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Abstract

Objective: To identify the impact of segmentation methods and intensity
discretization on radiomic features (RFs) extraction from 68Ga-DOTA-TOC PET images
in patients with neuroendocrine tumors.
Methods: Forty-nine patients were retrospectively analyzed. Tumor contouring was
performed manually by four different operators and with a semi-automatic edge-
based segmentation (SAEB) algorithm. Three SUVmax fixed thresholds (20, 30, 40%)
were applied. Fifty-one RFs were extracted applying two different intensity rescale
factors for gray-level discretization: one absolute (AR60 = SUV from 0 to 60) and one
relative (RR = min-max of the VOI SUV). Dice similarity coefficient (DSC) was
calculated to quantify segmentation agreement between different segmentation
methods. The impact of segmentation and discretization on RFs was assessed by
intra-class correlation coefficients (ICC) and the coefficient of variance (COVL). The
RFs’ correlation with volume and SUVmax was analyzed by calculating Pearson’s
correlation coefficients.
Results: DSC mean value was 0.75 ± 0.11 (0.45–0.92) between SAEB and operators
and 0.78 ± 0.09 (0.36–0.97), among the four manual segmentations. The study
showed high robustness (ICC > 0.9): (a) in 64.7% of RFs for segmentation methods
using AR60, improved by applying SUVmax threshold of 40% (86.5%); (b) in 50.9% of
RFs for different SUVmax thresholds using AR60; and (c) in 37% of RFs for
discretization settings using different segmentation methods. Several RFs were not
correlated with volume and SUVmax.
Conclusions: RFs robustness to manual segmentation resulted higher in NET 68Ga-
DOTA-TOC images compared to 18F-FDG PET/CT images. Forty percent SUVmax
thresholds yield superior RFs stability among operators, however leading to a
possible loss of biological information. SAEB segmentation appears to be an optimal
alternative to manual segmentation, but further validations are needed. Finally,
discretization settings highly impacted on RFs robustness and should always be
stated.

Keywords: Texture analysis, Radiomics, Neuroendocrine tumor, Robustness, 68Ga-
DOTATOC PET/CT, Semi-automatic segmentation
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Introduction
Neuroendocrine tumors (NET) are a heterogeneous group of malignancies represented by dif-
ferent histological subtypes and different primary locations [1]. Histopathology is crucial in
tumor classification and Ki-67 is currently used to define tumor grading in GEP NET [2].
However, the assessment of tumor aggressiveness is generally assessed by lesion biopsy, lead-
ing to a potential grading underestimation [3], since tumor heterogeneity is both spatial (inter-
and intra-tumoral heterogeneity) and time-related (more aggressive cell clones developing
over time) [4, 5]. Thus, although multiple-lesion biopsy sampling is not feasible, grading het-
erogeneity among primary and secondary lesions is not negligible [6]. New generation imaging
technologies, including positron emission tomography (PET), might offer its contribution in
the evaluation of tumor heterogeneity [7–9]. At present, PET imaging with 68Ga-DOTA-pep-
tides analog to the somatostatin receptors (SSTR) is considered the state of the art to quantify
SST receptors in vivo [10, 11], while 18F-fluorodeoxyglucose (18F-FDG) PET-CT is used to
metabolically characterize more aggressive and higher grade NET lesions [12]. This dual ap-
proach has been recently evaluated leading to the development of the NETPET score [13].
Nevertheless, the simple in vivo quantification of receptor expression is not sufficient to
characterize the biology of the tumor and the intra-patients and intra-tumor heterogeneity.
This drawback might be solved with a better characterization of tumor heterogeneity by the
extraction of radiomic features (RFs), as a surrogate biomarker for NET lesions
characterization [14], from the 68Ga-DOTA-peptide PET-CT [15–18]. While scientific interest
in radiomics applied to PET imaging is rapidly increasing, the methodological approach needs
to be validated and standardized and, thus, harmonization among protocols is needed [19–
21]. Indeed, imaging analysis procedures such as tumor segmentation methods, gray-level in-
tensity discretization, and image reconstruction algorithm can affect the RFs [22–25]. Robust-
ness analysis measures the variability of RFs concerning these factors. The identification of
robust RFs for 68Ga-DOTA-TOC PET-CT is fundamental since this innovative modality
might be used as a prognostic and predictive tool for evaluating tumor heterogeneity in NET.
To our knowledge, there is only one study evaluating the robustness of RFs in function of
image acquisition and reconstruction parameters for 68Ga-DOTA-peptides PET/CT (without
considering the consequences of different segmentation approaches) [26], while the extraction
of RFs and the assessment of RFs robustness in 18F-FDG PET/CT imaging has been broadly
explored [27–31]. There are several reasons to evaluate the RFs robustness specifically in
68Ga-DOTA-peptide tracers: a diverse range of positrons compromising the resolution in PET
in a different way comparing to 18F-FDG [32–34]; a different physiological distribution of
68Ga-DOTA-peptide; and a high inter-patient and intra-patient heterogeneity for both physio-
logical and pathological uptake comparing to 18F-FDG [35], leading to the necessity to provide
different segmentation methods and discretization settings.

