
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Testing the Divergence Stack Memory on GPGPUs: A Modular in-Field Test Strategy / Rodriguez Condia, Josie
Esteban; Sonza Reorda, M.. - ELETTRONICO. - (2020), pp. 153-158. (Intervento presentato al convegno 28th
IFIP/IEEE International Conference on Very Large Scale Integration, VLSI-SOC 2020 tenutosi a usa nel 5-7 Oct. 2020)
[10.1109/VLSI-SOC46417.2020.9344088].

Original

Testing the Divergence Stack Memory on GPGPUs: A Modular in-Field Test Strategy

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VLSI-SOC46417.2020.9344088

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2873356 since: 2021-03-07T12:16:52Z

IEEE Computer Society

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

Testing the divergence stack memory on GPGPUs:

A modular in-field test strategy

Josie E. Rodriguez Condia†, M. Sonza Reorda‡
Dip. di Automatica e Informatica, Politecnico di Torino, Torino, Italy

{†josie.rodriguez, ‡matteo.sonzareorda}@polito.it

Abstract1—General Purpose Graphic Processing Units (GPGPUs)

are becoming a promising solution in safety-critical applications,

e.g., in the automotive domain. In these applications, reliability and

functional safety are relevant factors in the selection of devices to

build the systems. Nowadays, many challenges are impacting the

implementation of high-performance devices, such as GPGPUs.

Moreover, there is the need for effective fault detection solutions to

guarantee the correct in-field operation of a GPGPU, such as in the

branch management unit, which is one of the most critical modules

in this parallel architecture. Faults affecting this structure can

heavily corrupt or even collapse the execution of an application on

the GPGPU. In this work, we propose a non-invasive Software-

Based Self-Test (SBST) solution to detect faults affecting the

memory in the branch management unit of a GPGPU. We propose

a scalar and modular mechanism to develop the test program as a

combination of software functions. The FlexGripPlus model was

employed to evaluate the proposed strategies experimentally.

Results show that the proposed strategies are effective to test the

target structure and detect up to 98% of permanent faults.

Keywords—General Purpose Graphics Processing Units (GPGPUs)

Software-Based Self-Test (SBST), Divergence Stack Memory

I. INTRODUCTION

Currently, General Purpose Graphic Processing Units
(GPGPUs) represent effective solutions for data-intensive
applications, such as multimedia, multi-signal analysis, and high-
performance computing (HPC). Moreover, these devices are also
increasingly considered for safety-critical applications with
substantial requirements in terms of reliability and functional
safety. In the automotive field, safety-critical applications (such
as sensor-fusion systems and Advanced Driver Assistance
Systems (ADAS)[1]) usually require real-time execution and high
reliability. For this purpose, GPGPUs are implemented in cutting-
edge technologies to maximize performance and reduce power
consumption. Nevertheless, some studies [2, 3] proved that the
latest transistor technologies are prone to be affected by faults
during the operative life of the device. The most critical
challenges arise when permanent faults affect a module (caused
by wear-out or aging [4]), so altering the functionality and the
reliability of the device.

A parallel processor, such as a GPGPU, is particularly
efficient when executing embarrassingly parallel programs.
Nevertheless, real applications are far from this behavior, and
most of them are composed of non-easily-parallelizable
algorithms. Thus, these applications usually contain Intra-Warp
Divergence (IWD), which is produced when a group of threads

1 This work has been partially supported by the European Commission

through the Horizon 2020 RESCUE-ETN project under grant 722325.

(warp) has different execution paths with different instructions. In
[5], the authors report that sample applications in the CUDA
Software Development Kit (SDK), including IWD, use
approximately 33% of the total execution time in processing these
conditions. Similarly, in [6], the authors profile a divergence map
of typical programs and workloads in GPGPUs. Results show that
most applications might produce thousands or millions of
divergence conditions during the operation of the applications.

The architecture of a GPGPU includes a particular module to
manage the IWD. This specific module is often called Divergence
Management Unit (DMU), Branch Divergence Controller, Branch
Controller, or Divergence Controller. DMU is devoted to
controlling the operation of multiple paths in the same group of
threads. Internally, the DMU evaluates control-flow instructions
and uses a stack memory to store relevant information concerning
the execution paths. Most DMUs can manage divergences
composed of two paths. However, other locations in the stack
memory can be employed to manage more than two divergence
paths. Thus, the DMU is crucial for the correct operation of an
application in the GPGPU, and a fault affecting this unit can
propagate through the modules and collapse the entire operation
of the device and the executed application.

