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Abstract

Objective: To identify the impact of segmentation methods and intensity
discretization on radiomic features (RFs) extraction from 68Ga-DOTA-TOC PET images
in patients with neuroendocrine tumors.

Methods: Forty-nine patients were retrospectively analyzed. Tumor contouring was
performed manually by four different operators and with a semi-automatic edge-
based segmentation (SAEB) algorithm. Three SUVmax fixed thresholds (20, 30, 40%)
were applied. Fifty-one RFs were extracted applying two different intensity rescale
factors for gray-level discretization: one absolute (AR60 = SUV from 0 to 60) and one
relative (RR = min-max of the VOI SUV). Dice similarity coefficient (DSC) was
calculated to quantify segmentation agreement between different segmentation
methods. The impact of segmentation and discretization on RFs was assessed by
intra-class correlation coefficients (ICC) and the coefficient of variance (COVL). The
RFs’ correlation with volume and SUVmax was analyzed by calculating Pearson’s
correlation coefficients.

Results: DSC mean value was 0.75 ± 0.11 (0.45–0.92) between SAEB and operators
and 0.78 ± 0.09 (0.36–0.97), among the four manual segmentations. The study
showed high robustness (ICC > 0.9): (a) in 64.7% of RFs for segmentation methods
using AR60, improved by applying SUVmax threshold of 40% (86.5%); (b) in 50.9% of
RFs for different SUVmax thresholds using AR60; and (c) in 37% of RFs for
discretization settings using different segmentation methods. Several RFs were not
correlated with volume and SUVmax.

Conclusions: RFs robustness to manual segmentation resulted higher in NET 68Ga-
DOTA-TOC images compared to 18F-FDG PET/CT images. Forty percent SUVmax

thresholds yield superior RFs stability among operators, however leading to a
possible loss of biological information. SAEB segmentation appears to be an optimal
alternative to manual segmentation, but further validations are needed. Finally,
discretization settings highly impacted on RFs robustness and should always be
stated.

Keywords: Texture analysis, Radiomics, Neuroendocrine tumor, Robustness, 68Ga-
DOTATOC PET/CT, Semi-automatic segmentation
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Introduction
Neuroendocrine tumors (NET) are a heterogeneous group of malignancies represented by dif-

ferent histological subtypes and different primary locations [1]. Histopathology is crucial in

tumor classification and Ki-67 is currently used to define tumor grading in GEP NET [2].

However, the assessment of tumor aggressiveness is generally assessed by lesion biopsy, lead-

ing to a potential grading underestimation [3], since tumor heterogeneity is both spatial (inter-

and intra-tumoral heterogeneity) and time-related (more aggressive cell clones developing

over time) [4, 5]. Thus, although multiple-lesion biopsy sampling is not feasible, grading het-

erogeneity among primary and secondary lesions is not negligible [6]. New generation imaging

technologies, including positron emission tomography (PET), might offer its contribution in

the evaluation of tumor heterogeneity [7–9]. At present, PET imaging with 68Ga-DOTA-pep-

tides analog to the somatostatin receptors (SSTR) is considered the state of the art to quantify

SST receptors in vivo [10, 11], while 18F-fluorodeoxyglucose (18F-FDG) PET-CT is used to

metabolically characterize more aggressive and higher grade NET lesions [12]. This dual ap-

proach has been recently evaluated leading to the development of the NETPET score [13].

Nevertheless, the simple in vivo quantification of receptor expression is not sufficient to

characterize the biology of the tumor and the intra-patients and intra-tumor heterogeneity.

This drawback might be solved with a better characterization of tumor heterogeneity by the

extraction of radiomic features (RFs), as a surrogate biomarker for NET lesions

characterization [14], from the 68Ga-DOTA-peptide PET-CT [15–18]. While scientific interest

in radiomics applied to PET imaging is rapidly increasing, the methodological approach needs

to be validated and standardized and, thus, harmonization among protocols is needed [19–

21]. Indeed, imaging analysis procedures such as tumor segmentation methods, gray-level in-

tensity discretization, and image reconstruction algorithm can affect the RFs [22–25]. Robust-

ness analysis measures the variability of RFs concerning these factors. The identification of

robust RFs for 68Ga-DOTA-TOC PET-CT is fundamental since this innovative modality

might be used as a prognostic and predictive tool for evaluating tumor heterogeneity in NET.

To our knowledge, there is only one study evaluating the robustness of RFs in function of

image acquisition and reconstruction parameters for 68Ga-DOTA-peptides PET/CT (without

considering the consequences of different segmentation approaches) [26], while the extraction

of RFs and the assessment of RFs robustness in 18F-FDG PET/CT imaging has been broadly

explored [27–31]. There are several reasons to evaluate the RFs robustness specifically in
68Ga-DOTA-peptide tracers: a diverse range of positrons compromising the resolution in PET

in a different way comparing to 18F-FDG [32–34]; a different physiological distribution of
68Ga-DOTA-peptide; and a high inter-patient and intra-patient heterogeneity for both physio-

logical and pathological uptake comparing to 18F-FDG [35], leading to the necessity to provide

different segmentation methods and discretization settings.

