LE 0 

LE 4 

No-Taken … 

Taken No-Taken 

Check-

point 

… 
Further LEs 

SSY 
* 

Taken 

Taken No-Taken 

Check-

point 

Check-

point 

SPC0 
SPC1 
SPC2 

SPC0 

SPC1 

SPC2 

Effect in the Nesting method Effect in the Sync-Trick method 

Fig. 3. General schemes of the program-flow of the proposed SBST strategies. 
Nesting method (top), Sync-Trick method (center), (bottom) effect in the address 

pointer of the stack memory of the CMU. (*)Optional function to test the odd 

LEs. (†) Optional functions to distribute the test functions in the system memory 



 

devoted to testing the SPC field. These routines are located after 
the convergence point. In this way, any permanent fault in the 
SPC is detected if the synchronization point or the starting 
addresses of the Not-Taken path present any permanent fault. The 
check-point routines verify, through a check-point signature, the 
correct flow execution of a program. In the check-point 
procedure, this routine compares an expected check signature 
value in the program with the actual value accumulated during the 
execution of the test program. When the comparison matches, the 
accumulated signature is updated, otherwise the test program 
finishes propagating in memory the error in the SPC field of the 
evaluated LE. This strategy can be applied to any of the two 
controllability methods (Nesting or Sync-Trick). 

The check signature values are predefined before execution 
and are loaded through immediate instructions. A fault in the SPC 
field would generate an unexpected addressing in the system 
memory. The permanent fault is detected by changes in the 
execution time or the signatures stored in the global memory. 

The SPC field is partially tested. This issue is mainly caused 
by the short length of the test program in both strategies. A 
control-flow routine (PC), see Fig. 3, can be included before or in 
one of the paths of each IWD to test the high bits in the SPC field. 
Moreover, the test routines are redistributed across the system 
memory, so generating the missing test patterns. 

Some GPU instructions (in the format of 32 and 64 bits) are 
located before each relocated function in the memory. These 
instructions avoid hanging conditions by permanent faults in the 
SPC field. In this way, when the program counter is affected by a 
fault, and it jumps to any unexpected memory location, it is 
always possible to retake control of the program and finish the 
execution of the GPGPU. Nevertheless, it is expected degradation 
in performance by the effect of the permanent fault. 

 Figure 3 (Top and Center) presents the basic schemes of the 
operational flow for the Nesting and Sync-Trick mechanisms. In 
both schemes, the execution of the synchronization instruction 
(SSY) provokes a change in the addressed LE by the pointer in the 
stack memory. The address pointers SPC0, SPC1, and SPC2 
represent the effect in the stack memory when executing the 
functions on each method. In the Nesting scheme, the divergence 
instructions and the implicit SSY instructions are represented in 
the division of the paths. 

The use of these additional functions (Check-Point and PC) is 
entirely optional, considering that these strategies are costly in 
terms of memory overhead for an in-field execution. It is worth 
noting that the proposed technique takes into account the 
operational restrictions to develop the test programs using the 
Stuck-at fault model. Other fault models would require the 
adaptation of the Sync-trick mechanism. However, it would be 
hard or impossible to follow the Nesting strategy. 

IV. IMPLEMENTATION 

Following the schemes in Fig. 3, we implemented the SBST 
strategy using the high-level programming environment (when 
possible) and combined with instructions in the assembly 
language (SASS) of the GPGPU.  Blocks and dotted lines in Fig. 
3 represents the division in the description of the SBST code as a 
set of functions for both methods. 

The implemented code for both test methods is composed of 
the following functions: i) Initialization function, ii) 
synchronization function (SSY), iii) flow control function (PC), 
iv) the test pattern injection and SpT update function (Taken and 
No-Taken), and v) the check-point function (Check-point).  

Each function is described independently and can be attached 
depending on the target of a test program. The initialization 

function defines and initializes the registers for each thread. 
Moreover, this function initializes the addresses to store the SpTs 
and check-point signatures. The functionality of other functions 
was introduced in the previous section. 

The modular description of both SBST strategies has the 
advantage of allowing the fast development of multiple test 
programs with different test objectives. In the Nesting method, the 
modularity is used to manage the nesting divergence functions 
and to add or remove the optional functions targeting the test of 
the SPC field. In contrast, the modularity presents considerable 
advantages for the Sync-Trick method. The code description of 
this method is scalable and modular in such a way that it is 
possible to add or remove part of the description to target the 
individual test of LEs in the stack memory. 

