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We study the massive point-vortex model introduced in Richaud et al. [A. Richaud, V. Penna, R. Mayol,
and M. Guilleumas, Phys. Rev. A 101, 013630 (2020)], which describes two-dimensional point vortices of
one species that have small cores of a different species. We derive the relevant Lagrangian itself, based on
the time-dependent variational method with a two-component Gross-Pitaevskii (GP) trial function. The resulting
Lagrangian resembles that of charged particles in a static electromagnetic field, where the canonical momentum
includes an electromagnetic term. The simplest example is a single vortex with a rigid circular boundary, where
a massless vortex can only precess uniformly. In contrast, the presence of a sufficiently large filled vortex core
renders such precession unstable. A small core mass can also lead to small radial oscillations, which are, in
turn, clear evidence of the associated inertial effect. Detailed numerical analysis of coupled two-component
GP equations with a single vortex and small second-component core confirms the presence of such radial
oscillations, implying that this more realistic GP vortex also acts as if it has a small massive core.

DOI: 10.1103/PhysRevA.103.023311

I. INTRODUCTION

The Euler equation from classical nonviscous hydrody-
namics implies that a vortex moves with the local fluid
velocity at its location (see Ref. [1]). Correspondingly, Nv

such classical vortices at r j obey first-order differential equa-
tions of the form ṙ j = f j (r1, . . . , rNv

), since the local fluid
velocity at r j depends on the position of the other vortices (and
often image vortices as well). This vortex dynamics differs
greatly from the usual Newtonian dynamics, where particles
with mass obey second-order differential equations arising
from Newton’s laws of motion.

For real classical fluids, this picture represents an idealized
model that requires the addition of viscosity and more compli-
cated (Navier-Stokes) hydrodynamics. Fortunately, superfluid
hydrodynamics closely approximates this idealized model, as
first studied for superfluid He II (see Ref. [2]). The principal
feature is the quantized circulation (see Refs. [3,4]) around
each vortex in integer multiples of h/m = 2π h̄/m, where
h ≡ 2π h̄ is Planck’s constant and m is the atomic mass (here
4He). Otherwise, the dynamics of superfluid vortices in He
II follows this classical model in considerable detail, even
though it has been difficult to visualize such vortex dynamics
experimentally. Hence most He II experiments focus on the
energetics of vortex configurations rather than on the time-
dependent dynamical motion.

In 1995, the creation of a Bose-Einstein condensate (BEC)
in dilute trapped ultracold atomic gases provided a wholly
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‡fetter@stanford.edu

new superfluid system (see Refs. [5,6]). BECs have significant
advantages compared to He II, for experimentalists have great
control over many important parameters, such as the particle
density n, the temperature T , the trapped condensate shape
(aspect ratio), and the interaction constant through the s-wave
scattering length a. In addition, BECs also allow bosonic
mixtures, for example, two hyperfine states of a single atomic
species.

Such a mixture led to the first observation of a vortex in
a cold dilute BEC (see Ref. [7]), with a singly quantized
vortex in one hyperfine component surrounding a core of the
second hyperfine component (the fraction of the core particles
varied between 10% and 50%). In a subsequent experi-
ment (see Ref. [8]), time-lapse pictures of the vortex motion
stimulated theoretical studies based on the two-component
Gross-Pitaevskii equation (see Ref. [9]), although no detailed
comparison was made with the experimental results.

The effective mass of a vortex line in a one-component
superfluid has long been controversial, with estimates vary-
ing from zero to divergent; see Ref. [10] for a recent study
based on long-wavelength Kelvin waves that propagate along
the vortex line. Here we focus on two-dimensional point
vortices where such three-dimensional oscillation modes
are absent.

Recently, Richaud et al. (Ref. [11]) suggested that such
two-component vortices differ fundamentally from one-
component vortices because the nonrotating superfluid core
provides an inertial mass. As a result, the dynamics of such
two-component vortices requires a more general treatment
adding the usual second-order acceleration terms from New-
tonian mechanics. Specifically, they proposed an intuitive
massive point-vortex Lagrangian with an inertial mass as well
as terms for the usual vortex dynamics. Such a model is
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expected to describe well the dynamics of two-component
vortices with small cores.

Section II summarizes the massive point-vortex model
and provides a derivation based on a variational Lagrangian
with a trial two-component condensate wave function. It also
discusses the analogy with the familiar electromagnetic La-
grangian for a charged particle in a given electromagnetic
field. Section III then studies the predictions of this model
for one and two such vortices in a circular container. For
comparison, Sec. IV describes a numerical study of the two-
component Gross-Pitaevskii (GP) equation that confirms this
model as a realistic description of two-component vortices
with small cores. Section V follows with conclusions and
outlook.

II. MASSIVE POINT-VORTEX MODEL

Hamiltonian dynamics involves first-order dynamical
equations for pairs of canonical variables. This first-order
structure is reminiscent of the first-order dynamical equa-
tions of classical point vortices. Indeed, Kirchhoff noted that
the energy function E (r1, . . . , rNv

) of Nv point vortices acts
as a Hamiltonian, with the coordinates (x j, y j ) serving as
canonical variables (see, for example, Sec. 157 of Ref. [1]).
Specifically, the Hamiltonian equations for classical point-
vortex dynamics are ( j = 1, . . . , Nv)

2πnh̄q j ẋ j = ∂E

∂y j
and 2πnh̄q j ẏ j = − ∂E

∂x j
, (1)

where q j = ±1 is the dimensionless vortex charge and n is
the two-dimensional number density of the fluid. Equivalently,
they have the corresponding vector form ( j = 1, . . . , Nv)

2πnh̄q j ṙ j = −ẑ × ∇ jE . (2)

Note that −∇ jE is an effective force on the jth vortex. Evi-
dently, the vortex moves perpendicular to this force, which is
known as the Magnus effect. Another consequence is that the
combined vortex motion conserves the total energy E because
these effective forces do no work.

