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Problems in Electrodynamics

Amelia Carolina Sparavigna

Department of Applied Science and Technology

Politecnico di Torino, Torino, Italy

Some problems in electrodynamics  are here proposed.  Subjects are vector  analysis,

electrostatic fields, dielectric materials, magnetostatics and induction.

On the cover a detail of an image showing a plasma globe operating in a darkened

room. Exposure time is 1/3 second. Image courtesy by Chocolateoak for Wikipedia.

__________________

Electric field  E and magnetic induction  B characterize the electromagnetic field.

On charges and currents, fields are acting in the following manners:

F=eE    ;    dF=I [d l×B]

Two  supplementary  fields  are  conventionally  introduced.  They  are  D ,  the

displacement  vector,  and  H ,  the  magnetic  field  strength.  Being  P ,M the

polarization and magnetization of the material, we have:

D=ε oE+P   ;  H= B
μo−M

Permittivity  and  permeability  of  the  empty  space  are:  ε o=8.854×10−12F /m ;
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μ o=4π ×10−7H /m  ;  they are related by  ε oμo=c
−2 ,  where  c  is the speed of

light in the empty space.

In an anisotropic medium, and in the linear approximation:

Pi=ε oα ikEk   ;  M i=χ ik H k

α ik , χ ik  are the tensors of the polarizability and magnetic susceptibility.  Then:

Di=ε oϵ ik Ek  ;  B i=μoμ ikH k ;  ϵ ik=δ ik+α ik   ;  μ ik=δ ik+ χ ik

For an isotropic medium:

P=ε oα E    ;   M=χ H    ;    D=ε oϵ E   ;   B=μ oμ H

Maxwell equations are:

curl H= j+∂D
∂ t

  ;  curl E=−∂B
∂ t

  ;  div D=ρ    ;   div B=0

where  j  is the conduction current density and  ρ  the electric charge density of

unbounded charges only. 

Boundary  conditions at the boundary between two media are:

D2n−D1n=σ   ;  E1 t=E2 t   ;   B1n=B2n   ;   [n×(H2−H1)]= i

n is a unit  vector  normal to the boundary between media 1 and 2, directed from

medium 1 to medium 2. t is a unit vector tangent the boundary. σ  is the surface

charge density due to unbounded charges only.   i  is the surface current per unit
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length due to unbounded charges, flowing along the boundary.

Electrostatics

In electrostatics curl E=0 , div D=ρ , so that E=−gradφ . Here, φ  is the

potential. Therefore:

Δφ=− ρ
ε oϵ

At the boundary of two media, with  ϵ1 ,ϵ 2 , which are the relative permittivity or

dielectric constant of the materials:

φ 1=φ 2   ;  ϵ1(∂φ
∂ n )1

−ϵ2(∂φ
∂n )2

=σ
ε o

∂/∂n indicates the derivative in the direction perpendicular to the boundary.

The second formula can be written as:

D1n−D2n=σ unbounded

In  electrostatics  field  E  does  not  penetrate  a  conductor.  Then,  inside,

φ=constant .

Near the surface S of a conductor in electrostatic condition:

σ =−ε oϵ (∂φ
∂ n )S

The total  charge  of  a  conductor  is  e=−∮ε oϵ (∂φ
∂n )  dS .  Integration  is  over  the

conductor surface.
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___________________

Many problems in electrostatics are proposed as two-dimensional cases. To solve them, 

let us introduce the complex function:

W (z )=φ +iψ

where z=x+ iy . Real and the imaginary parts are the solutions of Laplace equations:

Δφ=0   ;  Δψ=0

φ ,ψ  are restricted by the condition:

∂φ
∂ x

∂ψ
∂ x

+
∂φ
∂ y

∂ψ
∂ y

=0

___________________

If the distribution of body and surface charges is given, the potential at point r is:

φ (r )= 1
4 π ε oϵ

∫ ρ (r ' )
| r−r ' |

dV '+ 1
4π ε oϵ

∫ σ (r ' )
|r−r ' |

dS '

At great distances: φ (r )=φ (0)(r)+φ (1)(r )+φ (2)(r )+.. . , where:

φ (0)(r)= e
4π ε oϵ r

 ;  φ (1)(r )=
( p⋅r )

4 π ε oϵ r
3    ;
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φ (2)(r )=
1

4 π ε oϵ
∑i , k

Qik
2!

∂2

∂ x i∂ xk
(1
r )

where: p=∫ρ (r )r dV , Qik=∫ρ (r )(3 xi xk−r
2δ ik)dV . Therefore, we have 

introduced dipoles and quadrupoles.

The energy of the field is given by:         W=1
2
ρ φ dV=1

2∫(D⋅E)dV .

The  interaction  energy  of  two  electrically  charged  systems  with  charge  densities

ρ1 ,ρ 2   is: 

W= 1
4 π ε oϵ

∫
ρ 1(r1) ρ2(r2)
     | r2−r1 |

dV 1dV 2

After  some  problems  in  vector  analysis,  we  will  start  to  discuss  problems  in

electrostatics. 

Vector analysis

Let us remember some relations which are useful to solve calculations.

curl  grad f=0    (1)     ;   div  curl A=0    (2)

Eq. (1) is referring to conservative fields ( f is a scalar quantity). Eq.  (2) is referring to

solenoidal fields. Here other equations from [1] ( φ ,ψ are scalar quantities):. 

curl  curl A=grad div A−Δ A    (3)    ;    div ( f A)=f div A+grad f⋅A  (4)

div [ A×B]=B⋅curl A−A⋅curlB (5)   ;  curl( f A)=[grad f×A]+ f curl A    (6)
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Δ(φ ψ)=ψΔφ +φ Δψ +2gradφ⋅gradψ (7)

We  have  also  Δφ=div gradφ ;   (3)  is  useful  to  have  the  wave  equation  from

Maxwell equations. (5) is an interesting expression for the use of the Poynting vector

(see for instance [2]). Using relations (1-7), we can solve the problems  in [3]. Let us

add some relations given in the Appendix of  [3].

grad(φψ )=φ gradψ+ψ gradφ  (8)

grad(A⋅B)=(A⋅∇)B+(B⋅∇)A+[A×curlB]+[B×curl A ]  (9)

1
2

grad (A⋅A)=(A⋅∇) A+[A×curl A]  (10)

curl [A×B]=(B⋅∇)A−(A⋅∇)B+A div B−Bdiv A  (11)

Here a second order relation:

Δ( f A)=Δ( f Ax i+f A y j+ f A z k)=Δ(f Ax) i+Δ( f A y) j+Δ (f A z)k

If use (7), applying it to Δ( f Ax) ,Δ( f A y) ,Δ( f A z) , we have:

Δ( f A)= f Δ A+AΔ f +2(grad f⋅∇)A

Second order relations useful in the elastic theory of liquid crystals are given  in  [4].

We have also relations concerning integrals.

∯φ ndS=∭grad φ dV  (12)
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n is the unit vector, normal to the surface, pointing outside. 

∯(A⋅n)dS=∭div A dV  (13)        ;       ∯[n×A]dS=∭ curl A dV  (14)

∮ Andl=∬curln A dS   (15)          ;      ∮φ dl=∬[n×gradφ ] dS   (16)

Let us start problems in  [3].

1) Calculate the gradient of function f (r) , which is depending only on the absolute

value of the radius vector r . Solution: grad f (r )=df
dr

r
r

.

The gradient is: 

grad f (r )=∂ f (r )
∂ x

i+∂ f (r )
∂ y

j+∂ f (r )
∂ z

k =
df
dr

{∂r
∂ x
i+ ∂r

∂ y
j+∂ r

∂ z
k} =

df
dr

{x
r
i+ y
r
j+ z
r
k }

grad f (r )=df
dr

r
r

 (17)

Let us consider an example. grad
1

r3
=−3

1

r4

r
r
=−3

r

r5

Let  us  add  a  similar  calculus  for  the  divergence  of  function  A(r ) ,  which  is

dependent on the absolute value of radius vector r . 
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div A(r )=
∂ Ax (r )

∂ x
+
∂ A y (r )

∂ y
+
∂ A z(r )

∂ z
= 

d Ax
dr

∂ r
∂ x

+
d A y

dr
∂r
∂ y

+
d A z
dr

∂r
∂ z

= 
d Ax
dr

x
r
+
d A y

dr
y
r
+
d A z
dr

z
r
=1
r
r⋅d A
d r

 (18)

2) Calculate  (a) div r , (b) curl r , (c) curl( f (r )r ) .

Let us note that r=x i+ y j+z k . Therefore:

(a)                                                         div r=∂ x
∂ x
i+∂ y

∂ y
j+∂ z

∂ z
k=3

(b)                                  curl r=( ∂ z
∂ y

−∂ y
∂ z

)i+(−∂ z
∂ x

+∂ x
∂ z

) j+(∂ y
∂ x

−∂ x
∂ y

)k=0

(c) To calculate curl( f (r )r ) we can use (6) and then  (17):

                      curl( f r )=[grad f×r ]+f curl r=[grad f×r ]=df
dr

r
r
×r=0

3) Calculate  (a)  grad(P⋅r ) ,  (b)  grad [(P⋅r )/r3] ,  (c)  (P⋅∇)r ,  (d)

div(P×r) , and  (e) curl(r×P) where P is a constant vector.

(a)           grad(P⋅r )=
∂P x x
∂ x

i+
∂P y y

∂ y
j+

∂P z z
∂ z

k=Px
∂ x
∂ x
i+P y

∂ y
∂ y
j+P z

∂ z
∂ z
k=P

(b) We use the previous result to have grad [(P⋅r )/r3] , with (8) and  (17).
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grad [(P⋅r )/r3]= 1

r3
grad(P⋅r)+(P⋅r)grad

1

r3

grad [(P⋅r )/r3]=P /r3−(P⋅r)(3 r /r5)

(c)                 (P⋅∇)r=(P x ∂
∂ x

+P y
∂
∂ y

+P z ∂
∂ z

)r=Px
∂ x
∂ x
i+P y

∂ y
∂ y
j+P z

∂ z
∂ z
k=P

(d) To calculate div(P×r) , we use (5) and consider that vector P  is constant:

div(P×r)=r⋅curl P−P⋅curl r=0

(e)  For  curl(r×P) , let us apply the definition of cross product and curl. We find

curl(r×P)=−2P .

________________

Before  continuing  with  problems  in   [3],  let  us  remember  the  Gauss  Law.  Let  us

consider  A(r )=r /r3  and calculate div A(r ) , using (4).

div(r /r3)= 1

r 3
div r+grad

1

r3
⋅r= 3

r3
−3

r⋅r
r5

=0

Actually,  as  we  have  seen, grad
1

r3
=−3

r

r5
.  The  field  of  Coulomb  possesses  a

divergence which is zero in the space without the point where there is the charge. 
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4) Calculate  (a) grad (A(r)⋅B(r )) ,  (b) div(φ (r )A(r )) ,  (c) curl(φ (r )A(r )) .

Functions  φ (r ), A(r) ,B(r) are  depending  only  on  the  absolute  value  of  radius

vector r .

(a)  To  calculate  grad (A(r)⋅B(r )) ,  we  can  use  the  result  of  problem  1,  that  is

grad f (r )=df
dr

r
r

. We have: 

grad(A(r)⋅B(r ))= d
dr

(A(r )⋅B(r )) r
r
=( d A

dr
⋅B+A⋅d B

dr
) r
r

(b) To calculate div(φ (r )A(r )) we use  (4) ,  (17) and  (18).

div(φ A)=φ div A+gradφ⋅A =  
φ
r
r⋅d A
d r

+ 
1
r
dφ
dr

r⋅A

(c) To have curl(φ (r )A(r )) , let us start from  (6) and use definitions: 

curl(φ A)=gradφ×A+φ curl A =  
1
r
dφ
dr

r×A  +
φ
r
r×d A

dr

5) Using  Ostrogradski  theorem,  let  us  calculate   I=∯ r (A⋅n)dS  and

I=∯(A⋅r )ndS ,  if V is the volume enclosed by the surface and A is a constant

vector. 

Let us consider an arbitrary constant vector p : 

p⋅I= p⋅∯ r (A⋅n)dS=∯( p⋅r )(A⋅n)dS = ∯( p⋅r An)dS=∭div( p⋅r A)dV
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We can  use  relation  div( f A)=f div A+grad f⋅A ,  that,  in  the  case  of  a  constant

vector, becomes  div( f A)=grad f⋅A . 