Currently, test engineers propose some structures and
mechanisms targeting the in-field test of a GPGPU and face the
new reliability and technology challenges. Current solutions are
sometimes based on the addition of Design for testability (DfT)
structures, such as Memory Built-in Self-Test (MBIST)[7], which
can be activated during idle times of the operation and
stimulate/observe the internal modules of a device detecting
possible faults [8]. Other solutions are based on designing special
software programs to test a target functionally. These non-
invasive and flexible mechanisms are also called Software-Based
Self-Test (SBST). The last approach is based on hybrid
mechanisms, combining hardware structures and software (i.e.,
custom instructions) to detect [9] or mitigate [10] faults of
internal modules in a device. Both solutions (DfT and hybrid) are
costly when targeting small modules in a GPGPU and should be
developed and included in a design before the production phase.

Some previous works demonstrated that SBST solutions [11]
could be successfully integrated into safety-critical applications,
such as the automotive ones [12]. Most previous works applied to
GPGPUs proposed SBST solutions for some data-path modules
[13], including the execution units [14, 15], the register files [16],
the pipeline registers [17] and some embedded memories [18].
Moreover, solutions targeting other critical modules in the
control-path have been proposed (the warp scheduler [19] and
their internal memories [20, 21]). However, to the best of our
knowledge, practical solutions to test the DMU using the SBST
mechanism are still missing.

In the present work, we propose, for the first time, a functional
test strategy based on an SBST approach targeting permanent
faults in the DMU located inside a GPGPU. The proposed SBST
strategy has been implemented and evaluated, resorting to the
FlexGripPlus model, which is a simplified open-source version of
the NVIDIA GPU architecture.

This work is organized as follows. Section II introduces a
basic overview of the architecture of an NVIDIA GPGPU, as with
the special emphasis on the one used to validate the proposed
strategy. Section III describes the SBST strategy proposed to test
a permanent fault. Section IV reports the implementation details.
Section V reports the experimental results, and Section VI draws
some conclusions and outlines future works.

II. THE FLEXGRIPPLUS GPGPU MODEL

FlexGripPlus is a GPGPU model fully described in VHDL
[22]. It is an improved version of the original FlexGrip model
developed by the University of Massachusetts FPGA [23]. This
model implements the Nvidia G80 micro-architecture, and it is
also compatible with the commercial programming environment
(CUDA under the SM_1.0 compatibility). FlexGripPlus supports
28 instructions of either 32 or 64 bits in 64 formats. The number
of parallel execution units is configurable among 8, 16, and 32.

The architecture of an NVIDIA G80 GPU (and of
FlexGripPlus) is based on the SIMT (Single-Instruction Multiple-
Thread) paradigm. It exploits a custom Streaming Multiprocessor
(SM) core with five stages of pipeline (Fetch, Decode, Read,
Execution/Control-flow and Write-back), as shown in Fig. 1. This
special-purpose parallel processor executes the same instruction
(warp instruction) into a group of multiple threads using the
available Execution Units (EUs), or Streaming Processors (SPs),
in the SM. One warp is defined as a group of 32 threads.
Furthermore, one controller and a warp scheduler controller
(WSC) control the submission and execution of the warps into the
SPs. In the SIMT paradigm, one warp instruction is fetched,
decoded, and distributed to be processed on an independent SP.
The Read and Write-back stages load and store data operands
from/to Register Files (RFs), shared, global, or constant
memories.

The Execution/Control-flow stage includes one DMU, which
controls and traces the IWD, which is manifested in a program
when the threads of the same warp execute different instructions,
so generating multiple execution paths. The DMU can handle two
paths in the same level of divergence and up to n levels of nested
divergence, where n represents the number of threads in a warp.
The DMU is located in parallel to the Execution/Control-flow
pipeline stage and can support inter-warp branching at the
hardware level. This module manages the control-flow operations
to start or retake the flow from conditional branches with multiple
paths. This unit also supports up to n-1 levels of nesting
branching.

Inside the DMU, one special purpose memory stores the
starting (divergence point) and ending points (convergence point)
of the divergence paths of a warp. This information is stored as a
stack and processed by the DMU when executing control-flow
instructions. More in detail, the memory is organized as a set of
32 Line-Entries (LEs) using the format presented in Fig. 2. The
number of LEs directly related to the threads in a warp and the
maximum nesting divergence per warp. A divergence point is a
location in a parallel program where two paths (Taken and Not-
Taken) are generated to be executed by a warp. Similarly, a
convergence point is a location in a program where the IWD
paths finish, and the program retakes one execution path.