This modularity gives us the possibility to address any or a 
group of LEs in the stack memory and to generate an independent 
test program. The division of the test contributes to reducing the 
execution time of the test program during the in-field operation of 
a GPGPU.  

The Sync-Trick method can employ two approaches to 
evaluate LEs in memory. The first approach (Accumulative or 
Acc) aims the test of a consecutive group of LEs and accumulates 
the signatures in memory. This approach must always start from 
the first LE and can finish at any of the other 31 LEs in the stack. 

On the other hand, the second approach (Individual or Ind) 
targets the testing of an individual LE and then the retrieving of 
signature results to the host. This approach only focuses on one of 
the LEs in the memory and is intended to have a reduced 
execution time. The performance cost (execution time) of both 
approaches (Acc and Ind) can be calculated using the equations 
(1) and (2). 

  (   )               (   )                   (1) 

  (   )           (   )                        (2) 

Where n represents the target LE in the stack memory. SSY, 
T, and Ch represent the execution time of the synchronization, 
test pattern injection, and check-point functions, respectively. The 
initialization function was not included considering that it is 
constant for both cases, and it is negligible in terms of duration. 

From equations (1) and (2), it is clear that the cost of the 
Accumulative version (Acc) is higher than the Ind version. The 
cost is mainly caused due to the different approaches in each case. 
In the Acc version, the program is intended to test the number of 
selected LEs sequentially. In contrast, the Ind approach targets the 
test on one LE, so the test pattern and check-point functions are 
used once. The number of synchronization functions depends on 
the target level of LE in the stack memory. 

On the other hand, the performance cost of the Nesting 
method is described by the expression in equation (3). 

        ∑       
                             (3) 

Where N represents the total number of threads in a warp, and 
m is the target LE to be tested. CH, SSY, and T have the same 
meaning from equations (1) and (2). As introduced previously, 
the target LE could be even or odd. Thus, the starting value of i in 
the summation could be 0 or 1. 

Table 1 reports the results of the performance parameters for 
the Nesting method, and the Sync-Trick method under the 
accumulative and individual approaches. It is worth noting that 
results reported in Table 1 were obtained by simulations in the 
ModelSim environment using the FlexGripPlus model. 

The reported results show the performance parameters for the 
two possible methods that can be used to test the LEs in the stack 



 

memory of the CMU. All versions present an overhead in the 
global memory of 64 locations (256 bytes) devoted to saving the 
SpTs and the Check-point signatures. 

TABLE 1. PERFORMANCE PARAMETERS OF THE SBST PROGRAMS USING THE TWO 

APPROACHES TO DETECT PERMANENT FAULTS IN THE LES 

Approach LE Instructions 
Execution time 
(Clock cycles) 

System memory 
overhead (Bytes) 

Sync-Trick 

Ind 

1 403 33,449 1,612 

2 404 34,211 1,616 

10 412 34,589 1,648 

Sync-Trick  

Acc 

1 - 2 794  66,637                             3,176 

1-10 3,922 326,423 15,688 

All 12,524  1,030,473                             50,096 

Nesting 

1 683 37,986 2,732 

1-2 1,323 83,569 5,292 

1-10 6,443 528,086 25,772 

All 19,883 2,567,209 79,532 
 

Regarding the performance results of both versions, it can be 
noted that the Sync-Trick (Ind) approach maintains an average 
performance cost to test any LE in the stack memory. The only 
difference among these programs is the number of SSY 
instructions included to address a selected LE. Similarly, the 
Sync-Trick (Acc) version can test a group of LEs consecutively. 
However, it requires additional execution time and cannot be 
stopped once the test program starts. 

On the other hand, Table 1 reports the required execution time 
to test the first and the second LEs in the stack using the Sync-
Trick Ind (rows 2 and 3, column 4) and Sync-Trick Acc (row 5, 
column 4) approaches. The Individual approach requires 76 
additional clock cycles to test the LEs, but it has the advantage of 
test each LE independently. In contrast, the Accumulative method 
must check both LEs consecutively. Thus, the Ind approach can 
be adapted for in-field operation by the limited number of clock 
cycles required during the execution. 

