POLITECNICO DI TORINO
Repository ISTITUZIONALE

Poster abstract: Parallel VM placement with provable guarantees

Original

Poster abstract: Parallel VM placement with provable guarantees / Cohen, I.; Einziger, G.; Goldstein, M.; Sa'Ar, Y.;
Scalosub, G.; Waisbard, E.. - (2020), pp. 1298-1299. (Intervento presentato al convegno 2020 IEEE INFOCOM
Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020 tenutosi a can nel 2020)
[10.1109/INFOCOMWKSHPS50562.2020.9162912].

Availability:
This version is available at: 11583/2873188 since: 2021-03-04T17:00:25Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/INFOCOMWKSHPS50562.2020.9162912

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

23 July 2024

Poster Abstract:
Parallel VM Placement with Provable Guarantees

Itamar Cohen*, Gil Einziger*, Maayan Goldstein®, Yaniv Sa’art, Gabriel Scalosub*, and Erez Waisbard®
* Ben-Gurion University of the Negev, Beer Sheva, Israel ({itamarq@post.,gilein@,sgabriel @ }bgu.ac.il)
t Nokia Bell Labs ({maayan.goldstein,erez.waisbard } @nokia.com)
1 Independent (yaniv.saar.mail @gmail.com)

Abstract—Efficient on-demand deployment of VMs is at the
core of cloud infrastructure but the existing resource manage-
ment approaches are too slow to fulfill this promise. Parallel
resource management is a promising direction for boosting
performance, but when applied naively, it significantly increases
the communication overhead and the decline ratio of deployment
attempts. We propose a new dynamic and randomized algorithm,
APSR, for parallel assignment of VMs to hosts in a cloud
environment. APSR is guaranteed to satisfy an SLA contain-
ing decline ratio constraints, and communication overheads
constraints. Furthermore, via extensive simulations, we show
that APSR obtains a higher throughput than other commonly
employed policies (including those used in OpenStack) while
achieving a reduction of up to 13x in decline ratio and a reduction
of over 85% in communication overheads.

I. INTRODUCTION

The Network Function Virtualization (NFV) paradigm en-
ables network infrastructure to be virtually deployed on
standard cloud infrastructure. NFV services are composed of
Service Chains of multiple Virtual Network Functionalities,
thus when we need to scale up a service we may need to
allocate an entire service chain in a timely manner. Current
resource management architectures either provide guaranteed
performance (using a centralized view of the system state), or
provide high throughput at the cost of increased decline ratio
(e.g., via partitioning or parallelism) [2]-[4].

We consider a set H of n hosts where each i € H is a
state vector describing the multi-dimensional capacity of the
resources available at the host (in terms of, e.g., memory, CPU,
or disk space). We further consider a set R of requests, each
modeled as a vector of demand for each resource. We assume
time is slotted, and in each slot requests may arrive at the
system, and are queued for assignment to hosts. We denote by s
the number of parallel schedulers that may perform scheduling
decisions of pending requests to hosts simultaneously in any
single time slot. In each time slot ¢, each of the first s pending
requests are matched to distinct schedulers that assign them
to one of the hosts. Each such scheduler may query some
subset of hosts for their resource state, and assigns the request
to one of the queried hosts. The assignment is successful if
the host has enough resources to satisfy the request, and is
a failure otherwise. The host "loses" resources on successful
assignments, and regains these resources when the requests
terminate. We note that when s > 1, multiple schedulers may
concurrently assign pending requests to the same host; these are

resolved in an arbitrary order. For any specific time slot, we let
k denote the estimated number of hosts that may accommodate
a request that may arrive at that time.

The decline ratio is the ratio between the number of failed
requests and the total number of requests handled by the system.
We assume the system is subject to a Service Level Agreement
(SLA) which limits the decline ratio to be at most ¢, for some
e € [0,1]). We further assume we are given some budget B
such that the number of queried hosts in every time slot is
at most B. In every time slot, we denote by d the number
of hosts queried by any scheduler with a pending request. A
valid configuration of schedulers determines s and d, such that
s-d < B, and the probability of a failed request is at most ¢.

Our goal is to find a valid configuration that maximizes the
number of parallel schedulers (s). We refer to this problem as
the Constrained Maximum Parallelism (CMP) Problem.

II. COMMON ALGORITHMS EMPLOYED

Current systems make use of a variety of algorithms for
making assignment decisions. In our evaluations we focused
on those most commonly used, including: (i) WorstFit (WF),
which serves as OpenStack’s default placement algorithm [2],
(ii) FirstFit (FF), (iii) the Adaptive algorithm, which switches
from WF to FF once the load passes a threshold T (in our
evaluations, T' = 0.6), (iv) WorstFit-Rand (WFR) and FirstFit-
Rand (FFR), which pick a random host from the top /-ranking
hosts in WF, and FF, accordingly (in the spirit of the option
available in OpenStack. In our evaluation of WFR and FFR
we set £ = 5), and (v) Random, which selects a host uniformly
at random among the available hosts.

Our initial evaluation indicates that random approaches do
much better than classic deterministic ones, and the decline
ratio significantly increases as we use more schedulers. This
motivates our approach of combining dynamic and random
approaches to parallel scheduling.

III. THE APSR ALGORITHM

We suggest the Adaptive Partial State Random (APSR)
algorithm, which implements an efficient random policy that
dynamically adjusts the number of schedulers (s) according to
the system’s perceived utilization as captured by estimating the
number of available hosts (k). Whenever APSR uses parallel
schedulers (s > 1) it is guaranteed to satisfy the SLA and
budget constraints.

