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Abstract

Chip multiprocessors (CMPs) combine increasingly
many general-purpose processor cores on a single chip.
These cores run several tasks with unpredictable commu-
nication needs, resulting in uncertain and often-changing
traffic patterns. This unpredictability leads network-on-
chip (NoC) designers to plan for the worst-case traffic pat-
terns, and significantly over-provision link capacities. In
this paper, we provide NoC designers with an alternative
statistical approach. We first present the traffic-load distri-
bution plots (T-Plots), illustrating how much capacity over-
provisioning is needed to service 90%, 99%, or 100% of
all traffic patterns. We prove that in the general case, plot-
ting T-Plots is #P-complete, and therefore extremely com-
plex. We then show how to determine the exact mean and
variance of the traffic load on any edge, and use these to
provide Gaussian-based models for the T-Plots, as well as
guaranteed performance bounds. Finally, we use T-Plots
to reduce the network power consumption by providing an
efficient capacity allocation algorithm with predictable per-
formance guarantees.

1 Introduction

The multi-core era is here. Today, chip multiprocessors
(CMPs) combine increasingly many general-purpose pro-
cessor cores on a single chip [1–7]. As shown in Figure 1,
these processor cores can be placed in regular and identical
tiles, interconnected in a network-on-chip (NoC) using links
and switches. Such a regular network-based design enables
a lower design complexity, scalable and predictable layout
properties, a high level of parallelism and modularity, and
an efficient statistical capacity sharing [8–13].

The processor cores in CMPs run many software pro-
cesses belonging to a wide variety of possible applica-
tions, with unpredictable communication needs between the
cores. As a result, the traffic pattern in the NoC is un-
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Figure 1. 3×4 NoC-based CMP architecture.

certain and often-changing. The challenge is to allocate
NoC link bandwidth capacities efficiently so as to service
the many possible traffic patterns, and at the same time not
to use excessive link area and power — especially given
that the NoC architecture consumes a significant portion of
CMP resources [1, 2, 14, 15]. Note that this capacity al-
location problem is different from traditional application-
specific systems-on-chip (ASSoCs), in which a limited set
of applications is statically mapped onto the cores and gen-
erates a well-known traffic pattern [16–19]. It also differs
from traditional chip-to-chip multiprocessor interconnects,
in which the link bandwidth capacities cannot be easily ad-
justed [20].

The link bandwidth capacity allocation algorithm needs
to trade off the different bandwidth requirements of the
many traffic patterns, and the possible capacity over-
provisioning. On the one hand, the usual method of sizing
the network for some typical average traffic pattern [13],
such as a uniform traffic pattern, can completely miss the
widely different bandwidth demands of the other traffic pat-
terns, which appear when running different applications.
On the other hand, planning for the worst case among all
possible traffic patterns [3, 21–23] can potentially neces-
sitate significant link bandwidth capacities that are rarely
fully utilized and consume expensive power resources. In
fact, such a scheme does not fully exploit the statistical mul-



tiplexing properties of the NoC, which are increasingly sig-
nificant as the number of cores increases.

The main contribution of this paper is the introduction
of a statistical approach to NoC design and capacity alloca-
tion. To do so, we introduce a novel method to represent and
analyze the full spectrum that lies between the average and
the worst-case traffic patterns. Then, we argue that the NoC
designer should consider the tradeoff between link capac-
ity and performance guarantee, where the performance is
measured by the fraction of traffic patterns that can be fully
served. For instance, the NoC designer should know that
instead of some worst-case capacity allocation in which the
NoC can guarantee service to 100% of traffic patterns, some
other statistical capacity allocation can guarantee service to
99.99% of traffic patterns in exchange for a reduction in the
total link capacity. It is then up to the NoC designer to de-
termine whether the 0.01% of traffic patterns are worth this
additional capacity and the necessary additional power re-
sources.