∭div( p⋅r A)dV=∭ A⋅grad( p⋅r )dV

We have grad ( p⋅r )=p : 

∭ A⋅grad ( p⋅r )dV=∭ A⋅p dV=(A⋅p) V

Since p is arbitrary:   I=AV .

Now, let us calculate  I=∯(A⋅r )ndS in the same conditions as before. 

p⋅I=p⋅∯(A⋅r )ndS=∯( p⋅n)(A⋅r )dS = ∯(A⋅r pn)dS=∭div(A⋅r p)dV

Let us use  (4):

 ∭div(A⋅r p)dV=∭ p⋅grad (A⋅r )dV

We have that: (A⋅∇)r=A . Using (9): 

 grad (A⋅r )=(A⋅∇)r+(r⋅∇)A+[ A×curl r ]+[r×curl A ]=A .

p⋅I = ∭ p⋅grad (A⋅r )dV=∭ p⋅A dV

And we can continue as in the previous calculation.
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6) Show that ∭ A dV=0 if, inside the volume, it is div A=0 and on the boundary

An=0 .

As we did before, let us use an arbitrary constant vector p .  Moreover, let us assume 

p=grad φ .

p⋅I=∭ p⋅A dV

We have already seen that: p⋅A=gradφ⋅A=div φ A .

p⋅I=∭ p⋅A dV=∭divφ A dV=∯φ AndS

On the boundary An=0   and being p=grad φ arbitrary, we have ∭ A dV=0

.

Field having a divergence which is zero, div A=0 , can be electric or magnetic fields.

An interesting case is discussed in [2], where we have magnetic and electric fields as in

the case of the problem here considered. 

7) Show that the divergence of the following vector is zero:

A+ 1
4 π

grad∭div A(r ')
|r−r '|

dV '  (20)

Let us assume div A=ρ (r) . In this manner, integral takes a familiar form, that of a

potential of a charge distribution (besides the dielectric constant of course):
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φ= 1
4π ∭ ρ (r ' )

|r−r '|
dV '

Let us use a negative sign:  φ=− 1
4π ∭ ρ (r ')

|r−r '|
dV ' . This function is the solution

of Poisson equation: Δφ=div gradφ=0 . Immediately, we have that the divergence

of  (20) must be zero.  

_____________________

A vector calculus identity

Let us remember:

A⋅B=(Ai ei )⋅(B je j)=A iB j(e i⋅e j)=Ai B jδ ij=Ai Bi

A×B=(Ai ei)×(B j e j)=A iB j (ei×e j)=ek [ϵklm AlBm ]

ϵklm  is the Levi-Civita tensor.

Using the relation: A×(B×C )=B(A⋅C)−C (A⋅B) ,  and the Cartesian components, 

show that: 

∇×(A×B)=ei×∂i(A je j×Bkek)

= ∂i(A j Bk)  ei×(e j×ek)

= [Bk ∂i A j+A j∂iBk ]((e i⋅ek)e j−(e i⋅e j)ek)

= [Bk ∂i A j+A j∂iBk ](δ ik e j−δ ijek)

= [Bk ∂i A j+A j∂iBk ](δ ik e j−δ ijek)
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= B i∂i A j e j−Bk ∂i A iek+A j∂iBi e j−A i∂iBk ek

curl [A×B] = (B⋅∇)A−(A⋅∇)B−(div A)B+(div B)A

______________

Gauss Law

Let us continue with problems on electrostatics from [3].  We will find problems about

the calculation of an electric field by means of Gauss Law. Let us remember that the

flux of an electric uniform field E   through a plane surface S is: 

ΦS (E)=E⋅S

The surface vector S  has a direction perpendicular to the surface, so that S=S un .

un  is the unit vector (dimensionless) perpendicular to the surface. If the surface is

not a planar one, we have to consider an element  d S=dS un .

If we have a generic  surface,  we will  subdivide it  into small  elements,  that  we can

approximate as small planar elements, where locally the electric field E  is constant.
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We can calculate the flux through each element and add the results. Therefore: 

ΦS (E)=∫dΦ=∫E⋅d S=∫E⋅un dS=∫E cosθ dS

Gauss Law tells that the flux of the electric field through  a closed surface S is equal to

the algebraic sum  of  the charges Qi inside  surface S, divided by ε o :

ΦS (E)=
Qint

εo

Near the surface of a conductor,  using the Gauss Law, we can see that   E=σ /ε o ,

where σ is the charge surface density. 

8) Draw the lines of the field created by a positive charge uniformly distributed on a

hollow sphere having radius  a. 

This problem possesses a spherical symmetry, since the charge is uniformly distributed

on the surface of the sphere. On each spherical surface, which is containing the sphere,

and  having  the  same  centre,  the  electric  field  is  perpendicular  and  has  a  constant

modulus which is decreasing as the radius increases. The electric field is equal to that

16
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produced by the charge as if it were concentrated in the centre of the hollow sphere.

Inside the hollow sphere, and due to the symmetry, the field is zero.

Let us now consider a solid sphere having a charge +Q, uniformly distributed in its

volume,  with  radius  a .  Also  in  this  case,  the  electric  field  possesses  a  spherical

symmetry. The field is given as in the following figure. 

 u⃗r  is the unit vector in the radial direction, pointing outside. To have the field given

above, we can use the Gauss Law, applying it to two different virtual Gaussian surfaces,

inside and outside the solid sphere.  

17
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If we are inside the solid sphere, only the charges inside the virtual Gaussian surface

that we are considering will contribute to the electric field. If we are outside the solid

sphere, all charge Q  will contribute to the field. 

9) Find the electric field intensity vector inside and outside a uniformly charged sphere

of radius R. The body charge density of the sphere is ρ [3].

Let us apply the Gauss Law, using the virtual Gaussian surfaces given above. 

If r<R . we have:                     Eϵ o4 π r2=Q '=4
3
π ρ r3

E= 1
3ϵ o

ρ r

If r>R . we have:

Eϵ o4 π r2=Q=4
3
π ρ R3

E= 1
3ϵ o

ρ R
3

r3 r

10) A sphere of radius  R is uniformly charged with a charge density  ρ . Inside it,

there is a spherical cavity of radius R', whose centre is at a distance a from the centre of

the sphere  (in the figure  |OO'|=a,  |OP|=r,  |O'P|=r').  Find the electric  field intensity

vector inside the cavity and inside and outside the sphere.  

In the following figure ur  and  ur '  are unit vectors [3].

18
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Let us consider the field inside the cavity. From the superposition principle for fields it

follows that the field in P is that created by the solid sphere having a charge uniformly

distributed in it with body density ρ  minus the field that we would have if the cavity

had been filled by charges having the same density ρ .

Therefore:                                          E=EO−EO'

Using the figure given above: 

E= ρ
3ϵ o

r ur−
ρ

3ϵ o
r 'ur '

Then: E x=
ρ

3ϵ o
r
x
r
−

ρ
3ϵ o

r '
(x−a)
r '

=
ρ

3ϵ o
a       ;   E y=

ρ
3ϵ o

r
y
r
− ρ

3ϵ o
r '
y
r '

=0

The electric field inside the cavity is uniform:  E= ρ
3ϵ o

a . where a  is the vector

from O to O'.

Inside the sphere but outside the cavity:  E=
ρ

3ϵ o
 r−

ρ
3ϵ o

R '  3

|r−a|3
(r−a)

Outside the sphere of radius  R:    E=
ρ

3ϵ o
R3

r3  r−
ρ

3ϵ o
R '  3

|r−a|3
(r−a)

19
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11) Find the electric field vector inside and outside a sphere having a body density of

charges varying as follow: ρ=α rn con n>−2 . The radius of the sphere is  R [3].

If r<R :                                 Eϵ o4 π r2=Q '=4 π∫α rn+2dr

then:                                                        E=α
ϵ o  

rn

n+3
 r

If  r>R , then:                                E= α
ϵ o(n+3)

 
Rn+3

r3  r

12) Find the electric field vector of an infinity straight line uniformly charged.

The  problem  has  a  cylindrical  symmetry.  Let  us  use  the  Gauss  Law.  The  virtual

Gaussian surface is a cylinder coaxial with the charged line. Due to the symmetry of the

field, we have no flux  through the bases of the Gaussian (virtual) surface. 

We have:

 Φ=∑ E⋅n ΔS=E ∑ ΔS=E 2πr h . 

Then:  Φ=Q
εo

= λh
 ε o

., with  λ=Q /h .

Therefore the field is:  E= λ
2πε or

.

20
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13)  Find the electric field vector inside and outside a uniformly charged solid cylinder

of radius R. The charge per unit length of the cylinder is λ [3].

The charge density is given by (h is the length of cylinder):   ρ= λ h
π R2h

If r<R :             Eϵ o2π r h=Q '=ρ π r2h= λ h
π R2h

 π r2h=λ h  
r2

R2

Then:  E= λ
2π ϵ o R

2  r

If r>R : Eϵ o2π r h=Q=λ h

Then:     E= λ
2π ϵ o r

2  r .

14)  A  layer  of  non-conducting  material  is  put  between  two  parallel  planes.  The

thickness of the layer is  d . The material is charged to a density ρ . Find the electric

field vector inside and outside the layer [3]. 
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Inside the material.  Let us consider as Gaussian (virtual) surface  a cylinder with radius

a   and   height  2z  , having its axis parallel to  z , and symmetric with respect to the

plane in O perpendicular to  z :

Eϵ o2π a2=Q'=2π a2 z ρ

then:                                                     E= ρ
ϵ o  z

Outside the material:               Eϵ o2π a2=Q=π a2d ρ

E=
ρ d
2ϵ o

 
z
|z|

15) Let  us  consider  the  layer  of  the  previous  problem.  Inside  the  layer  there  is  a

spherical cavity of radius R, smaller than  d/2. The cavity has its centre in  O. Evaluate

the electric field vector inside and outside the layer.  Use the frame of reference given in

the following figure.

From the superposition principle for fields it follows that the field in a given point P is

that created by the layer having a charge uniformly distributed in it with body density
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ρ  minus the field that we would have if the cavity had been filled by charges having

the same density  ρ . The field created by the layer is given in  7), that create by a

sphere in  2).  Using the solution given in  2), let us write the radius vector  r  as

x i+ y i+z k  where i , i ,k are the unit vectors of the frame of reference shown in

the figure.  

16) Find  the  capacitance  for  the  following  capacitors:  spherical,  plane-parallel,

cylindrical. [3]. 

Spherical  ( R1 ,R2  are the radiuses of spheres, with R1<R2 ):

C=
4π ϵ R1R2

R2−R1

Plane-parallel  ( S surface of layer and  d thickness ):  C=ϵ S
d

Cylindrical  ( l length of capacitor ): C= 4π ϵ l
ln (R2/R1)

In the expressions given above, ϵ is the permittivity of the medium. 

17) A plane surface has an area of 3.2 m2 . Let us turn the surface in a uniform electric

field of modulus  E = 6.2 × 105 N/C. Find the flux through the surface, a) when the field

is perpendicular, b) when the field is parallel to the surface.  

This problem allows us to discuss dimensions and units of measurement. 
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[ΦS(E) ]=[E⋅S ]=[E ][ S ]=[ force /charge ][L2 ]=[ energy /charge ][L ]

[L] means "length".  Units of measurement are Volt⋅meter .

In the case (a): 

 ΦS(E )=6 .2×105N /C⋅3 . 2m2=1. 98×106 V⋅m

In the case (b), the flux is zero.

18) An electric field vector, modulus  3.50 kN/C, is applied along the x-axis. Find the

flux  through a  rectangular  surface  having sides  of  lengths   0.350  m and   0.700  m

respectively, in the cases (a)  the rectangular surface is parallel to the plane  yz, and (b)

the surface contains the   y- axis, and its normal forms an angle of   40.0° with x- axis. 

19)  The electric field close to the surface of a hollow sphere having radius  0.750 m is

equal to  890 N/C , directed outside the sphere. The field has a spherical symmetry. (a)

What is the total charge inside the sphere? (b)  What is possible to conclude about the

nature and the distribution of the charges? 

We can apply the Gauss Law and evaluate the total charge. However we are not able to
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tell how this total charge is distributed inside or on the surface of the sphere. 

20) A point-like charge of  +5.00 μC is put at the centre of a sphere having radius of

12.0 cm. Find the flux of the electric field vector through the surface of the sphere.  

The flux is the charge dividend by the permittivity of the empty space. 

Electric field, charge distribution and potential

21)  A small dielectric sphere  is put inside a hollow dielectric sphere having radius R.

