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Abstract: The increasing interest towards wearable Magnetic Inertial Measurement Units (MIMUs) for gait analysis is 

justified by their low invasiveness, confirmed repeatability and complete independence from laboratory 

constraints. However, some crucial doubts about the identification of a suitable sensor set-up and algorithm 

in different gait conditions and populations still exist. In this context, the principal aim of the present study 

was to investigate the effect of different walking conditions on the accuracy of gait phases detection with a 

trunk-MIMU system. Eleven healthy elderly subjects performed gait trials in four different walking conditions 

(normal speed, slow speed, fast speed and normal speed with dual task). A stereophotogrammetric system 

was adopted as gold standard. The accuracy of the estimation of stance and swing phases was evaluated from 

the comparison of trunk-MIMU to the stereophotogrammetric system. Mean error values smaller than 0.03 s 

confirmed the accuracy of the trunk-MIMU algorithm for an elderly population. Consequently, trunk-MIMU 

system can be considered suitable for the characterization of gait phases in elderly subjects regardless of 

walking conditions.

1 INTRODUCTION 

During the last decades, different applications 

highlighted the central role of locomotion in human 

daily activities, generating a strong interest towards 

gait analysis. Several studies have been directed to 

assess standard gait patterns (Davis 1997), to identify 

the conditioning factors (Hebenstreit et al. 2015), to 

select systems and set-ups (Benndorf, Gaedke, and 

Haenselmann 2019), as to characterize human gait 

phases and kinematics (Kadaba et al. 1989).  In 

particular, clinical gait analysis is usually aimed at 

monitoring rehabilitation processes (Moon et al. 

2017), characterizing normal and pathological 

locomotion (Prakash, Kumar, and Mittal 2018; 

Shirakawa et al. 2017) and verifying therapeutic 

treatments (Gastaldi et al. 2015). The objective 

measurement of gait parameters supports clinical 

experts during the observational assessment of gait. 
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Human locomotion can be mainly described by the 

identification of two gait events: the heel strike (HS) 

and the toe off (TO). In detail, the detection of gait 

events allows first to divide each walking trial into 

consecutive cycles, then to estimate different gait 

phases. The gait cycle (GC) of each limb can be 

mainly divided in stance and swing phases. The first 

one starts with the load acceptance from the foot and 

lasts the entire time the foot is in contact with the 

ground, while correspondingly the limb bears part or 

whole human weight. The swing phase depicts the 

time period of foot oscillation without floor contact. 

Durations of stance and swing phases are expressed 

as percentages of the GC duration. Generally, in 

healthy adults the stance phase represents 

approximatively the 60% of the GC, while the swing 

phase the 40% of the GC. 

Stance and swing phases can be crucially 

influenced by gait velocities, external disturbs or dual 

tasks (Liu et al. 2014). In addition, previous studies 



highlighted the aging effect on gait phases 

(Aboutorabi et al. 2016). Healthy elderly people 

demonstrated a compensatory strategy to overcome 

instability and loss of control, through the variation of 

spatio-temporal parameters. The percentage duration 

of the stance phase is increased, which entails a 

reduced percentage duration of the swing phase. 

More in general, in clinics, altered patterns of 

locomotion are assessed by different percentage 

distribution of time in the two phases (Trojaniello et 

al. 2014). Another important aspect of pathological 

gait is the symmetry between right and left limb. 

However reduced  symmetry is not clearly associated 

with age in healthy elderly populations, as stressed in 

previous studies (Aboutorabi et al. 2016).  

During past decades, several tools have been used 

for the analysis of human locomotion, especially to 

add an objective measure to the observational gait 

evaluation (Akhtaruzzaman, Shafie, and Khan 2016). 

Literature confirms optoelectronic systems as the 

gold standard technology, because of their high 

accuracy and precision. Several improvements, 

methodologies and innovative biomechanical models 

are proposed nowadays to be implemented with 

optoelectronic systems for deeper kinematic and 

dynamic investigations (Panero, Gastaldi, and Rapp 

2018). However, these systems have some crucial 

disadvantages, as the cost, the restriction to the 

laboratory environment and the required expert 

operation. 

Recently, wearable sensor technologies such as 

Magnetic Inertial Measurement Units (MIMUs) have 

shown promising results in measuring human body 

motion with limited cost and invasiveness, with a 

good reliability and without laboratory constraints 

(Cereatti, Trojaniello, and Croce 2015; Digo et al. 