Each LE in the stack is composed of three fields. Those fields
are the thread mask (TM), the flow ID, and the program counter

of the actual warp under execution (SPC). The TM stores the
status of the active threads in a warp. An active logic state
represents the number of active threads executing a path (Taken
or Not-Taken). The flow ID represents the actual state of the
execution of an IWD. This value can be “01” (for a branch
condition) or “00” (for a synchronization point or embarrassingly
parallel condition). The SPC can store the starting address of the
paths or the synchronization point address after paths execution.

The CMU employs two LEs to manage the operations when
IWD is produced. The first LE stores the synchronization point
(also known as convergence point) in the SPC field and the
number of active threads at the moment of starting the divergence
in the TM field. The second LE stores the starting address for the
not-taken path in SPC and the threads to execute this path in TM.
It is worth noting that when nesting divergence is produced, the
CMU uses a new set of LEs to store the status information for the
further divergence.

The execution of a synchronization instruction (SSY) affects
the address pointer in the memory, and it is moved to the next LE.
When the program reaches the convergence point, the pointer
returns to the previously addressed LE. During the execution, the
first LE is used only for storing purposes. In contrast, the second
LE is employed during the management of the divergence, and
control-flow instructions can affect this LE with writing or
reading operations. In this way, when the operation of the first
path ends, the information in the second LE is employed to start
the not-taken path until the convergence point is reached.

Two main operations can be employed to manage the LEs in
the stack memory. Initially, a new LE is addressed with SSY,
during divergence or nesting divergence generation. The return
from an addressed LE to the previous one can be performed using
exit control-flow instructions, such as (NOP.S).

III. PROPOSED METHOD TO TEST THE DIVERGENCE STACK

The proposed approach employs the functionality of the CMU
and the stack memory to generate self-test routines for each LE in
the memory. These self-test routines are compacted into modular
functions to propose scalable and modular test solutions. The
modularity provides the required controllability and observability
features to inject test patterns and propagate the fault effect,
respectively.

A. Controllability

The injection of test patterns is performed by forcing the
execution of divergence paths targeting each one of the threads in

 Fig. 1. A general scheme of the SM architecture in FlexGrip and the control-

flow structure

0 31 32 33 34 65

TM Flow ID SPC

Fig. 2. Organization format of one LE in the stack memory of the GPGPU

a warp, so a sequence of divergence paths is generated to detect
permanent faults in the TM bit field of each LE. As an effect of
the divergence procedures, the TM field stores the threads
following the not-taken path. Moreover, the SPC field stores the
starting address of the not-taken path.

We propose two possible methods to control the address
pointer of the LEs and inject test patterns in both fields (TM and
SPC) of the LEs.

The first method (Nesting), see Fig. 3 (Top), can generate test
patterns by using a sequence of nesting IWD routines, where the
generation of each divergence produces as an effect, the
movement of the address pointer to a deeper LE. The divergence
is produced by comparing the Thread.id of each thread in a warp
with a constant value. The main idea is to generate an ordered
number of comparisons and follow a specific path, so causing the
required test pattern in the TM field of each LE.

On each comparison, one or a group of threads is disabled, so
defining a pattern to be stored into the deeper LE and generating
two execution paths. This method is useful in managing the
addressing of the LEs and injecting patterns into the TM field.
Moreover, it can be described in the CUDA programming
environment without significant modifications. The routines on
each path (Taken and Not-taken) expose the presence of a
permanent fault in the TM. The previous process is repeated for
half the number of threads in a warp. Once, Taken routine
finishes, the DMU submits the Not-taken path routine for
processing purposes.

As it can be observed in the scheme in Fig. 3, the main idea is
to always execute the routine in the Taken path, which generates
new divergence paths and forces the test of other levels of LEs.
The fault detection can be explained considering that once a
divergence is generated, two LEs store the synchronization point
and the address to start the not-taken path (as test patterns). Thus,
a fault can be detected when retrieving the stored values, or when
the number of threads executing a path is different from the
expected one, so making the fault effects visible. The total
number of possible nesting divergences is 16 when targeting any
architecture with a warp composed of 32 threads. Nevertheless,
this mechanism is scalable to more threads in a warp.

The Nesting strategy can inject test patterns on the even LEs
of the stack memory. However, the odd ones are missing. The
generation of test patterns for these fields requires the explicit
addition of one synchronization instruction SSY before start the
comparisons causing the divergence. The effect of the SSY
instructions is the movement of the address pointer to the next or
deeper LE in the stack memory. Then, the same previous
procedure can be applied again, so testing the odd LEs. The
comparison values are loaded using immediate instructions.