The objective of this study was to evaluate the robustness of RFs in function of seg-

mentation methods and discretization settings in 68Ga-DOTATOC PET/CT images.

Materials and methods
Patient selection

270 consecutive patients affected by NET referred to our institution to perform 68Ga-

DOTA-TOC PET/CT between February 2017 and July 2019 were reviewed (IRB proto-

col: CS2/477). The inclusion criteria of the present study were (1) histologically proven
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NET, (2) patients who underwent 68Ga-DOTA-TOC PET/CT for staging in treatment-

naïve patients or restaging after surgery, and (3) willing to sign an informed consent

form (ICF). Exclusion criteria were (1) age < 18 years and (2) previous systemic therap-

ies (e.g., somatostatin analogs, chemotherapy, everolimus, and peptide receptor radio-

nuclide therapy). Forty-nine patients with a total of 60 lesions matched the inclusion

criteria and were considered in this analysis. Primary tumor sites were GEP-NET, lung

NET, and others NET in 77.5% (38/49), 18.4% (9/49), and 4.1% (2/49) of cases, respect-

ively. Patients’ characteristics are exposed in detail in Table 1.

PET/CT acquisition and image reconstruction

All patients underwent PET/CT on an analog 3-dimensional (3D) PET scanner (Philips

Gemini Dual-slice EXP scanner—PET AllegroTM system with Brilliance CT scanner—

Philips Medical Systems, Cleveland, OH). In accordance with the procedural guidelines

for PET imaging [36–38], the injected tracer activity was 145.1 ± 25.3MBq of 68Ga-

DOTA-TOC (range, 100–212MBq). After 60 min of uptake and following free-

breathing CT acquisition for attenuation correction from the vertex of the skull to the

Table 1 Demographic data and NET characteristics of study subjects (values are given as mean ±
standard deviation and range)

Demographic data and tumor characteristics

Characteristic n %

Number of patients 49 100%

Sex Female 22 44.9%

Male 27 55.1%

Age, years
mean ± sd (range)

61.7 ± 14.1 (18–83)

Weight, kg
mean ± sd (range)

76.2 ± 17.1 (48–115)

Injected tracer activity, MBq
mean ± sd (range)

145.1 ± 25.2 (100–212)

Primary GEP-NET total 38 77.5%

Pancreatic 22 57.9%

Gastro-enteric 16 42.1%

Lung 9 18.4%

Other 2 4.1%

NET histological sub-types G1 33 67.4%

G2 6 12.2%

G3 1 2.0%

Atypical carcinoid 4 8.2%

Typical carcinoid 5 10.2%

KI67, %
mean ± sd (range)

4.2 ± 12.9 (1–90)

Number of lesions Primary 42 70.0%

Liver metastasis 8 13.3%

Bone metastasis 0 0%

Lymph node metastasis 9 15.0%

Other metastasis 1 1.7%
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mid-thighs (5 mm slice, 40 mAs, and 120 kVp), PET data were acquired in 3-

dimensional (3D) mode, covering the same anatomical region of the CT, with 2.5 min

per bed position and 6–8 bed positions per patient. The PET scans were reconstructed

by ordered subset expectation maximization (OSEM) algorithm (3D-RAMLA), with the

following settings: 4 iterations, 8 subsets, and field of view (FOV) of 576 mm. For all re-

constructions, matrix size was 144 × 144 voxels, resulting in isotropic voxels of 4.0 ×

4.0 × 4.0 mm3. All acquisitions were corrected for photon attenuation (using the corre-

sponding CT image), as well as for scatter and random coincidences.

Lesion segmentation

For each lesion, a three-dimensional volume of interest (VOI) was manually delineated

(VOIm), slice-by-slice, in the OSEM PET images by four independent observers, all nu-

clear medicine physicians (FC, VL, GP, and BD with 10, 7, 5, and 3 years of expertise,

respectively), by using the software LifeX v. 4.81 (IMIV/CEA, Orsay, France—www.

lifexsoft.org) [39].

In additional, each lesion was also contoured using a semi-automatic edge-based

(SAEB) algorithm (VOISAEB), homemade implemented in MATLAB (MathWorks)

code, based on the active contour model proposed by Chan and Vese [40]. The algo-

rithm is semi-automatic since the operator intervention was required in order to insert

the central point of the lesion (Fig. 1a). The developed MATLAB graphical user inter-

face allowed the operator to view both the PET and the CT images separately. Edge en-

hancement filters were applied to emphasize the edges of the lesion (Fig. 1b) and,

subsequently, a curve was evolved iteratively on both the original and the edge-

enhanced image in order to match the lesion contours by using a level-set formulation

(Fig. 1c). The iteration 0 of the level-set, which is the initialization, was the center of

the lesion indicated by the operator. The final contour of the lesion (VOISAEB) was

achieved at the end of the iterative level-set.