The objective of this study was to evaluate the robustness of RFs in function of seg-
mentation methods and discretization settings in 68Ga-DOTATOC PET/CT images.

Materials and methods
Patient selection
270 consecutive patients affected by NET referred to our institution to perform 68Ga-
DOTA-TOC PET/CT between February 2017 and July 2019 were reviewed (IRB proto-
col: CS2/477). The inclusion criteria of the present study were (1) histologically proven
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NET, (2) patients who underwent 68Ga-DOTA-TOC PET/CT for staging in treatment-
naïve patients or restaging after surgery, and (3) willing to sign an informed consent
form (ICF). Exclusion criteria were (1) age < 18 years and (2) previous systemic therap-
ies (e.g., somatostatin analogs, chemotherapy, everolimus, and peptide receptor radio-
nuclide therapy). Forty-nine patients with a total of 60 lesions matched the inclusion
criteria and were considered in this analysis. Primary tumor sites were GEP-NET, lung
NET, and others NET in 77.5% (38/49), 18.4% (9/49), and 4.1% (2/49) of cases, respect-
ively. Patients’ characteristics are exposed in detail in Table 1.

PET/CT acquisition and image reconstruction
All patients underwent PET/CT on an analog 3-dimensional (3D) PET scanner (Philips
Gemini Dual-slice EXP scanner—PET AllegroTM system with Brilliance CT scanner—
Philips Medical Systems, Cleveland, OH). In accordance with the procedural guidelines
for PET imaging [36–38], the injected tracer activity was 145.1 ± 25.3 MBq of 68Ga-
DOTA-TOC (range, 100–212 MBq). After 60 min of uptake and following free-
breathing CT acquisition for attenuation correction from the vertex of the skull to the

Table 1 Demographic data and NET characteristics of study subjects (values are given as mean ±
standard deviation and range)
Demographic data and tumor characteristics

Characteristic n %

Number of patients 49 100%

Sex Female 22 44.9%

Male 27 55.1%

Age, years
mean ± sd (range)

61.7 ± 14.1 (18–83)

Weight, kg
mean ± sd (range)

76.2 ± 17.1 (48–115)

Injected tracer activity, MBq
mean ± sd (range)

145.1 ± 25.2 (100–212)

Primary GEP-NET total 38 77.5%

Pancreatic 22 57.9%

Gastro-enteric 16 42.1%

Lung 9 18.4%

Other 2 4.1%

NET histological sub-types G1 33 67.4%

G2 6 12.2%

G3 1 2.0%

Atypical carcinoid 4 8.2%

Typical carcinoid 5 10.2%

KI67, %
mean ± sd (range)

4.2 ± 12.9 (1–90)

Number of lesions Primary 42 70.0%

Liver metastasis 8 13.3%

Bone metastasis 0 0%

Lymph node metastasis 9 15.0%

Other metastasis 1 1.7%
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mid-thighs (5 mm slice, 40 mAs, and 120 kVp), PET data were acquired in 3-
dimensional (3D) mode, covering the same anatomical region of the CT, with 2.5 min
per bed position and 6–8 bed positions per patient. The PET scans were reconstructed
by ordered subset expectation maximization (OSEM) algorithm (3D-RAMLA), with the
following settings: 4 iterations, 8 subsets, and field of view (FOV) of 576 mm. For all re-
constructions, matrix size was 144 × 144 voxels, resulting in isotropic voxels of 4.0 ×
4.0 × 4.0 mm3. All acquisitions were corrected for photon attenuation (using the corre-
sponding CT image), as well as for scatter and random coincidences.

