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Statistical Approach to Networks-on-Chip
Itamar Cohen, Ori Rottenstreich, and Isaac Keslassy, Member, IEEE.

Abstract—Chip multiprocessors (CMPs) combine increasingly many general-purpose processor cores on a single chip. These
cores run several tasks with unpredictable communication needs, resulting in uncertain and often-changing traffic patterns. This
unpredictability leads network-on-chip (NoC) designers to plan for the worst-case traffic patterns, and significantly over-provision link
capacities. In this paper, we provide NoC designers with an alternative statistical approach. We first present the traffic-load distribution
plots (T-Plots), illustrating how much capacity over-provisioning is needed to service 90%, 99%, or 100% of all traffic patterns. We
prove that in the general case, plotting T-Plots is #P-complete, and therefore extremely complex. We then show how to determine
the exact mean and variance of the traffic load on any edge, and use these to provide Gaussian-based models for the T-Plots, as
well as guaranteed performance bounds. We also explain how to practically approximate T-Plots using random-walk-based methods.
Finally, we use T-Plots to reduce the network power consumption by providing an efficient capacity allocation algorithm with predictable
performance guarantees.

Index Terms—Networks-on-Chip, Chip Multiprocessors, Capacity Allocation, Traffic Load Distribution Plot.

F

1 INTRODUCTION

THE multi-core era is here. Today, chip multiproces-
sors (CMPs) combine increasingly many general-

purpose processor cores on a single chip [1], [2], [3], [4],
[5], [6], [7]. As shown in Fig. 1, these processor cores can
be placed in regular and identical tiles, interconnected in
a network-on-chip (NoC) using links and switches. Such
a regular network-based design enables a lower design
complexity, scalable and predictable layout properties, a
high level of parallelism and modularity, and an efficient
statistical capacity sharing [8], [9], [10], [11], [12], [13].

The processor cores in CMPs run many software pro-
cesses belonging to a wide variety of possible applica-
tions, with unpredictable communication needs between
the cores. As a result, the traffic pattern in the NoC is un-
certain and often-changing. The challenge is to allocate
NoC link bandwidth capacities efficiently so as to service
the many possible traffic patterns, and at the same time
not to use excessive link area and power — especially
given that the NoC architecture consumes a significant
portion of CMP resources [1], [2], [14], [15]. Note that this
capacity allocation problem is different from traditional
application-specific systems-on-chip (ASSoCs), in which
a limited set of applications is statically mapped onto the
cores and generates a well-known traffic pattern [16],
[17], [18], [19]. It also differs from traditional chip-to-
chip multiprocessor interconnects, in which the link
bandwidth capacities cannot be easily adjusted [20].

The link bandwidth capacity allocation algorithm
needs to trade off the different bandwidth requirements
of the many traffic patterns, and the possible capacity
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Fig. 1. 3×4 NoC-based CMP architecture.

over-provisioning. On the one hand, the usual method
of sizing the network for some typical average traffic pat-
tern [13], [21], such as a uniform traffic pattern, can com-
pletely miss the widely different bandwidth demands of
the other traffic patterns, which appear when running
different applications. On the other hand, planning for
the worst case among all possible traffic patterns [3],
[22], [23], [24] can potentially necessitate significant link
bandwidth capacities that are rarely fully utilized and
consume expensive power resources. In fact, such a
scheme does not fully exploit the statistical multiplexing
properties of the NoC, which are increasingly significant
as the number of cores increases.

The main contribution of this paper is the introduction
of a statistical approach to NoC design and capacity
allocation. To do so, we introduce a novel method to
represent and analyze the full spectrum that lies between
the average and the worst-case traffic patterns. Then, we
argue that the NoC designer should consider the trade-
off between link capacity and performance guarantee,
where the performance is measured by the fraction of
traffic patterns that can be fully served. For instance, the
NoC designer should know that instead of some worst-
case capacity allocation in which the NoC can guarantee
service to 100% of traffic patterns, some other statistical
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Fig. 2. PDF T-Plot of the edge congestion on e6 7.

capacity allocation can guarantee service to 99.99% of
traffic patterns in exchange for a reduction in the total
link capacity. It is then up to the NoC designer to deter-
mine whether the 0.01% of traffic patterns are worth this
additional capacity and the necessary additional power
resources; or whether they can potentially be dropped,
for instance if they belong to a best-effort quality-of-
service traffic class [13], [25].

To support our statistical approach, we introduce the
T-Plots, or Traffic Load Distribution Plots — a class of
plots illustrating the distribution of the load generated
by the set of traffic patterns, and providing a synthetic
view of the network performance. For instance, Fig. 2
illustrates such a T-Plot, showing the probability density
function (PDF) of the normalized load on edge e6 7. The
T-Plot is generated using the set of all the possible traffic
patterns in the CMP, and measuring the distribution of
the load caused by each of these traffic patterns on edge
e6 7. The graph is of course normalized so that the area
below it sums up to 1 (other simulation details are in
Section 9).

As shown in the T-Plot, the average load generated
on this link is 0.94. Further, the worst-case load can be
found to be exactly 2 (with a negligible density), and the
99.99%-cutoff load is a bit below 1.59. In other words,
this T-Plot shows that when the link capacity equals
21% less than the worst-case load, 99.99% of the traffic
patterns can already be serviced. Thus, using this T-Plot,
a NoC designer can directly evaluate the performance
of a capacity allocation scheme, and clearly see the
tradeoff between performance guarantee and capacity
over-provisioning. The NoC designer might decide, for
instance, that the marginal benefit of allocating more
capacity beyond 1.59 is not worth the cost. Incidentally,
note that this T-Plot can be closely modeled as Gaussian.
In fact, it passes both the Pearson’s χ2 and the Cramér-
von Mises normality tests with a standard significance
level of 5%. The paper will later expand on this point.

In this paper, we demonstrate that the exact compu-
tation of T-Plots is #P-complete, and therefore without
known polynomial-time algorithms. We later show how
to practically approximate T-Plots using random-walk-

based methods, and how to analytically calculate the
mean and the variance of the edge loads in a combi-
natorial way. We further show that knowing the mean
and the variance is often sufficient to approximate the
whole distribution, as the edge T-Plots may be frequently
closely modeled as Gaussian. We also suggest some
simple bounds and models for the global T-Plot, which
models the performance of the whole network. Finally,
we suggest a very simple, yet efficient, capacity alloca-
tion algorithm with predictable performance guarantees.

We would like to emphasize that this paper provides
fundamental results on the maximum available capacity
on any link [23]. The available capacity might become
lower following protocol-specific constraints, like con-
trol overhead and packet retransmissions, and topology-
specific constraints, like limited buffer sizes and lossy
links [26]. These are beyond the scope of this paper.

In addition, the paper relies on several simplifying
assumptions. Routing is assumed to be fixed (oblivi-
ous) and given, thus excluding any adaptive routing
with traffic-dependent load-balancing. The set of traffic
patterns is assumed to be given as well. For instance,
it could be the set of all theoretically-possible traffic
patterns, or a set of traffic patterns sampled in a large
number of traces, or a set of possible traffic bursts. The
analysis in this paper allows for any such set, but ne-
glects the temporary effects of traffic pattern transitions,
which are beyond the scope of this paper.