Nevertheless, the main issue of this strategy is the disabling
state of the threads. When a thread is disabled, this cannot be
turned active again until the divergence paths are executed, and a
convergence point is reached. Thus, it is not possible to test or
detect a permanent fault in a deeper LE location if a thread is
disabled. This restriction implies that the comparisons should be
performed multiple times, targeting different threads in the TM
field. Thus, the strategy may suffer from considerable code length
and excessive execution times.

The second method called Sync-Trick, see Fig. 3 (Center),
exploits the functionality of SSY instruction to deceive the DMU
when testing the stack memory. This method allocates SSY
operations in strategically selected locations in the test program of
the CMU to generate the change in the address pointer of the LEs.

More in detail, the SSY is explicitly located before each
sequence of controlled divergence functions to test the TM of a
LE. Then, this instruction forces the controller to allocate a new
level of LE in the memory without the need to generate the IWD
explicitly. The advantage of this mechanism is that each LE can
be addressed without the need of disabling specific threads to
create new addressing in the memory with the address pointer.
Thus, this strategy replaces the generation of nesting divergence
by the management of the address pointer in the memory. A
sequence of simple IWD operations, generating the Taken and
Not-taken paths, is employed to test the target LE. This process
can be repeated N times to use different active threads and
memory addresses (as test patterns). Then, a new SSY instruction
is generated addressing a deeper LE and restarting the test
procedure. It is worth noting that this mechanism is effective to
move across one direction and reach deeper LEs in the memory.
However, the returning phase (to a previous LE) requires the
achievement of the convergence point address, which is initially
stored by the SSY instruction. This strategy cannot be directly
described in the high-level programming environment, and
modifications at the assembly level are required.

B. Observability

The fault effect propagation is obtained by using the Signature
per Thread (SpT) mechanism [17, 20]. This mechanism uses a set
of signatures to map and to propagate the effect of a permanent
fault in the stack memory into the global memory. Each SpT is
updated, taking advantage of the paths in the controlled
divergence routines. Thus, the same mechanism employed to
perform the fault injection is used to increase its observability in
the structure under test. Each SpT computes and accumulates
intermediate results for each verified LE. The SpTs are finally
grouped and stored in global memory for later analyses.

C. Modular test strategies

The observability and controllability methods for the TM field
are complemented with some check-pointing routines, which are

PC
†

SSY

No-Taken

Fault-free

Taken

Faulty

…

SPC2 SPC1

Check-

point
SSY …

(xN) (xN)

SPC0

SPC2

PC
†

PC
†

PC
†

SPC0

SPC1

LE 2

LE 0

LE 4

No-Taken …

Taken No-Taken

Check-

point

…
Further LEs

SSY
*

Taken

Taken No-Taken

Check-

point

Check-

point

SPC0
SPC1
SPC2

SPC0

SPC1

SPC2

Effect in the Nesting method Effect in the Sync-Trick method

Fig. 3. General schemes of the program-flow of the proposed SBST strategies.
Nesting method (top), Sync-Trick method (center), (bottom) effect in the address

pointer of the stack memory of the CMU. (*)Optional function to test the odd

LEs. (†) Optional functions to distribute the test functions in the system memory

devoted to testing the SPC field. These routines are located after
the convergence point. In this way, any permanent fault in the
SPC is detected if the synchronization point or the starting
addresses of the Not-Taken path present any permanent fault. The
check-point routines verify, through a check-point signature, the
correct flow execution of a program. In the check-point
procedure, this routine compares an expected check signature
value in the program with the actual value accumulated during the
execution of the test program. When the comparison matches, the
accumulated signature is updated, otherwise the test program
finishes propagating in memory the error in the SPC field of the
evaluated LE. This strategy can be applied to any of the two
controllability methods (Nesting or Sync-Trick).

The check signature values are predefined before execution
and are loaded through immediate instructions. A fault in the SPC
field would generate an unexpected addressing in the system
memory. The permanent fault is detected by changes in the
execution time or the signatures stored in the global memory.

The SPC field is partially tested. This issue is mainly caused
by the short length of the test program in both strategies. A
control-flow routine (PC), see Fig. 3, can be included before or in
one of the paths of each IWD to test the high bits in the SPC field.
Moreover, the test routines are redistributed across the system
memory, so generating the missing test patterns.

Some GPU instructions (in the format of 32 and 64 bits) are
located before each relocated function in the memory. These
instructions avoid hanging conditions by permanent faults in the
SPC field. In this way, when the program counter is affected by a
fault, and it jumps to any unexpected memory location, it is
always possible to retake control of the program and finish the
execution of the GPGPU. Nevertheless, it is expected degradation
in performance by the effect of the permanent fault.