A. Lagrangian description

Instead of the well-known Hamiltonian approach for
point vortices, we here prefer an equivalent but less com-
mon Lagrangian description. When describing classical point
vortices, this Lagrangian formalism simply reproduces the
familiar dynamical equations, but below we generalize the
Lagrangian to incorporate an effective mass of the nonrotating
vortex core in a two-component BEC.

For massless classical vortices, the appropriate Lagrangian
is (see Ref. [11])

L0 =
Nv∑
j=1

πnh̄q j ṙ j × r j · ẑ − E , (3)

and it is easy to verify that the resulting dynamical equa-
tions reproduce Eq. (2). Hence this massless Lagrangian is
completely equivalent to the usual Hamiltonian description of
classical point vortices.

As noted in Ref. [11], “massive” point vortices with mass
Mj obey the generalized Lagrangian [compare Eq. (3)]

L =
Nv∑
j=1

1
2 Mj ṙ2

j +
Nv∑
j=1

πnh̄q j ṙ j × r j · ẑ − E . (4)

The first term is the usual Newtonian kinetic energy, and the
last term can be interpreted as the usual potential energy. In
contrast, the middle term involves both the velocity and the
position. Such structure is familiar in the Lagrangian for a
set of charged particles in specified electromagnetic potentials
(see, for example, Ref. [12]). In particular, we can take the
charge to be q j = ±1, with the vector potential A = πnh̄ r × ẑ
and a scalar potential E (r1, . . . , rNv

) that depends on the coor-
dinates of the Nv vortices.

The canonical momentum for the jth vortex,

p j = ∂L/∂ ṙ j = Mj ṙ j + πnh̄q j r j × ẑ, (5)

differs from the usual Newtonian form by an additional vortex
contribution (an effective vector potential), A(r) = πnh̄ r × ẑ,
evaluated at r j . Correspondingly, the canonical angular mo-
mentum is

l j = r j × p j = Mjr j × ṙ j − πnh̄q jr
2
j ẑ. (6)

In the limit of a massless classical vortex, both the canonical
quantities p j and l j remain finite because of the vortex (effec-
tive magnetic) contributions.

The effective magnetic field is uniform B = ∇ × A =
−2πnh̄ẑ, and each vortex obeys an effective Lorentz equation:

Mj r̈ j = q j ṙ j × B − ∇ jE = −2πnh̄q j ṙ j × ẑ − ∇ jE . (7)

It incorporates both the Newtonian (second-order) dynam-
ics and the vortex (first-order) dynamics (similar com-
bined first-and second-order dynamical equations appear in
Refs. [13,14]). In Sec. III below, we examine the implications
for some simple examples involving one and two positive
vortices in a circular container. Note that for massless vortices,
Eq. (7) correctly reduces to Eq. (2).

B. Derivation of massive point-vortex Lagrangian

Reference [11] assumed that Eq. (4) provides the appropri-
ate Lagrangian for the dynamics of massive point vortices.
Here, we use the method of a time-dependent variational
Lagrangian (see Refs. [15,16]) to derive this Lagrangian with
simple trial quantum-mechanical wave functions. We assume
a two-dimensional geometry, with a hard circular outer bound-
ary of radius R.

This method relies on a Lagrangian functional L (here for
a one-component condensate wave function ψ):

L[ψ] = T [ψ] − E[ψ], (8)

where

T [ψ] = ih̄

2

∫ (
ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
d2r (9)

and

E[ψ] =
∫ (

h̄2

2m
|∇ψ |2 + Vtr|ψ |2 + g

2
|ψ |4

)
d2r. (10)
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It is easy to show that its exact Euler-Lagrange equation is
the time-dependent nonlinear Schrödinger equation ih̄∂tψ =
[−h̄2∇2/(2m) + Vtr + g|ψ |2]ψ for a one-component conden-
sate wave function ψ [15]. In practice, one assumes a trial
wave function ψ with time-dependent parameters, for exam-
ple, the position of one or more vortices, and evaluates L,
which then provides a variational Lagrangian to determine the
corresponding dynamical motion of the parameters.

Specifically, we here consider a two-component dilute
Bose-Einstein condensate with ψa as the wave function of the
a component that contains the vortices and ψb as the wave
function of the b component trapped in the vortex cores. Let
Na and Nb be the total number of particles of each component,
with ma and mb being the corresponding particle masses.
In this model, the vortices in the a component would, by
themselves, obey the usual first-order dynamics of massless
vortices, and the vortex mass arises solely from the b com-
ponent in their cores. To be precise, Ma = Nama is the total
mass of the a component (similarly for the b component), and
each vortex will have an effective b-component core mass of
Mc = Mb/Nv .