A threshold-based segmentation approach was implemented applying three different

thresholds on both manual VOIm and VOISAEB, defined as 20, 30, and 40% of the SUV-

max (VOI20, VOI30, and VOI40, respectively), as recently suggested by Toriihara et al.

[41]. This approach is different from the well-established isocontouring methods fre-

quently used for 18F-FDG PET/CT, in which the threshold is applied to larger regions

of interest containing the tumor [42, 43]. In 68Ga-DOTA-peptide tracers, the method-

ology proposed by Toriihara is preferable to exclude surrounding physiological uptake,

especially for the segmentation of liver metastases which are very prevalent in meta-

static neuroendocrine tumors.

Intensity discretization

To perform RFs calculation, in particular of textural features, voxels values were rede-

fined considering a limited number of SUV intensity values (gray-level intensity

discretization process). To investigate the effect of gray-level discretization, the analysis

was performed with two different settings of intensity discretization:

– Absolute resampling with 64 number of gray levels (bins) between 0 and 60 SUV

units (“fixed bin size” equal to 0.95, using the IBSI nomenclature [44]), called AR60,

Liberini et al. EJNMMI Physics            (2021) 8:21 Page 4 of 21

http://www.lifexsoft.org
http://www.lifexsoft.org


Fig. 1 (See legend on next page.)
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since most of the lesions presented a SUVmax between 0 and 60, as showed in

supplemental material (Figure S1A);

– Relative resampling (RR), between minimum and-maximum SUV of the VOI, using

a “fixed bin number” equal to 64 number of gray levels (using the IBSI nomencla-

ture [44]) and different sizes of bin, according to the uptake characteristic of each

lesion/VOI.

Number of gray levels was set to 64 based on the results of previous studies regarding

RFs robustness in 18F-FDG PET/CT [45–47]. The spatial resampling was of 4 × 4 × 4

mm3, according to the resolution limits of the Philips Gemini Dual-slice EXP PET/CT

scanner.

Radiomic features extraction

Radiomics features were extracted from PET images in all the VOIm segmented by each

nuclear medicine physician, in all the VOISAEB and in all the corresponding VOI20,

VOI30, and VOI40 using the two intensity rescaling factors (AR60 and RR). Hence, a

total of 40 combinations of VOI, threshold, and intensity rescaling factors were tested,

as shown in Fig. 2.

A total of fifty-one semi-quantitative PET parameters and RFs were extracted, using

LifeX description:

– Ten conventional PET parameters: such as SUVmax, SUVmean, SUVmin, SUVpeak,

SUVstd SUV quartiles (SUVQ1, SUVQ2, and SUVQ3) and total lesion somatostatin

receptor expression (TLSRE);

– Five descriptors of the image intensity histogram: HISTO_Skewness (asymmetry),

HISTO_Kurtosis (flatness), HISTO_Energy (uniformity), HISTO_Entropy_log2, and

_log10 (randomness);

– Four shape-based features, that describe shape and size of VOI: SHAPE_Volume

(mL), SHAPE_Volume (voxels), SHAPE_Sphericity, and SHAPE_Compacity; and

– Thirty-two textural features: (a) seven features from gray-level co-occurrence

matrix (GLCM): describing the correlation between pair of voxels in 13 direc-

tions of a three-dimensional space; (b) eleven features from gray-level run

length matrix (GLRLM): describing the number and length of run with a cer-

tain level of gray in 13 directions of a three-dimensional space; (c) eleven fea-

tures from gray-level zone length matrix (GLZLM): describing the number and

size of zone with a certain level of gray in 13 directions of a three-dimensional

(See figure on previous page.)
Fig. 1 Semi-automatic edge-based (SAEB) algorithm workflow. The algorithm requires the intervention of
an operator to insert the central point of the lesion (a) through an interface created in MATLAB, the
operator can view both the PET and the CT images separately. As a second step, edge-preserving filters are
applied to the image to emphasize the edge of the lesion (b) and, after that, and a level-set is used which
is a shape that evolves iteratively over the image (c). The level-set acts both on the original image of the
lesion and on the filtered image in which the contours are highlighted. The iteration 0 of the level set,
which would be the initialization, is the center of the lesion indicated by the operator. The final outline of
the lesion is achieved at the end of the process
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space; (d) three features from neighborhood gray-level different matrix (NGLD

M): describing the difference between a voxel and its connected neighbors.

Detailed descriptions of these features can be found in the LifeX documentation

(www.lifexsoft.org) [39]. Supplementary Table 1 reports the complete list of computed

RFs and the comparison between LifeX and the Imaging Biomarker Standardization

Initiative (IBSI) nomenclatures [44]. The GLZLM features of LifeX correspond to gray-

level size zone matrix (GLSZM) of IBSI; the two features categories gray-level distance

zone matrix (GLDZM) and neighboring gray tone difference matrix (NGTDM) are not

measurable in LifeX.