To support our statistical approach, we introduce the T-
Plots, or Traffic Load Distribution Plots — a class of plots
illustrating the distribution of the load generated by the set
of traffic patterns, and providing a synthetic view of the net-
work performance. For instance, Figure 2 illustrates such
a T-Plot, showing the distribution of the normalized load
on edge e6 7. The T-Plot is generated using the set of all
traffic patterns in the CMP, and the graph is of course nor-
malized so that the area below it sums up to 1 (other sim-
ulation details are in Section 9). As shown in the T-Plot,
the average load generated on this link is 0.94. Further, the
worst-case load can be found to be exactly 2 (with a neg-
ligible density), and the 99.99%-cutoff load is a bit below
1.59. In other words, this T-Plot shows that when the link
capacity equals 21% less than the worst-case load, 99.99%
of the traffic patterns can already be serviced. Thus, using
this T-Plot, a NoC designer can directly evaluate the perfor-
mance of a capacity allocation scheme, and clearly see the
tradeoff between performance guarantee and capacity over-
provisioning. The NoC designer might decide, for instance,
that the marginal benefit of allocating more capacity beyond
1.59 is not worth the cost. Incidentally, note that this T-Plot
can be closely modeled as Gaussian – the paper will later
expand on this point.

In this paper, we demonstrate that the exact computa-
tion of T-Plots is #P-complete, and therefore without known
polynomial-time algorithms. We later show how to practi-
cally approximate T-Plots using random-walk-based meth-
ods, and how to analytically calculate the mean and the vari-
ance of the edge loads in a combinatorial way. We further
show that knowing the mean and the variance is often suf-
ficient to approximate the whole distribution, as the edge
T-Plots may be frequently closely modeled as Gaussian.
We also suggest some simple bounds and models for the
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Figure 2. Edge congestion PDF T-Plot on e6 7

global T-Plot, which models the performance of the whole
network. Finally, we suggest a very simple, yet efficient,
capacity allocation algorithm with predictable performance
guarantees.

We would like to stress that in our view, a key aspect
of this statistical approach is its potential for a wide range
of applications, including in non-CMP NoC-based architec-
tures. For instance, while not applicable to simple ASSoCs
with a single traffic pattern, the statistical approach can be
highly useful for more complex ASSoCs with dozens of ba-
sic use-cases and potentially thousands of compound use-
cases [24, 25]. Likewise, the statistical approach can be
used in NoC-based FPGAs to allocate the available band-
width capacity of the higher-performance hard-wired non-
programmable links, thus providing the designer with per-
formance guarantees for a significantly large number of
traffic patterns [26]. Finally, the statistical approach can
be combined with other approaches to provide quality-of-
service (QoS) guarantees, for instance by using worst-case
analysis for high-priority control and delay-sensitive traf-
fic, and statistical analysis for the remaining best-effort traf-
fic [13, 27].

This work is structured as follows. After formulating the
T-Plot model in Section 2, we prove its #P-completeness in
Section 3. Then, in Sections 4 and 5, we provide a Gaus-
sian view of the edge T-Plots as well as strict performance
guarantees, and generalize these results to global T-Plots in
Section 6. Finally, in Sections 7 and 8, we introduce a sim-
ple capacity allocation scheme, which we evaluate, together
with the other results, in Section 9.

2 T-Plot model

Network – The NoC architecture is modeled as a di-
rected graph G(V, E) with n=|V | nodes (processor cores)
and |E| edges (links). For instance, Figure 1 illustrates such
a graph with 12 nodes (each corresponding to a processor
core and its associated switch), and 34 edges between them.



In this paper, we consider a normalized homogeneous
CMP in which each processor core works at the same fre-
quency and can send (receive) at most one data word every
clock cycle, but we do not make any assumption on the des-
tination (source) of its traffic (see [3, 21–23] for more de-
tails on this standard model). Therefore, the possible set A
of traffic matrices in the NoC, called the T-Set A, is defined
as

A =



D|∀i :

∑

j

Dij ≤ 1,
∑

j

Dji ≤ 1



 (1)

For example, assuming a data width of 32 bits and a fre-
quency of 200 MHz, we get a maximum input/output rate
of 32∗200/8 = 800 MByte/s for each processor core of the
network, and the T-Set A is the set of all the possible traffic
matrices that respect this maximum.

We can generalize the results to different T-Sets. For
instance, in a general heterogeneous NoC architecture,
node i may send (receive) traffic at any rate up to qi

(ri), and we will consider the T-Set H defined as H ={
D|∀i :

∑
j Dij ≤ qi,

∑
j Dji ≤ ri

}
. Likewise, we will

consider the set P of permutation traffic matrices, in which
each processor core transmits (receives) at maximum rate to
(from) a unique processor core.