The performance parameters show that the Nesting approach 
has a proportional relation among the number of instructions and 
the number of LEs to test. Similarly, the relationship between the 
execution time and the number of LEs to test present an 
increasing exponential ratio. In the end, the Nesting method 
requires more than double the execution time to test the entire 
stack than the Sync-Trick using the Acc approach. The execution 
time could be the relevant parameters to take into account when 
targeting the in-field operation. 

V. EXPERIMENTAL RESULTS 
 

The RT-level description of the FlexGripPlus model was 
employed in the experiments. The fault injector environment 
follows the methodology described in [17], and we injected 
permanent faults following the Stuck-at-Fault model. A total of 
4,224 permanent faults were injected in the stack memory of the 
CMU of the FlexGripPlus model for each fault campaign. 

The fault simulation campaign was performed using both 
representative benchmarks and the proposed SBST strategy. 
These representative benchmarks employ the CMU unit and are 
carefully selected to compare the detection capabilities they can 
achieve with the one provided by the proposed SBST approach. 
Descriptions and details regarding the chosen benchmarks can be 
found in [17, 24]. For the sake of completeness and comparison, 
the different versions of the SBST strategy are reported in Table 
2. Moreover, both approaches were evaluated with and without 
the optional SPC functions in the LEs. 

The last column of Table 2 reports the testable FC of the 
benchmarks and the proposed SBST strategy. During the analysis 
of the memory in the stack, a total of 192 faults were identified as 
untestable. These are related to the lowest bits of the SPC field of 
each LE, which does not affect the execution of an instruction. 
Thus, these faults were removed when computing the FC. 

TABLE 2. FC RESULTS FOR THE REPRESENTATIVE BENCHMARKS AND THE 

PROPOSED SBST STRATEGY 

SBST strategy or 

benchmark 

FC (%) 

SDC Hang Timeout Total 
Total 

testable 

MxM 0.0 0.38 0.0 0.38 0.40 

Sort 0.15 0.04 0.0 0.19 0.19 

FFT 0.14 0.19 0.0 0.33 0.35 

Edge 0.15 0.28 0.0 0.43 0.47 

Sync-Trick 

Ind 65.64 2.08 1.01 68.75 72.02 

Acc 64.89 2.84 1.01 68.75 72.02 

Ind + PC 83.00 8.49 2.44 93.93 98.41 

Acc + PC 82.24 9.25 2.44 93.93 98.41 

Nesting 
 54.12 11.81 1.23 67.16 70.04 

+ PC 76.94 13.16 2.81 92.91 97.34 
 

The Sync-Trick strategy presents a moderate FC for both cases 
(Ind and Acc). Moreover, the FC increases when adding the SP 
functions and the relocation of the test functions in the memory. 
These comprehensive approaches (Ind+SP and Acc+SP) obtain a 
high percentage of FC for the target structure. 

An in-depth analysis of the results shows that the Individual 
approach allows detecting 100% of the faults in the TM of all LEs 
by looking at the results produced by the test procedure (Silent 
Data Corruption, or SDCs). In contrast, the Acc version makes a 
small percentage (0.75%) of faults in the TM field visible because 
they hang the GPGPU. This behavior can be explained 
considering that in the Ind approach, each LE is evaluated 
individually, and so all detections can be labeled as SDC. On the 
other hand, for the Acc method, a permanent fault in one LE 
affects the synchronization point, thus corrupting the convergence 
point and causing the Hang condition. More in detail, a Stuck-at-0 
fault is a sensitive case during the run of the test program. A fault 
affecting one LE when used as synchronization causes the Hang 
condition.  

The Nesting approach has a marginally lower FC than Sync-
Trick with an increment in more than double the percentage of 
faults causing Hanging and Timeout. This fault effect is 
equivalent to the effect presented in the Acc version of Sync-
Trick. In this case, the Nesting method generates IWD to move 
the address pointer among the LEs in the stack memory, testing 
all LEs even if a fault is detected, so the next LEs are also 
evaluated. The continuous evaluation generates issues when a 
fault affects the LE used for synchronization purposes. Thus, the 
test program may lose the convergence point and produces the 
Hang or Timeout condition. According to results, the Nesting 
strategy seems to be more susceptible to Hang and Timeout effect 
than the Sync-Trick using the Acc approach. 