As discussed in detail in Ref. [16], the time-dependent
variational Lagrangian La for the a component depends
on the form of the condensate density. For simplicity, we
here assume a constant two-dimensional number density
na = Na/(πR2), but Refs. [9,16] also treat the more re-
alistic Thomas-Fermi parabolic density profile. Hence the
a-component Lagrangian becomes [compare Eq. (3)]

La = πnah̄
Nv∑
j=1

q j ṙ j × r j · ẑ − E
(
r1, . . . , rNv

)
, (11)

where the total energy E has two types of contributions,

E =
∑

j

� j +
∑
j<k

Vjk, (12)

that depend on the assumed form of the number density and
the coordinates of the Nv vortices. For the uniform number
density na = Na/(πR2) considered here, we have

� j = �(r j ) = πnah̄2

ma
ln

(
1 − r2

j /R2), (13)

Vjk = πnah̄2q jqk

ma
ln

(
R2 − 2r j · rk + r2

j r
2
k /R2

r2
j − 2r j · rk + r2

k

)
. (14)

The one-body term � j is the interaction energy of the vortex
at r j with its image in the circular boundary. The two-body
term Vjk is the interaction energy of the vortices at r j and rk ,
including both images (see Ref. [17]).

For the localized b-component core contribution Lb to the
total Lagrangian, we use a linear combination of Gaussian
wave packets from Ref. [15],

ψb(r) =
Nv∑
j=1

(
Nb

Nvπσ 2

)1/2

e−|r−r j (t )|2/2σ 2
eir·α j (t ), (15)

that depends on r j (t ) and α j (t ) as time-dependent param-
eters [as noted below, the phase parameters α j (t ) ensure a
nonzero superfluid velocity]. In principle, the repulsive in-
teraction constants g jk determine the b-component core size

σ (see Sec. IV), but here the model simply assumes that the
b-component cores are small with σ � |r j − rk|.

This trial function is normalized for well-separated vortices
|r j − rk| � σ because the interference terms are then negligi-
ble. In addition to the localized Gaussian functions, ψb has a
linear phase r · α j for each vortex, giving a local flow velocity
of h̄α j/mb. Each core is a localized wave packet with width σ

centered at r j (t ) and moving with velocity ṙ j = h̄α j/mb.
A straightforward analysis (see Ref. [15]) gives the corre-

sponding Lagrangian

Lb = −
Nv∑
j=1

Nb

Nv

(
h̄r j · α̇ j + h̄2

2mb
α2

j

)
. (16)

As expected, Lb depends on the appropriate Lagrangian pa-
rameters (r j,α j ).

We now observe that r j · α̇ j = −ṙ j · α j + d (r j · α j )/dt .
Omitting the total time derivative that does not affect
the Lagrangian dynamical equations, we find the modified
Lagrangian

Lb = Nb

Nv

Nv∑
j=1

[
mb

2
ṙ2

j − h̄2

2mb

(
α j − mb

h̄
ṙ j

)2
]
. (17)

The Euler-Lagrangian equation for α j confirms that ṙ j =
h̄α j/mb, leaving only the Newtonian mass term

Lb =
Nv∑
j=1

1
2 Mcṙ2

j =
Nv∑
j=1

Mb

2Nv

ṙ2
j , (18)

with core mass Mc = Nbmb/Nv = Mb/Nv .
The sum of the two Lagrangians L = La + Lb in Eqs. (11)

and (18) reproduces the assumed model Lagrangian (4)

L =
Nv∑
j=1

(
1

2
Mcṙ2

j + πnah̄q j ṙ j × r j · ẑ
)

− E
(
r1, . . . , rNv

)
(19)

for the set of massive point vortices and identifies Mc as the
core mass. It depends on the coordinates and velocities of all
the vortices, with the energy E given by Eqs. (12)–(14) for the
present example of uniform a-condensate density.

Note that we assume tight coupling between the two con-
densates because the b cores have the same position as the
a component vortices. In principle, we could introduce sep-
arate vortex and core coordinates, coupled with a harmonic
potential, but we have not pursued this option. Instead, in
the next section, we examine the implications of this model
Lagrangian (19), first for one positive vortex in a cylindrical
container and then for two positive vortices symmetrically
situated in the same container.

III. PREDICTIONS OF THE MASSIVE
POINT-VORTEX MODEL

In this section, we focus on the model Lagrangian for mas-
sive point vortices in Eq. (4). Our principal interest is how the
dynamics of point vortices with finite-mass cores differs from
the well-known dynamics of classical massless point vortices.
We find it helpful to introduce dimensionless variables based
on the properties of the a component that contains the vortices.
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As a result, changes in the a component simply change the
units, and the remaining equations turn out to depend only on
the single dimensionless parameter μ = Mb/Ma.