Given a T-Set, we will assume that any traffic matrix in
a T-Set is always equally likely (though adding weights to
specific subsets can of course easily be done if needed).

We will also assume that each edge e is allocated a pos-
itive capacity c(e) > 0. An edge e is a strictly minimal
edge if c(e′) > c(e) for each edge e’ different from e, and a
bridge if removing e would increase the number of compo-
nents in the graph.

Routing – A routing is classically defined as a set of
(n2|E|) variables {fij(e)}, where fij(e) denotes the frac-
tion of the traffic from node i to node j that is routed through
edge e. In other words, the total flow crossing e when rout-
ing the traffic matrix D is

∑
i,j Dijfij(e), where Dij is the

(i, j)th element of matrix D.
Such a routing is oblivious in the sense that the routing

variables are independent of the current traffic matrix. The
routing is assumed to satisfy the classical linear flow con-
servation constraints [28]. An example of routing scheme
is dimension-ordered routing (DOR) [29], also called XY
routing, a simple NoC mesh routing algorithm in which
packets are routed along one dimension first and then along
the next dimension (we assumed an ”X then Y” routing).
Further, when the T-Set is A, the most loaded edge is the
edge e that maximizes

∑
ij fij(e).

Congestion – The edge congestion (or load) on edge e
is equal to the total flow crossing it divided by the edge

capacity, i.e.

EC(e, f,D) =

∑
i,j Dijfij(e)

c(e)
(2)

When the edge congestion on e is at least 1, we will say
that e is saturated. Further, a network is saturated if at least
one edge in it is saturated. The global congestion for traffic
matrix D using f will be obtained by taking the maximum
edge congestion over all edges, that is:

GC(f, D) = max
e∈E

{EC(e, f, D)} (3)

For a saturated network, the throughput is defined as the
inverse of the global congestion, and is otherwise made not
to exceed 100%:

TP (f, D) = min{GC(f,D)−1, 1} (4)

T-Plot – Edge (global) T-Plots show the distribution of
the edge (global) congestion generated by traffic matrices in
the T-Set. T-Plots can be represented as plots of the cumu-
lative distribution function (CDF) or the probability density
function (PDF). For example, the value of the edge T-plot
CDF at point L is the probability that the edge congestion
imposed on that edge by a traffic matrix selected from the
T-Set T would be at most L:

ECTCDF (e, f, L) = Pr {EC(e, f, D) ≤ L|D ∈ T } (5)

3 T-Plots are #P-complete

We will now prove that computing the T-Plots is #P-
complete [30], which implies that it cannot be done us-
ing any known polynomial-time algorithm. Intuitively,
#P-complete problems are hard counting problems with-
out known polynomial-time solution, in the same way as
NP-complete problems are hard decision problems without
known polynomial-time solution. In fact, NP is a subset of
#P, and therefore #P-complete problems are at least as hard
as NP-complete problems: while a typical NP-complete
problem is to decide whether there exists at least one solu-
tion, the related #P-complete problem is to count the num-
ber of solutions, which typically makes it quite harder.

We will first show the #P-completeness for edge T-Plots,
and then as well for global T-Plots. We refer interested read-
ers to [31] for more formal definitions and complete proofs
of all the theorems in this paper.

Theorem 1 When the T-Set is the set of permutations P ,
finding the edge T-Plot of a non-bridge edge e is #P-
complete.

Corollary 1 In the general case, finding the edge T-Plot is
#P-complete.



Theorem 2 When the T-Set is the set of permutations P ,
finding the global T-Plot of a graph that includes a strictly
minimal edge is #P-complete.

Corollary 2 In the general case, finding the global T-Plot
is #P-complete.

Since exact T-Plot computation proves elusive, we can
only try to approximate or bound it. This will be a recurring
theme in this paper.

4 Exact mean and variance of edge T-Plots

We just proved that in the general case, computing edge
T-Plots is #P-complete, and therefore extremely complex.
Thus, we will strive to look for good approximations and
bounds. We will now present a straightforward method to
calculate the mean and variance of the edge congestions.
This will enable us to obtain an overview of the network
bottlenecks without running extensive simulations. Further-
more, we will later see that these values will be enough to
provide both a Chebyshev-based deterministic bound (Sec-
tion 5) and a Gaussian-based model (Section 7).