 Figure 3 (Top and Center) presents the basic schemes of the
operational flow for the Nesting and Sync-Trick mechanisms. In
both schemes, the execution of the synchronization instruction
(SSY) provokes a change in the addressed LE by the pointer in the
stack memory. The address pointers SPC0, SPC1, and SPC2
represent the effect in the stack memory when executing the
functions on each method. In the Nesting scheme, the divergence
instructions and the implicit SSY instructions are represented in
the division of the paths.

The use of these additional functions (Check-Point and PC) is
entirely optional, considering that these strategies are costly in
terms of memory overhead for an in-field execution. It is worth
noting that the proposed technique takes into account the
operational restrictions to develop the test programs using the
Stuck-at fault model. Other fault models would require the
adaptation of the Sync-trick mechanism. However, it would be
hard or impossible to follow the Nesting strategy.

IV. IMPLEMENTATION

Following the schemes in Fig. 3, we implemented the SBST
strategy using the high-level programming environment (when
possible) and combined with instructions in the assembly
language (SASS) of the GPGPU. Blocks and dotted lines in Fig.
3 represents the division in the description of the SBST code as a
set of functions for both methods.

The implemented code for both test methods is composed of
the following functions: i) Initialization function, ii)
synchronization function (SSY), iii) flow control function (PC),
iv) the test pattern injection and SpT update function (Taken and
No-Taken), and v) the check-point function (Check-point).

Each function is described independently and can be attached
depending on the target of a test program. The initialization

function defines and initializes the registers for each thread.
Moreover, this function initializes the addresses to store the SpTs
and check-point signatures. The functionality of other functions
was introduced in the previous section.

The modular description of both SBST strategies has the
advantage of allowing the fast development of multiple test
programs with different test objectives. In the Nesting method, the
modularity is used to manage the nesting divergence functions
and to add or remove the optional functions targeting the test of
the SPC field. In contrast, the modularity presents considerable
advantages for the Sync-Trick method. The code description of
this method is scalable and modular in such a way that it is
possible to add or remove part of the description to target the
individual test of LEs in the stack memory.

This modularity gives us the possibility to address any or a
group of LEs in the stack memory and to generate an independent
test program. The division of the test contributes to reducing the
execution time of the test program during the in-field operation of
a GPGPU.

The Sync-Trick method can employ two approaches to
evaluate LEs in memory. The first approach (Accumulative or
Acc) aims the test of a consecutive group of LEs and accumulates
the signatures in memory. This approach must always start from
the first LE and can finish at any of the other 31 LEs in the stack.

On the other hand, the second approach (Individual or Ind)
targets the testing of an individual LE and then the retrieving of
signature results to the host. This approach only focuses on one of
the LEs in the memory and is intended to have a reduced
execution time. The performance cost (execution time) of both
approaches (Acc and Ind) can be calculated using the equations
(1) and (2).

 () () (1)

 () () (2)

Where n represents the target LE in the stack memory. SSY,
T, and Ch represent the execution time of the synchronization,
test pattern injection, and check-point functions, respectively. The
initialization function was not included considering that it is
constant for both cases, and it is negligible in terms of duration.

From equations (1) and (2), it is clear that the cost of the
Accumulative version (Acc) is higher than the Ind version. The
cost is mainly caused due to the different approaches in each case.
In the Acc version, the program is intended to test the number of
selected LEs sequentially. In contrast, the Ind approach targets the
test on one LE, so the test pattern and check-point functions are
used once. The number of synchronization functions depends on
the target level of LE in the stack memory.

On the other hand, the performance cost of the Nesting
method is described by the expression in equation (3).

 ∑
 (3)

Where N represents the total number of threads in a warp, and
m is the target LE to be tested. CH, SSY, and T have the same
meaning from equations (1) and (2). As introduced previously,
the target LE could be even or odd. Thus, the starting value of i in
the summation could be 0 or 1.

Table 1 reports the results of the performance parameters for
the Nesting method, and the Sync-Trick method under the
accumulative and individual approaches. It is worth noting that
results reported in Table 1 were obtained by simulations in the
ModelSim environment using the FlexGripPlus model.

The reported results show the performance parameters for the
two possible methods that can be used to test the LEs in the stack

memory of the CMU. All versions present an overhead in the
global memory of 64 locations (256 bytes) devoted to saving the
SpTs and the Check-point signatures.