Lesion segmentation
For each lesion, a three-dimensional volume of interest (VOI) was manually delineated
(VOIm), slice-by-slice, in the OSEM PET images by four independent observers, all nu-
clear medicine physicians (FC, VL, GP, and BD with 10, 7, 5, and 3 years of expertise,
respectively), by using the software LifeX v. 4.81 (IMIV/CEA, Orsay, France—www.
lifexsoft.org) [39].

In additional, each lesion was also contoured using a semi-automatic edge-based
(SAEB) algorithm (VOISAEB), homemade implemented in MATLAB (MathWorks)
code, based on the active contour model proposed by Chan and Vese [40]. The algo-
rithm is semi-automatic since the operator intervention was required in order to insert
the central point of the lesion (Fig. 1a). The developed MATLAB graphical user inter-
face allowed the operator to view both the PET and the CT images separately. Edge en-
hancement filters were applied to emphasize the edges of the lesion (Fig. 1b) and,
subsequently, a curve was evolved iteratively on both the original and the edge-
enhanced image in order to match the lesion contours by using a level-set formulation
(Fig. 1c). The iteration 0 of the level-set, which is the initialization, was the center of
the lesion indicated by the operator. The final contour of the lesion (VOISAEB) was
achieved at the end of the iterative level-set.

A threshold-based segmentation approach was implemented applying three different
thresholds on both manual VOIm and VOISAEB, defined as 20, 30, and 40% of the SUV-

max (VOI20, VOI30, and VOI40, respectively), as recently suggested by Toriihara et al.
[41]. This approach is different from the well-established isocontouring methods fre-
quently used for 18F-FDG PET/CT, in which the threshold is applied to larger regions
of interest containing the tumor [42, 43]. In 68Ga-DOTA-peptide tracers, the method-
ology proposed by Toriihara is preferable to exclude surrounding physiological uptake,
especially for the segmentation of liver metastases which are very prevalent in meta-
static neuroendocrine tumors.

Intensity discretization
To perform RFs calculation, in particular of textural features, voxels values were rede-
fined considering a limited number of SUV intensity values (gray-level intensity
discretization process). To investigate the effect of gray-level discretization, the analysis
was performed with two different settings of intensity discretization:

– Absolute resampling with 64 number of gray levels (bins) between 0 and 60 SUV
units (“fixed bin size” equal to 0.95, using the IBSI nomenclature [44]), called AR60,
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Fig. 1 (See legend on next page.)
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since most of the lesions presented a SUVmax between 0 and 60, as showed in
supplemental material (Figure S1A);

– Relative resampling (RR), between minimum and-maximum SUV of the VOI, using
a “fixed bin number” equal to 64 number of gray levels (using the IBSI nomencla-
ture [44]) and different sizes of bin, according to the uptake characteristic of each
lesion/VOI.

Number of gray levels was set to 64 based on the results of previous studies regarding
RFs robustness in 18F-FDG PET/CT [45–47]. The spatial resampling was of 4 × 4 × 4
mm3, according to the resolution limits of the Philips Gemini Dual-slice EXP PET/CT
scanner.

Radiomic features extraction
Radiomics features were extracted from PET images in all the VOIm segmented by each
nuclear medicine physician, in all the VOISAEB and in all the corresponding VOI20,
VOI30, and VOI40 using the two intensity rescaling factors (AR60 and RR). Hence, a
total of 40 combinations of VOI, threshold, and intensity rescaling factors were tested,
as shown in Fig. 2.

A total of fifty-one semi-quantitative PET parameters and RFs were extracted, using
LifeX description:

– Ten conventional PET parameters: such as SUVmax, SUVmean, SUVmin, SUVpeak,
SUVstd SUV quartiles (SUVQ1, SUVQ2, and SUVQ3) and total lesion somatostatin
receptor expression (TLSRE);

– Five descriptors of the image intensity histogram: HISTO_Skewness (asymmetry),
HISTO_Kurtosis (flatness), HISTO_Energy (uniformity), HISTO_Entropy_log2, and
_log10 (randomness);

– Four shape-based features, that describe shape and size of VOI: SHAPE_Volume
(mL), SHAPE_Volume (voxels), SHAPE_Sphericity, and SHAPE_Compacity; and

– Thirty-two textural features: (a) seven features from gray-level co-occurrence
matrix (GLCM): describing the correlation between pair of voxels in 13 direc-
tions of a three-dimensional space; (b) eleven features from gray-level run
length matrix (GLRLM): describing the number and length of run with a cer-
tain level of gray in 13 directions of a three-dimensional space; (c) eleven fea-
tures from gray-level zone length matrix (GLZLM): describing the number and
size of zone with a certain level of gray in 13 directions of a three-dimensional