In our view, a key aspect of the statistical approach
is its potential for a wide range of applications, includ-
ing in non-CMP NoC-based architectures. For instance,
while not applicable to simple ASSoCs with a single
traffic pattern, the statistical approach can be highly
useful for more complex ASSoCs with dozens of basic
use-cases and potentially thousands of compound use-
cases [27], [28]. Likewise, the statistical approach can be
used in NoC-based FPGAs to allocate the available band-
width capacity of the higher-performance hard-wired
non-programmable links, thus providing the designer
with performance guarantees for a significantly large
number of traffic patterns [29]. Finally, the statistical
approach can be combined with other approaches to
provide quality-of-service (QoS) guarantees, for instance
by using worst-case analysis for high-priority control
and delay-sensitive traffic, and statistical analysis for the
remaining best-effort traffic [13], [25]. This is because the
statistical approach presented in this paper deals with
the fundamental link capacity needs, and not protocol-
specific needs.

This work is structured as follows. After formulat-
ing the T-Plot model in Section 2, we prove its #P-
completeness in Section 3. Then, in Sections 4 and 5,
we provide a Gaussian view of the edge T-Plots as well
as strict performance guarantees, and generalize these
results to global T-Plots in Section 6. Finally, in Sections 7
and 8, we introduce a simple capacity allocation scheme,
which we evaluate, together with the other results, in
Section 9.
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2 T-PLOT MODEL

Network — The NoC architecture is modeled as a di-
rected graph G(V, E) with n=|V | nodes (processor cores)
and |E| edges (links). For instance, Fig. 1 illustrates
such a graph with 12 nodes (each corresponding to a
processor core and its associated switch), and 34 edges
between them.

Let D = [Dij ]1≤i,j≤n denote the traffic matrix in the
NoC. For each i, j, Dij represents the traffic rate from
source i to destination j. In this paper, we consider a
normalized homogeneous CMP in which each processor
core works at the same frequency and can send (receive)
at most one data word every clock cycle, but we do not
make any assumption on the destination (source) of its
traffic (see [3], [22], [23], [24] for more details on this
standard model). Therefore, the possible set A of traffic
matrices in the NoC, called the T-Set A, is defined as

A =



D ∈ Rn×n

+ |∀i :
∑

j

Dij ≤ 1,
∑

j

Dji ≤ 1



 (1)

For example, assuming a data width of 32 bits and a
frequency of 200 MHz, we get a maximum input/output
rate of 32 ∗ 200/8 = 800 MByte/s for each processor
core of the network, and the T-Set A is the set of all
the possible traffic matrices that respect this maximum.

We can generalize the results to different T-Sets. For
instance, in a general heterogeneous NoC architecture,
node i may send (receive) traffic at any rate up to qi (ri),
and we will consider the T-Set H defined as

H =



D ∈ Rn×n

+ |∀i :
∑

j

Dij ≤ qi,
∑

j

Dji ≤ ri



 (2)

Likewise, we will consider the set P of permutation
traffic matrices, in which each processor core transmits
(receives) at maximum rate to (from) a unique processor
core.

Given a T-Set, we will usually assume below that any
traffic matrix in a T-Set is always equally likely. However,
we will also briefly mention weighted T-Sets in which
specific subsets are more likely, for instance by giving
more weight to traffic matrices that carry more traffic.

We will also assume that each edge e is allocated a
positive capacity c(e) > 0. An edge e is a strictly minimal
edge if c(e′) > c(e) for each edge e’ different from e,
and a bridge if removing e would increase the number
of components in the graph.

Routing — A routing is classically defined as a set
of (n2|E|) variables {fij(e)}, where fij(e) denotes the
fraction of the traffic from node i to node j that is routed
through edge e. In other words, the total flow crossing
e when routing the traffic matrix D is

∑
i,j Dijfij(e),

where Dij is the (i, j)th element of matrix D.
Such a routing is oblivious in the sense that the routing

variables are independent of the current traffic matrix.
The routing is assumed to satisfy the classical linear flow
conservation constraints [30]. An example of routing

scheme is dimension-ordered routing (DOR) [31], also
called XY routing, a simple NoC mesh routing algorithm
in which packets are routed along one dimension first
and then along the next dimension (we assumed an ”X
then Y” routing). Further, when the T-Set is A, the most
loaded edge is the edge e that maximizes

∑
ij fij(e).

Congestion — The edge congestion (or load) on edge e
is equal to the total flow crossing it divided by the edge
capacity, i.e.

EC(e, f, D) =

∑
i,j Dijfij(e)

c(e)
(3)

When the edge congestion on e is at least 1, i.e. when
the routing algorithm would like to send more traffic on
edge e than the edge capacity would strictly allow, we
will say that e is saturated. Further, a network is saturated
if at least one edge in it is saturated. The global congestion
of routing D using f will be obtained by maximizing the
edge congestion over all the edges, that is:

GC(f, D) = max
e∈E

{EC(e, f, D)} (4)

For a saturated network, the throughput is defined as the
inverse of the global congestion, and is otherwise made
not to exceed 100%:

TP (f, D) = min{GC(f,D)−1, 1} (5)

T-Plot — Edge (global) T-Plots show the distribution of
the edge (global) congestion generated by traffic matrices
in the T-Set. T-Plots can be represented as plots of the
cumulative distribution function (CDF) or the probabil-
ity density function (PDF). For example, the value of
the edge T-plot CDF at point L is the probability that the
edge congestion imposed on that edge by a traffic matrix
selected from the T-Set T would be at most L:

ECTCDF (e, f, L) = Pr {EC(e, f,D) ≤ L|D ∈ T } (6)

3 T-PLOTS ARE #P-COMPLETE

We will now prove that computing the T-Plots is #P-
complete [32], which implies that it cannot be done using
any known polynomial-time algorithm.

Intuitively, #P-complete problems are hard counting
problems without known polynomial-time solution, in
the same way as NP-complete problems are hard decision
problems without known polynomial-time solution. In
fact, NP is a subset of #P, and therefore #P-complete
problems are at least as hard as NP-complete prob-
lems: while a typical NP-complete problem is to decide
whether there exists at least one solution, the related #P-
complete problem is to count the number of solutions,
which can make it quite harder.

We will first show the #P-completeness of computing
edge T-Plots, and then the #P-completeness of comput-
ing global T-Plots. For ease of reading, the proofs are
moved to the appendix, together with some standard
definitions.
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Theorem 1: When the T-Set is the set of permutations
P , finding the edge T-Plot of a non-bridge edge e is #P-
complete.

Proof: See Appendix A.
Corollary 1: In the general case, finding the edge T-Plot

is #P-complete.
Proof: Since at least one sub-class of edge T-Plot

problems is #P-complete, the general class of edge T-Plot
problems is clearly #P-complete as well.

We showed above that computing edge T-Plots is #P-
complete. We will now show that computing global T-Plots
is #P-complete as well.