Statistical analyses

Quantitative comparisons between VOIm and VOISAEB were evaluated through the

Dice similarity coefficient (DSC), which measures spatial overlap between two different

segmentations of the same lesion:

DSC V 1;V 2ð Þ ¼ 2
V 1∩V 2j j

V 1j j þ V 2j j

where |V1| and |V2| were the volumes of the two segmentations to be compared,

|V1 ∩V2| was the volume of the overlap between V1 and V2. DSC values can range from

0, when the two segmentations have no overlap, to 1 when the two segmentations are

coincident [42].

The algorithm for simultaneous truth and performance level estimation (STAPLE),

which takes a collection of segmentations of an image and computes a probabilistic es-

timate of the true segmentation [48], was also used to compare VOISAEB with the “true”

segmentation (VOISTAPLE) derived by the four VOIm.

Robustness of RFs was assessed by two-way mixed effects intra-class correlation coef-

ficients (ICC) to evaluate consistency and coefficient of variance for each lesion (COVL)

to evaluate agreement in the various settings.

The intra-class correlation coefficients (ICC) was defined as:

Fig. 2 Flow chart of the ICC and COVL analysis applied to assess radiomic features robustness according to
segmentation and discretization
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ICC ¼ BMS − RMS
BMSþ N − 1ð Þ � RMS

where BMS is the between-subjects mean square, RMS is the residual mean square

and N is the number of measurements of the RF (e.g., 2 in the case of intensity

discretization, being AR60 and RR). RFs were considered highly robust in case of ICC

> 0.9, robust if ICC > 0.8, moderately robust if ICC was between 0.5 and 0.8 and poorly

robust if ICC was < 0.5 [25, 49, 50].

The coefficient of variation (COVL), which is commonly used to measure relative dis-

persion, calculated for each lesion (L) was defined as:

COVL ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N − 1

XN

k¼1
mL

k −mL
� �2

r

mL

where mL
k is the measurement of RFs for lesion L for a specific segmentation and in-

tensity discretization (k) and mL is the mean value of lesion L over the considered com-

binations of segmentation and discretization approaches, as presented in the study of

Bailly et al. [26]. RFs with low percentage of COVL are characterized by low dispersion,

on contrary RFs with high percentage of COVL are characterized by high dispersion.

To investigate the relationship between RFs and lesion volume and SUVmax, a Pear-

son’s correlation analysis was carried out. To consider a unique RF value for every seg-

mentation, RFs values were averaged across segmentations.

All analyses were performed using statistical R software (R Foundation, Vienna,

Austria [51]).

Results
Quantitative comparison of manual and SAEB segmentation

Mean value of DSC comparing VOISAEB with VOISTAPLE was 0.75 ± 0.11 (0.45–0.92),

while mean value of DSC among VOIm was 0.78 ± 0.03 (0.75–0.83). Examples of seg-

mentation performed by SAEB and operators for three different lesions are shown in

Fig. 3. DSC boxplots between VOISAEB and the different VOIm and between manual

operators for each lesion are reported in Fig. 4a, b.

Comparison between operators showed a perfect segmentation overlap (DSC = 1) for

24 out of 60 lesions, applying the 40% SUVmax threshold; mean DSC using different

SUVmax threshold are reported in Fig. 4c.

Mean DSC values improved as the SUVmax threshold applied increases. The volume

distributions for different thresholds are shown in supplementary material (Figure S1B).

Impact of different segmentation approaches on RF

Using no threshold and applying AR60 intensity rescale factors, 64.7% of RFs showed

high robustness (ICC > 0.9) to segmentation (7/10 conventional, 3/6 histogram, 2/4

shape, and 21/31 textural) (Fig. 5a).

Using a 40% SUVmax threshold, the robustness of RFs to segmentation (ICC > 0.9) in-

creased to 86.5% of RFs. An increase of the SUVmax threshold produced a substantial

increase of ICC of the following features: CONV_SUVmin, CONV_SUVQ1, CONV_

SUVQ2, SHAPE_Sphericity, SHAPE_Compacity, GLCM_Correlation, NGLDM_
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Contrast, NGLDM_Busyness, GLZLM_LZE, GLZLM_LZLGE, GLZLM_LZHGE, and

GLZLM_ZP while lower increase was observed for the rest of features (Fig. 5a). Fur-

ther, using a 40% SUVmax threshold, textural features were not computed in 22 lesions

due to low number of voxels.

About the corresponding COVL analysis, when no threshold was applied, the grade

of dispersion of the majority of RFs was rather low: median COVL values were below

10% for 47% of RFs and below 20% for 75% of RFs (Fig. 5b). Only two RFs (GLZLM_

LZE and GLZLM_LZLGE) showed a COVL > 50%. Using a 40% SUVmax threshold, me-

dian values of COVL were lower than 10% for all the RFs (Fig. 5c).