The two bodies have the same centre.  The sphere possesses a negative charge q , the

hollow sphere a positive charge  Q , uniformly distributed on it. Let us assume that the

absolute value of  q is greater than that of   Q.

a) Find the lines of the field. 

b) Find the modulus of the electric field in  A, with a distance 2/R  from q,  and  in  B,

with a distance 2R  from q. 

c) Find the difference of potential V ( A )−V (B ) .            

Here a figure to show the geometry of the problem. 
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Let us remember that the field created by the charge on the hollow sphere is zero inside

it and outside is a Coulomb field. From the superposition principle for fields it follows

that the field in a given point  P  of  the space is that created by the hollow sphere

having Q charge uniformly distributed in it and by the q charge of the small sphere. Let

us consider this last charge as produced by a point-like charge. 

In A, the modulus of the field is:     E= 1
4 πε o

q

(R /2)2
, 

with radial direction towards the centre of the hollow sphere.    

In B:                                           E= 1
4 πε o

q

(2R )2
− 1

4 πεo

Q

(2R )2
, 

with radial direction toward the centre of the sphere. 

The following  figure shows the lines of the field. The density of the lines is greater

inside the hollow sphere.  Fields are different:  this  is due to the fact that we have a

surface distribution of charge between the two regions of the space, inside and outside

the surface at radius R. 
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Let  us  calculate  the  difference  of  potential,  remembering  that  is  defined  as

V (P1)−V (P2)=∫
P1

P2

E⋅d l .   Let us use the following figure.

V (A )−V (B )=∫
A

B

E⋅d l=∫
A

O

E⋅d l+∫
O

B

E⋅d l=∫
A

O

Ein⋅d l+∫
O

B

Eout⋅d l=

=∫
A

O
−q

4 πεo r
2
dr+∫

O

B
Q−q

4 πεo r
2
dr=− −q

4 πε o
( 1
R
− 1
R /2)−Q−q

4 πε o
( 1

2R
− 1
R)=

=
|q|

4 πεo
( 1
R

− 1
R /2)+|q|−|Q|

4 πεo
( 1

2R
− 1
R)

22)  Two planes with charges uniformly distributed on them are parallel. The distance

between the  planes  is   è  D.  The plane  shown in  the  figure  is  perpendicular  to  the

charged planes. Find the electric field, if the charge densities are +σ and  −2σ. Find also

the difference of potential between  A and B and between  A and C. 
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We use the superposition principle and calculate   E=E1+E2 , where 1 indicates the

field  created  by  the  plane  positively  charged  and  2  the  field  created  by  the  plane

negatively charged. 

In region I:

E=−E1ux+E2ux=− σ
2 εo

ux+
2σ
2 εo

ux

In region II: 

 E=E1ux+E2ux=
σ

2 εo
ux+

2σ
2 εo

ux

In region III:

 E=E1ux−E2ux=
σ

2εo
ux−

2σ
2 ε o

ux

The difference of potential is defined as:  V (A )−V (B )=∫
A

B

E⋅d l

V (A )−V (B )=∫
A

B

( σ
2 εo

ux+
2σ
2 εo

ux)⋅uxdx= 3σ
2 εo

b
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Moreover:    V (A )−V (C )=∫
A

B

E⋅d l+∫
B

C

E⋅d l=V (A )−V (B ) .

The second integral is equal to zero, because displacement is perpendicular to the field. 

23) Two uniformly charged straight wires are coincident  to the x- and y- axes. The

wires are made of a material which does not allow the motion of charges. Therefore, the

distributions of charges are not affecting each other. Neglecting any polarization effect,

find  the electric field in the point P given in  the figure. Suppose P in the plane  x,y.

The field is:                   E=E1+E2=
λ y

2πεo a
 ux+

λx
2 πεob

 u y

24)  The wires are the same as before. Find the difference of potential between  P and P’

as given in the figure, in the plane   x,y.
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By definition:

V (P)−V (P ' )=∫
P

P '

E⋅d l=∫
P

P '

E⋅uxdx

where  E=E1+E2=
λ y

2πεo a
ux+

λx
2πε ob

uy .

V (P)−V (P ' )=∫
P

P '

E⋅d l=∫
a

a+c λy
2 πεo x

 ux⋅uxdx

Therefore:                        V (P)−V (P ' )=∫
a

a+c λy
2 πεo x

dx=
λ y

2πε o
 ln
a+c
a

25)  Two long cylindrical conductors are arranged parallel to each other at a distance d.

Calculate  the  capacitance  per  unit  length  of  the  system,  provided  d≫R1  and

d≫R2 , where R1,R2  are  radius of the two cylinders [3].

Let us assume that the charge per unit length of the first conductor is λ and for the

second  −λ . The potential of each conductor is composed by the potential  φ 1

30



Zenodo  -  2 March  2021 - DOI 10.5281/zenodo.4573493

created by the conductor's charges and the potential φ 2 created by the charges of the

other conductor. This second term can be considered to be the same at every point of the

conductor being the distance between conductors large. 

For the first conductor:

φ first=− λ
2π ε o

lnR1+
λ

2π ε o
ln d

For the second conductor:

φ second=
λ

2π ε o
lnR2−

λ
2π ε o

ln d

The capacitance for unit length of this system is:

C= λ
φ first−φ second

=
2π ε o

ln
d2

R1R2

=π ε o(ln
d
R)

−1

26) Find the potential and the electric field intensity vector on the axis of a flat ring that

has a surface charge density σ (the inner radius is R1 and the outer radius R2 ). 

Consider the following limiting (a) the field of a flat disk ( R1→0 ) and (b) the field of

a plane ( R1→0 ,R2→∞ ). [3]

Let us call z the axis of the flat ring. 

φ=∫0

2π
 dϕ  ∫R 1

R 2  
σ r dr

4 π ε o√r2+z2
= σ

2ε o
(  √R2

2+z2−√R1
2+z2  )
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The field is:

Ex=E y=0   ;    Ez=
σ

2 ε o
 ( 

z

√R2
2+z2

− z

√R1
2+z2

 )
In the limiting cases:

E z=
σ

2 ε o
 ( 

z
| z |

− z

√R2
2+z2

 ) ;  Ez=
σ

2 ε o
 
z

| z |

27)  Evaluate  the  following integral  when  ρ is   a  constant,  and the  variable  r is

ranging from 0 to R.

φ= 1
4π ε o

∫ ρ
d (r )

dτ  ; dτ =r2 sinθ dr dθ dϕ ; d (r )=√ z2+r2−2 rz cosθ

φ= ρ
4π ε o

∫ r2sinθ dr dθ dϕ

√ z2+r2−2 rz cosθ

∫0

2π
dϕ=2π   ;   ∫0

π sinθ dθ

√ z2+r2−2rz cosθ
= 1
rz

(√r2+z2−2 rz cosθ )0

π

1
rz

(√r2+z2+2 rz−√r2+z2−2 rz )= 1
rz

(r+z−|r−z |)

If  r<z the integral is equal to 2/ z , if r>z it is equal to 2/r .

φ= ρ
4π ε o

4π (∫0

z 1
z
r2 dr+∫z

R 1
r
r2 dr) = 

ρ
ε o ( z

2

3
+ R

2−z2

2 )= ρ
2ε o (r2− z2

3 )
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28) Determine the potential of the electric field produced by the electron of a hydrogen 

atom, assuming that the electric charge in the ground state is distributed with a charge 

density:

ρ= e

π a3
exp (−2r /a) , 

where a  is a constant [3]

The  problem  possesses  a  spherical  symmetry.   Let  us  consider  the  equation

Δφ=− ρ
ε o . The solution is:

 φ (r )= 1
4 π ε o

∫ ρ (r ')
| r−r ' |

d r ' .

φ (r )= 1
4 π ε o

∫0

∞
r '2 dr '∫0

π
sinθ ' dθ '∫0

2π
dϕ ( ρ (r ' )

(r2+r ' 2−2 rr ' cosθ ')1 /2)
The integration on the radius can be performed, as in the example given before, by 

splitting the integral into two parts:

φ (r )= 1
ε o r

∫0

r
ρ (r ' )r '2dr '+ 1

ε o∫r
∞

ρ (r ' )r ' dr '  

φ (r )= e
4π ε o r

[1−exp(−2 r /a)]− e
4 π ε oa

exp(−2 r /a)

29) Determine the Fourier transform for the potential of a point charge [3].

The potential of a point charge is given by the solution of equation:
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Δφ=− e
ε o δ (r )

Let us represent φ (r )  and δ (r ) in the form of Fourier expansions:

φ (r )=∫φ (k )ei k⋅rd k  ;  δ (r )= 1

(2π )3
∫ ei k⋅r d k

Δ∫φ (k)ei k⋅r d k=−      e

ε o(2π )3
∫ ei k⋅r d k

−k2φ (k)=−     e

ε o(2π )3
  →   φ (k )=        e

ε o(2π )3 k2

30) Find the potential of the electric field produced by a charge that is distributed in an 

infinite medium by the law ρ  =  ρ o  sinax sinby sin cz       [3].

Δφ=−
ρ (r)
ε o    ;   

∂2φ
∂ x2 +

∂2φ
∂ y2 +

∂2φ
∂ z2 =−

ρo
ε o  sinax sinby sin cz

φ=−
ρ o

ε o(a
2+b2+c2)

 sin ax sin by sin cz

Equation of the lines of the field

To represent a vector field we can use arrows. However it is possible to use curves

called the "field lines".  Let us discuss the two-dimensional case. A curve y= y (x )

is  a  field  line  for  vector  field  F(x , y ) if  at  each  point  (xo , yo) on  the  curve,
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F(xo , yo) is tangent to the curve.

The  field  lines  y= y (x ) of  the  field  F(x , y )=P(x , y ) i+Q(x , y ) j  are  the

solution of the differential equation:

dx
P

=dy
Q

If  y= y (x )  is  a field line,  we have that for every  x,  the field is collinear  to the

derivative of  (x , y (x )) , which is equal to (1 , y ' (x )) :

(P(x , y ) ,Q(x , y (x)))=α (x )(1, y ' (x ))

Then:

P(x , y (x ))=α (x )   ;    Q(x , y (x ))=α (x ) y '(x )=P(x , y (x ))  y '(x )

dy
dx

= y ' (x)=Q(x , y (x ))
P(x , y (x))

Complex variables

Many problems in electrostatics can be solved through the use of functions of a complex

variable.  Let  us  use  the  real  and  the  imaginary  parts  of  an  analytic  function

W (ζ )=φ +iψ of a complex variable  ζ=x+iy ,  where we find the solutions of

Laplace equations Δφ=0 and Δψ=0 . Besides, φ  and ψ are restricted by

the condition:

∂φ
∂ x

∂ψ
∂ x

+
∂φ
∂ y

∂ψ
∂ y

=0
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In a two-dimensional problem, we have E=−gradφ . In the free space div E=0 .

Suppose to have a function ψ  so that:

Ex=−
∂ψ
∂ y

  ;   E y=
∂ψ
∂ x

∂Ex
∂ x

+
∂E y
∂ y

=−
∂2ψ
∂ x ∂ y

+
∂2ψ

∂ y∂ x
=0

E=Ex i+E y j=−
∂ψ
∂ y

i+
∂ψ
∂ x

j=k×gradψ =−gradψ ×k

The functions φ and ψ satisfy the Cauchy-Riemann conditions:

∂ψ
∂ y

=
∂φ
∂ x

  ;   −
∂ψ
∂ x

=
∂φ
∂ y

∂φ
∂ x

∂ψ
∂ x

=−
∂φ
∂ x

∂φ
∂ y

=−
∂ψ
∂ y

∂φ
∂ y

Therefore:

∂φ
∂ x

∂ψ
∂ x

+
∂φ
∂ y

∂ψ
∂ y

=0

The curves φ=const and ψ=const  are mutually orthogonal. φ and ψ  can

be the solutions of the electrostatic problem. If φ (x , y ) is the potential, ψ=const

are the lines of the field, orthogonal to the equipotential surfaces. The same we can find

if we consider  ψ (x , y ) as the potential, φ=const  are the lines of the field.

The complex potential is defined as: W=φ +iψ .

Let us add shortly some discussion that we can find in [5]. In this book, it is stressed

that for  two-dimensional problems, where the variations of the fields in one direction is
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zero or can be neglected,  we have that the fields are solution of the Laplace equation.