Theorem 2: When the T-Set is the set of permutations
P , finding the global T-Plot of a graph that includes a
strictly minimal edge is #P-complete.

Proof: See Appendix B.
As above, we can directly derive the following corol-

lary.
Corollary 2: In the general case, finding the global T-

Plot is #P-complete.
Since exact T-Plot computation proves elusive, we can

only try to approximate or bound it. This will be a
recurring theme in this paper.

4 EXACT MEAN AND VARIANCE OF EDGE T-
PLOTS

We just proved that in the general case, computing edge
T-Plots is #P-complete, and therefore extremely complex.
Thus, we will strive to look for good approximations
and bounds. We will now present a straightforward
method to calculate the mean and variance of the edge
congestions. This will enable us to obtain an overview
of the network bottlenecks by running a simulation at
most once during topology synthesis, instead of running
repeatedly extended simulations each time we change
the routing algorithm or the capacity allocation.

In the remainder, we will see that these values will
be enough to provide both a Chebyshev-based deter-
ministic bound (Section 5) and a Gaussian-based model
(Section 7).

4.1 Finding the mean and variance of the load for the
set of permutations
Let’s illustrate the computation of the mean and vari-
ance of the edge congestion when the T-Set is the set
of permutations P . In this case, the average-case edge
congestion on edge e using routing f is:

ECPac(e, f) =
1
n!

∑

D∈P
EC(e, f,D)

=
1
n!

∑

D∈P

∑
ij Dijfij(e)

c(e)

=
1

n!c(e)

∑

ij

fij(e)
∑

D∈P
Dij

=
1

nc(e)

∑

ij

fij(e), (7)

The last equality relies on the fact that a given flow
(i, j) is only used in 1

n

th of the permutations, where n is
the number of nodes.

Likewise, the variance is calculated using the variance
formula

V arD∈P [EC(e, f, D)] = E[EC2]− E2[EC], (8)

with

E[EC2] =

∑
ijkl fij(e)fkl(e)

(∑
D∈P DijDkl

)

n!c(e)2
, (9)

where the expectations are with respect to the random
variable D ∈ P and the parameters of EC are implicit.
Using basic combinatorial considerations,

∑

D∈P
DijDkl =





(n− 1)! i = k ∧ j = l
(n− 2)! i 6= k ∧ j 6= l

0 i = k ∧ j 6= l
0 i 6= k ∧ j = l

(10)

Note that for a given topology and routing, these values
are fixed, and are independent of the capacity allocation.
They need to be computed only once per topology
during topology synthesis.

4.2 Mean and variance of the load for continuous T-
Sets
We will now use the same techniques to compute the
mean and variance of the load for continuous T-Sets,
such as A.

First, given a general T-Set T , the average-case edge
congestion is the average congestion caused by a matrix
D randomly selected in T :

ECTac(e, f) =

∫
T EC(e, f,D)ds∫

T 1ds
, (11)

with the simplified formula:
∫
T EC(e, f,D)ds =

1
c(e)

∫

T

∑

ij

[Dijfij(e)] ds

=
1

c(e)

∑

ij

fij(e)
∫

T
Dijds (12)

It is possible to predetermine the value of
∫

T
Dijds at

most once during topology synthesis, thus eliminating the
need to run extensive repeated simulations each time we
change the routing algorithm or the capacity allocation.
For instance, when the T-Set is A, it can be done using
Monte Carlo simulations with an arbitrarily small error,
as explained in Chapter 9.

The variance of the edge congestion is calculated as in
Equations (8) and (9), using:

ET [EC(e, f,D)2] =

∑
ijkl fij(e)fkl(e)

∫
T DijDklds

c(e)2 · ∫T 1ds
(13)

By separating the mutual relations of i,j,k,l to the same 3
cases as in (10), it is possible to predetermine the value
of

∫
T

DijDklds — again, at most once for each qualified
network.
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4.3 Mean and variance of the load for heteroge-
neous and weighted T-Sets

Our CMP model assumes that all processor cores behave
in an identical way. Let’s briefly describe how this model
can be generalized to heterogeneous and weighted NoC
architectures. Let D be a traffic matrix, either in an
heterogeneous T-Set H as defined in Section 2, or in
a weighted T-Set. The average and the variance of the
edge congestion in D may be calculated by methods
similar to those detailed above. Note that as the val-
ues of the entries in D are not identically distributed
anymore, using Equation (11) requires calculating the
integrals

∫
T

Dijds separately for each pair (i, j) in the
worst case, i.e. n2 times. Using Equation (13) requires
calculating up to n4 integrals - one for each chosen tuple
(i, j, k, l) ∈ [1, n]4. Again, it is possible to calculate each
of these integrals only once during topology synthesis,
even when trying many different routing algorithms
or capacity allocations, thus saving on the respective
repeated simulations.

In the next section, we will show how the mean and
variance of the edge congestions can provide us with
deterministic congestion guarantees.

5 CONGESTION GUARANTEES FOR EDGE T-
PLOTS

We are interested in providing performance bounds that
are guaranteed independently of the shape of the edge
T-Plot. We will now show that it is indeed possible to
bound the probability that the congestion on some edge
exceeds a given value.

Let X denote the congestion imposed on a given edge
e by a traffic matrix D generated from the T-Set. Further,
let µ and σ be the average and standard-deviation of the
edge congestion on e . Then, by Chebyshev’s one-tailed
inequality with k ≥ 0,

Pr(X ≥ µ + kσ) ≤ 1
1+k2 (14)

By definition, e is saturated iff X ≥ c(e). Therefore, the
probability for e to be saturated is upper-bounded as
follows:

Pr(X ≥ c(e)) ≤ 1
1+

[
c(e)−µ

σ

]2 (15)

Alternatively, given a desired congestion guarantee
level 0 < G < 1, it is possible to calculate a capacity c’(e)
that guarantees that at least a fraction G of the allowable
traffic matrices would be served without saturating e.
Transforming Equation (15), we get:

c′(e) = µ + σ

√
G

1−G
(16)

For instance, for G = 99%, we need c′(e) = µ+9.95σ; i.e.,
with this edge capacity, we are guaranteed that at least
99% of the matrices can be served without saturating e.

These performance bounds are particularly useful
when the T-Plot is not exactly Gaussian and cannot be
easily characterized. This is true in particular for hetero-
geneous and weighted T-Plots, for which the Gaussian
approximation might be harder to obtain.

Example — Fig. 3(a) provides an example of CDF
T-Plot of an edge congestion. It is compared with
the Chebyshev-based deterministic guarantee presented
above, as well as a Gaussian-based model (as developed
in Section 7). This plot was obtained on edge e6 7 in the
3×4 mesh of Fig. 1, using DOR routing. It is a CDF plot,
corresponding to the PDF plot of Fig. 2.

As seen in Fig. 3(a), the Chebyshev-based determin-
istic congestion guarantees are rather far below the
simulated CDF. This is because the Chebyshev inequality
is known to be a very loose bound. On the contrary,
in this case, the Gaussian model does very well for
this edge, to the point that the plots of the congestion
and its Gaussian model can barely be distinguished (as
mentioned earlier, the plot passes both the Pearson’s
χ2 and the Cramér-von Mises normality tests with a
standard significance level of 5%).