Let’s illustrate the computation of the mean and variance
of the edge congestion when the T-Set is the set of permu-
tations P . In this case, the average-case edge congestion on
edge e using routing f is:

ECPac(e, f) =
1
n!

∑

D∈P
EC(e, f,D)

=
1
n!

∑

D∈P

∑
ij Dijfij(e)

c(e)

=
1

n!c(e)

∑

ij

fij(e)
∑

D∈P
Dij

=
1

nc(e)

∑

ij

fij(e), (6)

where the last equality relies on the fact that a given flow
(i, j) is only used in 1

n

th of the permutations.
Likewise, the variance is calculated using the variance

formula

V arD∈P [EC(e, f, D)] = E[EC2]− E2[EC], (7)

with

E[EC2] =

∑
ijkl fij(e)fkl(e)

(∑
D∈P DijDkl

)

n!c(e)2
, (8)

where the expectations are with respect to the random vari-
able D ∈ P and the parameters of EC are implicit. Using

basic combinatorial considerations,

∑

D∈P
DijDkl =





(n− 1)! i = k ∧ j = l
(n− 2)! i 6= k ∧ j 6= l

0 i = k ∧ j 6= l
0 i 6= k ∧ j = l

(9)

The assumptions above can be relaxed and the compu-
tation of the mean and variance can be generalized to other
T-Sets [31]. In the next section, we will show how the
mean and variance of the edge congestions can provide us
with deterministic congestion guarantees.

5 Congestion guarantees for edge T-Plots

We are interested in providing performance bounds that
are guaranteed independently of the shape of the edge T-
Plot. We will now show that it is indeed possible to bound
the probability that the congestion on some edge exceeds a
given value.

Let X denote the congestion imposed on a given edge
e by a traffic matrix D generated from the T-Set. Further,
let µ and σ be the average and standard-deviation of the
edge congestion on e . Then, by Chebyshev’s one-tailed
inequality with k ≥ 0,

Pr(X ≥ µ + kσ) ≤ 1
1+k2 (10)

By definition, e is saturated iff X ≥ c(e). Therefore, the
probability for e to be saturated is upper-bounded as fol-
lows:

Pr(X ≥ c(e)) ≤ 1
1+

[
c(e)−µ

σ

]2 (11)

Alternatively, given a desired congestion guarantee level G,
it is possible to calculate a capacity c’(e) that guarantees that
at least a fraction G of the allowable traffic matrices would
be served without saturating e. Transforming Equation (11),
we get:

c′(e) = µ + σ

√
G

1−G
(12)

For instance, for G = 99%, we need c′(e) = µ + 9.95σ;
i.e., with this edge capacity, we are guaranteed that at least
99% of the matrices can be served without saturating e.

Example – Figure 3(a) provides an example of CDF
T-Plot of an edge congestion. It is compared with the
Chebyshev-based deterministic guarantee presented above,
as well as a Gaussian-based model (as developed in Sec-
tion 7). This plot was obtained on edge e6 7 in the 3 × 4
mesh of Figure 1, using DOR routing. It is a CDF plot,
corresponding to the PDF plot of Figure 2.

As seen in Figure 3(a), the Chebyshev-based determinis-
tic congestion guarantees are rather far below the simulated
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(b) Edge throughput CCDF

Figure 3. Two views of the same T-Plot (edge e6 7 in the 3×4 mesh)

CDF. This is because the Chebyshev inequality is known to
be a very loose bound. On the contrary, in this case, the
Gaussian model does very well for this edge, to the point
that the plots of the congestion and its Gaussian model can
barely be distinguished. For instance, consider an edge con-
gestion of 1.25 (on the x-axis): as shown by simulations,
96% of the matrices cause an edge congestion under this
value. By contrast, the Chebyshev-based deterministic ap-
proach only guarantees that at least 76% of the matrices will
be under this value.

In the same way, the same T-Plot can also be repre-
sented as the CCDF (Complementary CDF) of the through-
put, as seen in Figure 3(b). Again, a throughput of at least

1
1.25 = 80% is provided to 96% of the matrices on this
edge, while the Chebyshev-based performance bound can
only guarantee this for 76% of the matrices.