This condition allows the use of complex functions. In [5], we can find proposed three

cases: W (ζ )=ζ 2 , W (ζ )=1 /ζ 2  and W (ζ )=ζ logζ .

The  first  case  is  considered  also  in  [6].  "The  amazing  conclusion  is  that  any

(differentiable)  function"  W=φ +iψ of  a  complex  variable,  provides  two  real

functions  φ=φ(x , y)  and  ψ=ψ (x , y)  which  are  possible  electric  potential

functions for some problem. 

Let  us  consider   W=φ +iψ=z=x+iy .  "What  electrostatic  problem  is  this  the

solution to?" [6]. If we take the potential to be  ψ , then equipotential surfaces are

surfaces  of  constant  y,  and  the  field  lines  have  constant  x.  This  is  the  elementary

problem of a uniform field in the x- direction. 

Let us consider W=φ +iψ=ζ 2=(x+iy)2=x2− y2+2 ixy . 

We have:  φ=x2− y2   ;   ψ=2 xy . To see the electrostatic problem of which  W  is

the complex potential,  let  us look for the surfaces: φ=x2− y2=A   ;   ψ=2xy=B .

The corresponding graphs of these functions are hyperbolas. We can see them in [5]

and [6], that this is the case of  of the "quadrupole" system of conductors.

31) For the case of a homogeneous electric field  with a field vector  E , write the

corresponding complex-valued potential  W.  Consider the special case of the electric

field of a charged plane with a surface charge density σ  [3].

Let x-axis be directed along the field:

W=−|E | (x+iy)=φ +iψ   where  φ=−|E | x   ;   ψ=−|E | y

In the case that the field is created by a uniformly distribute charge surface, y=0. In this

case:
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|E |= σ
2ε o

.

32) Determine the potential near a grounded angle formed by two planes x=0 and y=0

[3].

Let us use a conformal mapping W=Aζ 2 i  to transform the angle into a half-plane. 

The potential is:

W=φ +iψ=Aζ 2 i=A(x+iy)2 i

So we have: φ=−2 A xy   ;   ψ=A(x2+ y2) .  This is the case also discussed in [5].

33) Determine  the  potential  surfaces  and  the  lines  of  field  if  the  potential  is

φ=ℜ(√ζ ) . What grounded contour has such a potential? [4].

The complex values potential is: W=φ +iψ=ℜ(√ζ )+ℑ(√ζ )=√(ζ ) .

ζ =x+iy=φ 2−ψ 2+2 iφψ    ;   φ 2−ψ 2=x    ; 2φ ψ= y

We have equations:

y2

4φ2
=φ2−x   ;    

y2

4ψ 2
=ψ 2−x

Let  us  assume  φ=const=C ,  then  we  have:  y2=4C2(C2−x )  ,  which  is  a

parabola.  If   C=0, the  parabola turns  into a  straight  line given by  y=0,  x<0.  The

function  φ=ℜ√ζ  gives the potential near a grounded half-line. The equipotential
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surfaces are a system of parabolas. 

34) Determine  the  potential  and  the  equipotential  surfaces  if  the  complex  values

potential is W=ln x [3].

Writing  ζ  in  the  form  ζ =r e iθ ,  we  find  that  φ=ln r .  The  equipotential

surfaces  are  circles  with  radiuses  r=const.  In  the  three-dimensional  case,  this  is  a

potential created by a charged straight line along the z-axis.

35) Find the potential near a grounded parabola y2=4 a(x+a) . [3]

Let us write the equation of the parabola in a parametric form:

x=a p2−a   ;   y=2ap      −∞< p<+∞

x=φ   ;   y=ψ   then  ζ =aW 2−a+2 iaW=(W+i)2a . We have:

 W=√(ζ /a)−i=φ+ iψ

In [3], it is also discussed the case of a grounded ellipse 
x2

a2
+ y

2

b2
=1 .

Image charges

The method of image charges (also known as the method of images and method of

mirror  charges)  is  a  basic  tool  in  electrostatics.  The  name  originates  from  the

replacement of certain elements in the original layout of the problem with imaginary
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charges, which replicates the boundary conditions of the problem. The method of image

charges is based on the uniqueness theorem, which states that the electric potential in a

given volume is uniquely determined if both the charge density throughout the region

and the value of the electric potential on all boundaries are specified. In the case that we

know  the  electric  potential  or  the  electric  field  and  the  corresponding  boundary

conditions we can substitute the charge distribution which is involved with a charge

configuration easier to analyse. 

The simplest case where we can apply the  method of image charges is that of a point

charge,  with charge  q,  located  at  (0,0 , a)  above an infinite  grounded conducting

plate  in  xy-plane.  To simplify this  problem, we can replace the charge distribution

which is induced on the ground plane with a plate (equipotential)  with a charge  –q,

located at  (0,0 ,−a) . This situation is equivalent to the original setup, and so the

force on the real charge can now be calculated with Coulomb's law between two point

charges [7].

The potential at any point in space, due to these two point charges is given in cylindrical

coordinates as

φ (r )=φ (ρ ,ϕ , z )= 1
4π ε o( q

√ρ 2+(z−a)2
−

q

√ρ 2+(z+a)2)
The surface charge density on the grounded plane is therefore given by:

σ =−ε o(∂φ
∂ z )z=0

=−
qa

2π (ρ 2+a2)3/2

The  total charge induced on the conducting plane is:

∫0

2π
 ∫0

∞
 σ (ρ )ρ d ρ dϕ= q

2π ∫0

2π
dϕ  ∫0

∞
 

1

(ρ2+a2)3/2
ρ d ρ=q
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∫0

2π
dϕ  ∫0

∞
 

1

(ρ2+a2)3/2 ρ d ρ=2π [ 1

√ρ 2+a2 ]
0

∞

=
2π
a

The total charge induced on the plane turns out to be simply –q. 

Because  of  the   superposition  principle,  a  conducting  plane  below  multiple  point

charges can be replaced by the mirror images of each of the charges individually, with

no other modifications necessary.

A grounded sphere

In  the  previous  image  we  can  see  a  diagram  illustrating  the  image  method  for  a

grounded sphere of radius  R.  The green point  is  a charge q  inside the sphere at  a

distance  p from the  origin,  the  red  point  is  the  image  of  that  point,  having charge

−qR / p ,  outside the sphere at a distance of R2 / p  from the origin. The potential

produced by the two charges is zero on the surface of the sphere.  (Image courtesy:

PAR).

The method of the image of charge can be applied to a conducting sphere [8].   Let us
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consider q, the charge at the green point. The image of this charge with respect to the

grounded sphere is shown in red. It has a charge of  q '=−qR / p at the distance given

in the figure. The potential at a given radius vector  r  is given by the sum of the

potentials:

4 π ε oφ (r )= q
|r1 |

+(−qR / p)
     | r2 |

4 π ε oφ (r )= q

(r2+ p2−2 r⋅p)1/2 +
(−qR / p)

(r2+R4 / p2−2R2r⋅p/ p2)1/2

φ (r )=
1

4 π ε o(
q

√r2+ p2−2 r⋅p
−

q

√r2 p2 /R2+R2−2 r⋅p)

The potential on the surface of the sphere vanishes. Note that, if the image of charge is

outside the sphere, the potential given above will not be valid,  since the image charge

does not actually exist, the same if the charge image is inside. 

Let us consider the problem with a charge outside a grounded sphere.  If we have a

charge q at vector position p  outside the sphere of radius R, the potential outside of

the sphere is given by the sum of the potentials of the charge and its image charge inside

the sphere. Just as in the previous case, the image charge will have charge −qR / p

and will be located at vector position R2 p / p2 . 

The potential inside the sphere will be dependent only upon the true charge distribution

inside the sphere. 
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Courtesy image: Geek3.

36) A point  charge  e  is  situated at  a distance  d  from a conducting  plane  that  is

grounded.  Find  the  potential  and  the  electric  field  intensity  vector  of  the  system.

Determine the surface density  of the charge that is induced on the grounded surface.

Show that the total induced charge is equal to −e   [3].

Let us assume that the grounded plane is plane  x=0. The radius vector  r is drawn

from the charge to the observation point,  and r '  from the image of the chrge to the

observation point.

φ=    e
4 π ε or

−    e
4 π ε or '

   ;   E=    e r

4 π ε o r
3
−   e r '

4π ε o r '
3

 

r=√( x−d)2+ y2+z2   ;   r '=√(x+d)2+ y2+ z2

The surface density of the induced charge is: σ =−            ed

2π (√ y2+z2+d2)
3

.
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37) Using the method of images, find the potential when a charge q that is placed inside

an angle  (right angle) formed by two grounded conducting planes [3].

We need three  images, of the charge  as given in the following figure. 

φ=
  1
4 π ε o (

q
r1

−
q
r2

+
q
r3

−
q
r4 )

r1=√(x−a)2+( y−b)2   ;   r2=√(x−a)2+( y+b)2

r3=√(x+a)2+( y+b)2   ;   r 4=√(x+a)2+( y−b)2

When y=0,  φ=0 ; the same for x=0.

38)  A point charge e is at a distance d from the centre of a conducting sphere of radius

R.  Using the method of  images,  determine  the electric  potential  of  the  system.  The

sphere is grounded. 
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The potential inside the sphere and on it is zero.  Outside the sphere, it must satisfy the

equation:

Δφ=− e
ε o δ (r )

The origin of coordinate coincides with the position of the point charge. The solution is:

φ=    e
4 π ε or

−    e '
4 π ε or '

The second term in the potential may be thought of as the potential of a charge e', the

charge's image, inside the sphere. Actually, there is no such charge. But the real charge

induced on the surface of the sphere exists and acts on the same way as a certain charge

would without the sphere. The symmetry of the problem implies that charge e'  must lie

on the line that connect the centre of the sphere with the charge e, placed at a distance d1

for the centre.

e2

e '2
= r2

r '2
= R2+d2−2dR cosθ
R2+d1

2−2d1R cosθ

For any angle θ :               d1=R
2 /d   ;   e '=e √d1

d
=e R
d
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39)  A point charge e is at a distance  d from the centre of a spherical projection of a

conducting plane. The centre of the project lies on the plane, and the charge is situated

opposite  the  point  on  the  projection  that  is  farthest  from the  plane.  Determine  the

potential [3].

 

φ=
  1
4 π ε o (

e
r1

−
e '
r2

+
e '
r3

−
e
r4 )

e '=e √d1

d
  ;   d1=R

2/d

40) At a distance  d from the centre of a conducting grounded sphere .of radius  R an

electric dipole p is placed with its positive charge closest to the sphere. Find the electric

potential of the system [3]. 
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Each charge of the dipole induces an image charge. Since the distances from the charges

to the sphere are different, the magnitudes of the image charges will be different. For

this reason we must place a dipole p', oriented in the same way as p, and a charge e' at a

point that lies at a distance d '=R2/d  from the sphere.

φ=   p⋅r
4 π ε or

3
+   p '⋅r '

4π ε o r '
3
+    e '

4π ε o r '

See Ref.3 for the details of calculation.

Dielectrics

Let us remember some formulas.

P=α ε o E   ;   ρ pol=−divP   ;   σ pol=P⋅n

n is the unit vector perpendicular to the surface of

the dielectric material.

D=ε oE+P=ϵ E   ;   div E=1
ε o (ρ cond+ρ pol)   ;   div D=ρ cond

where ρcond ,ρ pol are the densities of charges on conductors (unbounded charged) 

and induced by polarization (bounded charges).

Boundary conditions are:

D1n−D2n=σ unbounded   ;   E1 t=E2 t

The surface density of charges between the media is due to the unbounded charges only,
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not coming from polarization of the materials.

41) A point charge Q  ( 3×10−10C )  is at the  centre of a sphere having  radius  R

(10  cm), made of an isotropic and homogeneous dielectric medium with permittivity

ϵ r=4 . Outside the sphere there is the empty space. Find the surface charge density

on the sphere  [10].

Let us calculate:

∫D⋅undS=∫ Dur⋅un=∫DdS=4π r 2D=Q     ;    D(r )=   Q

4 π r2

D=ε oϵ rE

σ =P⋅ur=ε o(ϵ r−1)E⋅ur=
ϵ r−1

   ϵ r

  Q

4π R2 =2.×10−9  
C

m2

42) An electric charge is uniformly distributed on a plane with a surface density σ .
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Close to the plane, there is a lamina of dielectric material with permittivity  ϵ r  and

thickness d. Find the density of the polarization charge [10].