To be specific, let the radius R of the circular container be
the unit of length, maR2/h̄ the unit of time, and πnah̄2/ma =
Nah̄2/(maR2) the unit of energy. In this way, Eq. (4) has the
dimensionless form

L =
Nv∑
j=1

(
μ

2Nv

ṙ2
j + q j ṙ j × r j · ẑ − � j

)
−

Nv∑
j<k

Vjk, (20)

where

� j = ln
(
1 − r2

j

)
, (21)

Vjk = q jqk ln

(
1 − 2r j · rk + r2

j r
2
k

r2
j − 2r j · rk + r2

k

)
. (22)

A. Dynamics of one massive positive point vortex

A single positive vortex with Nv = 1 and q = 1 in a cir-
cular container has a particularly simple Lagrangian because
the boundary is symmetric. It is natural to use plane polar
coordinates r = (r, θ ), which now represent the coordinates
of the single vortex with no additional index. The Lagrangian
becomes

L = 1
2μ(ṙ2 + r2θ̇2) − r2θ̇ − ln(1 − r2). (23)

By construction, this dimensionless Lagrangian depends only
on the single parameter μ = Mb/Ma; for a single vortex, μ is
also the ratio of the b-core mass Mc = Mb to the a-component
mass Ma.

It is notable that the Lagrangian (23) does not depend
on the polar angle θ . Hence ∂L/∂θ = 0, and the canonical
angular momentum

l = ∂L/∂θ̇ = μr2θ̇ − r2 (24)

is conserved. As in Eq. (6), l has both a mechanical (New-
tonian) part and a vortex part; l can even be negative for
sufficiently small μ. This additional vortex contribution dis-
tinguishes the present example from the familiar relative
dynamics of two-body motion in a central potential.

The corresponding canonical radial momentum is ∂L/∂ ṙ =
μṙ. The Euler-Lagrange equation then gives the radial equa-
tion of motion

μr̈ = μrθ̇2 − 2rθ̇ − d�(r)/dr, (25)

where, as before, �(r) = ln(1 − r2). For any finite μ, this
differential equation is second order in time. If μ = 0, how-
ever, it becomes a first-order differential equation that instead
determines the precession rate for a massless vortex, as seen,
for example, in Eq. (7). Hence the limit μ → 0 is singular
since it alters the order of the differential equation.

Equation (25) involves the time-dependent quantity θ̇ but
the conservation of angular momentum in Eq. (24) can elimi-
nate such dependence, giving

μr̈ = l2

μr3
− r

μ
− d�

dr
, (26)

which provides a single differential equation for the time
dependence of r(t ). It involves two constant parameters: the

dimensionless mass ratio μ and the dimensionless canonical
angular momentum l . Note that the derivation involves divi-
sion by μ, which confirms that the limit μ → 0 is singular.

Like the more familiar radial equation for the relative
separation in a Newtonian two-body problem with a central
potential V (r), this equation also has a conserved quantity
which is an effective total energy. Multiply Eq. (26) by ṙ. Each
side becomes a total time derivative and integration gives

1
2μṙ2 + Veff (r) = E0 (a constant), (27)

where the effective potential has the somewhat unusual form

Veff (r) = l2

2μr2
+ r2

2μ
+ �(r). (28)

The first term is the repulsive centrifugal potential familiar
in both classical and quantum mechanics, and the last term
is the analog of an attractive two-body central potential. In
contrast, the middle term is different and acts like an attractive
harmonic-oscillator potential. It arises from the vortex contri-
bution −r2θ̇ to the Lagrangian (23).

It is instructive to plot Veff (r). Figure 1 shows typical plots
of Veff (r) for various fixed values of μ and l . Although differ-
ent in detail, Veff (r) resembles a cubic function of r. For small
values of the two parameters μ and l , it has a local minimum
and a local maximum (see solid blue curves in Fig. 1), but as
the parameters increase, these stationary points merge at an
inflection point. For still larger values of μ and l , Veff (r) has
negative slope everywhere (see short-dashed green curves in
Fig. 1). Similar curves appear in Ref. [13].

Equation (27) can be rewritten as

t (r) = ±
√

μ

2

∫ r dr√
E0 − Veff (r)

, (29)

which determines t (r) along the dynamical trajectory of the
massive vortex. A formal inversion then gives r(t ), as in
Keplerian dynamics. With suitable manipulations, the result-
ing r(t ) can provide the angular motion θ (t ). Furthermore, a
combination with Eq. (24) also can give a formal expression
for the orbit r(θ ), as is familiar from Newtonian mechanics.

For small and large E0, the equation Veff (r) = E0 has only
a single root (see Fig. 1), and the vortex will simply move
continuously toward the outer boundary [see Fig. 2(c) for
such a trajectory]. For intermediate values of E0, however, the
equation can have three roots, in which case the vortex will
oscillate in the allowed region between turning points deter-
mined by the left and center roots of the equation E0 = Veff (r)
[see Fig. 2(b)]. Both solid blue curves in Figs. 1 have stable
turning points, whereas both short-dashed green curves have
only unstable trajectories.

As a concrete example, we here focus on vortex motion at
and near the local minimum of Veff (r). Motion at the local
minimum is a uniform precession, but it now includes the
effect of the mass μ [see upper panel of Fig. 2(a)].