2020; Petraglia et al. 2019; G. Yang et al. 2019). The 

use of wearable systems may be more suitable for 

monitoring the subject for longer observation periods 

and during daily activities. However, some open 

issues related to MIMUs still exist, such as the 

definition of a suitable and reliable set-up (S. Yang 

and Li 2012) and the implementation of a robust 

algorithm for gait phases identification (Caldas et al. 

2017) that can be used in different conditions. Several 

previous studies have proposed MIMUs set-ups and 

algorithms to assess gait parameters both in healthy 

and pathological subjects. 

A previous pilot study has been conducted with 

three healthy young subjects performing gait trials for 

the evaluation of two MIMUs set-ups and associate 

algorithms for gait events detection (Panero et al. 

2018). In the first set-up 1 MIMU was positioned on 

the trunk, while in the second one 2 MIMUs were 

positioned on ankles. Results have demonstrated the 

suitability of the two MIMUs set-ups and algorithms, 

but the set-up involving 1 MIMU on the trunk showed 

the best accuracy and simplest usage. Considering 

these results and concentrating on the trunk-MIMU 

set-up, the analysis has been extended to a larger 

population of healthy elderly subjects, in order to 

validate the robustness of the algorithm in different 

walking conditions.  

Consequently, the aim of the current study deals 

with the analysis of gait speeds and conditions effects 

on the accuracy of gait phases detection with a trunk-

MIMU system. Eleven healthy subjects over 65 years 

old performed gait trials in four different walking 

conditions. Stance and swing phases have been 

monitored as outcomes of interest. Accuracy and 

error quantification, obtained from the comparison of 

trunk-MIMU results with an optoelectronic reference 

system, are analysed. 

2 MATERIALS & METHODS 

2.1 Participants 

Eleven healthy elderly subjects (4 males and 7 

females) participated in the research after giving their 

written informed consent. Four inclusion criteria were 

considered: (i) age over 65 years old, (ii) no declared 

neurological disorders, (iii) no musculoskeletal 

diseases in the last five years and (iv) no internal 

prostheses. The study was approved by the Local 

Institutional Review Board. All procedures were 

conformed to the Helsinki Declaration. Mean and 

standard deviation values of subjects’ age and Body 

Mass Index (BMI) are reported in Table 1. 

Table 1: Subjects’ data (mean ± standard deviation). 

Age 

(years) 

Height  

(m) 

Weight 

(kg) 

BMI 

(kg/m2) 

68.8 ± 5.0 1.6 ± 0.1 70.3 ± 14.9 25.8 ± 3.1 

2.2 Instruments 

Two motion capture systems were adopted for the 
study: an inertial one consisting of 1 MIMU and a 
stereophotogrammetric one composed of 6 infrared 
cameras and passive reflective markers. 

 



2.2.1 Inertial system 

One MTx MIMU (Xsens, The Netherlands) 
containing a tri-axial accelerometer (range ±5 G), a 
tri-axial gyroscope (range ±1200 dps) and a tri-axial 
magnetometer (±75 μT) was used for the test. The 
MIMU was fixed on trunk (TRN) of participants at 
the level of T12-L1 vertebrae, with an elastic band 
provided by the Xsens kit. The sensor was oriented 
with the vertical x-axis pointing downward, the 
medio-lateral y-axis directed to the right side of 
participants and the anterior-posterior z-axis pointing 
in the opposite direction of the gait (Figure 1A). The 
MIMU was connected to the Xbus Master, the control 
unit able to send data to the PC via Bluetooth. Data 
were acquired through the Xsens proprietary 
software, MT Manager, with a sampling frequency of 
50 Hz. 

2.2.2 Stereophotogrammetric system 

The stereophotogrammetric system adopted for 
the test was composed of two V120:Trio tracking bars 
(OptiTrack, USA) and 9 passive reflective markers 
with a diameter of 14 mm. Each bar was self-
contained, pre-calibrated and equipped with three 
cameras able to detect infrared light. 