Using the boundary conditions for field D we have: |D1 |=|D2 |=|D3 |=σ
2

|σ p |=|P⋅un |=P=ε o(ϵ r−1)E2   then: |σ p |=
ϵ r−1

  2ϵ r
σ

43)  An electric charge  e is placed at a distance  d from the flat surface of an infinite

dielectric with permittivity ϵ2 . The permittivity of the medium where the charge is

located is  ϵ1 .  Determine  the potential  φ  and the electric  displacement  vector

D  in the two media [3].

Discussion in given in [9]. Let us call O the point where the charge is placed, and O' the 

point where the image charge is place e'.  In the medium 1, we have:
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φ 1=
 e
ϵ1r

+  e '
ϵ1r '

Field in medium 2 is given by a charge e ' '   in O: φ 2=
 e ' '
ϵ2r

.

Boundary conditions are: φ 1=φ 2   ;   ϵ1

∂φ1

 ∂ n
=ϵ2

∂φ 2

 ∂n
.

For r=r ' : e−e '=e ' '    ;    
e+e '
  ϵ1

= e ' '
  ϵ2

. Therefore we have:

e '=e  
ϵ1−ϵ 2
ϵ1+ϵ2

   ;    e ' '=e  
  2ϵ2
ϵ1+ϵ2

In the case that  ϵ2→∞ ,  e '=−e ,  φ 2=0 . We find the result for a conducting

plane. 

44) The centre of a conducting sphere of radius R is on a flat boundary between two

dielectrics with permittivity  ϵ1 ,ϵ 2   . The sphere possesses  charge  q. Discuss the

system [3].

Let us start from vector D  as we did in [10]:

∫S D⋅ndS=q   ;   D=ϵ E=−ϵ ∂φ
∂r

Potential φ must be constant on the surface of the conductor. It must be zero to 
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infinity. Let us assume φ=C /r . 

C=       q
2π (ϵ 1+ϵ 2)

  ;   φ=        q
2π (ϵ1+ϵ2)r

The electric field near the conductor is E=σ /ε o . σ =σ s+σ p , charge densities 

on the sphere and of polarization [10]. 

where ϵ1
r=ϵ1 /ε o , ϵ2

r=ϵ 2/ε o . σ p1 ,σ p2  are the surface charge densities due to

polarization. σ s 1 ,σ s2 are the densities on the sphere.

σ s1=σ 1−σ p1=ε o E1−σ p1=
    ϵ1

r q

2π (ϵ 1
r+ϵ 2

r)
1

R2

σ s 2=σ 2−σ p2=ε o E2−σ p2=
    ϵ2

r q

2π (ϵ 1
r+ϵ 2

r )
1

R2
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From Legendre Polynomials to Bessel Functions

Legendre polynomials are given by: Pl(x )=
  1

2l l !

d l(x2−1)l

    d xl
.  

Here some of the polynomials:  Po(x)=1    P1(x )=x     P2( x)=
1
2
(3x2−1)

P2( x)=
1
2
(5 x3−3 x)

45) A point charge e is at a distance d from the centre of a conducting sphere of radius

R. Solve the problem by an expansion of the potential in a series of solutions of the

Laplace equation in spherical coordinates [3].

Let us place the coordinate origin in the centre of the sphere and direct the polar axis

along the line connecting the charge and the centre of the sphere.  

Δφ=−  e
ε o δ (r−d )  

φ (r ,θ )=
       e
4π ε o | r−d |

+ ∑
l=0

∞ bl
rl+1 Pl (cosθ )

Pl(cosθ ) are the Legendre polynomials. Coefficients bl  are determined by means

of the boundary conditions.  We know that  ( θ is the angle between r and r ' ):

    1
|r−r ' |

=∑
l=0

∞    rl

(r ')l+1
Pl(cosθ )     for   r<r '    (*)

Boundary condition is: φ=0,   r=R .
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∑
l=0

∞ (   e
4π ε o

   Rl

(r ' )l+1
+
bl
Rl+1 )Pl(cosθ )=0

bl=−    e
4π ε o

R2l+1

d l+1

φ=        e
4 π ε o |r−d |

−     eR
4 π ε od

∑
l=0

∞ (R2

d )
lP l(cosθ )

    rl+1
   (**)

Using expansion (*), we can write the last member in (**) as the potential of a point

charge e '=eR /d , placed at a distance d1=R
2 /d .

φ=        e
4 π ε o |r−d |

−      |e ' |
4π ε o |r−d1 |

This solution coincides with the solution that we have obtained using the image charge.

Let us consider the charge density on the surface of the sphere:

σ (R ,θ )=−  e
4π ∑

l=0

∞
(2 l+1)R

l−1

d l+1
Pl(cosθ )

46) A point charge  e is placed at a distance  d from a sphere of radius R that has a

potential  V. Find the potential outside the sphere and the surface charge density on it

[3].
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φ=        e
4 π ε o |r−d |

+VR
  r

−     eR
4 π ε od

∑
l=0

∞ (R2

 d )
lP l(cosθ )

    rl+1

σ (r ,θ )=   V
4π R

−  e
4π ∑

l=0

∞
(2l+1)R

l−1

dl+1
P l(cosθ )

47) Determine the potential of a charged sphere of radius R. The sphere charge density

varies according to the law σ =σ ocosθ  [3].

Inside:   φ 1=∑
l=0

∞
A lr

l Pl(cosθ )    ;   Outside: φ 1=∑
l=0

∞
Blr

−( l+1)P l(cosθ )

At the surface of the sphere:   φ 1=φ 2    ;    
∂φ 1

 ∂ r
−

∂φ 2

 ∂ r
=σ
ε o . Then:

A1=
σ o

3ε o
  ;   B1=

σ o

3ε o
R2   ;   A l=Bl=0,   l≠1

The potential is:

φ 1=
σ o

3ε o
r cosθ   ;   φ 2=

σ o

3ε o
R3

r 2
cosθ

48) Determine the potential and the electric field vector of a uniformly polarized ball of

radius R. The polarization vector of the balls is P [3].

Since we know the polarization vector, we can determine the bound surface and the

bound body charge densities:  ρ '=0   ;   σ '=P cosθ ..   Therefore we can use the

previous discussion:
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φ 1=
 P
3ε o

r cosθ   ;   φ 2=
 P
3ε o

R3

r 2
cosθ

where  φ 1  is the potential  for  r  <  R  and  φ 2  for   r  >  R . The corresponding

electric fields are:

 

E1=−  1
3ε o

P   ;   E2=
R3

 r5

(P⋅r )  r
    3ε o

− R3

3ε o
P

r3

49)  A  conducting  sphere  of  radius  R  is  located  in  a  non-uniform  electric  field.

Determine the potential around the sphere [3].

When there is no sphere, the potential of an external field in a region without charges 

satisfies the Laplace equation, so that the solution is:

φ ext=∑
l=0

∞

∑
m=− l

l

Almr
lP lm(cosθ )ei mα

If we have the field, we know coefficients A lm .

If we place in the field a conducting sphere, the potential becomes: φ=φ sphere+φ ext .

φ sphere=∑
l=0

∞

∑
m=− l

l

Blm r
−(l+1)Plm (cosθ )eimα

This  is the potential of the charge induced on the sphere by the external potential.

Putting φ=0,  r=R :

B lm=−A lmR
2l+1
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50) A conducting sphere that is grounded is located in a uniform electric field Eo .

Find the potential and the surface charge density [3].

Inside and on the surface of the sphere φ=0 . Outside we have:

φ=∑
l

b l r
−(l+1)Pl (cosθ )−Eo r P1(cosθ )

Boundary conditions give: b1=EoR
2   ;   b l=0    for   l≠1 .

φ=−Eo r cosθ +
Eo R

3

   r 2 cosθ    ;    σ =3ε o Eo cosθ

51) A disc of radius  R  that has a surface charge density σ is placed coaxially in a

hollow cylinder  of  radius  ro with  conducting  walls.  Find the  potential  inside  the

cylinder [3].

Let  us  consider  the  Laplace  equation  in  cylindrical  coordinates  for

φ (ρ , z)=R (ρ )Z (z) .

d2Z

d z2
=k 2Z    ;    

d2R

d ρ 2
+1

ρ
 
d R
d ρ

+k2R=0

Solution is:

φ (ρ , z)=ekl zJo (k lρ )   ,     for   z<0

φ (ρ , z)=e−kl z J o(k lρ )   ,     for   z>0
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J o  is the Bessel function of the first kind. On the surface of the cylinder φ=0 . In

this manner J o(k l ro)=0 determines the values of kl .

Potentials are:

φ 1(ρ , z)=∑
l=1

∞
A l e

kl z Jo (kl ρ )   ,     for   z<0

φ 2(ρ , z)=∑
l=1

∞
A l e

−kl z J o(k lρ )   ,     for   z>0

Using boundary condition: (∂φ
∂n )

1
−(∂φ∂n )

2
=σ

ε o
,  we have:

 2∑
l=1

∞
A le

kl z Jo (kl ρ )=σ
ε o

.

A l=
   σ
2ε o kl

 

∫
0

R

ρ J o(kl ρ )d ρ

∫
0

ro

ρ J o
2(kl ρ )d ρ

Bessel equation and function

Bessel  functions,  first  defined  Daniel  Bernoulli  and  then  generalized  by  Friedrich

Bessel, are canonical solutions y(x) of Bessel's differential equation:
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In the equation, we cna find an arbitrary complex number α, the order of the Bessel

function. Although α and −α produce the same differential equation, it is conventional

to define different Bessel functions for these two values in such a way that the Bessel

functions are mostly smooth functions of α.

The most important cases are when α is an integer or half-integer. Bessel functions for

integer α are also known as cylinder functions or the cylindrical harmonics because they

appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel

functions with half-integer α are obtained when the Helmholtz equation is solved in

spherical coordinates.

Bessel's equation arises when finding separable solutions to Laplace's equation and the

Helmholtz  equation  in  cylindrical  or  spherical  coordinates.  Bessel  functions  are

therefore  especially  important  for  many  problems  of  wave  propagation  and  static

potentials.  In solving problems in cylindrical  coordinate systems, one obtains Bessel

functions of integer order (α = n); in spherical problems, one obtains half-integer orders

(α  =  n  +  1/2).  For  example:  Electromagnetic  waves  in  a  cylindrical  waveguide  -

Pressure amplitudes of inviscid rotational flows - Heat conduction in a cylindrical object

-  Diffusion problems on a  lattice  -  Solutions  to  the radial  Schrödinger  equation (in

spherical  and  cylindrical  coordinates)  for  a  free  particle  -  Solving  for  patterns  of

acoustical radiation - Frequency-dependent friction in circular pipelines, and so on. 

History of Legendre Polynomials and Spherical Harmonics

From [11]. "Una delle formule più semplici e utili della fisica-matematica fu trovata nel

1782 da Adrien-Marie Legendre e quindi estesa pochi mesi dopo da Pierre-Simon de

Laplace. I due fisici-matematici erano interessati a calcolare il potenziale gravitazionale

associato ad una distribuzione di masse μ i  poste nei punti r i ' . Considerarono il
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potenziale gravitazionale di questa distribuzione."

The function is:

φ (r )=∑i

μ i
R i

=∑i

   μi
| r−r i ' |

Legendre calculated, for each site:

   
1
R

 =  
              1

(r2+r '2−2 r ' r cosα )1/2  =  
1
r

 ∑l
 
r ' l

rl
Pl(cosα )       (*)

α is the angle between vectors  r  ,  r ' . 

Actually, we can calculate polynomials as a Taylor series of the generator:

         1

(1+z2−2 zu)1 /2 =∑
l=0

∞
 zl Pl(u)

"Laplace, sempre nel 1782, fece un passo in più: usando coordinate sferiche, si rese

conto  che  esistevano  funzioni,  ...  ,  con  “buone”  proprietà  rispetto  alle  rotazioni,  in

termini delle quali era possibile sviluppare le funzioni di Legendre:"

Pl(cosα )  = 
4 π
l+1

∑
m=−l

l

(−1)mY l
−m(θ ,ϕ )Y l

m(θ ' ,ϕ ')

(θ ,ϕ ) ,(θ ' ,ϕ ')  are spherical coordinates concerning vectors  r  ,  r ' .  Y l
m  are

the spherical harmonic functions.