As an example, consider an edge congestion of 1.25
(on the x-axis): as shown by simulations, 96% of the
matrices cause an edge congestion under this value. By
contrast, the Chebyshev-based deterministic approach
only guarantees that at least 76% of the matrices will
be under this value.

In the same way, the same T-Plot can also be rep-
resented as the CCDF (Complementary CDF) of the
throughput, as seen in Fig. 3(b). Again, a throughput
of at least 1

1.25 = 80% is provided to 96% of the matrices
on this edge, while the Chebyshev-based performance
bound can only guarantee this for 76% of the matrices.

6 MODEL AND BOUNDS OF GLOBAL T-PLOTS

So far, we have mainly dealt with edge congestions.
We will now deal with global congestions. Of course,
succeeding to well approximate the global T-Plots would
mean obtaining a performance model for the whole
network. We will first provide a simple model assuming
independence, and then an upper-bound.

6.1 Edge-independent and independent-Gaussian
models
Assuming that all edge congestions are independent,
i.e. traffic matrices cause congestion at different links
in an independent manner, provides the following edge-
independent model:

GCCDF (f, L) = Pr
(

max
e∈E

[EC(e, f, D)] ≤ L

)

≈
∏

e∈E

Pr (EC(e, f,D) ≤ L)

=
∏

e∈E

ECCDF (e, f, L) (17)
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Fig. 3. Two views of the same T-Plot (edge e6 7 in the 3×4 mesh)

This edge-independent model is not always a good
approximation, because matrices might cause loads in a
positively correlated way. However, it plays the role of
an intuitive lower bound (though it can be shown that
it is not always a lower bound).

Further, this model can be extended to an even simpler
independent-Gaussian model, in which the distributions
of all edge congestions are assumed to be Gaussian.
In Section 4, we determined their exact average and
standard-deviation at each edge e, denoted µ(e) and
σ(e). Therefore, this model is fully and exactly deter-
mined:

GCCDF (f, L) ≈
∏

e∈E

Φ
(

L− µ(e)
σ(e)

)
, (18)

where Φ denotes the normalized Gaussian CDF.
In the simulations section, we will show that the

independent-Gaussian model performed surprisingly
well.

6.2 Global upper bound
Let’s now look for an upper bound on the CDF T-
Plot of the global congestion. The global congestion is
the maximum edge congestion across all edges, and
therefore it is at least as large as the congestion of the
most loaded edge in the network. Thus, we get the
following upper bound on the probability of not being
congested:

GCCDF (f, L) ≤ min
e∈E

{ECCDF (e, f, L)}. (19)

Further, if e1 and e2 are two edges (e.g. the two most
loaded edges in the network, which could be the two
different directions of the same link), then:

Pr(GC > x) ≥ Pr(EC(e1) > x ∨ EC(e2) > x)
= Pr(EC(e1) > x) + Pr(EC(e2) > x)
− Pr(EC(e1) > x ∧ EC(e2) > x)
≥ Pr(EC(e1) > x) + Pr(EC(e2) > x)
− Pr(EC(e1) + EC(e2) > 2x), (20)

where Pr(EC(e1) + EC(e2) > 2x) is equal to 1 −
ECCDF (ê, 2x), using a dummy edge ê for which f(ê) =
f(e1) + f(e2). Using ê, a similar upper bound can be
obtained as follows:

Pr(GC ≤ x) ≤ Pr(EC(e1) ≤ x ∧ EC(e2) ≤ x)
≤ ECCDF (ê, 2x) (21)

A stricter global upper bound may finally be defined
as the minimum of the three bounds (19), (20) and (21).

7 CAPACITY ALLOCATION FOR EDGE T-PLOTS

Our goal is now to propose a simple, yet efficient,
statistical capacity allocation algorithm, which would en-
able significant savings in the total capacity, yet achieve
full service for the vast majority of the traffic patterns
in the CMP. We first explain in this section how our
statistical approach enables to dramatically decrease the
capacity of a given edge with only a negligible effect
on the throughput on that edge. In the next section,
we show that our global capacity allocation scheme is
optimal in CMP architectures that obey some simplifying
assumptions. Finally, the simulations in Section 9 suggest
that the capacity allocation scheme is close to optimal in
reference CMP architectures as well.

7.1 Gaussian model

We will now prove that when scaling a CMP network
that obeys simplifying assumptions, a statistical design
allows cutting the edge capacity by almost 50%, while
still guaranteeing full service with probability arbitrarily
close to 1. To do so, we will first show that the normal-
ized edge T-Plot is asymptotically Gaussian.

Consider a CMP with n nodes. Assume that the T-Set
T is defined such that the processes of core i send traffic
to each of the other n − 1 cores j according to some
uniform i.i.d. distribution. The uniform distribution is
taken so that any core does not exceed its normalized
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maximum input/output rate of 1 word per clock-cycle:
for D ∈ T ,

∀i 6= j, Dij ∼ Uniform

([
0,

1
n− 1

])
. (22)

Consider some edge e in the network. We want to
characterize the way the network is scaled. Let’s denote
by se(n) the number of (source, destination) flows cross-
ing e. Then we will assume that as n goes to infinity, se(n)
goes to infinity as well. In other words, as the network
is scaled, the routing is intuitively scaled accordingly.
This assumption holds for most network architectures
of interest, as in the following mesh and tree examples.

Example 7.1: Consider a
√

n×√n mesh of n modules
with DOR (XY) routing. Then we always have se(n) ≥√

n(
√

n−1), with the equality being reached for instance
in e1 2 (the edge connecting the first two nodes, as
illustrated in Fig. 1). In particular, as n goes to infinity,
se(n) goes to infinity as well.

Example 7.2: Consider a tree of n modules with hier-
archical routing. Then we always have se(n) ≥ n − 1,
with the equality being reached for instance in any of
the leaf directed edges. In particular, as n goes to infinity,
se(n) goes to infinity as well.

We will denote the average, standard-deviation, and
maximum of the flow on edge e by µ, σ and w. By
Equation (22), it is clear that the maximum flow gen-
erated by each (source, destination) pair is 1

n−1 , and
therefore w = se(n)

n−1 . Likewise, using independence and
summation rules of the expectation and variance, µ = w

2

and σ =
√

se(n)√
12·(n−1)

.
A worst-case deterministic approach would allocate

a capacity equal to the maximum possible edge flow:
c(e) = w. We will now show that as we scale the CMP,
the edge flow distribution becomes extremely concen-
trated around its average µ = w

2 . Therefore, by following
a statistical design and allocating a capacity just above
this average, we can gain nearly 50% capacity with a
loss probability going to zero. To prove this, we will first
demonstrate that modeling the edge T-Plot as Gaussian
is asymptotically correct in this network. We will later
use this model to analyze capacity allocation schemes.