ICC and COVL analysis regarding robustness to SUVmax thresholds (no threshold,

20%, 30%, 40%) using AR60 are shown in the supplemental material (Figure S2). 50.9%

of RFs (5/10 conventional, 3/6 histogram, 0/4 shape and 18/31 textural) showed high

robustness (ICC > 0.9). The results of COVL showed a high variability of the majority

of RFs in function of different SUVmax thresholds. Median value of COVL was < 10%

for few RFs, namely SUVmax, SUVpeak (0.5 ml and 1ml), HISTO_Entropy (log10 and

Fig. 3 Example of segmentation (single slice images) of lesions extracted from three different examined
patients. Panels a, d, and g show a lung primary NET; panels b, e, and h show metastatic lesion in a
mediastinal lymph node; panels c, f, and i show a metastatic liver lesion. The first row shows the maximum
intensity projection (MIP) of 68Ga-DOTATOC of the three different patients where black arrows point at the
segmented lesions. In the second row, manual contours performed by the four operators are represented
in different colors. The third row shows the STAPLE contour (in green) and the semi-automatic edge-based
segmentation (SAEB) algorithm result (in red)
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log2), GLCM_Homogeneity, GLCM_Contrast, GLCM_Entropy (log10 and log2), GLCM_

Dissimilarity, GLRLM_SRE, GLRLM_LRE, GLRLM_RP, GLZLM_SZE, and GLZM_ZP.

Impact of different discretization settings on RFs

Comparing the five VOI delineations (4 VOIm and VOISAEB) and applying no SUVmax

threshold (Fig. 6a), median value of ICC for the two intensity discretization approaches

Fig. 4 Boxplots of mean DSC comparing the semi-automatic edge-based algorithm (Alg) with manual
segmentations and with STAPLE (a), comparing manual segmentations by different operators (b) and comparing
different manual segmentations and Alg with STAPLE for different SUVmax thresholds (NT, no threshold applied) (c)
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(AR60 and RR) was equal to 1 for all conventional and shape features, HISTO_Skew-

ness and HISTO_Kurtosis (not affected by the discretization), and for only three tex-

tural features, namely GLCM_Correlation, GLRLM_RLNU, and GLZLM_GLNU.

Overall, the percentage of highly robust features was 37% (10/10 conventional, 2/5

histogram, 4/4 shape, and 3/32 textural). The majority of the remaining textural fea-

tures showed very poor robustness to discretization settings except for NGLDM_

Coarseness which had a median ICC > 0.7. The COVL analysis (Fig. 6b) highlighted in

general low COVL values for all the RFs with high ICC (conventional, shape, HISTO_

Skewness and HISTO_Kurtosis, GLCM_Correlation, GLRLM_RLNU, and GLZLM_

GLNU). The majority of the other textural features were characterized by a very high

dispersion, corresponding to a high percentage of COVL value. Only GLCM_Entropy

(log10 and log2), GLRLM_SRE, GLRLM_LRE, GLRLM_RP presented a COVL < 10%,

despite a corresponding low ICC for these RFs.

RFs correlation with SUVmax and volume

Pearson correlation coefficients of RFs with volume (for AR60, without SUVmax thresh-

old and with 40% SUVmax threshold applied, respectively) and with SUVmax of the ROI

(AR60 and RR, no threshold applied) are shown in Fig. 7.

The following RFs showed high correlation (r > 0.9) with volume, regardless of SUV-

max threshold: TLSRE, SHAPE_Compacity, GLRLM_RLNU, and GLZLM_GLNU. Re-

garding correlation with SUVmax, the following RFs showed very high correlation (r >

0.9) when AR60 was employed: HISTO_Entropy (both_log10 and_log2), GLCM_Dis-

similarity, GLRLM_SRHGE, GLZLM_HGZE, and GLZLM_SZHGE. When RR was

used, no RFs were highly correlated with SUVmax (except for most part of conventional

SUV features).

Fig. 5 a Bar diagrams of intra-class correlation coefficient (ICC) values of RFs robustness to segmentation
(different operators and semi-automatic algorithm), using AR60 and applying different SUVmax thresholds
(no threshold and 40% SUVmax threshold applied). b Boxplot of percentage COVL for segmentation (for the
first operator, results similar for the other operators) for each RFs, using AR60 and applying no SUVmax

threshold. c Boxplot of percentage COVL applying 40% SUVmax threshold. TLG (total lesion glycolysis)
conventional parameter in our study corresponded to the TLSRE (total lesion somatostatin
receptor expression)
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Discussion
Our study sought to identify robust RFs in 68Ga-DOTA-TOC PET/CT, as a result of

different segmentation and gray-level intensity discretization methods of the images.

The major findings of our study were the following: (a) 64.7% of RFs (7/10 conven-

tional, 3/6 histogram, 2/4 shape, and 21/31 textural) showed high robustness in terms

of consistency (ICC > 0.9) and agreement (low median COVL value) to different opera-

tors without SUVmax threshold applied (manual segmentation); (b) increasing the SUV-

max isocontouring threshold had a positive effect on RFs robustness to segmentation.