6 Model and bounds of global T-Plots

So far, we have mainly dealt with edge congestions. We
will now deal with global congestions. Of course, succeed-
ing to well approximate the global T-Plots would mean ob-
taining a performance model for the whole network. We
will first provide a simple model assuming independence,
and then an upper-bound.

6.1 Edge-independent and independent-
Gaussian models

Assuming that all edge congestions are independent,
i.e. traffic matrices cause congestion at different links
in an independent manner, provides the following edge-
independent model:

GCCDF (f, L) = Pr
(

max
e∈E

[EC(e, f, D)] ≤ L

)

≈
∏

e∈E

Pr (EC(e, f,D) ≤ L)

=
∏

e∈E

ECCDF (e, f, L) (13)

This edge-independent model is not always a good ap-
proximation, because matrices often cause loads in a posi-
tively correlated way. However, it plays the role of an in-
tuitive lower bound (though it can be shown that it is not
always a lower bound).

Further, this model can be extended to an even simpler
independent-Gaussian model, in which the distributions of
all edge congestions are assumed to be Gaussian. In Sec-
tion 4, we determined their exact average and standard-
deviation at each edge e, denoted µ(e) and σ(e). Therefore,
this model is fully and exactly determined:

GCCDF (f, L) ≈
∏

e∈E

Φ
(

L− µ(e)
σ(e)

)
, (14)

where Φ denotes the normalized Gaussian CDF. In the
simulations section, we will show that the independent-
Gaussian model performed surprisingly well.

6.2 Global upper bound

Let’s now look for an upper bound on the CDF T-Plot of
the global congestion. The global congestion is the maxi-
mum edge congestion across all edges, and therefore it is at
least as large as the congestion of the most loaded edge in
the network. Thus, we get the following upper bound on the
probability of not being congested:

GCCDF (f, L) ≤ min
e∈E

{ECCDF (e, f, L)}. (15)



Further, if e1 and e2 are two edges (e.g. the two most loaded
edges in the network, which could be the two different di-
rections of the same link), then:

Pr(GC > x) ≥ Pr(EC(e1) > x ∨ EC(e2) > x)
= Pr(EC(e1) > x) + Pr(EC(e2) > x)
− Pr(EC(e1) > x ∧ EC(e2) > x)
≥ Pr(EC(e1) > x) + Pr(EC(e2) > x)
− Pr(EC(e1) + EC(e2) > 2x), (16)

where Pr(EC(e1) + EC(e2) > 2x) is equal to 1 −
ECCDF (ê, 2x), using a dummy edge ê for which f(ê) =
f(e1) + f(e2). Using ê, a similar upper bound can be ob-
tained as follows:

Pr(GC ≤ x) ≤ Pr(EC(e1) ≤ x ∧ EC(e2) ≤ x)
≤ ECCDF (ê, 2x) (17)

A stricter global upper bound may finally be defined as the
minimum of the three bounds (15), (16) and (17).

7 Capacity allocation for edge T-Plots

Our goal is now to propose a simple, yet efficient, statis-
tical capacity allocation algorithm, which would enable sig-
nificant savings in the total capacity, yet achieve full service
for the vast majority of the traffic patterns in the CMP. We
first explain in this section how our statistical approach en-
ables to dramatically decrease the capacity of a given edge
with only a negligible effect on the throughput on that edge.
In the next section, we show that our global capacity alloca-
tion scheme is optimal in CMP architectures that obey some
simplifying assumptions. Finally, the simulations in Sec-
tion 9 suggest that the capacity allocation scheme is close
to optimal in reference CMP architectures as well.

7.1 Gaussian model

We will now prove that when scaling a specific CMP
mesh-based architecture, a statistical design allows cutting
the edge capacity by almost 50%, while still guaranteeing
full service with probability arbitrarily close to 1. To do
so, we will first show that the normalized edge T-Plot is
asymptotically Gaussian.

Consider an m × m mesh with DOR routing. Assume
that the T-Set T is defined such that the processes of core
i send traffic to any of the other m2 − 1 cores j according
to some uniform i.i.d. distribution. The uniform distribu-
tion is taken so that any core does not exceed its normalized
maximum input/output rate of 1 word per clock-cycle: for
D ∈ T ,

∀i 6= j, Dij ∼ Uniform

([
0,

1
m2 − 1

])
. (18)

Consider some edge e in the mesh. Let’s denote by s the
number of (source, destination) flows crossing e using DOR
routing, and further denote the average, standard-deviation
and maximum of the flow on edge e by µ, σ and w. By
Equation (18), it is clear that the maximum flow generated
by each (source, destination) pair is 1

m2−1 , and therefore
w = s

m2−1 . Likewise, using independence and summa-
tion rules of the expectation and variance, µ = w

2 and
σ =

√
s√

12(m2−1)
.