Theorem 3: For the T-Set T , as n grows and we scale
the CMP architecture, the normalized edge T-Plot of any
edge e converges to the normalized Gaussian distribu-
tion N (0, 1).

Proof: See Appendix C.
Example 7.3: Fig. 4 illustrates Theorem 3 using the√
n × √n mesh of Example 7.1. It plots the PDF of the

edge congestion on edge e1 2, as the mesh is scaled and
the number of nodes n increases, while keeping a DOR
routing. It shows that for this very common network, the
convergence defined in Theorem 3 is rather fast.

7.2 Statistical capacity allocation
Denote by Φ(x) the normalized Gaussian CDF, and let
k(n) = c(e)−µ

σ . Then a consequence of Theorem 3 is that
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Fig. 4. PDF of the edge congestion on edge e1 2 in an
n-node mesh

the percentage of traffic matrices that do not saturate
edge e (i.e. such that the flow on e is at most c(e))
converges to Φ(k(n)) = Φ((c(e) − µ)/σ) as n increases.
For instance, suppose that we would like to guarantee
that at least 99% of the matrices do not saturate e.
Since Φ−1(0.99) = 2.33, it suffices to allocate capacity
c(e) = µ + 2.33σ, rather than allocating the worst-case
capacity c(e) = w = 2µ. Asymptotically, we can gain
up to 50% capacity if σ/µ goes to zero when n goes to
infinity. In fact, the theorem below shows that having
a capacity allocation barely above 50% of the worst-case
capacity is enough to guarantee any level of performance
guarantee on edge e as we scale n.

Theorem 4: For the T-Set T , given any small ε > 0, any
edge e, and any guaranteed probability G < 1, having
an edge capacity of ( 1

2 +ε) of the worst-case link capacity
and n large enough is sufficient to guarantee full service
on edge e for a fraction G of all traffic matrices.

Proof: See Appendix C.
These results are of course only correct under the

assumptions made above; in the general case, we do not
claim that the T-Plot necessarily converges to a Gaussian
distribution, and leave it to future study.

8 CAPACITY ALLOCATION FOR GLOBAL T-
PLOTS

Let’s denote by ci the capacity of edge i, and by µi, σi

the mean and standard deviation of the load on edge
i, respectively. We now suggest to allocate to edge i a
capacity of ci = µi + kσi, where we use the same value
of k for all edges. Therefore, the total capacity C required
as a function of k is:

C =
|E|∑

i=1

ci =
|E|∑

i=1

µi + k

|E|∑

i=1

σi, (23)

or, equivalently, for a given total capacity C, we need to
use

k =
C −∑|E|

i=1 µi∑|E|
i=1 σi

. (24)

Note that when the total capacity is constrained to be
smaller than the sum of the average-case edge conges-
tions, k is negative.
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The following theorem demonstrates that this capacity
allocation minimizes the probability that the network
is saturated, in any NoC with any topology and any
routing, as long as two approximation assumptions hold:
first, the loads on different edges are independent; and
second, the edge T-Plots obey a Gaussian model with
the same standard-deviation.

Theorem 5: Assume that the T-Plots of all edges i
are independent and Gaussian of mean µi and same
standard-deviation σ. Then allocating to each edge i
a capacity ci = µi + kσ, where k is a real constant,
minimizes the probability that the network is saturated.

Proof: See Appendix D.
In the simulations, we will evaluate the performance

of this capacity allocation algorithm in NoC architec-
tures.

9 SIMULATIONS

9.1 T-Set representation

To perform simulations, we need the ability to represent
the T-Set. We proved above that this is intrinsically
hard (Theorem 1). Therefore, we want to pick traffic
matrices uniformly at random from the T-Set in order
to approximate their full representation – and to do
so, we use random-walk sampling [33], [34], [35]. In the
simulations below, sampling is always done using one
million samples, unless mentioned otherwise. It is also
assumed that nodes don’t send traffic to themselves.
After starting from some matrix in the T-Set (e.g. the null
matrix), we compute a new matrix each time. To do so,
at each step, we pick some small random matrix change
∆, and add it to the current matrix D, so that the new
matrix is D′ = D+∆. If D′ is in the T-Set, we move to it,
and reject it otherwise. (In weighted T-Sets, we simply
move to D′ with a probability that is proportional to its
weight.)

In continuous T-Sets such as A, there are several
possible ways to choose ∆. Below, we use a Gaussian
random walk, where ∆ is normally distributed with dis-
tribution ∆i,j ∼ N (0, σ2) for each pair (i, j), given some
standard-deviation σ (more formally, this is a random-
walk Metropolis-Hastings algorithm in which the pro-
posal density follows a multivariate normal distribu-
tion [34], [35]). We also compare it with a uniform random
walk, in which ∆ is distributed uniformly so that ∆i,j ∼
Uniform([−∆max, ∆max]) for each pair (i, j), where the
standard-deviation of ∆i,j is σ, i.e. ∆max =

√
3σ. For

both walks, we use σ = 1
2n . We show below that they

both yield similar performances.

9.2 Correctness of the T-Set Representation

Although we cannot guarantee that the sample distribu-
tion from the random walk will always converge to the
uniform distribution on the T-Set, we conduct several
tests to verify that it does in smaller networks, and that
it satisfies some expected properties in larger networks.
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Fig. 5. Global congestion PDF of the 2× 2 mesh

First, we use the fact that computing the T-Plots when
the T-set is A may also be expressed as a volume
computation problem [36]. For each load value L, the
region

R = {D ∈ A|GC(f, D) < L}

forms a convex polytope. GCT
CDF (f, L), the fraction of

matrices with global congestion over L, is equal to the
ratio between the volume of R and the volume of the
polytope A.

We compare the results of our Monte Carlo simula-
tions using 1 million matrices generated uniformly at
random to the exact results obtained by Vinci [37], a
standard convex-polytope volume computation tool. The
general computation of the volume of polytopes is #P-
complete [38], and therefore the network cannot be scaled
in Vinci to more typical sizes. We use a 2× 2 mesh and
DOR routing.

Fig. 5 is a T-Plot of the global congestion at this
network. The graph shows that the simulation results
are extremely close to Vinci’s exact results, both when the
random walk is Gaussian and uniform. In fact, we have
also found that both random walks have about the same
convergence speed. In the remainder, we only show the
results of Gaussian random walks.

The comparison with Vinci strongly validates the ap-
proach with small n. However, as n becomes larger,
because of the #P-completeness, there is no way to check
the correctness of the results. For these cases we check
two other, much weaker properties, which indicate that
the results are not biased. First, we check that the result-
ing T-Plot is independent of the initial matrix. Second,
after k experiments of points generated uniformly at ran-
dom, we verify that the variance does indeed decrease
as O(1/k) and obey the formula var[X] = p(1−p)

k , where
X is the indicator random variable representing the fact
that the sample is in some bin and p = EX .

9.3 Global T-Plot

We already saw simulation results of edge congestion
T-Plots in Figures 2 and 3. Let’s now look at global
congestion T-Plots, which show the distribution of the
maximum load across all edges. In Figures 6(a), 6(b),
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Fig. 6. Global congestion T-Plots for the 3x4 mesh

and 6(c), we analyze several parameters of the global
congestion T-Plots for the 3x4 mesh.