Start from Eq. (26) and assume r = r0 + δ, where r0 is
constant and δ is small. To zero order in δ, we have

l2

μr3
0

− r0

μ
− �′(r0) = l2

μr3
0

− r0

μ
+ 2r0

1 − r2
0

= 0, (30)

which determines r0 for fixed μ and l .
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FIG. 1. Effective potential Veff (r) in Eq. (28) with �(r) = ln(1 −
r2) (as explained in the text, both quantities are dimensionless).
Panel (a) is for fixed l = 0.1 and increasing values of the mass ratio
μ = Mb/Ma = 0.1 (solid blue curve), μ = 0.2 (long-dashed ochre
curve), and μ = 0.4 (short-dashed green curve). In contrast, panel
(b) (note different vertical scale) is for fixed μ = 0.1 and increasing
l = 0.1 (solid blue curve), l = 0.25 (long-dashed ochre curve), and
l = 0.45 (short-dashed green curve). In both figures, the smallest
values μ = l = 0.1 (blue solid curves) clearly can support stable
trajectories with rmin < r < rmax (both solid blue curves are actually
the same, despite the different vertical scales). In both figures, the
curves with largest parameter values (short-dashed green curves)
have no stable trajectories, with the vortex moving out toward the
boundary at dimensionless r = 1. The curves with intermediate value
(long-dashed ochre curves) are weakly stable in both figures.

To understand the physical motion, it is convenient to use
Eq. (24), giving an explicit quadratic equation for the uniform
precession frequency 	0 = θ̇0:

μ	2
0 − 2	0 + 2

1 − r2
0

= 0. (31)

As expected from the dynamics of a single massive vortex,
this equation has two roots:

	
(+)
0 =

1 +
√

1 − 2μ/
(
1 − r2

0

)
μ

(32)

and

	
(−)
0 = 2/

(
1 − r2

0

)
1 +

√
1 − 2μ/

(
1 − r2

0

) . (33)

(a)

(b)

(c)

FIG. 2. Three possible trajectories for a single positive massive
point vortex confined in a circular rigid trap. Plots with arrows
correspond to the numerical solutions of the Euler-Lagrange equation
(7) specialized to the case of the Nv = 1 vortex. We follow Fig. 1 of
Ref. [11] with R = 50 μm, Na = 5 × 104 23Na atoms and various
Nb

39K atoms. (a) Circular orbits obtained for Nb = 0 with μ = 0
(dashed gray curve) and for Nb = 1000 with μ = 0.034 (solid red
curve). (b) The presence of a core mass (Nb = 1000 with μ = 0.034)
can also yield more structured trajectories for different initial con-
ditions. (c) For a larger core mass (Nb = 1600 with μ = 0.054), the
massive vortex moves continuously to the circular boundary.
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In the small-mass limit, the larger root 	
(+)
0 ≈ 2/μ diverges

and becomes irrelevant, while the smaller root 	
(−)
0 ≈ 1/(1 −

r2
0 ) reduces to the familiar precession rate for a massless

classical vortex in a circular container with uniform density
[	0 = h̄/ma(R2 − r2

0 ) in conventional units]. This reduction
in the number of roots as μ → 0 is clear from the structure of
Eq. (31).

Note that the roots become complex (and hence unstable)
for

μ > 1
2

(
1 − r2

0

)
, (34)

which is expected from the shape of Veff (r) in Fig. 1 for larger
μ [panel (a)] or larger l [panel (b)]. A massive vortex near
the center with r0 � 1 is stable for μ � 1

2 , but a vortex near
the outer edge is only stable for small μ. In the unstable case,
the massive vortex moves outward toward the boundary and
collides against it.

To first order in δ, Eq. (26) gives the linear second-order
equation

−μδ̈ =
(

3l2

μr4
0

+ 1

μ
+ �′′(r0)

)
δ. (35)

Assume harmonic time dependence ∝e−iωt . Some algebra
with Eqs. (24) and (31) gives the desired squared small-
oscillation frequency:

ω2 = 4

μ2

[
1 − μ

2 − r2
0(

1 − r2
0

)2

]
. (36)

These small-oscillations become unstable for

μ >

(
1 − r2

0

)2

2 − r2
0

, (37)

which should be compared with the slightly more restrictive
condition (34).

In the massless limit μ → 0, this small-oscillation fre-
quency diverges ω ≈ 2/μ. Such behavior is not surprising
because a single massless point vortex in a circular container
can only precess uniformly [compare Eq. (2)].

Figure 2 shows some more general trajectories for a single
positive massive point vortex in a rigid circular trap, using the
numerical parameters from Fig. 1 of Ref. [11]: Na = 5 × 104

23Na atoms and various Nb
39K atoms. Figure 2(a) shows

uniform precession for an empty core with Nb = 0 (dashed
gray curve) and for a small core mass with Nb = 1000 (solid
red curve). Correspondingly Fig. 2(b) shows small rapid stable
oscillations superposed on a slow precession, and Fig. 2(c)
shows an unstable orbit that moves outward to the rigid con-
fining boundary. Similar rapid small oscillations appear in
Refs. [13,14].

Here, we have studied the simplest case of a uniform num-
ber density na = Na/(πR2), but it is not difficult to consider
more general situations, such as the parabolic particle density
that applies to a dilute trapped BEC in the Thomas-Fermi
(TF) limit. The only required change is to replace the single-
particle energy �(r) ∝ ln(1 − r2/R2) by that appropriate for
the TF density profile (see Refs. [9,16,18]).

B. Dynamics of two corotating massive point vortices

In addition to the previous study of a single vortex, the
dimensionless Lagrangian (19) also describes the motion of
two or more vortices. We here focus on two positive vortices,
as discussed in Ref. [11]. Specifically, the dimensionless La-
grangian becomes

L =
2∑

j=1

[
μ

4

(
ṙ2

j + r2
j θ̇

2
j

) − r2
j θ̇ j − �(r j )

]
− V12, (38)

where

V12 = ln

(
1 − 2r1r2 cos θ12 + r2

1r2
2

r2
1 − 2r1r2 cos θ12 + r2

2

)
, (39)

with θ12 = θ1 − θ2. The important feature here is that V12

depends only on the difference of the two angles and is hence
invariant under an overall coordinate rotation.