A worst-case deterministic approach would allocate a ca-
pacity equal to the maximum possible edge flow: c(e) = w.
We will now show that as we scale the CMP, the edge flow
distribution becomes extremely concentrated around its av-
erage µ = w

2 . Therefore, by following a statistical design
and allocating a capacity just above this average, we can
gain nearly 50% capacity with a loss probability going to
zero.

To prove this, we will first demonstrate that modeling
the edge T-Plot as Gaussian is asymptotically correct in this
CMP architecture. While this model is not necessarily
correct in all architectures, we will later use it to analyze
capacity allocation schemes.

We remind that all proofs are in [31].

Theorem 3 As m grows and we scale the CMP architec-
ture, the normalized edge T-Plot of any edge e converges to
the normalized Gaussian distribution N (0, 1).

7.2 Statistical capacity allocation

Denote by Φ(x) the normalized Gaussian CDF, and let
k(m) = c(e)−µ

σ . Then a consequence of Theorem 3 is that
the percentage of traffic matrices that do not saturate edge
e (i.e. such that the flow on e is at most c(e)) converges to
Φ(k(m)) = Φ((c(e)− µ)/σ) as m increases. For instance,
suppose that we would like to guarantee that at least 99%
of the matrices do not saturate e. Since Φ−1(0.99) = 2.33,
it suffices to allocate capacity c(e) = µ + 2.33σ, rather
than allocating the worst-case capacity c(e) = w = 2µ.
Asymptotically, we can gain up to 50% capacity if σ/µ goes
to zero when m goes to infinity. In fact, the theorem below
shows that having a capacity allocation barely above 50%
of the worst-case capacity is enough to guarantee any level
of performance guarantee on edge e as we scale m.

Theorem 4 For any small ε > 0, any edge e, and any
guaranteed probability G < 1, having an edge capacity of
(1
2 + ε) of the worst-case link capacity and m large enough

is sufficient to guarantee full service on edge e for a fraction
G of all traffic matrices.



8 Capacity allocation for global T-Plots

Let’s denote by ci the capacity of edge i, and by µi, σi

the mean and standard deviation of the load on edge i, re-
spectively. We now suggest to allocate to edge i a capacity
of ci = µi + kσi, where we use the same value of k for all
edges. Therefore, the total capacity C required as a function
of k is:

C =
|E|∑

i=1

ci =
|E|∑

i=1

µi + k

|E|∑

i=1

σi, (19)

or, equivalently, for a given total capacity C, we need to use

k =
C −∑|E|

i=1 µi∑|E|
i=1 σi

. (20)

Note that when the total capacity is constrained to be
smaller than the sum of the average-case edge congestions,
k is negative.

The following theorem demonstrates that this capacity
allocation minimizes the probability that the network is sat-
urated, in any NoC with any topology and any routing, as
long as two approximation assumptions hold: first, the loads
on different edges are independent; and second, the edge
T-Plots obey a Gaussian model with the same standard-
deviation.

Theorem 5 Assume that the T-Plots of all edges i are in-
dependent and Gaussian of mean µi and same standard-
deviation σ. Then allocating to each edge i a capacity
ci = µi + kσ, where k is a real constant, minimizes the
probability that the network is saturated.

In the simulations, we will evaluate the performance of
this capacity allocation algorithm in NoC architectures.

9 Simulations

9.1 T-Set representation

To perform simulations, we need the ability to repre-
sent the T-Set. We proved above that this is intrinsically
hard (Theorem 1). Therefore, we want to pick traffic ma-
trices uniformly at random from the T-Set in order to ap-
proximate their full representation – and to do so, we use
random-walk sampling. In the simulations below, sampling
is always done using one million samples, unless mentioned
otherwise. It is also assumed that nodes don’t send traffic
to themselves. [31] further describes the random walk pro-
cedure, and why it should intuitively converge towards the
T-Plot.