Six markers were fixed on feet of participants 
with adhesive tape (Figure 1B): two on toes (right toe 
= TOR, left toe = TOL), two on malleolus (right 
malleolus = MAR, left malleolus = MAL) and two on 
ankles (right ankle = ANR, left ankle = ANL). Other 
three markers (A, B and C) were placed on the floor 
in order to define the Global Coordinate System 
(GCS) in which to report data recorded by the bars 
(Panero et al. 2018). Each bar was connected to a 
separate PC. Data acquisition was made with the 
OptiTrack proprietary software Motive, with a 
sampling frequency of 120 Hz. 

2.3 Protocol 

The experimental test was conducted indoor. The 

two OptiTrack bars were located one in front of the 

other parallel to a 6-meters linear walking path traced 

on the floor. Consequently, the obtained captured area 

was 2.5 m x 3.5 m, to guarantee the acquisition of at 

least three steps for each transition in front of the 

cameras. A static recording was made to obtain the 

coordinates of three fixed markers (A, B, C) on the 

floor (Figure 2). 

Participants were first asked to hit their right heel 

on the floor to define an external event to synchronize 

the stereophotogrammetric system and the inertial 

sensors system. Subsequently, subjects walked 

barefoot on the linear path in four conditions. In the 

first three conditions, they were asked to walk at 

different self-selected speeds: normal, fast and slow. 

In the fourth condition, participants were involved in 

a dual task condition. While walking at normal self-

selected speed, they were asked many questions about 

their lives and habits. For each walking condition, all 

subjects performed 26 transitions in front of the 

cameras. The order of the four sets of walking 

conditions was randomized for all subjects. 

Coordinates of markers and signals of MIMUs were 

acquired at the same time with the two motion capture 

systems. 

 

Figure 1: A) Configuration of trunk-MIMU and B) markers 

on body of participants. 

2.4 Signal processing and data analysis 

Signal processing and data analysis were 

conducted with customized Matlab routines. 

Considering the static recording of markers on the 

floor, a transformation matrix was built and used to 

express all markers trajectories collected during gait 

sessions in the GCS. Afterwards, the temporal 

synchronization of data from the two motion capture 

systems was guaranteed through the initial impact of 

the right foot on the floor (Panero et al. 2018). Gait 

events were then separately identified from data 

acquired by the MIMU system and the optoelectronic 
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system. This detection was made with two algorithms 

inspired by previous literature works. Considering the 

optoelectronic system, HSs and TOs were identified 

from horizontal and vertical coordinates of ankles and 

toes markers, respectively (Panero et al. 2018; 

Veilleux et al. 2016). Since each bar captured the 

lateral view of one side of the body, markers on 

malleolus were used to distinguish between right and 

left sides during gait. As regards the MIMU system, 

gait events were identified from the anterior-posterior 

acceleration of trunk-MIMU. More in detail, HSs and 

TOs were detected as maximum and minimum peaks 

of this signal, respectively (Panero et al. 2018; Zijlstra 

and Hof 2003). In addition, the distinction between 

right and left gait events was made by considering the 

alternation sign of trunk-MIMU angular velocity 

around the vertical axis (McCamley et al. 2012; 

Panero et al. 2018). 

For each subject, a total number of gait cycles 

between 150 and 300 was collected. First, the average 

walking velocity was calculated for each participant 

in each testing condition, as the ratio between the total 

gait path and the travel time. Then, inter-subjects 

mean and standard deviation of walking speed values 

were estimated, for each testing conditions. 

Afterwards, using gait events obtained with both 

algorithms, spatio-temporal parameters of stance and 

swing times were estimated for each gait cycle of 

each participant in all walking conditions. For both 

stance and swing times, mean and standard deviation 

values were calculated intra- and inter-subjects for 

both right and left sides. Moreover, the symmetry of 

participants was evaluated by estimating the limp 

index as the ratio between right and left stance times. 

According to this confirmed symmetry, values of 

stance and swing times were averaged between right 

and left sides and represented through bar diagrams. 

In addition, stance and swing durations were 

estimated as percentages of the GC, in order to 

evaluate the effect of age on gait phases distribution.  
The accuracy of the MIMU algorithm was 

evaluated as the relative error between the mean value 
estimated with the optoelectronic system and the 
mean value obtained with the MIMU system, for each 
participant. Subsequently, inter-subjects mean values 
of errors were calculated in all walking conditions. 
The sign of the error allowed the differentiation 
between overestimation (negative sign) and 
underestimation (positive sign) with respect to the 
reference value. Finally, a stem graph representation 
was adopted in order to compare errors for both 
stance and swing times in different walking 
conditions. 