First, Fig. 6(a) shows the PDF of the global conges-
tion, with the routing algorithm being either DOR or
O1TURN [39]. The graph shows that O1TURN does a
much better job than DOR in load-balancing the load
across different links, and thus has less chances of reach-
ing high link loads (for instance, the area under the
PDF to the right of 1.4 is much smaller in O1TURN).
Incidentally, both graphs seem well fitted to Gaussian
distributions, and both pass the Pearson’s χ2 and the
Cramér-von Mises normality tests with a standard sig-
nificance level of 5%. This is a surprising result, as the
maximum of many i.i.d. Gaussian random variables does
not behave as a Gaussian random variable (it follows
a Gumbel distribution [40]). Nevertheless, the Gaussian
distribution proves a better fit than the Gumbel distri-
bution. More precisely, the mean-squared error between
the CDF of each plot and the CDF of the corresponding
Gaussian (resp. Gumbel) plot is 2.6·10−5 (resp. 5.6·10−4)
for O1TURN, and 6.2·10−5 (resp. 4.5·10−4) for DOR. The
question of when a global T-Plot can be approximated by
a Gaussian distribution is left for future research.

Fig. 6(b) shows the CDF of the global congestion in
the same network, using DOR routing. The independent-
Gaussian model and the upper bound are presented in
Section 6. We can see that the independent-Gaussian
model assuming independent edge congestions with
Gaussian distributions is rather close to the exact results.
The upper bound, however, is rather loose, which is
explained by the fact that it is based on the two most
loaded edges in the network, while our network contains
many other highly-loaded edges, which may raise the
global congestion. Other simulations (not shown here)
show that this upper bound is stricter in networks in
which there exist only very few highly-loaded edges.

Fig. 6(b) can be used to determine the required capac-
ity overprovisioning: for instance, the CDF for a global
congestion of 1 is 0.053. Therefore, without overpro-
visioning, only 5.3% of the traffic matrices in the T-
Set would be fully served. Since the CDF for a global
congestion of 1.2 is 0.604, an overprovisioning of 20%

would guarantee that 60.4% of the traffic matrices would
be fully served.

9.4 Capacity allocation algorithms
Until now, all of our T-Plots were realized without doing
any optimization, by simply measuring the distribution
of the link load. We will now show that our statistical
approach using T-Plots can do more than just measure: it
can also help optimize.

Fig. 6(c) illustrates the performance of different capac-
ity allocation (CA) algorithms on the 3×4 mesh network
with 34 edges (presented in Fig. 1). For each total ca-
pacity, it shows the fraction of matrices that would be
served under a given CA algorithm. It compares three
CA algorithms: the homogeneous CA assumed above,
the simple CA based on means and variances suggested
in Section 8, and an optimized CA explained below.

For instance, assume that the average capacity per
edge is 1.2, i.e. the total capacity is 1.2 · 34 = 40.8. The
homogeneous CA algorithm would allocate a capacity
of exactly 1.2 to each edge. It would only be able to
service 60.4% of the matrices (as seen above as well with
Fig. 6(b)).

On the contrary, our simple CA scheme suggested in
Section 8 would distribute the total capacity differently
among the edges, according to their congestion average
and variance. With this total capacity of 40.8, it would be
able to service 96.4% of the matrices, hence improving
noticeably on the homogeneous scheme.

Finally, to examine the quality of our simple capacity
allocation scheme, we compare it to an optimized CA,
which was obtained after extensive brute-force simula-
tions. Using this optimized CA, we can service 99.2%
of the matrices, hence slightly improving on our simple
suggested CA. In fact, the plot suggests that our simple
suggested heuristic CA is not too far from optimum.

Note that to obtain this optimized CA, we ran 10,000
iterations for each total capacity value. At each iteration,
a new CA is taken at the neighborhood of the old one
using a Gaussian random-walk algorithm, and is only
accepted if it fares better (as explained above). The opti-
mization was done using 200,000 sample matrices from
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Fig. 7. Total capacity required for various CA targets

A, and the results were computed on 200,000 different
matrices. We also checked that starting from different
points yields the same end result.

9.5 Capacity allocation and throughput guarantee
We will now exemplify how our statistical approach
enables a drastic capacity saving with only negligible
deterioration in performance.

Fig. 7 compares the total capacities needed by the
optimized CA algorithm with 5 different performance
targets, in the 3 × 4 mesh. The first bar represents a
worst-case approach, in which each edge is allocated a ca-
pacity according to the worst-case flow on this edge, thus
guaranteeing that 100% of traffic matrices will be fully
served. It is loosely based on the worst-case approach
adopted in [3], [22], [23]. On the contrary, the other bars
represent the statistical approach, with increasingly loose
levels of statistical-based capacity allocation schemes.
Their values can be retrieved from Fig. 6(c). For instance,
for G = 99.9%, the amount of provisioning needed is
CDF−1(0.999) = 43.8.

Fig. 7 shows that switching from a worst-case to a
statistical CA approach may save up to 37% of the
total required capacity in this network, for a capacity
guarantee at a 90% level. Likewise, planning for a very
stringent 99.99% cutoff decreases the amount of total
capacity used by 21%. As an aside, note that we didn’t
even compare with the naive homogeneous worst-case
approach — such a comparison would have yielded even
greater savings!

9.6 Delay distribution
Our objective is to obtain some intuition on the different
distributions of the expected flow delays using different
CA algorithms. In order to do so, we model the delay
at each edge with the simple M/M/1 model, using an
arrival rate equal to the edge flow and a service rate
equal to the edge capacity. (Of course, this is just a toy
model: the deterministic nature of the services would
probably decrease the average delays, and the wormhole
scheduling [20] would increase them.) The average delay
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Fig. 8. Average flow delay distribution over all traffic
matrices, for two different CA schemes

of a flow is the sum of its average edge delays. Finally,
for each given traffic matrix, we compute the average
flow delay across all flows. Note that a saturated edge
results in an infinite edge delay, and therefore an infinite
average flow delay.

Fig. 8 compares the distributions of the average flow
delays for both the homogeneous CA and our simple
suggested CA, for the 3× 4 mesh with average edge ca-
pacity 1.2. As expected, our CA scheme has significantly
less traffic matrices with infinite average flow delay; in
addition, on the remaining matrices, the average flow
delay also tends to be lower. Thus, this plot confirms
that our simple CA tends to significantly outperform the
homogeneous CA.

9.7 NUCA network
Finally, we considered a different CMP architecture
model based on a NUCA (non-uniform cache architec-
ture) network. As shown in Fig. 9(a) (based on [41] with
sharing degree 4), the network contains 4 sub-networks,
each with 4 processor cores and 16 caches, hence with
a total number of 80 nodes and 224 edges. Each core
may only send (receive) traffic to (from) caches in its
sub-network, and each cache may only send (receive)
traffic to cores in its sub-network, with a maximum node
transmission (reception) rate of 1.