[s [APSR [Rand | FF [FFR | WF | WFR | Adapt

1 0.3 0.0 0.0 0.3 0.3 0.3

5 0.4 0.4 11.1 2.5 4.0 1.0 22

10 5=14 0.5 23.3 52 8.2 2.1 3.1

20 0.7 35.7 10.0 12.1 33 11.6

50 0.8 39.0 10.8 16.7 39 16.0
TABLE I

DECLINE RATIOS (IN %, LOWER IS BETTER) OF APSR AND OTHER
PLACEMENT ALGORITHMS WHEN VARYING THE (FIXED) NUMBER OF
SCHEDULERS (s, HIGHER IS BETTER). APSR’S AVERAGE NUMBER OF

SCHEDULERS (8) IS LISTED BELOW THE DECLINE RATIO. THE SLA

DECLINE RATIO CONSTRAINT IS £ = 5%.

APSR Random
Target Decline Ratio (g) Number of Schedulers
3% 5% 10% 1] 10] 100
Number of Queries (K) 1553 811 578 11000
Throughput [req./slot] 7.2 14 19.6 1 10 19.8
Decline Ratio () 04% | 0.4% 0.6% 03% | 0.5% | 0.8%
TABLE II

TOTAL NUMBER OF QUERIES, THROUGHPUT AND ACTUAL DECLINE RATIOS
OF APSR (WITH AVERAGE NUMBER OF SCHEDULERS) VERSUS RANDOM
(WITH VARYING FIXED NUMBER OF SCHEDULERS).

Each APSR scheduler does the following upon receiving a
placement request: (i) queries d hosts (for some value d),
(i) filters out hosts that cannot accommodate the request,
(iii) randomly selects a host out of the remaining set of hosts,
and (iv) assign the request to the chosen host.

APSR uses a centralized APSR controller which periodically:
(i) estimates the system’s utilization, captured by the estimate &
of the number of available hosts, (ii) determines the number s
of parallel schedulers, and (iii) determine the number d of hosts
each scheduler queries per request. The controller determines
the above parameters to ensure the configuration is valid.

Evaluation of APSR vs. Other Policies. We consider the
SLA decline ratio constraint of ¢ = 5%, and let the overall
budget of state queries to be B = n (as the budget of a
single OpenStack scheduler). Table I summarizes the results
comparing APSR to the common approaches currently used in
cloud environments, for an NFV dataset [1]. We note that APSR
manages to run many parallel schedulers in most scenarios,
while satisfying the SLA decline ratio and budget constraints.

Table II compares the throughput, decline ratios and the total
number of queries of APSR and Random. Note that APSR
reduces the total number of queries by at least 85%. Relaxing
(i.e., increasing) APSR’s target decline ratio constraint increases
its parallelism which in turn increases the throughput. This
highlights the tension between decline ratio and parallelism.

1 100
[) &
- 0.8] 180 &
S 0.6 leo BT
IR —a— Utilization 2
= | | Q
| 0.4 —e— # Schedulers 40 b §
0.2 | 120 £ 5
0 ! ! ! ° =
0 200 400 600 800 1,000
Time

Fig. 1. Cloud resource utilization and the number of schedulers in APSR for
the NFV dataset under Poisson arrivals (requests have infinite lifetime).

Under the Hood of APSR. We study the interplay between
the system’s utilization and the level of parallelism offered by
APSR. Fig. 1 depicts the number of schedulers and the system
utilization of APSR for infinite duration requests, with Poisson
arrivals. As system utilization increases, APSR adapts and
decreases the number of schedulers it employs (thus allowing
each scheduler to query more hosts while still complying the
budget constraint, and also increasing the probability of finding
an available host and avoiding collision in assignment attempts).

1 100
' £ %
- 08 P80 5 A
5] = <
g 0.6 - 60 SRS
S oal —a— Utilization —e— # Schedulers | | ;o 5 o
S5 5z
0.2 120 $3&
0 | o =
0 2,000 4,000 6,000 8,000
Time
(a) APSR (actual decline ratio is 0.01%).
1 100
' « 5
= 0.8 - 180 &4
£ 06| Jeo 2T
g 2z
2 04l |40 273
o
= 0.2 —a— Utilization —e— # Schedulers -1 20 i z:
0 I I | =
0 2,000 4,000 6,000 8,000
Time

(b) APSR4yg (actual decline ratio is 1.6%).

Fig. 2. Cloud resource utilization and the number of schedulers allowed by
APSR (requests have finite lifetime).

Fig. 2 shows similar results for finite-duration requests, where
requests arrival is made bursty by following an MMPP process.
Results are presented for a highly conservative estimate of
resource availability (APSR) and a more relaxed estimate of
resource availability (APSR,,,). We note that for the less
conservative estimate, the algorithm has a higher level of
parallelism, and attains higher throughput (it finishes handling
requests earlier). This comes at the cost of a negligible
degradation in the decline ratio, well within the SLA constraint.

IV. Di1scuUSSION, CONCLUSIONS AND FUTURE WORK

We require fast placement of virtual machines to realize
the NFV vision of rapidly deploying service chains, and auto-
scaling their capacity. However, the existing cloud infrastructure
is not fast enough to cope with bursts of parallel placement
requests in a timely manner. Our APSR algorithm efficiently
implements random placement while minimizing the com-
munication overhead, and dynamically adjusts the degree of
parallelism to ensure that decline ratios are kept at their SLA.

REFERENCES

Einziger et al. Faster placement of virtual machines through adaptive
caching. In INFOCOM, 2019.

OpenStack compute schedulers, 2018. https://docs.openstack.org/.
Hindman et al. Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

Schwarzkopf et al. Omega: flexible, scalable schedulers for large compute
clusters. In SIGOPS EuroSys, 2013.

(1]

(2]
3]

[4

[}