 

Figure 2: Top view of the setting with OptiTrack bars, 

measures of the capture volume, distances and GCS. 

3 RESULTS 

Table 2 depicts average and standard deviation 

values of walking velocity for the population in all the 

four conditions (m/s).  

Table 2: Inter-subjects mean and standard deviation values 

of walking speed (m/s) in four conditions  

Speed (m/s) Mean ± St. Dev.  

Fast 1.16 ± 0.16 

Normal 0.87 ± 0.12 

Slow 0.74 ± 0.14 

Dual 0.82 ± 0.15 

 

Figure 3 shows inter-subject mean and standard 

deviation values of stance and swing times (s) 

estimated with both OptiTrack and trunk-MIMU in 

all walking conditions. In Figure 4 two stem graphs 

represent mean errors for stance and swing times in 

all walking conditions (red circle for fast speed, green 

diamond for normal speed, blue square for slow speed 

and black pentagram for dual task). 

Table 3 contains inter-subjects mean and standard 

deviation values of limp index, stance duration (% 

GC) and swing duration (% GC) obtained from the 

two algorithms in all walking conditions.  
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Figure 3: Stance and swing time estimation in different 

walking conditions with OptiTrack (blue) and trunk-MIMU 

(red) system. 

4 DISCUSSIONS 

The main aim of the current study was to evaluate 
how the accuracy and robustness of a trunk-MIMU 
algorithm in gait phases identification are influenced 
by four different walking conditions (speeds and dual 
task). In order to fulfill this purpose, inter-subjects 
mean and standard deviation values of walking 
speeds (Table 2) were calculated. As reported by 
Aboutorabi and colleagues, walking speed of 1.30 
m/s can be considered the standard reference value 
for normal walking in healthy adults (Aboutorabi et 
al. 2016). Moreover, they referred to previous studies 
showing a loss of gait speed predicted based on age 
(1.2%/year). In the present work, inter-subjects mean 
walking speed in normal condition (0.87 m/s) 
confirms this reduction provoked by age.  

 

Figure 4: Errors of trunk-MIMU algorithm with respect to 

OptiTrack for both stance and swing times in the four 

walking conditions. 

Moreover, even the registered walking velocity in 
fast speed condition (1.16 m/s) is lower than the 
reference value of normal walking speed in healthy 
adults. In the dual task condition, walking speed of 
subjects (0.82 m/s) was lower than the one of normal 
condition (0.87 m/s), but higher with respect to the 
slow speed condition (0.74 m/s). This aspect could be 
justified considering that participants were involved 
in answering questions and consequently were less 
focused on walking. 

The effect of age on symmetry has been 
previously investigated by different studies 
(Aboutorabi et al. 2016). In the present work, the 
symmetry of participant was evaluated by estimating 
the limp index in all walking conditions both with 
trunk-MIMU and OptiTrack (Table 3). Since inter-
subjects mean values were always around 1 as 
expected in a healthy gait, symmetry of participants 
was confirmed. Consequently, right and left values of 
stance and swing times (Figure 3) and percentage 
durations (Table 3) were averaged. 



Table 3: Limp index, stance duration and swing duration estimated by OptiTrack and trunk-MIMU systems in all walking 

conditions (inter-subjects mean ± standard deviation) 

Condition System Limp index 
Stance duration 

(%GC) 

Swing duration 

(%GC) 