(See figure on previous page.)
Fig. 1 Semi-automatic edge-based (SAEB) algorithm workflow. The algorithm requires the intervention of
an operator to insert the central point of the lesion (a) through an interface created in MATLAB, the
operator can view both the PET and the CT images separately. As a second step, edge-preserving filters are
applied to the image to emphasize the edge of the lesion (b) and, after that, and a level-set is used which
is a shape that evolves iteratively over the image (c). The level-set acts both on the original image of the
lesion and on the filtered image in which the contours are highlighted. The iteration 0 of the level set,
which would be the initialization, is the center of the lesion indicated by the operator. The final outline of
the lesion is achieved at the end of the process
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space; (d) three features from neighborhood gray-level different matrix (NGLD
M): describing the difference between a voxel and its connected neighbors.

Detailed descriptions of these features can be found in the LifeX documentation
(www.lifexsoft.org) [39]. Supplementary Table 1 reports the complete list of computed
RFs and the comparison between LifeX and the Imaging Biomarker Standardization
Initiative (IBSI) nomenclatures [44]. The GLZLM features of LifeX correspond to gray-
level size zone matrix (GLSZM) of IBSI; the two features categories gray-level distance
zone matrix (GLDZM) and neighboring gray tone difference matrix (NGTDM) are not
measurable in LifeX.

Statistical analyses
Quantitative comparisons between VOIm and VOISAEB were evaluated through the
Dice similarity coefficient (DSC), which measures spatial overlap between two different
segmentations of the same lesion:

DSC V 1; V 2ð Þ … 2
V 1�V 2j j

V 1j j þ V 2j j

where |V1| and |V2| were the volumes of the two segmentations to be compared,
|V1 � V2| was the volume of the overlap between V1 and V2. DSC values can range from
0, when the two segmentations have no overlap, to 1 when the two segmentations are
coincident [42].

The algorithm for simultaneous truth and performance level estimation (STAPLE),
which takes a collection of segmentations of an image and computes a probabilistic es-
timate of the true segmentation [48], was also used to compare VOISAEB with the “true”
segmentation (VOISTAPLE) derived by the four VOIm.

Robustness of RFs was assessed by two-way mixed effects intra-class correlation coef-
ficients (ICC) to evaluate consistency and coefficient of variance for each lesion (COVL)
to evaluate agreement in the various settings.

The intra-class correlation coefficients (ICC) was defined as:

Fig. 2 Flow chart of the ICC and COVL analysis applied to assess radiomic features robustness according to
segmentation and discretization
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ICC …
BMS � RMS

BMS þ N � 1ð Þ � RMS

where BMS is the between-subjects mean square, RMS is the residual mean square
and N is the number of measurements of the RF (e.g., 2 in the case of intensity
discretization, being AR60 and RR). RFs were considered highly robust in case of ICC
> 0.9, robust if ICC > 0.8, moderately robust if ICC was between 0.5 and 0.8 and poorly
robust if ICC was < 0.5 [25, 49, 50].

The coefficient of variation (COVL), which is commonly used to measure relative dis-
persion, calculated for each lesion (L) was defined as:

COVL … 100 �

��������������������������������������������������
1

N � 1

XN

k…1
mL

k � mL� �2
r

mL

where mL
k is the measurement of RFs for lesion L for a specific segmentation and in-

tensity discretization (k) and mL is the mean value of lesion L over the considered com-
binations of segmentation and discretization approaches, as presented in the study of
Bailly et al. [26]. RFs with low percentage of COVL are characterized by low dispersion,
on contrary RFs with high percentage of COVL are characterized by high dispersion.

To investigate the relationship between RFs and lesion volume and SUVmax, a Pear-
son’s correlation analysis was carried out. To consider a unique RF value for every seg-
mentation, RFs values were averaged across segmentations.

All analyses were performed using statistical R software (R Foundation, Vienna,
Austria [51]).

Results
Quantitative comparison of manual and SAEB segmentation
Mean value of DSC comparing VOISAEB with VOISTAPLE was 0.75 ± 0.11 (0.45–0.92),
while mean value of DSC among VOIm was 0.78 ± 0.03 (0.75–0.83). Examples of seg-
mentation performed by SAEB and operators for three different lesions are shown in
Fig. 3. DSC boxplots between VOISAEB and the different VOIm and between manual
operators for each lesion are reported in Fig. 4a, b.