Fig. 9(b) compares the different CA schemes on this
NUCA network (simulated using 100,000 samples). For
example, with a total capacity of 50, using our suggested
CA dramatically increases the probability that the NUCA
network is not saturated from less than 1% to 98%.
Again, it is very close to the optimized envelope.

Likewise, Fig. 9(c) shows that the total capacity re-
quired to fully serve 99.99% of the matrices is lower than
the total capacity in the worst-case approach by 24%,
and in the 90% cutoff case by 48%. Thus, this confirms
the intuition that as networks grow in size, the gains in
the statistical approach tend to grow as well - intuitively
confirming Theorem 4 as well.
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Fig. 9. NUCA network: topology and performance

10 CONCLUSION

In this paper, we introduced the T-Plots, which can pro-
vide a common foundation to quantify, design, optimize
and compare NoCs architectures and routing algorithms.
We showed that an accurate computation of T-Plots is
#P-complete, but that they can sometimes be modeled as
Gaussian, providing a full link load distribution model
using only two variables. Further, we provided bounds
that can be the basis of strict throughput performance
guarantees. We finally showed how T-Plots can be used
to develop a simple, yet efficient, capacity allocation
scheme. We believe and hope that this work will con-
tribute to lay the ground to a common basis in future
NoC design research.

APPENDIX A
FINDING THE EDGE T-PLOT IS #P-COMPLETE

We will now provide some standard formal defini-
tions [32].

Definition 1: Let f be a function. We say that f ∈ #P if
there exists a binary relation R such that:

• If (x, y)∈ R then the length of y is polynomial in the
length of x.

• It can be verified in polynomial time that a pair
(x, y) is in R.

• For every x ∈ Σ∗ (the set of all 0-1 strings), f(x) =
|{y : (x, y) ∈ R}|

Definition 2: Given two functions f, g:

• There is a polynomial Turing-reduction from g to f
(and denote g ∝ f ) if the function g can be computed
in polynomial time using an oracle to f .

• A function f : Σ∗ → N is #P-Hard if for every g∈#P
there is a polynomial reduction g ∝ f .

• A function f is #P-complete iff it is both #P-Hard and
in #P.

Definition 3: Given an n× n matrix A, the permanent

of A is defined as

Perm(A) =
∑

D∈P

n∏

i=1

Ai,D(i) (25)

We denote the problem of computing the permanent
of a binary 01-matrix as 01-Perm. It was shown in [32]
that 01-Perm is #P-complete. Our goal will be to find a
polynomial-time reduction from the problem of 01-Perm
to the T-Plot computation problem. This reduction relies
on the following lemma.

Lemma 1: Let G(V, E) be a connected graph. Let e be
a non-bridge edge. Then, for each pair of nodes (s, d),
there exists at least one walk, which uses e exactly once,
and at least one additional walk, which doesn’t use e.

Proof: Let’s denote e = (a, b). Since e is not a bridge,
for each (source, destination) pair of nodes (s, d), there
exists a walk that doesn’t use e. Let’s also construct a
walk from s to d that uses e exactly once. First, from s
to a, we use a walk that doesn’t use e (such a walk exists,
because e is not a bridge). Then, from a to b, we cross
through e. Finally, from b to d, we use another walk that
doesn’t use e (again, such a walk exists, because e is not
a bridge).

We will now prove that when the T-Set is the set
of permutations P , finding the edge T-Plot of a non-
bridge edge e is #P-complete. To do so, we will first
demonstrate that the problem is #P (Lemma 2), and then
show a polynomial-time reduction from the problem of
01-Perm (Lemma 3). Intuitively, given an n × n matrix
A and a non-bridge edge e, this reduction computes a
routing algorithm f that routes packets from source s to
destination d via e iff Asd = 1 (this is possible by Lemma
1). We will show that as a consequence, the value of the
permanent of A is equal to the number of permutations,
for which all the flow is routed via e. Therefore, using
this equality, an oracle to a specific point of the PDF of
the congestion on e suffices to calculate the permanent
of A.

Lemma 2: Let G(V, E) be a directed graph, in which
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the traffic is routed according to an oblivious rout-
ing algorithm f . Let e be a non-bridge edge. Then,
ECPPDF (e, f, L) is #P.

Proof: Let us denote L = n
c(e) . Let’s define the binary

relation R as follows:

((e, f, L), D) ∈ R ⇔ EC(e, f, D) = L (26)

• The size of the representation of a permutation is
polynomial in the representation of (e, f).

• It can be verified in polynomial time whether
((e, f, L), D) ∈ R by calculating EC(e, f, D).

• As ECPPDF (e, f, L) represents the probability of a
randomly chosen permutation to impose congestion
L on edge e, and |P| = n!,

n!ECPPDF (e, f, L) = |{D ∈ P : EC(e, f, D) = L}|
(27)

Note that the multiplication by n! doesn’t affect
ECPPDF (e, f, L) being #P.

Lemma 3: Let A be an n×n 01-matrix. Let D be a per-
mutation of {1, 2, ..., n}. Then, it is possible to construct
in polynomial time a routing algorithm f s.t.

n∏

i=1

Ai,D(i) = 1 ⇔ EC(e, f,D) = L (28)

Proof: We will construct an oblivious routing algo-
rithm f s.t.

∀i, j ∈ V : fij(e) = Aij (29)

In other words, if fsd(e) = 1, f will use e exactly once
when routing packets from s to d. Otherwise, f will
not use e when routing packets from s to d. By the
construction:

n∏

i=1

Ai,D(i) = 1 ⇔
∑

ij

DijAij(e) = n

⇔
∑

ij

Dijfij(e) = n

⇔ EC(e, f,D) =
n

c(e)
= L (30)

If Asd = 0, f routes the packets from s to d via a walk,
which does not use e. Else, f routes the packets from s
to d via a walk which uses e exactly once, as described in
the proof of Lemma 1. f can be calculated by running the
Dijkstra Algorithm n times on the graph G′(V, E\{e}),
each time taking a different node in the graph as the
source node. Each edge in E\{e} has a unit weight.
The complexity of the construction is polynomial, as it
requires O(|V |) runs of the Dijkstra Algorithm, where
each run takes polynomial time.

We are finally ready to demonstrate the #P-
completeness of the edge T-Plot computation.

Proof of Theorem 1: Let A be an n × n 01-matrix.
By Lemma 2, ECPPDF (e, f, L) is #P. Successively using

Lemma 3 and Equation (27):

Perm(A) = |{D ∈ P :
n∏

i=1

Ai,D(i) = 1}|

= |{D ∈ P : EC(e, f,D) = L}|
= n!ECPPDF (e, f, L) (31)

This is a polynomial reduction from 01Perm to ECPPDF .
As 01Perm is #P-Hard, ECPPDF is #P-complete, where
even the task of computing the value of the distribu-
tion at an arbitrary point is #P-complete. Consequently,
ECPCDF is #P-complete as well.