For vortex j, the canonical angular momentum is

l j = ∂L

∂θ̇ j
= 1

2
μr2

j θ̇ j − r2
j . (40)

It obeys the dynamical equation dl j/dt = ∂L/∂θ j =
−∂V12/∂θ j . The total angular momentum l = l1 + l2 thus
obeys the dynamical equation

dl

dt
= −∂V12

∂θ1
− ∂V12

∂θ2
= 0, (41)

which vanishes because V12 depends only on the difference
of the angles θ12. Hence the total canonical angular momen-
tum l is conserved because of overall rotational invariance.
A similar argument shows that the total canonical angular
momentum of any number of vortices is conserved.

For vortex 1, the canonical radial momentum is ∂L/∂ ṙ1 =
1
2μṙ1, leading to the equation of motion

1

2
μr̈1 = 1

2
r1θ̇

2
1 − 2r1θ̇1 + 2r1

1 − r2
1

− 2r1r2
2 − 2r2 cos θ12

1 − 2r1r2 cos θ12 + r2
1r2

2

+ 2r1 − 2r2 cos θ12

r2
1 − 2r1r2 cos θ12 + r2

2

, (42)

with a similar equation for vortex 2.
A simple two-vortex equilibrium solution from Ref. [11]

is fixed r1 = r2 = r0 and uniform precession with θ12 = π

and θ1 = 	0t . Some algebra gives a quadratic equation for
the dimensionless precession frequency

μ	2
0

2
− 2	0 + 1 + 3r4

0

r2
0

(
1 − r4

0

) = 0, (43)

which is equivalent to Eq. (4) in Ref. [11]. It should be
compared with the corresponding dimensionless quadratic
equation for one massive vortex, Eq. (31).

Equation (43) has two solutions 	0 = (2 ± 2
√

�)/μ, in-
volving the quantity

� = 1 − μ
1 + 3r4

0

2r2
0

(
1 − r4

0

) , (44)
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which must be positive for a real precession rate. Otherwise,
the precession frequency becomes unstable, as in the similar
case of the single positive vortex. Equivalently, the uniform
precession of two positive vortices at r0 becomes unstable for

μ >
2r2

0

(
1 − r4

0

)
1 + 3r4

0

. (45)

The right side vanishes for both r0 → 0 and r0 → 1 and has
a maximum value of ≈0.45 at r0 ≈ 0.63. For comparison, a
single positive vortex becomes progressively more unstable
as r0 increases [see Eq. (34)].

Figure 3 shows trajectories of two positive corotating vor-
tices in a circular rigid trap with uniform density obtained by
integrating the massive point-vortex equations of motion, for
example, Eq. (7) in original dimensional form. Figure 3(a)
shows uniform circular precession, Fig. 3(b) shows small os-
cillations arising from small symmetric initial displacement,
and Fig. 3(c) shows irregular motion arising from asymmetric
initial positions.

IV. GROSS-PITAEVSKII ANALYSIS FOR ONE VORTEX
COMPARED TO MASSIVE POINT-VORTEX MODEL

In Sec. III A, we examined some implications of the
massive point-vortex model, where a single vortex in a cir-
cular container has only two spatial coordinates, for example,
Cartesian (x, y) or plane polar (r, θ ). Here we focus on how
the vortex-core mass Mc affects the ensuing vortex dynamics.
In the electromagnetic analogy, Eq. (7) shows that a single
massive vortex in the plane obeys a second-order ordinary
differential equation in the time for the vector position r(t ),
which is equivalent to four coupled first-order equations for
the two coordinates and their first time derivatives. The limit
Mc → 0 is singular, however, for the number of coupled first-
order equations and then changes discontinuously from four
to two [see discussion below Eq. (25)].

A single massless vortex in a rigid circular container can
only precess uniformly with fixed r0 and fixed frequency 	0,
as seen in Eq. (2) and in the dimensionless Eq. (31) for μ = 0.
The dashed gray curve in Fig. 2(a) shows such behavior.
Similar uniform precession remains possible for nonzero mass
[as in the solid red curve Fig. 2(a)], but the two extra first-
order equations can also lead to qualitatively different orbits
for a vortex with a massive core. Figure 2(b) shows rapid
oscillations of the sort predicted in Eq. (36).

To understand the role of the mass, consider Fig. 1 showing
the effective potential Veff (r) for various values of the mass μ

and the angular momentum l . The solid blue curve can support
a range of bounded solutions where r(t ) oscillates between
turning points, similar to an elliptical planetary orbit. In par-
ticular, a single vortex can exhibit such oscillatory behavior
only when it has an associated mass. Hence the presence of
oscillatory orbits for a single vortex is clear proof that it acts
like a vortex with a massive core.