Comparison between operators showed a perfect segmentation overlap (DSC = 1) for
24 out of 60 lesions, applying the 40% SUVmax threshold; mean DSC using different
SUVmax threshold are reported in Fig. 4c.

Mean DSC values improved as the SUVmax threshold applied increases. The volume
distributions for different thresholds are shown in supplementary material (Figure S1B).

Impact of different segmentation approaches on RF
Using no threshold and applying AR60 intensity rescale factors, 64.7% of RFs showed
high robustness (ICC > 0.9) to segmentation (7/10 conventional, 3/6 histogram, 2/4
shape, and 21/31 textural) (Fig. 5a).

Using a 40% SUVmax threshold, the robustness of RFs to segmentation (ICC > 0.9) in-
creased to 86.5% of RFs. An increase of the SUVmax threshold produced a substantial
increase of ICC of the following features: CONV_SUVmin, CONV_SUVQ1, CONV_
SUVQ2, SHAPE_Sphericity, SHAPE_Compacity, GLCM_Correlation, NGLDM_
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Contrast, NGLDM_Busyness, GLZLM_LZE, GLZLM_LZLGE, GLZLM_LZHGE, and
GLZLM_ZP while lower increase was observed for the rest of features (Fig. 5a). Fur-
ther, using a 40% SUVmax threshold, textural features were not computed in 22 lesions
due to low number of voxels.

About the corresponding COVL analysis, when no threshold was applied, the grade
of dispersion of the majority of RFs was rather low: median COVL values were below
10% for 47% of RFs and below 20% for 75% of RFs (Fig. 5b). Only two RFs (GLZLM_
LZE and GLZLM_LZLGE) showed a COVL > 50%. Using a 40% SUVmax threshold, me-
dian values of COVL were lower than 10% for all the RFs (Fig. 5c).

ICC and COVL analysis regarding robustness to SUVmax thresholds (no threshold,
20%, 30%, 40%) using AR60 are shown in the supplemental material (Figure S2). 50.9%
of RFs (5/10 conventional, 3/6 histogram, 0/4 shape and 18/31 textural) showed high
robustness (ICC > 0.9). The results of COVL showed a high variability of the majority
of RFs in function of different SUVmax thresholds. Median value of COVL was < 10%
for few RFs, namely SUVmax, SUVpeak (0.5 ml and 1 ml), HISTO_Entropy (log10 and

Fig. 3 Example of segmentation (single slice images) of lesions extracted from three different examined
patients. Panels a, d, and g show a lung primary NET; panels b, e, and h show metastatic lesion in a
mediastinal lymph node; panels c, f, and i show a metastatic liver lesion. The first row shows the maximum
intensity projection (MIP) of 68Ga-DOTATOC of the three different patients where black arrows point at the
segmented lesions. In the second row, manual contours performed by the four operators are represented
in different colors. The third row shows the STAPLE contour (in green) and the semi-automatic edge-based
segmentation (SAEB) algorithm result (in red)
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log2), GLCM_Homogeneity, GLCM_Contrast, GLCM_Entropy (log10 and log2), GLCM_
Dissimilarity, GLRLM_SRE, GLRLM_LRE, GLRLM_RP, GLZLM_SZE, and GLZM_ZP.

Impact of different discretization settings on RFs
Comparing the five VOI delineations (4 VOIm and VOISAEB) and applying no SUVmax

threshold (Fig. 6a), median value of ICC for the two intensity discretization approaches

Fig. 4 Boxplots of mean DSC comparing the semi-automatic edge-based algorithm (Alg) with manual
segmentations and with STAPLE (a), comparing manual segmentations by different operators (b) and comparing
different manual segmentations and Alg with STAPLE for different SUVmax thresholds (NT, no threshold applied) (c)
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(AR60 and RR) was equal to 1 for all conventional and shape features, HISTO_Skew-
ness and HISTO_Kurtosis (not affected by the discretization), and for only three tex-
tural features, namely GLCM_Correlation, GLRLM_RLNU, and GLZLM_GLNU.
Overall, the percentage of highly robust features was 37% (10/10 conventional, 2/5
histogram, 4/4 shape, and 3/32 textural). The majority of the remaining textural fea-
tures showed very poor robustness to discretization settings except for NGLDM_
Coarseness which had a median ICC > 0.7. The COVL analysis (Fig. 6b) highlighted in
general low COVL values for all the RFs with high ICC (conventional, shape, HISTO_
Skewness and HISTO_Kurtosis, GLCM_Correlation, GLRLM_RLNU, and GLZLM_
GLNU). The majority of the other textural features were characterized by a very high
dispersion, corresponding to a high percentage of COVL value. Only GLCM_Entropy
(log10 and log2), GLRLM_SRE, GLRLM_LRE, GLRLM_RP presented a COVL < 10%,
despite a corresponding low ICC for these RFs.