APPENDIX B
FINDING THE GLOBAL T-PLOT IS #P-
COMPLETE

We will now prove that plotting a global T-Plot is #P-
complete as well. In our proof, we will use a network
with a strictly minimal edge em, so that the worst-
case congestion on em is higher than the worst-case
congestion on any other edge in the network. Thus, em’s
worst-case edge congestion is equal to the network’s
global congestion. Thus, a similar construction to that
used when proving Theorem 1 would suffice to prove
that GCPCDF is #P-complete as well.

Proof of Theorem 2: Let us denote: L = n
c(em) . Let A be

an n× n 01-matrix. GC(f, L) ∈ #P by the same proof as
that of Lemma 2. By Lemma 3, there exists a polynomial-
time construction of a routing algorithm f s.t.

n∏

i=1

Ai,D(i) = 1 ⇔ EC(em, f,D) = L (32)

As em is strictly minimal, its worst-case congestion is
higher than the worst-case congestion on every other
edge, and therefore its worst-case edge congestion is
equal to the network’s global congestion. We finally get:

Perm(A) = n!ECPPDF (em, f, L) = n!GCPPDF (f, L)

As in the proof of Theorem 1, even the task of computing
the value of GCPPDF at an arbitrary point is #P-complete.
Consequently, GCPCDF is #P-complete as well.

APPENDIX C
GAUSSIAN PROPERTIES OF EDGE T-PLOTS

Proof of Theorem 3: Let Se(n) denote the flow on
edge e. Since it is the sum of se(n) i.i.d. uniform random
variables, which we will rewrite as Z1, · · · , Zse(n), we
have:

Se(n) =
se(n)∑

i=1

Zi. (33)

By definition, Zi ∼ Uniform
([

0, 1
n−1

])
, therefore we

also have

Se(n) =
1

n− 1
·

se(n)∑

i=1

Z ′i, (34)
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where Z ′i ∼ Uniform([0, 1]). Define the normalized flow

S′e(n) =
se(n)∑

i=1

Z ′i. (35)

Then S′e(n) is the sum of se(n) i.i.d. normalized uniform
random variables of mean µ′ = 1

2 and standard deviation
σ′ = 1√

12
. Further, by assumption, when n goes to infin-

ity, se(n) also goes to infinity. Thus, by the Central Limit
Theorem, the distribution of S′e(n)−se(n)µ′√

se(n)σ′
converges (in

distribution) towards the standard normal distribution
N (0, 1).

Finally, by definition, Se(n) = 1
n−1S′e(n), µ =

1
n−1se(n)µ′, and σ = 1

n−1

√
se(n)σ′. Therefore, we get

that Se(n)−µ
σ converges to N (0, 1) as well. (Of course,

note that µ and σ are also implicitly dependent on n
and e.)

Proof of Theorem 4: The proof is in two steps. Let
0 < ε′ < 1 − G. We first show that for n large enough,
the total flow on the edge is extremely close to half the
worst-case capacity, and therefore, with an edge capacity
of ( 1

2 + ε) of the worst-case capacity, a T-Plot following
a Gaussian distribution would obtain a guarantee level
of at least G+ ε′. But, of course, our T-Plot is not exactly
Gaussian. Therefore, in a second step, we use the result
of the Central Limit Theorem (Theorem 3) and the fact
that our distribution is indeed within ε′ of a Gaussian
distribution, and we finally obtain a guarantee level of
at least G + ε′ − ε′ = G.

First, let k(n) = c(e)−µ
σ . Then

k(n) =
( 1
2 + ε)w − µ

σ

=
εw

σ

=
ε se(n)

n−1√
se(n)√

12(n−1)

= ε
√

12se(n) (36)

By assumption, when n goes to infinity, ε
√

12se(n) also
goes to infinity as well, and therefore will become larger
than any fixed value. In particular, there exists some
large n′ such that ε

√
12se(n′) ≥ Φ−1(G + ε′), so for any

n ≥ n′,

k(n) = ε
√

12se(n)

≥ ε
√

12se(n′)
≥ Φ−1(G + ε′). (37)

Thus, when n becomes large, we have

Φ
(

c(e)− µ

σ

)
= Φ(k(n)) ≥ G + ε′. (38)

Second, by the Central Limit Theorem (Theorem 3),
the normalized edge T-Plot converges to the normal-
ized Gaussian distribution N (0, 1). Hence, for any fixed
parameter, the difference between its CDF and Φ will

converge to zero, and therefore will become lower than ε′

for some large value. Put mathematically, for any α > 0,
there exists some n′′ ≥ n′, so that for any n ≥ n′′,

Pr

(
Se(n)− µ

σ
< α

)
≥ Φ(α)− ε′. (39)

Using α = Φ−1(G + ε′), we get

Pr

(
Se(n)− µ

σ
< Φ−1(G + ε′)

)
≥ (G + ε′)− ε′

= G. (40)

Finally,

Pr(Se(n) < c(e)) = Pr

(
Se(n)− µ

σ
<

c(e)− µ

σ

)

= Pr

(
Se(n)− µ

σ
< k(n)

)

≥ Pr

(
Se(n)− µ

σ
< Φ−1(G + ε′)

)

≥ G, (41)

where the last two inequalities follow from Equa-
tions (37) and (40). In other words, a fraction of at least
G of the traffic matrices generate a flow on the edge that
is under the edge capacity.

APPENDIX D
GAUSSIAN PROPERTIES OF GLOBAL T-PLOTS

Proof of Theorem 5: We denote the total available
capacity by C , i.e., a legal capacity allocation satisfies∑

i ci ≤ C. We would like to maximize the probability
that the global congestion is below 1. Formally, we want
to find

argmax
{c1,··· ,c|E|}

Pr(GC(f, c1, · · · , , c|E|) < 1)

s.t.
|E|∑

i=1

ci = C

Using the independence assumption, we want to maxi-
mize the product of the probabilities of edge congestions
on all edges:

Pr(GC(f, c1, · · · , c|E|) < 1) =
|E|∏

i=1

ECCDF (ei(ci), f, 1)

(42)
Let Φ(x) be the standard Gaussian CDF, and φ(x) the
PDF (its derivative). Then, by the definitions in Section 7,

ECCDF (ei(ci), f, 1)) = Φ((ci − µi)/σ). (43)

Using Lagrange multipliers and differentiating Equa-
tion (42), we find that the objective function is maxi-
mized when for each i 6= j,

ECPDF (ei(ci), f, 1))
ECCDF (ei(ci), f, 1))

=
ECPDF (ej(cj), f, 1))
ECCDF (ej(cj), f, 1))

, (44)
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i.e.
φ((ci − µi)/σ)
Φ((ci − µi)/σ)

=
φ((cj − µj)/σ)
Φ((cj − µj)/σ)

. (45)

Equation (45) is solved when ci = µi + kσ for each
i, where k is the same constant for each i, because all
the PDF probabilities are then equalized (the standard-
deviations are equal) as well as the CDF probabilities.
Therefore, this solution maximizes the objective func-
tion. Note that for different standard deviations, this
Lagrangian-based method can also directly bring the
optimal, yet less elegant, capacity allocation solution,
by solving Equation (45) using methods of numerical
analysis.
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