The initial experimental study of the dynamical motion of
a two-component vortex was two decades ago (see Ref. [8]),
relying on an intricate laser-stirring procedure. Since then,
recent experimental procedures have produced many relevant
results, such as well-controlled two-component superflu-
ids [19] and one-component superfluids with hard circular

(a)

(b)

(c)

FIG. 3. Three possible dynamical regimes for a pair of corotating
massive vortices confined in a circular rigid trap. Plots with arrows
correspond to the solutions of the Euler-Lagrange equation (42) for
vortex 1 and the similar equation for vortex 2. As in Fig. 2(b), we
have Na = 5 × 104 and Nb = 2000 (there are now two vortices). In
dimensionless units, we have μ = 0.0678. (a) Uniform circular or-
bits with r0 = 0.357 and 	0 = 4.527 [see condition (43)]. (b) Small
oscillations around a uniform circular orbit arising from small inward
radial displacements in the initial condition. (c) Irregular (nonpe-
riodic) trajectories arising from asymmetric initial positions. All
panels: blue and red denote the trajectories of the two vortices.
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boundaries [20–22]. In principle, a combination of these tech-
niques could confirm our massive point-vortex model.

To proceed, we have relied on numerical experiments with
the two-component GP equation. Specifically, we use the nu-
merical values from Ref. [11], considering a confining radius
of R = 50 μm, Na = 50 000 23Na atoms containing a sin-
gle off-axis vortex, and Nb = 3600 39K atoms forming the
vortex core. These values give the dimensionless parameter
μ ≈ 0.122, which can be considered small. In addition, we
use the interaction constants ga = 52 × (4π h̄2a0/ma), gb =
7.6 × (4π h̄2a0/mb), and gab = 24.2 × (2π h̄2a0/mab), where
a0 ≈ 5.29 × 10−11 m is the Bohr radius and mab is the reduced
mass, but our results should not be sensitive to these various
details. For uniform components, our model interaction con-
stants are well in the immiscible regime gagb < g2

ab. For Nb =
0 (pure a species), these interaction constants yield the GP
healing length ξa0 = h̄/(2gamana)1/2 = 0.043 R ≈ 2.1 μm.
For Nb = 3600, the presence of the localized b species ex-
pands the vortex core, with ξa ≈ σb = 0.096 R ≈ 4.8 μm (see
Eq. (18) of Ref. [11]). Both values are relatively large because
R is large and na = Na/(πR2) is correspondingly small.

We introduce a two-component condensate wave function
T = (ψa, ψb), here written as a transpose. The correspond-
ing time-dependent GP equation becomes

ih̄
∂

∂t
= H, (46)

where the Hamiltonian H is a diagonal 2 × 2 matrix with
elements:

Ha = − h̄2∇2

2ma
+ V a

tr + gaNa

dz
|ψa|2 + gabNb

dz
|ψb|2, (47)

Hb = − h̄2∇2

2mb
+ V b

tr + gabNa

dz
|ψa|2 + gbNb

dz
|ψb|2. (48)

Here, dz is the thickness of the thin two-dimensional con-
densate. We allow for the possibility that each component
has a different trapping potential but our simple model has
effectively uniform number density, so that both condensates
are contained in a circle of radius R.

For the numerical procedure [23], we obtain the initial
vortex state through imaginary time propagation in a rotat-
ing reference frame. We introduce a narrow high Gaussian
pinning potential at the position of the a-condensate vortex
with a 2π phase winding around it. This pinning potential acts
only on the a species, and we also place a b-species Gaussian
peak at the same position. In addition, we introduce a uniform
rotation by including the term −	Lz in both elements of
the Hamiltonian H, with 	 = 4 rad/s, close to the rotation
frequency of a vortex at the appropriate position as given
by the massive point-vortex model in Eq. (31). This term
induces a ground state with net angular momentum, leading to
the desired vortex state. We use an imaginary-time algorithm
with this initial state, letting the system converge toward the
appropriate equilibrium state with the a-species vortex around
the b-species core.

We then switch to real-time propagation, turning off the
pinning potential and the rotation frequency. At each time t of

this real-time evolution, we measure three quantities:
(i) the position of the minimum of |ψa|2,
(ii) the position of the maximum of |ψb|2,
(iii) the mean position of |ψb|2.
As a check on our GP numerical procedure, we verified

that a pure a-species vortex with Nb = 0 precesses uniformly.
For Nb = 3600, we also checked that if the angular frequency
	0 and the radial position r0 satisfy Eq. (31), then the massive
vortex precesses uniformly, like Fig. 2(a). As an additional
check on the predictions of the massive-vortex model, we
verified numerically that a vortex in the a-component GP con-
densate with a sufficiently large b-component core will move
outward until it remains trapped at the confining boundary, as
in Fig. 2(c).

In our numerical experiments, the position of the minimum
of |ψa|2 always coincides with that of the maximum of |ψb|2,
with no relative motion between the a-component vortex and
the b-component core. This tight core confinement reflects
the immiscibility condition g2

ab > gagb and the small healing
length ξa � R. It supports the agreement between numerical
simulations and the massive point-vortex model. As already
mentioned in Sec. II B, a more general approach would intro-
duce different coordinates for the vortex and the core, coupled
with a harmonic potential. This analysis will be developed in
a future work.