RFs correlation with SUVmax and volume
Pearson correlation coefficients of RFs with volume (for AR60, without SUVmax thresh-
old and with 40% SUVmax threshold applied, respectively) and with SUVmax of the ROI
(AR60 and RR, no threshold applied) are shown in Fig. 7.

The following RFs showed high correlation (r > 0.9) with volume, regardless of SUV-

max threshold: TLSRE, SHAPE_Compacity, GLRLM_RLNU, and GLZLM_GLNU. Re-
garding correlation with SUVmax, the following RFs showed very high correlation (r >
0.9) when AR60 was employed: HISTO_Entropy (both_log10 and_log2), GLCM_Dis-
similarity, GLRLM_SRHGE, GLZLM_HGZE, and GLZLM_SZHGE. When RR was
used, no RFs were highly correlated with SUVmax (except for most part of conventional
SUV features).

Fig. 5 a Bar diagrams of intra-class correlation coefficient (ICC) values of RFs robustness to segmentation
(different operators and semi-automatic algorithm), using AR60 and applying different SUVmax thresholds
(no threshold and 40% SUVmax threshold applied). b Boxplot of percentage COVL for segmentation (for the
first operator, results similar for the other operators) for each RFs, using AR60 and applying no SUVmax

threshold. c Boxplot of percentage COVL applying 40% SUVmax threshold. TLG (total lesion glycolysis)
conventional parameter in our study corresponded to the TLSRE (total lesion somatostatin
receptor expression)
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Discussion
Our study sought to identify robust RFs in 68Ga-DOTA-TOC PET/CT, as a result of
different segmentation and gray-level intensity discretization methods of the images.
The major findings of our study were the following: (a) 64.7% of RFs (7/10 conven-
tional, 3/6 histogram, 2/4 shape, and 21/31 textural) showed high robustness in terms
of consistency (ICC > 0.9) and agreement (low median COVL value) to different opera-
tors without SUVmax threshold applied (manual segmentation); (b) increasing the SUV-

max isocontouring threshold had a positive effect on RFs robustness to segmentation.
However, this approach might lead to a loss of important biological information on the
population studied and reduction of analyzable lesions with textural features due to low
number of voxels; (c) quantitative comparison between a semi-automatic edge-based
(SAEB) algorithm and manual segmentation showed a dice similarity coefficient (DSC)
of 0.75 ± 0.11 comparable to DSC between operators (0.78 ± 0.03). These results sug-
gest that a semi-automatic algorithm might be able to aid expert segmentation to re-
duce operator variability and analysis time [36, 42]; (d) the use of absolute intensity
rescaling factor (AR60) achieved higher robustness of RFs to segmentation than relative
(RR) intensity rescaling factor.

In monocentric studies, image segmentation is one of the first step to take into ac-
count in radiomic analysis, since it is a possible source of RFs variability. Overall, RFs
robustness to segmentation resulted to be quite good applying no SUVmax threshold
(ICC > 0.9 for 64.7% RFs), using AR60 intensity discretization method (Fig. 5a). Only
one morphological feature, SHAPE_Sphericity, resulted not robust to segmentation.
However, its ICC value was furtherly decreased from Lifex software due to an assigned

Fig. 6 a Bar diagrams of intra-class correlation coefficient (ICC) values of RFs robustness to different
intensity rescale factors (RR and AR60) when no threshold was applied for different operators and semi-
automatic algorithm. Bars in blue show the median ICC between different segmentations, applying no
threshold. Range error bars (in black) encompass the lowest and highest values for different operators. b
Boxplot of COVL for different intensity rescale factors (RR and AR60), applying no threshold, for the first
operator (results superposable for the other operators). TLG (total lesion glycolysis) conventional parameter
in our study corresponds to the TLSRE (total lesion somatostatin receptor expression)
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