TABLE 1. PERFORMANCE PARAMETERS OF THE SBST PROGRAMS USING THE TWO

APPROACHES TO DETECT PERMANENT FAULTS IN THE LES

Approach LE Instructions
Execution time
(Clock cycles)

System memory
overhead (Bytes)

Sync-Trick

Ind

1 403 33,449 1,612

2 404 34,211 1,616

10 412 34,589 1,648

Sync-Trick

Acc

1 - 2 794 66,637 3,176

1-10 3,922 326,423 15,688

All 12,524 1,030,473 50,096

Nesting

1 683 37,986 2,732

1-2 1,323 83,569 5,292

1-10 6,443 528,086 25,772

All 19,883 2,567,209 79,532

Regarding the performance results of both versions, it can be
noted that the Sync-Trick (Ind) approach maintains an average
performance cost to test any LE in the stack memory. The only
difference among these programs is the number of SSY
instructions included to address a selected LE. Similarly, the
Sync-Trick (Acc) version can test a group of LEs consecutively.
However, it requires additional execution time and cannot be
stopped once the test program starts.

On the other hand, Table 1 reports the required execution time
to test the first and the second LEs in the stack using the Sync-
Trick Ind (rows 2 and 3, column 4) and Sync-Trick Acc (row 5,
column 4) approaches. The Individual approach requires 76
additional clock cycles to test the LEs, but it has the advantage of
test each LE independently. In contrast, the Accumulative method
must check both LEs consecutively. Thus, the Ind approach can
be adapted for in-field operation by the limited number of clock
cycles required during the execution.

The performance parameters show that the Nesting approach
has a proportional relation among the number of instructions and
the number of LEs to test. Similarly, the relationship between the
execution time and the number of LEs to test present an
increasing exponential ratio. In the end, the Nesting method
requires more than double the execution time to test the entire
stack than the Sync-Trick using the Acc approach. The execution
time could be the relevant parameters to take into account when
targeting the in-field operation.

V. EXPERIMENTAL RESULTS

The RT-level description of the FlexGripPlus model was
employed in the experiments. The fault injector environment
follows the methodology described in [17], and we injected
permanent faults following the Stuck-at-Fault model. A total of
4,224 permanent faults were injected in the stack memory of the
CMU of the FlexGripPlus model for each fault campaign.

The fault simulation campaign was performed using both
representative benchmarks and the proposed SBST strategy.
These representative benchmarks employ the CMU unit and are
carefully selected to compare the detection capabilities they can
achieve with the one provided by the proposed SBST approach.
Descriptions and details regarding the chosen benchmarks can be
found in [17, 24]. For the sake of completeness and comparison,
the different versions of the SBST strategy are reported in Table
2. Moreover, both approaches were evaluated with and without
the optional SPC functions in the LEs.

The last column of Table 2 reports the testable FC of the
benchmarks and the proposed SBST strategy. During the analysis
of the memory in the stack, a total of 192 faults were identified as
untestable. These are related to the lowest bits of the SPC field of
each LE, which does not affect the execution of an instruction.
Thus, these faults were removed when computing the FC.

TABLE 2. FC RESULTS FOR THE REPRESENTATIVE BENCHMARKS AND THE

PROPOSED SBST STRATEGY

SBST strategy or

benchmark

FC (%)

SDC Hang Timeout Total
Total

testable

MxM 0.0 0.38 0.0 0.38 0.40

Sort 0.15 0.04 0.0 0.19 0.19

FFT 0.14 0.19 0.0 0.33 0.35

Edge 0.15 0.28 0.0 0.43 0.47

Sync-Trick

Ind 65.64 2.08 1.01 68.75 72.02

Acc 64.89 2.84 1.01 68.75 72.02

Ind + PC 83.00 8.49 2.44 93.93 98.41

Acc + PC 82.24 9.25 2.44 93.93 98.41

Nesting
 54.12 11.81 1.23 67.16 70.04

+ PC 76.94 13.16 2.81 92.91 97.34

The Sync-Trick strategy presents a moderate FC for both cases
(Ind and Acc). Moreover, the FC increases when adding the SP
functions and the relocation of the test functions in the memory.
These comprehensive approaches (Ind+SP and Acc+SP) obtain a
high percentage of FC for the target structure.

An in-depth analysis of the results shows that the Individual
approach allows detecting 100% of the faults in the TM of all LEs
by looking at the results produced by the test procedure (Silent
Data Corruption, or SDCs). In contrast, the Acc version makes a
small percentage (0.75%) of faults in the TM field visible because
they hang the GPGPU. This behavior can be explained
considering that in the Ind approach, each LE is evaluated
individually, and so all detections can be labeled as SDC. On the
other hand, for the Acc method, a permanent fault in one LE
affects the synchronization point, thus corrupting the convergence
point and causing the Hang condition. More in detail, a Stuck-at-0
fault is a sensitive case during the run of the test program. A fault
affecting one LE when used as synchronization causes the Hang
condition.