In both approaches, the addition of the relocation in memory 
and the SPC functions increases the testable coverage in the stack 
memory. However, as explained previously, these optional 
functions can be employed when it is possible to use the entire 
system memory to relocate the test functions in specific memory 
locations, or the application code allows this adaptation. 
Similarly, both SBST approaches can detect a considerable 
percentage of the permanent faults in the stack memory. 
However, a direct comparison involving the performance 
parameters from Table 1 shows that the Nesting approach 
consumes more than double the execution time and 37% of 
additional instructions. In conclusion, the Sync-Trick strategy 
seems to be a feasible candidate for in-field operations. Moreover, 
the Ind strategy can be divided into parts and adapted with the 
application code. 

A comparison of the FC obtained by the proposed SBST 
strategies and the representative benchmarks shows that the FC 
using these specialized programs is higher and effective for this 
module than the FC obtained with typical applications. Thus, the 
FC capabilities of the representative benchmarks are lower and 
can be considered as almost negligible. This behavior can be 



 

explained, considering that most applications only use part of the 
CMU and the stack memory to manage the IWD. The main issue 
is that most applications employ only the first levels of stack 
memory to handle the divergence. 

The matrix multiplication application generates one level of 
divergence. Thus, other levels inside the Stack memory are not 
employed, and the fault effect in not detected or propagated into 
the application. Similarly, the Sort application can generate IWD 
depending on the input data operands, but it remains limited to the 
first LE in the stack memory. However, the percentage of 
detection of 0.33% and 0.19% are negligible in comparison with 
the proposed test strategies. 

The FFT benchmark produces two levels of IWD. This 
behavior slightly increases the percentage of faults detected. 
Nevertheless, the percentage is small. Finally, the Edge 
application causes two levels of IWD and can detect some faults 
as SDC and hanging conditions. However, the total coverage of 
all representative kernels is minimal. 

The previous scenario supports the idea that executing 
applications and checking their results (as it is often done when 
using a functional test approach) is definitely not enough to verify 
the functionality of a crucial module in the GPGPU. Thus, special 
test programs are required to guarantee the correct operation of a 
module inside a device used in a safety-critical application.  

The main advantage of the proposed method to test the stack 
memory is the modularity and scalability of the SBST strategy. 
This scalability allows the configuration and the selection of the 
number of LEs to be tested. Moreover, the test program can be 
divided into multiple parts when using the Sync-Trick approach. 

It is worth noting that the implementation of the test programs 
required the combination of high-level descriptions (≈20% of the 
code), when possible, and the addition of assembly functions 
(≈80%). For all proposed approaches, the synchronization 
functions (SSY) were described in assembly language, considering 
that these instructions are not possible to specify at CUDA or PTx 
levels. Moreover, the optimizations of the compiler also remove 
part of the descriptions. Thus, these parts are rebuilt at the 
assembly level. These limitations show that the development of 
test programs for these complex structures in GPGPUs requires 
access to the assembly language of the micro-architecture to 
provide efficient solutions. The implementation effort could be 
reduced by the design of an automatic tool to include the 
subroutines at the assembly or binary level. Moreover, such a tool 
could also be employed to target other modules in the GPGPU. 

Although the proposed SBST strategies targeted the test of the 
stack memory in the CMU of a GPGPU with the G80 micro-
architecture, we still claim that the strategy can be adapted to 
other architectures of GPGPUs. 

VI. CONCLUSIONS 

We introduced and evaluated two functional test strategy 
(named Sync-Trick and Nesting) based on the Software-Based 
Self-Test (SBST) approach aimed for the in-field test permanent 
faults in the stack memory of the divergence management unit of 
a GPGPU. The experimental results show that the proposed 
strategies are effective in detecting up to 98% of the faults in the 
target structure. 

Both test approaches were designed using a modular and 
scalable mechanism, so a set of parametric functions were created 
and then combined to test the target structure using different 
strategies (Sync-Trick and Nesting). Moreover, the modularity of 
the solution allows the division of the test program into parts 
keeping the FC, so adjusting to potential requirements of in-field 
operation. 

As future works, we plan to evaluate the fault coverage in the 
divergence controller at RT level and gate-level and propose 
functional test approaches for other critical modules in a GPGPU. 
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