However, this approach might lead to a loss of important biological information on the

population studied and reduction of analyzable lesions with textural features due to low

number of voxels; (c) quantitative comparison between a semi-automatic edge-based

(SAEB) algorithm and manual segmentation showed a dice similarity coefficient (DSC)

of 0.75 ± 0.11 comparable to DSC between operators (0.78 ± 0.03). These results sug-

gest that a semi-automatic algorithm might be able to aid expert segmentation to re-

duce operator variability and analysis time [36, 42]; (d) the use of absolute intensity

rescaling factor (AR60) achieved higher robustness of RFs to segmentation than relative

(RR) intensity rescaling factor.

In monocentric studies, image segmentation is one of the first step to take into ac-

count in radiomic analysis, since it is a possible source of RFs variability. Overall, RFs

robustness to segmentation resulted to be quite good applying no SUVmax threshold

(ICC > 0.9 for 64.7% RFs), using AR60 intensity discretization method (Fig. 5a). Only

one morphological feature, SHAPE_Sphericity, resulted not robust to segmentation.

However, its ICC value was furtherly decreased from Lifex software due to an assigned

Fig. 6 a Bar diagrams of intra-class correlation coefficient (ICC) values of RFs robustness to different
intensity rescale factors (RR and AR60) when no threshold was applied for different operators and semi-
automatic algorithm. Bars in blue show the median ICC between different segmentations, applying no
threshold. Range error bars (in black) encompass the lowest and highest values for different operators. b
Boxplot of COVL for different intensity rescale factors (RR and AR60), applying no threshold, for the first
operator (results superposable for the other operators). TLG (total lesion glycolysis) conventional parameter
in our study corresponds to the TLSRE (total lesion somatostatin receptor expression)
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artificial feature value equal to zero for VOIs smaller than 64 voxels rather than a Not

A Number (NAN) as other RFs. This occurred also for SHAPE_Compacity for a total of

7 lesions and only for some operator, leading to a high inter-operator variability. After

removing these lesions, the ICC increased for both SHAPE_Sphericity (from ICC =

0.27 to ICC = 0.59) and SHAPE_Compacity (from ICC = 0.88 to ICC = 0.95).

In line with previous studies [52, 53], GLZLM (also called GLSZM) features and in

particular the ones measuring zones with low gray-level (SZLGE and LZLGE) resulted

to have a moderate robustness (ICC from 0.5 to 0.8) to segmentation (Fig. 5a). This is

likely related to the lower uptake in lesions edges, where operators and SAEB segmen-

tation showed a higher variability (Fig. 3).

When using AR60 intensity discretization method, the SUVmax thresholding had a

considerable impact on inter-segmentation ICC values of conventional, shape, and

GLRLM features (Fig. 5a). At the same time, however, it is clear that the SUVmax

thresholding has an important impact on the dispersion (agreement) of RFs, reducing it

Fig. 7 Pearson correlation coefficients (mean values between different operators) respectively (a) between
RFs values and volume (for no threshold and 40% SUVmax threshold applied); and (b) between RFs and
SUVmax (for AR60 and RR intensity rescale factors) without threshold. TLG (total lesion glycolysis)
conventional parameter in our study corresponds to the TLSRE (total lesion somatostatin
receptor expression)
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significantly, with a progressive flattening of all RFs COVL values toward zero (Fig. 5b,

c). These results lead to considering segmentation with a 40% SUVmax threshold as

preferable from the point of view of robustness, increasing the similarity between seg-

mentations (Fig. 4c). However, its use may lead to a significant loss of relevant informa-

tion for diagnosis and prognosis. These findings are in accordance with previous

studies, reporting that segmentation with 40% SUVmax threshold yields superior inter-

observer reproducibility of texture features in 18F-FDG PET/CT images, despite the loss

of information about tumor heterogeneity related to exclusion of voxel intensities

below the fixed 40% threshold, such as those arising from low-activity tumor regions or

tumor boundaries. However, as early demonstrated by the study of Biehl et al in 18F-

FDG PET/CT images [54], there is no consensus in the use of SUVmax threshold, be-

cause this parameter can lead to an over- and/or underestimation of lesion PET volume

compared with CT volume related to low resolution, inherent noise, high uncertainties

in lesion boundaries, and motion blurring of the lesion related to the tomography char-

acteristics [42]. Further, from a technical point of view, the use of high SUVmax thresh-

old could reduce number of voxels of the VOI denying computation of textural

features. In our opinion, the concern related to the use of threshold-based segmenta-

tion methods in 68Ga-DOTA-peptide PET-CT images must be even higher due to the

aforementioned heterogeneity of somatostatin receptors expression in neuroendocrine

tumors which may explain that currently the few studies of radiomics with 68Ga-

DOTA-peptide in the literature has been made on a manual-based segmentation [55–

58].