Figure 4 compares our numerical GP results (purple curve)
with the predictions of the massive point-vortex model (or-
ange curve) for a relatively small b-species component with
Nb = 3600. For both curves, we used the same numerical
parameters discussed at the start of this section. Figure 4(a)
shows four rapid radial oscillation cycles and Fig. 4(b) shows
the corresponding orbits, again over four rapid oscillation
cycles. Note that the slow precession of the vortex com-
pletes only ∼1/3 of an entire rotation cycle. For the real-time
GP evolution, we use the mean position of |ψb|2 to define
the location of the moving vortex. For the massive point-
vortex model, we chose the orbital parameter r0 = 0.368R.
Equation (36) then gives the dimensional rapid oscillation
frequency ω/(2π ) ≈ 2.40 Hz for the massive point-vortex
model. This value is close to that inferred from Fig. 4(a),
where four complete orange cycles take ≈1.65 s, correspond-
ing to an oscillation frequency of ≈2.42 Hz. This small
difference may reflect nonlinear effects omitted in our lin-
earized analysis.

The most striking conclusion is that the two curves are
indeed very similar. In particular, the solution of the coupled
GP equations with a single a-species vortex surrounding a
b-species core closely follows the prediction of the simpler
massive point-vortex model with the same parameters. This
correspondence should not be surprising, because Sec. II B
used the two-component GP equation in the time-dependent
variational derivation of the massive point-vortex Lagrangian.

In detail, however, there are also some clear differences.
The GP oscillation frequency is somewhat lower, presum-
ably because the coupled GP equations describe two coupled
many-body condensates with various internal modes. The
resulting small phase difference is ∼π/2 after four rapid
oscillation cycles. More notable is the decreased amplitude of
the oscillations in the GP simulation [dashed purple curve in
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(a)

(b)

FIG. 4. Numerical result from the two-component GP numerical
evolution (purple) compared with the prediction of the massive point-
vortex model (orange). (a) Four complete radial oscillations shown
on a linear scale, allowing detailed comparison highlighting the
decreased amplitude and the altered period of GP analysis (dashed
purple curve) compared to the massive point-vortex model (solid
orange curve). (b) Orbital plots with arrows of both trajectories with
purple from the GP analysis and orange from the massive point-
vortex model [compare similar orbits in Fig. 2(b)].

Fig. 4(a)]. These damped oscillations survive for (at least) one
complete orbit around the trap center. This energy dissipation
probably reflects dynamical excitation of internal modes such
as oscillations of the vortex-core boundary and small ripples
in the a-species density (phonons), both of which we observe
in the numerical simulations. Figure 5 shows the density of
the a component at a short time t = 0.04 s, displaying small-
amplitude ripples in the high-density flat condensate density,
representing sound waves arising from the moving vortex.
Their reflection off the circular boundary yields a complicated
interference pattern.

V. CONCLUSIONS AND OUTLOOK

Reference [11] introduced a simple Lagrangian to describe
a bounded two-dimensional two-component BEC, with one

FIG. 5. Density of the a component at t = 0.04 from the numer-
ical evolution of the two coupled GP equations. Blue (yellow) color
corresponds to zero (high) values of the density. We have employed
the same model parameters used in Fig. 4.

or more a-component vortices filled with b-component vortex
cores. They noted that two symmetrically placed positive mas-
sive vortices can execute uniformly corotating orbits, but the
principal emphasis was on comparing static properties with
those of two-component GP simulations using appropriate
repulsive phase-separated interaction constants.

Here, instead, we focused on the predictions of this
model Lagrangian concerning the dynamical motion of two-
component vortices with massive cores. We first studied how
a single positive vortex behaves inside a rigid circular bound-
ary, where a massless vortex can only precess uniformly. In
contrast, uniform precession becomes unstable for sufficiently
large b-species core mass.

The rotational symmetry of the circular boundary and
the associated conservation of the canonical angular momen-
tum yield an effective radial potential Veff (r) that depends
explicitly on the dimensionless mass ratio μ and on the
dimensionless canonical angular momentum l . Figure 1 il-
lustrates how the deep local minimum of Veff (r) disappears
with increasing core mass, leading to the loss of a stable
circular orbit. When stable circular orbits exist, we study the
frequency of small radial oscillations, which also can in turn
become unstable for sufficiently large core mass. Similarly,
a pair of symmetrical corotating positive vortices also has a
dynamical instability for when the core mass is sufficiently
large.

To evaluate the validity of this massive point-vortex model,
we studied the coupled time-dependent GP equations for two
components. As a numerical check, we first verified that a
one-component GP vortex with Nb = 0 precesses uniformly,
as expected for a massless point vortex. We then confirmed
that a two-component GP vortex indeed behaves like a mas-
sive point vortex in exhibiting rapid small oscillations, as
seen in Fig. 4. Finally, as an additional check, we verified
numerically that a vortex in the a-component GP condensate
with a sufficiently large b-component core will move outward
until it remains trapped at the confining boundary.

Our study suggests several avenues for future exploration.
Although the massive point-vortex model seems accurate for
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small core mass, the coupled GP equations should be more
reliable in studying a two-component BEC with vortices in
one component surrounding larger cores of the other compo-
nent. In the case of confinement in harmonic traps, the GP
picture is probably the only available numerical approach,
as used, for example, in Ref. [9]. Such numerical studies
would be especially interesting for larger core fractions, as
studied experimentally in Ref. [7]. Numerical studies of the
coupled GP equations could also illuminate various dynamical

questions, such as relative oscillatory motion of the vortex and
the core, possible coupled breathing modes of the vortex and
the core, and excitation of density modes that can emit energy
as phonons.
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