Laplace wrote:

φ (r )=∑i

μ i
R i

=∑i

   μi
|r−r i ' |

=∑
l=0

∞
 
4π
l+1

 ∑
m=−l

l

plm
Y l

−m

rl+1
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where

plm=∑i
(−1)mμ iY l

m(θ 'i ,ϕ 'i)r '
l

"Correva l’anno 1782 e già era chiaro che le soluzioni  dell’equazione di Laplace si

raggruppavano in multipletti:  fissato  l,   l’insieme  delle  combinazioni  lineari  delle

(2  l + 1)  armoniche sferiche si trasforma in se stesso per rotazioni.  Nel linguaggio

moderno, le armoniche sferiche di ordine  l   sono una base per la rappresentazione

irriducibile del gruppo delle rotazioni di dimensione l . Questa matematica la si ritrova

in elettrostatica e in meccanica quantistica".

Here some information from Wikipedia1.

Spherical harmonics were first investigated in connection with the Newtonian potential

of Newton's law of universal gravitation in three dimensions. In 1782, Pierre-Simon de

Laplace had, in his Mécanique Céleste, determined that the gravitational potential at an

observation point associated with a set of point masses located at given points, as we

have previously seen.

Laplace  used  the  Legendre  polynomials,  that  can  be  derived  as  a  special  case  of

spherical  harmonics.  Subsequently,  in  his  1782 memoire,  Laplace  investigated  these

coefficients  using  spherical  coordinates  to  represent  the  angle  between  the  radius

vectors.  

In 1867, William Thomson (Lord Kelvin) and Peter Guthrie Tait introduced the "solid

spherical harmonics" in their Treatise on Natural Philosophy, and also first introduced

the name of  "spherical  harmonics"  for  these  functions.  The "solid  harmonics"  were

homogeneous2 polynomial solutions  of Laplace equation.

By means of the study of Laplace equation in spherical coordinates, Thomson and Tait

recovered  Laplace  spherical  harmonics.  Wikipedia  tells  that  "The  term  "Laplace's

coefficients" was  employed by  William Whewell to describe the particular system of

1 https://en.wikipedia.org/wiki/Spherical_harmonics
2 In mathematics, a homogeneous function is one with multiplicative scaling behaviour: if all

its arguments are multiplied by a factor, then its value is multiplied by some power of this
factor.
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 solutions introduced along these lines, whereas others reserved this designation for the

zonal spherical harmonics that had properly been introduced by Laplace and Legendre".

"The prevalence of spherical harmonics already in physics set the stage for their later

importance in the 20th century birth of quantum mechanics".  In fact,  the (complex-

valued) spherical harmonics  are  the eigenfunctions of the square of the orbital angular

momentum operator  −i ℏ r×∇ .  Therefore  they  represent  the  different  quantized

configurations of atomic orbitals.

Laplace's spherical harmonics are the joint eigenfunctions of the square of the orbital

angular momentum (**) and the generator of rotations about the azimuthal axis (***):

L2=−r2 ∇2+(r ∂
∂r

+1) r ∂
∂r

=−   1
sinθ

∂
∂θ sinθ ∂

∂θ −   1

sin2θ
∂2

∂ϕ 2
  (**)

Lz=−i(x ∂
∂ y

− y ∂
∂ x ) = −i ∂∂ϕ    (***)

Magnetostatics

Phenomena that take place in a constant magnetic field, that is when the magnetic field

strength H and the magnetic induction B  are independent of time, are governed

by the system of equations which are: 

curl H= j    ;    div B=0
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Let us introduce B=curl A . We have: Δ A=−μ μ o j .  Vector j   is the current

density vector. μ is the permittivity of the medium.

A(r )=
μ μo
4 π ∫  j (r ' )

|r−r ' |
 dV '

At a distance considerably greater than the dimensions of the system:

A(r )=
μ μo [m×r ]

     4π r3

m is the magnetic moment, that is m=1
2∫ [r× j(r)]dV .

The energy of a stationary magnetic field is:

W=1
2
∫(B⋅H)dV=1

2
∫(A⋅j)dV=

μ μo
8π ∫ j(r) j ' (r ' )

   |r−r ' |
dV dV '

For a system of conductors: W=1
2 ∑
i , k

Lik I i I k , Lik  is the mutual inductance.

___________

Show that for a constant and uniform magnetic field B , the vector potential can be

chosen in the form: A=1
2
[B×r ] .

Use the vector relations and problems previously discussed.

___________
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52)  Find the magnetic field strength inside and outside a cylindrical conductor with an

electric current whose density  j is  the same through any section of the conductor.

The radius of the cylinder is R  [3].

H=1
2
[ j×r ]    for   r<R

H= R
2

2r2
[ j×r ]    for   r>R

The distance from the axis of the cylinder to the observation point is r. 

53) Find the magnetic field strength inside a cylindrical cavity in a cylindrical conductor

with an electric current whose density is the same through the section of the conductor.

The axes of the cavity and the conductor are parallel and separated by a distance a [3].

This  problem is  also proposed in  [12],  where it  is  the magnetic  induction which is

required.

To solve the problem let us consider the superposition principle, with a current flowing 

in all the cylindrical conductor, plus an opposite current flowing in the cavity.  Note that
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y-axis is given in the previous image.

For   y>0 :

First current:  B=1
2

μ o j y uz   ,   0< y<R  and    B=1
2

μ o j
R2

y
uz   ,   y>R

Second current: B=1
2

μ o j
  r2

a− y
uz   ,   0< y<a−r ,  y>a+r  and 

           B=1
2

μ o j(a− y)uz   ,   a−r< y<a+r  .

Adding the fields, we have that,  in the cavity: B=1
2

μ j auz . Then: H=1
2
[ j×a] .

54)  An electric  current  flows through an infinitely  long conductor  of radius  R.  The

current density is a/ ρ  for ρ≤R , where ρ is the distance from the axis of the

conductor. Find the vector potential and the magnetic field strength inside and outside

the conductor [3].

Let  the  z-axis  be  the  axis  of  the  conductor.  The  symmetry  of  the  problem yields:

A x=A y=0 . 

Δ A1 z=−μ o j     for   ρ<R   ;  Δ A2 z=0     for   ρ >R

The  A z -  component  depends  only  on  the  distance  from the  axis.  In  cylindrical

coordinates:

1

ρ
 d
d ρ (ρ d A1 z

 d ρ )=−μ o
a

ρ
     for   ρ <R   ; 
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  1

ρ
 d
d ρ (ρ d A2 z

 d ρ )=0         for   ρ >R

A1 z=−μ oa ρ+C1 ln ρ +C2    ;   A2 z=C3 ln ρ +C4

Let us put C1=0 . The continuity of the function and its derivative gives:

−μ oaR+C2=C3 ln R+C4   ;   −μ oa=C3
1
R

We  have  C3=−μ oa R ,  C4=−μo a R(1−lnR )+C2 .  The  relations  given

previously define the vector potential up to a constant term C2 .

The magnetic strength is defined as: H=1
μ o curl A  .

Let us remember that:

curl A=(1
ρ

∂ Az
∂ϕ −

∂ Aϕ

 ∂ z )eρ +(∂ Aρ

∂ z
−

∂ Az
∂ ρ )eϕ +(1

ρ
∂
∂ρ (ρ Aϕ )−

1
ρ

∂ Aρ
∂ϕ )e z

Inside: A z=−μ oaρ +C2 ; H=aeϕ

Outside:  A z=−μ oaR ln ρ +C4   ;  H=aR1
ρ eϕ .

55) Find the magnetic field strength of a plane with a surface current density  i  that is 

the same in any point of the plane [3]. 

65



Zenodo  -  2 March  2021 - DOI 10.5281/zenodo.4573493

Let us chose the system of coordinates  so that the z-axis is directed along the current 

and the x-axis along the normal to the plane: H y=−i /2    x<0 , H y=i /2    x>0 .

________________________

The element of the magnetic induction in an

observation point O   is given by the Laplace

formula:

   dB(r )=
μ o
4 π

I
d l×Δ r '

  |Δ r ' |3
.

In the formula, d l is an element of the loop,  where the current  I  is flowing.

 Let us consider some problems about this formula.

56) Four straight infinitely long parallel wires are carrying the same current  I  as in the 

figure. Give the magnetic induction at the centre of the square ABCDA [10]. 
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|B |=√(BA+BD)
2+(BC+BB)

2=2
μ o
π
I
l

Figure of problem 57.

57)  Give the  magnetic  induction  created  by  by wire  ABCDA shown in  the  figure,

carrying a current Io.  The wire is in the xy-plane.  

We know that: B=
μo
4 π ∮d l×r

  r3
. Let us subdivide the wire in four pieces. The pieces

AB and CD have  d l parallel   to  r ,  therefore the contribution to the magnetic

induction  is  zero.   In the pieces  BC and DA,  d l is  perpendicular  to  r ,  then

dB had the direction of unit vector k .
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BC)   BBC=
μo
4π ∫

B

C

I o
d l×r

   r3 =−
μ o
4π

Io∫
B

C
dl

r3 k    since d l×r=−r dl k . 

Being dl=r dθ , we have  BBC=−
μo
4π

Io ∫
0

π /2
dθ
 r

k=−
μ o
4π

Io
 π
2 r2

k=−
μ o Io
 8 r2

k

DA) It is the same as for BC but d l×r=r dl k , then: BDA=
μo Io
 8 r1

k .

BDA=
μo Io
 8 (1

r1

−
1
r 2 )k

58) Evaluate the magnetic induction at the centre of a current loop.

dB=
 μo I

4π R3 d L×R=
 μ o I

4π R2 d Lk       then  B=
 μo I

4 π R2 ∮ d L=
μ o I
2 R

k

For a point on the z-axis:   B=
μ o I
 2

    R2

(z2+R2)3 /2 k .

59) A charge q is uniformly distributed on a ring

made  of  insulating  material.  The  ring  is  rotating

about its axis with a constant angular speed. 
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The density of charge is: λ=q /(2π R) . The arc is ds=Rdθ .

dq=λ ds=  q
2π R

Rdθ=  q
2π

dθ   ;  I=dq
dt

= q
2π

dθ
d t

=  q
2π

ω

The magnetic induction for the points of the axis is:

B  =  
μ o I
 2

    R2

(z2+R2)3 /2 k  =  
μ oqω
   4 π

    R2

(z2+R2)3 /2 k

60)  The electric current i  flows in the conductor wire. What is the magnetic induction 

at the centre of the circle (P)?

The magnetic field formula at the centre of the coil with a number of loops:

In our case:   N =3/4.
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61) Find the vector potential created by a current I flowing along a ring of radius R. 

Examine the special case when the observation point lies on the axis of the ring. [3].

Let us use a system of cylindrical coordinates.

Aϕ=
μ o I
4π

 ∮
  d lϕ '
|r−r ' |

 =  
μ o I
4 π

 ∫
0

2π
        R cosϕ ' dϕ '
(R2+ρ2+z2−2R ρ cosϕ ' )1/2

Let us use: ϕ '=π +2θ .

Aϕ  =  
μo RI
  π

 ∫
0

π /2
        (2sin2θ−1)dθ
((R+ρ )2+z2−4 R ρ sin2θ )1 /2

Let us define: k2=
  4 R ρ
(R+ρ )2+z2

, then: 

Aϕ=
μ o I
k π (Rρ )1/2[(1−k

2

2 )K (k)−E (k )] , 
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K (k )=∫0

π /2       dθ
(1−k2 sin2θ )1 /2  is an elliptic integral of the first kind,  and

E(k)=∫0

π /2
(1−k2 sin2θ )1/2dθ  is an elliptic integral of the second kind.  

These two functions are related in the following manner:

dK
dk

=    E

k (1−k2)
−K
k

   

   
dE
dk

= E
k
−K
k

The magnetic field is given as:

Hρ=
 I
2π

         z

ρ [(R+ρ )2+z2]1/2 [−K (k )+
R2+ρ2+z2

(R−ρ)2+z2
E(k)]

H z=
 I
2π

         1

ρ [(R+ρ)2+z2]1/2 [K (k )+R
2−ρ 2−z2

(R−ρ )2+z2
E (k )]

Hϕ=0

In the case that ρ→0 , Hρ=0 , Hϕ=0 , H z=
    R2 I

2(R2+z2)3 /2 .
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62) Find the magnetic field strength and the vector of magnetic induction created by a

uniform magnetic ball. The radius of the ball is  R and its magnetization vector  M

[3].

Outside  the  ball,  we  have  that   B2=μ oH2   ;   curl H2=0   :   div H2=0 .  These

relations mean that it exists a scalar so that Δφm=0 ,  and that  H2=−∇φm .