Fast  
OptiTrack 1.01 ± 0.03 61.76 ± 1.42 38.24 ± 1.42 

Trunk-MIMU 1.01 ± 0.03 60.44 ± 1.61 39.56 ± 1.61 

Normal  
OptiTrack 1.00 ± 0.01 63.20 ± 1.66 36.80 ± 1.66 

Trunk-MIMU 1.01 ± 0.03 62.09 ± 2.40 37.91 ± 2.40 

Slow  
OptiTrack 1.01 ± 0.03 64.57 ± 1.70 35.43 ± 1.70 

Trunk-MIMU 1.00 ± 0.04 62.77 ± 2.01 37.23 ± 2.01 

Dual 
OptiTrack 1.00 ± 0.02 64.31 ± 1.71 35.69 ± 1.71 

Trunk-MIMU 1.01 ± 0.04 62.39 ± 2.13 37.61 ± 2.13 

Low cost, low invasiveness and confirmed 
repeatability of inertial sensors make them a 
suitable alternative to optoelectronic systems for 
gait analysis. Despite large investigations and many 
applications, some crucial gaps still exist for the 
identification of a robust and accurate sensor 
configuration and algorithm that can be applied in 
different gait conditions and populations. 
Considering young subjects, the trunk-MIMU 
solution resulted to be the most suitable one (Panero 
et al. 2018). In the present study, stance time and 
swing time have been selected as outcomes of 
interest for the validation of accuracy and 
robustness of the trunk-MIMU algorithm and set-up 
on an elderly population. As Figure 3 shows, both 
stance and swing times increase with the reduction 
of gait speed. In the dual task condition, values of 
stance and swing times are halfway between the 
correspondent ones of normal and slow speed 
conditions. Moreover, small standard deviation 
values depict a repeatability of the measure inside 
the tested sample of elderly subjects (Pacini 
Panebianco et al. 2018). Considering the accuracy 
in gait phases detection with the trunk-MIMU 
system with respect to the OptiTrack one, bar 
diagrams of Figure 3 show very similar values of 
both stance and swing times in all walking 
conditions. This correspondence could be evaluated 
with stem graphs in Figure 4. Smaller errors were 
obtained for conditions at fast (+0.01 s for stance 
time, -0.01 s for swing time) and normal speeds 
(+0.01 s for stance time, -0.01 s for swing time). 
Stance time error is greater in dual task condition 
(+0.03 s), while the greater error for swing time was 
registered in slow speed condition (-0.03 s). 
However, in all walking conditions, errors are lower 
than 0.03 s for both stance and swing times. In 
addition, stance times were always overestimated 

(positive sign of errors), while an underestimation 
interested swing times (negative signs of errors). 
Better performance at fast and normal speeds could 
be explained by an easier identification of peaks of 
interest in acceleration and angular velocity signals 
used for HSs and TOs detection. Despite this aspect, 
the trunk-MIMU algorithm could be considered 
accurate for gait phases detection also in elderly 
subjects. 

Considering Table 3, values of stance and swing 
durations obtained as percentages of GC were 
observed. Reference values of stance and swing 
duration in normal gait are 60% and 40% of the GC, 
respectively. The current elderly population shows 
an increased stance duration (around 63% GC for 
OptiTrack and 62% GC for trunk-MIMU) and a 
consequent reduction of swing duration (around 
37% GC for OptiTrack and 38% GC for trunk 
MIMU) in normal walking condition. In faster 
walking speed, the reduction of stance duration with 
respect to normal speed can be underlined both with 
OptiTrack (62% GC) and trunk-MIMU (60% GC), 
with a resulting increase of swing phase duration. In 
slow walking speed, the increase of stance duration 
with respect to normal speed can be underlined both 
with OptiTrack (65% GC) and trunk-MIMU (63% 
GC), with a resulting reduction of swing phase 
duration. Finally, the walking condition with dual 
task shows percentage times distribution similar to 
the slow speed condition, both for OptiTrack and 
trunk-MIMU. 

5 CONCLUSIONS 

In conclusion, the presented analysis confirms 

that trunk-MIMU system is suitable for the 



characterization of gait phases not only in healthy 

young subjects (Panero et al. 2018), but also in an 

healthy elderly population. The trunk-MIMU 

system depicts small errors of stance and swing 

times calculation at different walking conditions, 

revealing its accuracy and robustness. Moreover, 

the singular MIMU configuration might reveal 

advantages in terms of ease of use, limited cost and 

reduced invasiveness. For all these reasons, the 

trunk-MIMU system demonstrates to be a 

strategical and potential alternative to traditional 

stereophotogrammetric systems to evaluate gait 

phases. 

The principal limitation of this study consists in 

the involvement of a small sample of participants. 

However, this limit is expected to be overcome in 

the future, by testing a larger number of elderly 

subjects and considering the possibility to identify 

subgroups based on gender, healthy conditions and 

specific age.  

Future perspectives will concentrate first on the 

evaluation of more spatio-temporal parameters, 

including symmetry indices. Then, plans are to test 

the same MIMU set-up and algorithm on 

pathological populations, in order to define a 

complete protocol for the evaluation of 

rehabilitation progress and therapeutic treatments 

benefits. 
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