The Nesting approach has a marginally lower FC than Sync-
Trick with an increment in more than double the percentage of
faults causing Hanging and Timeout. This fault effect is
equivalent to the effect presented in the Acc version of Sync-
Trick. In this case, the Nesting method generates IWD to move
the address pointer among the LEs in the stack memory, testing
all LEs even if a fault is detected, so the next LEs are also
evaluated. The continuous evaluation generates issues when a
fault affects the LE used for synchronization purposes. Thus, the
test program may lose the convergence point and produces the
Hang or Timeout condition. According to results, the Nesting
strategy seems to be more susceptible to Hang and Timeout effect
than the Sync-Trick using the Acc approach.

In both approaches, the addition of the relocation in memory
and the SPC functions increases the testable coverage in the stack
memory. However, as explained previously, these optional
functions can be employed when it is possible to use the entire
system memory to relocate the test functions in specific memory
locations, or the application code allows this adaptation.
Similarly, both SBST approaches can detect a considerable
percentage of the permanent faults in the stack memory.
However, a direct comparison involving the performance
parameters from Table 1 shows that the Nesting approach
consumes more than double the execution time and 37% of
additional instructions. In conclusion, the Sync-Trick strategy
seems to be a feasible candidate for in-field operations. Moreover,
the Ind strategy can be divided into parts and adapted with the
application code.

A comparison of the FC obtained by the proposed SBST
strategies and the representative benchmarks shows that the FC
using these specialized programs is higher and effective for this
module than the FC obtained with typical applications. Thus, the
FC capabilities of the representative benchmarks are lower and
can be considered as almost negligible. This behavior can be

explained, considering that most applications only use part of the
CMU and the stack memory to manage the IWD. The main issue
is that most applications employ only the first levels of stack
memory to handle the divergence.

The matrix multiplication application generates one level of
divergence. Thus, other levels inside the Stack memory are not
employed, and the fault effect in not detected or propagated into
the application. Similarly, the Sort application can generate IWD
depending on the input data operands, but it remains limited to the
first LE in the stack memory. However, the percentage of
detection of 0.33% and 0.19% are negligible in comparison with
the proposed test strategies.

The FFT benchmark produces two levels of IWD. This
behavior slightly increases the percentage of faults detected.
Nevertheless, the percentage is small. Finally, the Edge
application causes two levels of IWD and can detect some faults
as SDC and hanging conditions. However, the total coverage of
all representative kernels is minimal.

The previous scenario supports the idea that executing
applications and checking their results (as it is often done when
using a functional test approach) is definitely not enough to verify
the functionality of a crucial module in the GPGPU. Thus, special
test programs are required to guarantee the correct operation of a
module inside a device used in a safety-critical application.

The main advantage of the proposed method to test the stack
memory is the modularity and scalability of the SBST strategy.
This scalability allows the configuration and the selection of the
number of LEs to be tested. Moreover, the test program can be
divided into multiple parts when using the Sync-Trick approach.

It is worth noting that the implementation of the test programs
required the combination of high-level descriptions (≈20% of the
code), when possible, and the addition of assembly functions
(≈80%). For all proposed approaches, the synchronization
functions (SSY) were described in assembly language, considering
that these instructions are not possible to specify at CUDA or PTx
levels. Moreover, the optimizations of the compiler also remove
part of the descriptions. Thus, these parts are rebuilt at the
assembly level. These limitations show that the development of
test programs for these complex structures in GPGPUs requires
access to the assembly language of the micro-architecture to
provide efficient solutions. The implementation effort could be
reduced by the design of an automatic tool to include the
subroutines at the assembly or binary level. Moreover, such a tool
could also be employed to target other modules in the GPGPU.

Although the proposed SBST strategies targeted the test of the
stack memory in the CMU of a GPGPU with the G80 micro-
architecture, we still claim that the strategy can be adapted to
other architectures of GPGPUs.

VI. CONCLUSIONS

We introduced and evaluated two functional test strategy
(named Sync-Trick and Nesting) based on the Software-Based
Self-Test (SBST) approach aimed for the in-field test permanent
faults in the stack memory of the divergence management unit of
a GPGPU. The experimental results show that the proposed
strategies are effective in detecting up to 98% of the faults in the
target structure.

Both test approaches were designed using a modular and
scalable mechanism, so a set of parametric functions were created
and then combined to test the target structure using different
strategies (Sync-Trick and Nesting). Moreover, the modularity of
the solution allows the division of the test program into parts
keeping the FC, so adjusting to potential requirements of in-field
operation.