φm=∑
l=0

∞
a l
P l(cosθ )

    rl+1

Let us remember that, in spherical coordinates:

: grad f=∂ f
∂r

er+
1
r

∂ f
∂θ eθ+

  1
rsinθ

∂ f
∂ϕ eϕ , 

Then:

H2=∑l [al(l+1)Pl (cosθ )

         rl+2
er−

a l
rl+2

dPl
dθ

eθ ]

We have also that M=χ H   ;   B=μμ oH .

Inside the ball, fields H1   ,B1  ,  M are parallel. Using the continuity of  Br  and

Hθ  at r=R , we have:

B1cosθ=μo∑
l=0

∞ (l+1)a lP l(cosθ )

          Rl+2
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H1sinθ=μo∑
l=0

∞  al
R l+2

d Pl(cosθ )
     dθ

According to boundary conditions, the nonzero coefficients are those with l=1  .

H1=
B1
μo  −M   →    B1=μo

2a1

 R3   , M−
B1
μ o=

a1

R3

then:

a1=
1
3
M R3   ,   B1=

2
3

μ oM

Outside the ball:

  H2=
R3

 3 [3 r
(M⋅r )
   r5

−M

r3 ]     ;    B2=μoH2 .

Therefore, outside the ball, the magnetic field is the field of a dipole having a magnetic

moment: 

m=4 π
 3

R3M

Inside the ball:   B1=
2
3

μ oM    ;    H1=−1
3
M . 

In the following image, we can see B  ,  H inside the sphere. Note that the magnetic 

strength is a vector which is opposite to the magnetization.
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The images are based on a drawing courtesy Geek3, for Wikipedia. Description tells

"Drawing of a homogeneously magnetized spherical magnet with exactly computed

magnetic field lines. A spherical magnet has the remarkable property that its field

outside the magnet is identical to that of an ideal point-like dipole. Inside the

magnetized volume, the field is exactly constant and aligned along the north-south

axis." The field mentioned in the description is the vector magnetic induction  (on the

left). On the right the magnetic strength is illustrated.

63) Determine the magnetic field strength on the axis of a magnet of cylinder shape.

The radius of the magnet is R. Its length is d. The magnetization is M o [3].

We have again  H=−∇φm , where Δφm=0  in empty space.
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Let us suppose B=μ o(H+M ) . Since div B=0 , div H=−div M .

We have the effective magnetic charge density:  

Δφm=−ρm=−div M

If an interface is present:  σ m=n⋅M , which is the  effective magnetic surface change

density. The magnetic potential is therefore:

φm(r )=−
 1
4π ∫ div M (r ' )

   |r−r ' |
dV '−

 1
4 π ∮

  Mn

|r−r ' |
dS '

M (r )  is the magnetization vector of the magnet.  S '  is any closed surface that

contains the magnet. 

In  our  case,  M=const  ,   div M=0 .  M n  is  nonzero  only  on  the  basis  of  the

magnet. 

φm=
M o

4π ∫        dx dy

[(z+d /2)2+x2+ y2]1 /2 −
Mo

4 π ∫        dxdy

[(z−d /2)2+x2+ y2]1 /2

φm=
M o

 2
[√(z+d /2)2+R2−| z+d /2|−√(z−d /2)2+R2+| z−d /2| ]

Inside the magnet:

H z=−
∂φ m

 ∂ z
=
M o

 2 (       z+d /2
[(z+d /2)2+R2]1 /2  +

       z−d /2
[( z−d /2)2+R2 ]1/2 −2)

_____________
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The Poisson equation is Δφ=f , where Δ is the Laplace operator.

The Poisson equation is solved by the Green's function:

φ (r )=−∫     f (r ')
4π | r−r ' |

dV '

Remember the potential given by a body distribution of charges.

__________

64)   A sphere of radius  R rotates about the z-axis with angular velocity  Ω .  Its

surface is electrically charged with a density  σ o . Find the vector potential and the

magnetic field strength inside and outside the sphere [3].

The motion of the sphere generates a surface current. In spherical coordinates with the

polar axis directed along the axis of rotation:

Iϕ=σ ΩR sinθ

There  are  no currents  either  inside  and outside  the  sphere.  We can use a  magnetic

potential. 

H=−∇ψ 1    r<R    ;    H=−∇ψ 2    r>R

ψ 1=∑
l=0

∞
A lr

lPl(cosθ )    ;    ψ 1=∑
l=0

∞
Bl r

−( l+1)Pl(cosθ )

Boundary conditions becomes:
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∂ψ 1

 ∂ r
 = 

∂ψ 2

 ∂r
   ;   

∂ψ 1

r ∂θ
 − 

∂ψ 2

r ∂θ
 =  iϕ

Therefore:  A1=
2
3

σ ΩR   ;   B1=
1
3

σ ΩR4   ;   A l=B l=0 ,  for  l≠1 .

Inside the sphere:

H=2
3
σ RΩ

The magnetic field has the direction of the z-axis, the axis of rotation.

Outside the sphere:

H=3(m⋅r)r
  4 π r5 −  m

4 π r3

where m=4 π
 3

R4σ Ω . Outside the sphere, the magnetic field is the field is the field

of the magnetic moment  m .

_____________________

Consider a specimen of magnetic material subjected to a constant magnetic field Ho .

A magnetization M o . parallel to Ho , is created in the specimen.  In addition to

the  constant  magnetic  field,  a  variable  magnetic  field   h ,  perpendicular  to  the

constant field, and rotating with angular frequency ω . The amplitude of the field is

h≪Ho . Determine the additional magnetization and the condition of the resonance

[3].

The equation governing the magnetic moment:
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dM
 d t

=μ og[M×H ]

where the field is:  H=Ho+h exp(−iω t) .

Let us look for the solution:    M=Mo+m exp(−iω t) .

Since h≪Ho , let us assume m≪Mo .

−iωm x=−μ ogM ohy+μ ogm yH o

−iωm y=μ ogM ohx−μ ogmxHo

−iωm z=0

mx=χ hx−iν hy          mx=χ hx−iν hy           mz=0

In this solution:

  χ =gM oμo
   ω o

ω 2−ω o
2

, ν=gMoμo
   ω
ω 2−ω o

2
, 

where : ω o=μog H o . When ω  approaches  ω o , we observe the resonance.

_____________________

65)  Find the self-inductance L per unit length of a transmission line that consists of two

coaxial  cylinders  of  radiuses  R1   and  R2 ( R1<R2 ).  The space between the

conductors is filled with a substance having a permittivity μ [3].
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The magnetic field between the coaxial conductors is H=I /(2π r ) , where  I  is the

current.  The energy is:

W=1
2 ∫BHdV=

μ oμ I
2

  4π  ln
R2

R1

We have also:

W=1
2
L I2

Therefore:

L=
μoμ
 2π  ln

R2

R1

.

_____________

Let us consider a loop carrying a current I.  The

loop in in a magnetic field with induction  B

. On the loop we have a force and a torque:

F=I∮d l×B   ;   M o=I∮r×d l×B

66) Let us consider the semicircular loop with a current I, as in the figure. The loop is in
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the xy-plane. Find the force on the loop.

F=FAB+FBA=I∫
A

B

d l×B+ I∫
B

A

d l×B=I∫
A

B

dx i×B j+ I∫
B

A

ds t×B j

where  t is the unit vector tangent the curve.  Then:

F=k  (2 IRB−IRB∫
0

π

sinθ dθ )=0

67)  Calculate  the  force  between  two  straight  parallel  wires  of  infinite  length  with

electric  current   I1 and  I2 if  the  distance  between  the  wires  is  d .  The

permittivity of the medium between the conductors is μ  [3].

F=
μ μo
 2π

I 1 I2
  d

This is the modulus of the force vector. The force is attractive, when the currents are

flowing in the same direction, repulsive when they are flowing opposite.

This problem is discussed in all the physics books.  Suggested reading:

https://courses.lumenlearning.com/physics/chapter/22-10-magnetic-force-between-two-

parallel-conductors/
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68) A straight wire is carrying current I1 . It is in the same plane where there is the

loop ABCDA in the following figure. The loop is carrying current I2 . The sides of

the loop, AB and CD, are parallel to the wire, and the sides DA and BC, perpendicular.

The length are  l  and a, as given in the figure. The distance of AB from the wire is  c.

Find the force on the loop [10].

F '
 l

=
μ o
2π

I1 I 2

  c
   

F ' '
 l

=
μ o
2π

I1 I 2

c+a

F '
 l

−F ' '
 l

=
μo
2π

I 1 I2(1
c
−   1
c+a )=

μ o
2π

I1 I 2
   a
c(c+a)

The force on the loop is directed towards the wire.
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69)  Two straight wires 1 and 2 are placed as shown in the figure. They are carrying the 

same current I . Find the torque on the segment CD of wire 2 [10].

Wire 1 creates the field: B=
μ o I
2π r

.

dF=I d x×B    ;    dF=I Bdx sinθ =
μ o I

2

2π
dx
 r

sinθ

dτ o=x dF=r sinθ dF=μ o I
2  
dx
2π

 sin2θ =μ o I
2  
adθ
 2π

 tan2θ

τ o=μo I
2  

 a
2π

 ∫
−π /4

π /4

tan2θ dθ

The torque turns the wire 2 to have it parallel to 1.
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70)  A rod AB with length l  is in the field of magnetic induction generated by a straight

infinitely  long wire carrying current  I1 .  The rod is  perpendicular  to the wire,  as

given by the figure. AB is carrying a current I2 . Find the force on AB.

B=
μ o I 1

2π r  ut   ;   dF=I2d l×B    ;    d l=dr ur   ;  ur×ut=k

F=∫
B

B

d F=
μo I1 I2

  2π
 ∫
a

a+l
dr
 r

 k=
μo I 1 I2

  2π
 ln
a+l
 a

 k

Quasi-stationary fields

Magnetic flux and Induced Emf

For a discussion, see for instance https://courses.lumenlearning.com/physics/chapter/23-
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1-induced-emf-and-magnetic-flux/

71)  A rod made of conducting material and having a length l  is rotating with angular

constant velocity ω  about  O.  Th field B is perpendicular to the plane where the

rod is rotating. Find the induced tension in the rod. 

Each piece of the rod dr has a velocity v=ω r . Each element gives a contribution:

dε=v×B⋅ur dr=ω Br dr     ;    ε=∫
0

l

ω Br dr=1
2
Bω l2

 

72) Let us consider a disc made of conducting material.  The disc rotates about its centre

with ω , constant angular velocity. Find the tension between the rim of the disc and

its centre [10].
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ε  =  ∫
0

R

Bω r dr=1
2
Bω R2

73) A rod, having length l, moves with speed v,  as shown in the figure. The velocity is

parallel to the wire carrying the current I. The wire and the rod are in the same plane.

Find the tension between the ends of the rod.

The field B is not uniform. The force of Lorentz on the charges is given by:

F=q v×B    ;   B(x)=qv×B( x)

F(x )=q v B(x )=q v
 μ o
2π

I
x

  ;  E(x )=v B (x)=v
 μ o
2π

I
x

|ε |=∫
r

r+l

E (x)dx=
μo v
 2π

 I  ln(r+l  r )

Motional emf  - It is well known that Faraday and Henry discovered that a current in a

loop can be created by moving a magnet, and also by moving a loop through a magnetic

field. This method of having a current is the electromagnetic induction. For instance, if
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we move a conducting rod perpendicularly to a magnetic field, a magnetic force on its

charges  sends the electrons to one end, creating an excess of positive charges at the

other  end.   As  a  consequence,  we  have  a  polarization  of  charge  giving   potential

difference or emf  ε between the ends of the rod. If we have a loop linked to the rod, the

induced ε produces a current I . 

The field B is perpendicular to the page, towards the reader. The motional emf produced

in the rod is ε=vBL  . If the circuit has a resistance R, the induced current is: 

I= ε
R

=vBL
 R

74) In the figure given above,  the rod is moving to the right. Find the direction of the 

induced emf in the rod.  That is, what is the positive end of the rod?

Consider for instance a  positive charge inside the rod. As the charge moves to the right

with the rod, we can determine the direction of the magnetic force on the charge.
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The force on a positive charge in the rod is downward toward the bottom of the page.

Therefore, the lower end in the figure is positive.

75) A rectangular loop  of height  L and width  w is in the plane of the figure.   In the

space there is a region of magnetic field wide 3w. The magnetic field is directed into the

page. 