Image gradient showed to be useful for tumor segmentation in 18F-FDG PET/CT im-

ages, as highlighted by Pfeahler et al. [59] and Foster et al. [42]. In this study, we dem-

onstrated the suitability and added value of using an automatic image gradient

segmentation in 68Ga-DOTA-peptide PET images, given the high SUV variability and

the presence of high SUV values for normal tissues. For these reasons, we believe that

automatic and semi-automatic segmentation methods are crucial for the radiomics ana-

lysis of NET in 68Ga-DOTA-peptide images.

Our results regarding tumor segmentation accuracy are promising since DSC com-

paring the SAEB segmentation with the manual segmentations was 0.75 ± 0.11 (median

0.77). The SAEB algorithm is characterized by its hybrid nature: the curve evolves in

the image looking to both the original image (important for homogeneity) and the

edge-enhanced image (important for discontinuities detection). This feature allows the

SAEB algorithm to behave reproducibly within lesions in different locations, with dif-

ferent image appearances and different background uptakes, such as blob-like lesions

with dark background (Fig. 3a, d and g), heterogeneous lesions (Fig. 3b, e, and h)

and liver lesions where background present SUV values comparable to the lesion

(Fig. 3c, f, and i). Thus, the use of automatic and semi-automatic segmentation

methods, such as SAEB algorithm, appears to be crucial in future studies assessing

robustness or clinical significance of RFs in 68Ga-DOTA SSTR-peptide PET/CT im-

aging, in order to reduce inter- and intra-reader variability of manual segmentation

methods, which is also time-consuming [42, 44], and in order to reduce relevant

information loss secondary to the application of 40% SUVmax threshold. However,

further studies are needed to validate our semi-automatic segmentation methods

(SAEB).
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Another interesting result of our study is related to the negative impact of the relative

resampling intensity discretization (which corresponded to the fixed bin number) on

the robustness to segmentation of the majority of textural features analyzed. As the re-

scaling is carried out according to the minimum and maximum values of the VOI, the

same image is rescaled differently depending on the segmentation operator/method

used, leading to high variability also in RFs values. Recently, Zwanenburg et al. [20]

highlighted that, as both discretization methods have their particular advantages and

disadvantages, they should not be treated as equivalent. Hence, an image biomarker

should be considered different to consist of the discretization method and level, in

addition to its scale and base feature definition.

Anyway, the use of relative resampling is not recommended in PET images, as

already observed in 18F-FDG PET/CT [45–47]. At least in clinical cases, the “fixed bin

number” is intuitively less appropriate: it is based on the range of SUV intensities found

in the volume of interest, with low SUVs corresponding to low bin numbers and high

SUVs corresponding to high bin numbers; hence bin width (in SUV) and SUV range

may vary between images in a cohort, even though the number of bins is consistent

[20]. For the identification of RFs as new cancer-specific biomarker (e.g., NET), it is im-

portant that the textural features values would, be directly comparable, both inter- and

intra-patient, in order to derive meaningful conclusions. Moreover, NETs are character-

ized by an extremely variable expression of somatostatin receptors in 68Ga-DOTA-pep-

tides with a corresponding broader range for SUV values (from close to 0 up to higher

than 100) compared to 18F-FDG PET/CT, causing a greater impact of the RR in the

final discretized uptake values. This concept has been already emphasized by several

studies: beyond all the variabilities related to the tomographs, segmentations, and post-

processing settings, the robustness of RFs is also related to the tumor characteristic and

behavior [52, 60–62] and to the radiotracer analyzed, as recently demonstrated by Lu

et al. [63] that studied the stability of RFs for nasopharyngeal carcinoma on both 11C-

choline and 18F-FDG PET/CT images, with different results. In accordance with previ-

ous studies [20, 25], the impact of intensity discretization on textural features was

stronger than segmentation. This is exactly the case of textural features, where differen-

tiation between high and low-gray levels is needed, and thus, the choice of the

discretization setting is relevant. When using no SUVmax threshold, only four textural

features resulted to be consistent: GLCM_Correlation, GLRLM_RLNU, NGLDM_

Coarseness, and GLZLM_GLNU (Fig. 6).

ICC and COVL provided in general similar information. Generally, we reported low

ICC and high COVL or the opposite. Anyway, there were also RFs with low consistency

(low ICC) and high agreement (low COVL) or high consistency (high ICC) and low

agreement (high COVL). Representative examples were GLCM_Entropy (both _log10

and _log2), GLRLM_SRE, GLRLM_LRE, and GLRLM_RP which had low consistency

but good agreement (COVL < 10%) to discretization. For these RFs, although measure-

ments were not correlated when changing intensity discretization methods, the relative

percentage of deviation was low (Figure S3). On the other hand, when evaluating ro-

bustness to SUVmax threshold, ICC was sometimes high even if COVL was also high be-

cause, despite the great variability, the RFs remained correlated by changing the

parameters, as we can observe in particular for GLRLM_LGRE, GLRLM_SRLGE, GLRL

M_LRLGE, and GLZLM_LZLGE for the threshold variability (Fig. 6 and Figure S4).
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This behavior was due to the very small, close to zero, values of these RFs, which pro-

duced high COVL values. Our study highlights the importance of the discretization set-

tings chosen due to its high impact on the RFs robustness, which seems even higher in
68Ga-DOTA-peptide comparing to 18F-FDG PET/CT images (due to the widest range

of SUV values in 68Ga-DOTA-peptide images in NET). However, discretization is a

controllable variable, while segmentations do not. Respect of segmentation, there are

essentially three categories of features: a first group of features almost not sensitive to

segmentation with high ICC and low COVL values (e.g. SUVmean, figure S5 a), a sec-

ond group of features with high ICC with relative high COVL values (e.g., TLG, figure