9.2 Global T-Plot

We already saw simulation results of edge congestion T-
Plots in Figures 2 and 3. Let’s now look at global conges-
tion T-Plots, which show the distribution of the maximum
load across all edges. In Figures 4(a), 4(b), and 4(c), we
analyze several parameters of the global congestion T-Plots
for the 3x4 mesh.

First, Figure 4(a) shows the PDF of the global con-
gestion, with the routing algorithm being either DOR or
O1TURN [32]. The graph shows that O1Turn does a much
better job than DOR in load-balancing the load across dif-
ferent links, and thus has less chances of reaching high link
loads (for instance, the area under the PDF to the right of
1.4 is much smaller in O1TURN). Additionally, both graphs
are well fitted to Gaussians. Note that here, contrarily to all
other places, we fitted the Gaussian distribution without us-
ing a-priori models, as we don’t have an analytical model
for the mean and variance of the global congestion. In addi-
tion, note that the maximum of many i.i.d. Gaussian random
variables does not behave as a Gaussian random variable (it
follows a Gumbel distribution [33]), and thus one must be
careful with the conclusions taken from this plot.

Figure 4(b) shows the CDF of the global congestion in
the same network, using DOR routing. The independent-
Gaussian model and the upper bound are presented in Sec-
tion 6. We can see that the independent-Gaussian model
assuming independent edge congestions with Gaussian dis-
tributions is rather close to the exact results. The upper
bound, however, is rather loose, which is explained by the
fact that it is based on the two most loaded edges in the
network, while our network contains many other highly-
loaded edges, which may raise the global congestion. Other
simulations (not shown here) show that this upper bound
is stricter in networks in which there exist only very few
highly-loaded edges.

Figure 4(b) can be used to determine the required ca-
pacity overprovisioning: for instance, the CDF for a global
congestion of 1 is 0.053. Therefore, without overprovision-
ing, only 5.3% of the traffic matrices in the T-Set would be
fully served. Since the CDF for a global congestion of 1.2
is 0.604, an overprovisioning of 20% would guarantee that
60.4% of the traffic matrices would be fully served.

9.3 Capacity allocation algorithms

Until now, all of our T-Plots were realized without doing
any optimization, by simply measuring the distribution of
the link load. We will now show that our statistical approach
using T-Plots can do more than just measure: it can also
help optimize.

Figure 4(c) illustrates the performance of different ca-
pacity allocation (CA) algorithms on the 3×4 mesh network
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Figure 4. Global congestion T-Plots for the 3x4 mesh

with 34 edges (presented in Figure 1). For each total capac-
ity, it shows the fraction of matrices that would be served
under a given CA algorithm. It compares three CA algo-
rithms: the homogeneous CA assumed above, the simple
CA based on means and variances suggested in Section 8,
and an optimized CA explained below.

For instance, assume that the average capacity per edge
is 1.2, i.e. the total capacity is 1.2 · 34 = 40.8. The homo-
geneous CA algorithm would allocate a capacity of exactly
1.2 to each edge. It would only be able to service 60.4% of
the matrices (as seen above as well with Figure 4(b)).

On the contrary, our simple CA scheme suggested in
Section 8 would distribute the total capacity differently
among the edges, according to their congestion average and
variance. With this total capacity of 40.8, it would be able to
service 96.4% of the matrices, hence improving noticeably
on the homogeneous scheme.

Finally, to examine the quality of our simple capacity al-
location scheme, we compare it to an optimized CA, which
was obtained after extensive brute-force simulations. Using
this optimized CA, we can service 99.2% of the matrices,
hence slightly improving on our simple suggested CA. In
fact, the plot suggests that out simple suggested heuristic
CA is not too far from optimum.

Note that to obtain this optimized CA, we ran 10,000
iterations for each total capacity value. At each iteration, a
new CA is taken at the neighborhood of the old one using
a Gaussian ball-walk algorithm, and is only accepted if it
fares better [31]. The optimization was done using 200,000
sample matrices from A, and the results were computed on
200,000 different matrices. We also checked that starting
from different points yields the same end result.