As future works, we plan to evaluate the fault coverage in the
divergence controller at RT level and gate-level and propose
functional test approaches for other critical modules in a GPGPU.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A

survey," Integration, vol. 59, pp. 148-156, 2017.

[2] S. Hamdioui, et al, "Reliability challenges of real-time systems in
forthcoming technology nodes," in 2013 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2013.

[3] I. Agbo, et al., "Read path degradation analysis in SRAM," in Test
Symposium (ETS), 2016 21th IEEE European, 2016.

[4] X. Chen, Y. Wang, Y. Liang, Y. Xie, and H. Yang, "Run-time technique

for simultaneous aging and power optimization in GPGPUs," in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), 2014.

[5] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.

Hwu, "An adaptive performance modeling tool for GPU architectures," in
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 2010.

[6] B. Coutinho, D. Sampaio, F. M. Pereira, and W. Meira Jr, "Profiling
divergences in gpu applications," Concurrency and Computation: Practice

and Experience, vol. 25, pp. 775-789, 2013.

[7] A. J. Becker, C. A. S. Pathirane, and R. C. Aitken, "Memory built-in self-
test for a data processing apparatus," UK Patent US 9,449,717 B2, 2016.

[8] R. Gulati, et al., "Self-test during idle cycles for shader core of GPU," US

Patent US 10,628,274, 2020.
[9] J. E. R. Condia, P. Narducci, M. Sonza Reorda, and L. Sterpone, "A

dynamic hardware redundancy mechanism for the in-field fault detection

in cores of GPGPUs," in 2020 23rd International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), 2020.

[10] J. E. R. Condia, P. Narducci, M. Sonza Reorda, and L. Sterpone, "A
dynamic reconfiguration mechanism to increase the reliability of

GPGPUs," in VTS 2020: VLSI Test Symposium, 2020.

[11] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda,
"Microprocessor software-based self-testing," IEEE Design & Test of

Computers, vol. 27, pp. 4-19, 2010.

[12] P. Bernardi, M. Grosso, E. Sanchez, and O. Ballan, "Fault grading of
software-based self-test procedures for dependable automotive

applications," in 2011 Design, Automation & Test in Europe, 2011.

[13] M. Abdel-Majeed and W. Dweik, "Low overhead online periodic testing

for GPGPUs," Integration, vol. 62, pp. 362-370, 2018.

[14] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto, D. Rolfo,

et al., "A software-based self test of CUDA Fermi GPUs," in 2013 18th
IEEE European Test Symposium (ETS), 2013.

[15] D. Defour and E. Petit, "A software scheduling solution to avoid corrupted

units on GPUs," Journal of Parallel and Distributed Computing, vol. 90,
pp. 1-8, 2016.

[16] D. Sabena, M. Sonza Reorda, L. Sterpone, P. Rech, and L. Carro, "On the

evaluation of soft-errors detection techniques for GPGPUs," in 2013 8th
IEEE Design and Test Symposium, 2013.

[17] J. E. R. Condia and R. Sonza Reorda, "Testing permanent faults in pipeline

registers of GPGPUs: A multi-kernel approach," in 2019 25th IEEE
International Symposium on On-Line Testing and Robust System Design

(IOLTS), 2019.

[18] J. E. R. Condia and M. Sonza Reorda, "On the testing of special memories
in GPGPUs," in 2020 26th IEEE International Symposium on On-Line

Testing and Robust System Design (IOLTS), 2020.

[19] S. Di Carlo, J. E. R. Condia, and M. Sonza Reorda, "An On-Line Testing
Technique for the Scheduler Memory of a GPGPU," IEEE Access, vol. 8,

pp. 16893-16912, 2020.

[20] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the
functional test of the GPGPU scheduler," in 2018 IEEE 24th International

On-Line Testing Symposium (IOLTS), 2018.

[21] S. Di Carlo, J. E. R. Condia, and M. Sonza Reorda, "On the in-field test of
the GPGPU scheduler memory," in 22nd IEEE International Symposium

on Design and Diagnostics of Electronic Circuits and Systems (DDECS

2019), 2019.
[22] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone, "FlexGripPlus:

An improved GPGPU model to support reliability analysis,"

Microelectronics Reliability, vol. 109, p. 113660, 2020/06/01/ 2020.
[23] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for

FPGAs," in 2013 International Conference on Field-Programmable

Technology (FPT), 2013.
[24] B. Du, J. E. R. Condia, and M. Sonza Reorda, "An extended model to

support detailed GPGPU reliability analysis," in 14th IEEE International

Conference on Design & Technology of Integrated Systems in Nanoscale
Era (DTIS), 2019.