S5 b) and a third group with low ICC and high COVL values (e.g., GLZLM_SZLGE, fig-

ure S5 c), that could probably be useless in the absence of a universally standardized

and totally automatic segmentation method.

Finally, regarding Pearson’s correlation between RFs and SUVmax and volume, most

of the RFs extracted showed a poor correlation with volume. Only two textural features

had a strong correlation (coefficient values > 0.8 or < − 0.8) with the volume, for all

thresholds and discretization (GLRM_RLNU and GLZLM_GLNU). Regarding the cor-

relation with SUVmax, no features showed a strong correlation for all thresholds and

discretization. These results suggest that RFs could provide additional information to

better characterize NETs, regardless of volume and SUV parameters.

The extraction of robust RFs from 68Ga-DOTA SSTR-peptide PET/CT might con-

tribute to solve some limitations related to the clinical evaluation of the SSTR expres-

sion in NET. At present, no consensus has been already reached regarding the

assessment of patients who need to be investigated with both 18F-FDG and 68Ga-

DOTA-peptide PET/CT (even if it is more probable that NET neoplasms with Ki67 >

15% will have positive lesions in 18F-FDG PET/CT [64, 65]). Furthermore, an early de-

tection of more aggressive disease with 18F-FDG PET/CT does not necessarily reflect a

change in the therapeutic strategy. Finally, conventional semi-quantitative PET parame-

ters showed a sub-optimal feasibility to select patients for receptor radionuclide therapy

(PRRT) and to evaluate response to PRRT. In this scenario, the quantitative analysis of-

fered by radiomics might be applied as prognostic biomarker and predictor of tumor

heterogeneity in NET.

Limitation

This study is not exempt from limitations. First, we did not initially perform a phantom

study. To overcome this limitation, as recommended in the radiomics quality score

(RQS) proposed by Lambin et al. [66], we are currently adapting our methodology for a

study on an anthropomorphic phantom filled with synthetic lesions as obtained from

PET/CT images and created by the 3D printer. This model will reflect realistic tumor

shapes and heterogeneity uptakes for a prospective evaluation of RFs robustness. Sec-

ond, we limited our analysis to the RFs provided by the LIFEx software. Even if LIFEx’s

RFs are the most representative ones, they are only a limited set of the biggest group of

RFs provided by the IBSI nomenclature, furthermore, two IBSI categories are not in-

cluded; further and more comprehensive studies on this aspect are needed. Third, NET

are rare tumors and G3 NET and G3 NEC are rarely evaluated with 68Ga-DOTA

SSTR-peptide; for this reason, our sample size is yet too small and heterogeneous (as
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shown in Table 1) to evaluate the possible correlation between robust RFs with the

histological NET grading system. The phantom study will lead to the possibility to en-

rolled NET patients from different centers, solving also limitations regarding sample

size. Fourth, the difficulty of edge-based algorithms in the segmentation of lesions with

a similar uptake background or with small (< 16 cm3) or large dimension (> 160 cm3)

[50] has been previously highlighted. However, we acknowledge that the number of

cases analyzed in this study is not enough to quantitatively validate the algorithm in

the aforementioned conditions. Nevertheless, these results encouraged us to start evalu-

ating also this on the 3D-printer based phantom study aimed to assess the performance

of SAEB analyzing both spherical lesions, non-uniform and non-spherical volumes with

different sizes and different backgrounds, reproducing the human-like lesions [60, 67].

Conclusion
Our results suggest that the use of RFs is feasible also in 68Ga-DOTA-TOC PET/CT.

The manual delineation of VOI had an impact on RFs values dependent on RF type,

preserving the correlation with high ICC values in most cases despite some relatively

high COVL values. The 40% SUVmax threshold increased the RFs robustness, but with a

potential loss of information and analyzable lesions. Finally, the gray-level discretization

influences the robustness of RFs, which vary depending on the use of relative or abso-

lute resampling. In our opinion, an absolute resampling better suited to the evaluation

of NETs with functional imaging (68Ga-DOTA-TOC PET/CT).

These results suggest the needing to standardize the methodology used in the radio-

mic PET studies in 68Ga-DOTA-TOC PET/CT. Moreover, a semi-automatic segmenta-

tion algorithm might be helpful to solve both the impact of different manual

segmentations on RFs robustness and the loss of valuable information due to SUVmax

threshold segmentation method.
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