9.4 Capacity allocation and throughput
guarantee

We will now exemplify how our statistical approach en-
ables a drastic capacity saving with only negligible deterio-
ration in performance.
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Figure 5. Total capacity required for various
CA targets

Figure 5 compares the total capacities needed by the op-
timized CA algorithm with 5 different performance targets,
in the 3× 4 mesh. The first bar represents a worst-case ap-
proach, in which each edge is allocated a capacity according
to the worst-case flow on this edge, thus guaranteeing that
100% of traffic matrices will be fully served. It is loosely
based on the worst-case approach adopted in [3, 21, 22].
On the contrary, the other bars represent the statistical ap-
proach, with increasingly loose levels of statistical-based
capacity allocation schemes. Their values can be retrieved
from Figure 4(c). For instance, for G = 99.9%, the amount
of provisioning needed is CDF−1(0.999) = 43.8.

Figure 5 shows that switching from a worst-case to a
statistical CA approach may save up to 37% of the total
required capacity in this network, for a capacity guaran-
tee at a 90% level. Likewise, planning for a very stringent
99.99% cutoff decreases the amount of total capacity used
by 21%. As an aside, note that we didn’t even compare
with the naive homogeneous worst-case approach – such a
comparison would have yielded even greater savings!
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Figure 7. NUCA network: topology and performance

0−10 10−2020−3030−4040−5050−6060−7070−80 >80 Infinite Delay
0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

 

 

0−10 10−2020−3030−4040−5050−6060−7070−80 >80 Infinite Delay
0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

Average Flow Delay

 

 

Suggested CA

Homogeneous CA

Figure 6. Average flow delay distribution
over all traffic matrices, for two different CA
schemes

9.5 Delay distribution

Our objective is to obtain some intuition on the different
distributions of the expected flow delays using different CA
algorithms. In order to do so, we model the delay at each
edge with the simple M/M/1 model, using an arrival rate
equal to the edge flow and a service rate equal to the edge
capacity. (Of course, this is just a toy model: the deter-
ministic nature of the services would probably decrease the
average delays, and the wormhole scheduling [20] would
increase them.) The average delay of a flow is the sum of
its average edge delays. Finally, for each given traffic ma-
trix, we compute the average flow delay across all flows.
Note that a saturated edge results in an infinite edge delay,
and therefore an infinite average flow delay.

Figure 6 compares the distributions of the average flow
delays for both the homogeneous CA and our simple sug-
gested CA, for the 3 × 4 mesh with average edge capacity

1.2. As expected, our CA scheme has significantly less traf-
fic matrices with infinite average flow delay; in addition, on
the remaining matrices, the average flow delay also tends to
be lower. Thus, this plot confirms that our simple CA tends
to significantly outperform the homogeneous CA.

9.6 NUCA network

Finally, we considered a different CMP architecture
model based on a NUCA (non-uniform cache architecture)
network. As shown in Figure 7(a) (based on [34] with shar-
ing degree 4), the network contains 4 sub-networks, each
with 4 processor cores and 16 caches, hence with a total
number of 80 nodes and 224 edges. Each core may only
send (receive) traffic to (from) caches in its sub-network,
and each cache may only send (receive) traffic to cores in
its sub-network, with a maximum node transmission (re-
ception) rate of 1.

Figure 7(b) compares the different CA schemes on this
NUCA network (simulated using 100,000 samples). For ex-
ample, with a total capacity of 50, using our suggested CA
dramatically increases the probability that the NUCA net-
work is not saturated from less than 1% to 98%. Again, it is
very close to the optimized envelope.

Likewise, Figure 7(c) shows that the total capacity re-
quired to fully serve 99.99% of the matrices is lower than
the total capacity in the worst-case approach by 24%, and
in the 90% cutoff case by 48%. Thus, this confirms the in-
tuition that as networks grow in size, the gains in the statis-
tical approach tend to grow as well - intuitively confirming
Theorem 4 as well.

10 Conclusion

In this paper, we introduced the T-Plots, which can pro-
vide a common foundation to quantify, design, optimize



and compare NoCs architectures and routing algorithms.
We showed that an accurate computation of T-Plots is #P-
complete, but that they can sometimes be modeled as Gaus-
sian, providing a full link load distribution model using only
two variables. Further, we provided bounds that can be the
basis of strict throughput performance guarantees. We fi-
nally showed how T-Plots can be used to develop a simple,
yet efficient, capacity allocation scheme. We believe and
hope that this work will contribute to lay the ground to a
common basis in future NoC design research.
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