The loop is in the plane of the figure. Its surface is perpendicular to the magnetic field

lines. The magnetic flux   through the loop is the scalar product of the field B and the

surface A through which it fluxes: Φ=B⋅A . If the loop is at rest in the field, the flux

is equal to BA = BLx, where x is the part of w in the field. 
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But if the loop is moving in the magnetic field with speed v, the flux through the loop

does not remain constant and changes with time. The Faraday Law of induction states

that an emf ε will be induced in a loop of wire through which the flux is changing:

ε=−dΦ
 dt

The induced emf in the loop is caused by the change in flux.

The "minus" sign is given by the Lenz Law. This law states that the induced emf in the

conductor is responsible of a change in flux, which opposes the change in flux that

produced it.  It means that the induced emf the induced change in flux is against the old

change in flux. Actually, the reason of this law is in the conservation of energy. 

The the emf induced in the loop as the loop is passing through the magnetic field is 

ε=−dΦ
 dt

=−d (BA )
   dt

   ;     ε=−B
[d (Lx )]
    dt

=−BL(dxdt )=−BLv

The current can be found by Ohm’s law:

I= ε
R

=−BLv
 R

88



Zenodo  -  2 March  2021 - DOI 10.5281/zenodo.4573493

In the case depicted in the figure previously given, we have that the current is flowing in

a direction when the loop is entering the field, and in the opposite direction, when the it

is leaving the field. Note that when the loop is all inside or outside the field, the current

is zero, because we have no emf.

76) A conducting rod of length 0.30 m and resistance 10.0 Ω moves with a speed of 2.0 

m/s through a magnetic field of 0.20 T which is directed out of the page. Find emf.

Neglecting the resistance of the other parts of the loop, evaluate the current and the

dissipated power.

77) A square loop of side a = 0.4 m, mass m = 1.5 kg, and resistance 5.0 Ω falls from

rest from a height h = 1.0 m toward a uniform magnetic field B which is directed into

the page as shown by the figure.

Determine the speed of the loop just before it enters the magnetic field. As soon as the

loop enters the magnetic field, an emf ε and a current I is induced in the loop. 

Is the direction of the induced current in the loop clockwise or counter-clockwise? 

Let us suppose that, when the loop enters the magnetic field, it  falls through with a

constant velocity.  
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Evaluate  the  magnetic  induction  B,  required  to  keep  the  loop  falling  at  a  constant

velocity.

Conservation of energy  :

U in=K fin

mgh=1
2
mv

v=√2 gh=√2(10m / s2) (1. 0 m )=4 . 5 m /s

The current moves  around the loop counter-

clockwise.  

To have the loop moving with constant speed, we need a magnetic force upward just

balances the weight of the loop downward. 

FB=mg=(1. 5 kg )(10 m /s2)=15 N

78)  A rod of mass m and length l  moves on two parallel wires without friction, as in

the figure. The rod has an initial speed  vo . Find the speed of the rod as a function of

time [10].
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The magnetic force is: Fm=−I l B . From Newton's Law:

ma=mdv
dt

=−I l B    ;    m
dv
dt

=−  ε
R
lB=−B l v

 R
l B .

R is the resistance of the loop.

m
dv
dt

=−B
2 l2 v

   R
  →   ∫

vo

v
dv '
 v '

=−∫
to

t

(B2 l2

mR )dt '

ln
v
vo

=−B
2 l2

mR
t   →   v=voexp (−t B2 l2/mr )

79) A circular loop of wire has a radius of 0.025 m and a resistance of 3.0 Ω. It is placed

in  a  1.6  T magnetic  field  which  is  directed  through the  loop perpendicularly  to  its

surface and then turned off uniformly, over a period of 0.10 s. What is the current in the

wire during the time that the magnetic field changes from 1.6 T to zero?

|ε |=Δ Φ
Δ t

=π r2 ΔB
Δ t

=0.031V

Felici's Law

This law allows one to calculate the net charge through a circuit configuration in which

there is a current induced by a variable magnetic field, such a conductor coil immersed

in a variable magnetic field. By means of this law, we calculate net charge in a period

using initial flux and final flux [10].
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In fact:

80)  A loop ABCDA has a resistance R in in a plane where there is a very long straight 

wire carrying current i. The loop turns of 180° about the side AD, parallel to the wire, at

a distance d.  Find the charge flowing in the loop during the rotation.

We have an initial and a final flux. 
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Felici's Law tells:

81)   In the figure it is shown a toroidal solenoid. Evaluate the total charge Q  which

moves in the solenoid, from the beginning of the motion to the time instance when the

charge passes in O [10].

The field generated by the moving charge is: B=
μo

4 π q
v×r

  r3
.

When the particle is far from the solenoid, the flux in it is zero. When the particle is 

passing in O, the flux through the N loops:

Then, according to Felici's Law:
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82) A rectangular loop of sides with lengths  l  and w moves with a constant velocity

away from an infinitely long straight wire carrying a current  I  in the plane of the loop,

as shown in the figure. The total resistance of the loop is R. 

Using Ampere’s law, find the magnetic  field at  a distance  s away from the straight

current-carrying wire.

What is the magnetic flux through the rectangular loop at the instant when the lower

side with length is at a distance  r  away from the straight current-carrying wire, as

shown in the figure?

At the instant the lower side is a distance r from the wire, find the induced emf and the

corresponding induced current in the rectangular loop. Which direction does the induced

current flow? 

∮B⋅d l=μ o I , then  B=
μ o I
2π s

into the page.

Φ=∫ B⋅ndS=∫
r

r+w

 (μo I2π s ) l ds=μ o I l
 2π

ln
r+w
  r
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ϵ=−
dΦ
dt

=
μo I l
2π

  vw
r (r+w)

Poynting vector

The Poynting vector represents the energy flux (the energy transfer per unit area per unit

time) of an electromagnetic field. The SI unit of the Poynting vector is the watt per

square metre (W/m2). It is named after its discoverer John Henry Poynting, who first

derived  it  in  1884.  Oliver  Heaviside  also  discovered  it  independently  in  the  more

general form that recognises the freedom of adding the curl of an arbitrary vector field

to the definition. 

Let us remember some formulas previously given:

rot grad f=0    (1)    ;    div rot A=0    (2)

rot rot A=graddiv A−Δ A    (3)   ;  div ( f A)=f div A+grad f⋅A  (4)

div (A×B)=B⋅rot A−A⋅rot B (5)  ; rot (f A)=grad f×A+ f rot A    (6)

(5) is interesting for a discussion concerning the Poynting vector [2]. Let us assume

A×B=S= 1
μ E×B ,  where   vector   E is  the  electric  field  and  B the  magnetic

induction. 

1
μ div(E×B)= 1

μ (B⋅rot E−E⋅rot B)  (7)

Due to Maxwell equations in the empty space: 

                  
1
μ div(E×B)=− 1

μ (B⋅∂B∂ t +μϵ E⋅∂E
∂ t )=− ∂

∂ t
[uB+uE]   (8)
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where u=uB+uE is the energy per unit of volume. Therefore:     

div(S)=−∂ u
∂ t

  (9)

(9) is written in the case of an empty space, without densities of currents. 

Let us consider B uniform in the volume we are considering. Let us suppose that B is

uniform as the time goes on. The curl is zero. Using (7) and (8):

1
μ div(E×B)= 1

μ (B⋅rot E) = − 1
μ (B⋅∂B∂ t )=− ∂

∂ t
[uB]   (10)

In (10), we do not find the derivative of the energy of the electric field.  Let us use

Maxwell.  We  have rot B=μϵ ∂E /∂ t .  If  the  magnetic  field  B is  uniform,  and  it

remains uniform during the time,  its  curl  is always zero.  The electric  field must be

constant in time, and  the same for the energy of this field. That is, the electric field does

not gain or lose energy. Since  E is constant in time, rot E=−∂ B /∂ t  gives that the

variation of the magnetic induction is constant and therefore  B  is a linear function of

time. 

Now, let us consider a uniform electric field, constant in time. Its curl is zero. Using

again rot E=−∂ B /∂ t , we have that the magnetic induction is constant. 

Therefore:

1
μ div(E×B)=− 1

μ (E⋅rot B) = −ϵ (E⋅∂E∂ t )=− ∂
∂ t

[uE]   (11)

Since B is  constant,   Maxwell  gives  rot B=μϵ ∂E /∂ t ,  an  electric  E which  is

uniform must be a linear function of time.  

These relations explain some difficulties in solving exercises that we find in textbooks

and  on  the  web,  and  that  are  concerning  volumes  with  uniform  electric  (in  flat
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capacitors) and magnetic (solenoids or air gap) fields, but that are changing over time.

We must therefore pay close attention to the formulation of problems.

Let us see two examples. 

"Una  opportuna  distribuzione  di  correnti

provoca in una regione dello spazio avente

forma cilindrica con raggio a e lunghezza W

l'insorgere di un campo magnetico uniforme

diretto  come  l'asse  del  cilindro  e  avente

modulo variabile nel tempo. Si determini il

campo elettrico sulla  superficie  laterale  del

cilindro supponendo che la densità di carica

elettrica netta sia nulla in tutto lo spazio. Si

mostri  inoltre  che  la  variazione  nel  tempo

dell'energia  del  campo  magnetico  nella

regione  considerata  è  uguale  al  flusso  del

vettore  di  Poynting  attraverso  la  sua

superficie laterale." [13]. A certain distribution of currents causes, in a region of the

space having a cylindrical shape with radius a and length W, the presence of a uniform

magnetic field directed as the axis of the cylinder and having a modulus that varies over

time. Determine the electric field on the lateral surface of the cylinder assuming that the

net electric charge density is zero in all space. Moreover, show that the variation in time

of the energy of the magnetic field in the considered region is equal to the flux of the

Poynting vector through its lateral surface 

Using  Faraday-Lenz  we  have  that  the  induced  electric  field  on  the  surface  of  the

cylinder is: 
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 E=−a
2

∂B
∂ t

uϕ    (12)

uϕ is the unit vector tangent to curve  Γ, as given in the figure.  

The flux of the Poynting vector can be easily calculated as: 

ΦS=π ϵ C2a2W B
∂B
∂ t

  (13)

If we evaluate  the energy of the magnetic  induction  B inside the cylinder,  we have

UB=
π
2
ϵ C2a2W B2  , and therefore (13).

However, according to our previous discussion, the statement of the problem is right

only in the case that the uniform field  B(t) is a linear function of time.  In this manner,

the derivative with respect to time of the electric field is zero and the energy of the

electric field is constant.  If the magnetic field were a non-linear function with respect to

time, the problem would be not properly stated, in the case that we ask that it also be

uniform. The flux of the Poynting vector could not be equal only to the variation of

magnetic energy. It should also involve the variation of the energy linked to the electric

field. 

Let us consider another problem  [14]. 

"Un condensatore piano con armature circolari,  caricato alla d.d.p. Vo, viene lasciato

scaricare attraverso un resistore di resistenza Ro.  Calcolare il flusso totale di energia

dall'interno  all'esterno  del  condensatore  durante  la  scarica".  La  soluzione  recita:

"Dobbiamo calcolare i  campi  E e  B e da questi  il  vettore di Poynting  S durante la

scarica". A flat capacitor with circular armatures, charged to voltage Vo,  can discharge

through a resistance resistor Ro. Calculate the total energy taht flows from the inside to

the outside of the capacitor during the discharge. The solution given by the boo [14]

tells that We must calculate the fields E and B and, from them, the Poynting vector S

during the discharge.
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The proposed solution does not tell the field E inside the capacitor be uniform; however

it must be so due to the modulus of the induced B, given at page 359, B=
μϵ R

2
∂E
∂ t

.

The solution given by the book tells that this is the modulus of the magnetic field on the

lateral  surface of the  cylinder,  representing  the geometry  of the capacitor,  having a

circular section of radius R. The modulus of the Poynting vector is:

S= EB
μ =ϵ R

2
E

∂E
∂ t

  (14)

The book tells that this modulus is equal to the variation of the energy linked to the

presence of the electric field. 

The problem must therefore be considred with caution. In the discharge process of the

capacitor,  the  variation  of  the  electric  field  with  respect  to  time  is  not  linear.  The

derivative of the electric field with respect to time is not a constant and consequently the

magnetic field is a function of time. If this field is a function of time, its energy also

comes into play together with the energy due to the presence of the electric field. Since

the variation of the energy is linked to the flow of the Poynting vector, (14) is valid only

if the variation of the energy due to the magnetic field is zero,  or if we consider it

negligible.  Moreover,  even  the  assumption  of  an  electric  field  in  the  capacitor  as

uniform is an approximation. 
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