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In karst and alpine areas, the interactions between water and rocks give rise to a large
variety of marvelous patterns. In this work, we provide an hydrodynamic model for the
formation of dissolutional patterns made of parallel longitudinal channels and commonly
referred to as linear karren forms. The model addresses a laminar film of water flowing on
a rock that is dissolving. The results show that a transverse instability of the water-rock
system leads to a longitudinal channelization responsible for the pattern formation. The
instability arises because of a positive feedback within the channels between the higher
water flow and the enhanced chemical dissolution. The spatial scales predicted by the
linear stability analysis span different orders of magnitude depending on the Reynolds
number. This may explain why similar patterns of different sizes are observed on natural
rocks. Results also show that the rock solubility affects just the temporal scale of the
instability and the rock inclination plays a minor role in the pattern formation. It is
eventually discussed how rain is not strictly necessary for the appearance of linear karren
patterns, but it may affect some of their features.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Water is an impressive sculptor. It shapes remarkably regular and beautiful patterns
throughout the Earth using different tools, such as sediment mobilization, thermal gra-
dients, and chemistry. In karst environments, water carves through chemical dissolution
and precipitation a plethora of peculiar patterns on soluble rocks (e.g. Meakin & Jamtveit
2009; Jamtveit & Hammer 2012). Because of the considerable variety of hydrodynamic
and chemical processes involved in karst pattern formation, different criteria may be
adopted for their classification, which thus remain an open debate (Ginés et al. 2009).
At first, we may separate between dissolution and precipitation patterns, even though in
many modelling aspects these two reverse processes can be treated in a unified manner
(Ford & Williams 2013).

Dissolution occurs when undersaturated water, commonly coming from rain or snow-
melt, interacts with a soluble rock. It is the most common process in chemical weath-
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Figure 1. Linear karren forms of different spatial scales: wandkarren (a-b), rillenkarren (c),
microrills (d). (a) Wandkarren in limestone, Asturias, Spain. (b) Wandkarren in dolomite,
Brenta Dolomites, Italy. (c) Rillenkarren in dolomite, Brenta Dolomites, Italy. (d) Microrills
in limestone, Verzino, Calabria, Italy. Credits: I. Benvenuty Cabral for panel (a); Sauro (2009)
for panel (d).

ering and, because the dissolution of some rocks involves the capture of CO2 from the
atmosphere, it has profound implications on the Earth carbon cycle (e.g. Berner et al.
1983; Regnier et al. 2013). Dissolution patterns are mostly found on exposed limestone,
dolomite, gypsum and salt rocks and they are usually referred to with the German word
karren (Bögli 1960). A wide overview on the state of karren research may be found in
the contributions collected in Ginés et al. (2009). Dissolution patterns may also arise
below-ground, as for example in the case of cave scallops, which are formed on cave walls
by turbulent flows of water (Curl 1966; Claudin et al. 2017).

Precipitation patterns occur after the water has reached a supersaturated state by
percolating through the soil. This happens mainly in caves, where water shapes a great
variety of speleothems. Because speleothem formation endures millennia, they are precious
sources of information on past climates (Fairchild & Baker 2012). Some aspects of
speleothems have been characterized by hydrodynamic models in recent years, such as the
stalactite shape (Short et al. 2005), the ripple-forms appearing on the stalactite surface
(Camporeale & Ridolfi 2012; Vesipa et al. 2015), and the longitudinal precipitation
flutes (Camporeale 2015; Bertagni & Camporeale 2017). Yet, many speleothem features
still need to be unveiled (Fairchild & Baker 2012). Exceptionally, precipitation patterns
also occur above-ground in geothermal hot springs, where admirable travertine terraces
emerge (Goldenfeld et al. 2006; Veysey & Goldenfeld 2008).

This work deals with dissolutional karren forms. Because karren are characterized
by a multitude of shapes (e.g., circular, linear, polygenetic) and spatial scales (from
micrometers to tens of meters), karren classification is still debated (Ginés et al. 2009).
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Specifically, we deal with karren of linear forms that are hydrodynamically controlled
(instead of fracture controlled, see the classification by Ford & Williams 2013, tab. 9.1).
These are longitudinal patterns in which the channels originate from the dissolution
process driven by the water flow (Fig. 1). Linear karren patterns are usually grouped in
relation to their transverse wavelength (distance between two quasi -parallel channels),
which can span different order of magnitudes: from decimetric wandkarren (Fig. 1a-
b) and rinnenkarren, also called runnels, to centimetric rillenkarren (Fig. 1c-d) and
millimetric microrills (Fig. 1e), also called rillenstein. The pattern classification is not
always straightforward. For example, the wandkarren in panel (b) much recalls the
rillenkarren in panel (d) and probably some authors would call them decantation flutings
(Ford & Williams 2013). Furthermore, superimposition of one pattern onto another are
very common, such as microrills on rillenkarren, or rillenkarren on rinnenkarren (Ginés
et al. 2009). There is a reason for these impressive similarities: all these patterns share an
hydrodynamic common origin. Although this has always been recognized, to date there
is not a comprehensive theory that might explain the regular channelization induced by
water (Ginés et al. 2009). This theoretical lack is the goal of the present paper.

To this aim, we model a laminar film of undersaturated water that flows down a dis-
solving inclined rock (see Fig. 2 for a graphical sketch). The overall chemistry is reduced
to the total concentration ĉ(x̂, t̂) of the solute species within the water film (the hat refers
to dimensional quantities). The interactions between the flow field and the concentration
field define the temporal evolution of the rock surface. From a mathematical point of view,
the dynamic water-rock boundary delineates a Stefan problem for the underlying system
of partial differential equations. Notably, in recent years Stefan-problems involving fluid
motion have been the subject of several experimental investigations (e.g. Mac Huang
et al. 2015; Wykes et al. 2018; Cohen et al. 2020; Guérin et al. 2020) and theoretical
analyses (e.g. Moore 2017; Morrow et al. 2019).

A modelling novelty of this work regards the dissolution rate, that we here define by
directly addressing the local gradient of concentration at the rock-water interface. This
is done by spatially solving the advection-diffusion equation for ĉ(x̂, t̂) and it allows us to
avoid the empirical formulations for the dissolution rate that are commonly used in the
context of karst pattern formation. These are here briefly summarized for completeness.
The simplest formulations link the dissolution-precipitation flux to an hydrodynamic
quantity, e.g., the depth-averaged velocity (Goldenfeld et al. 2006; Veysey & Goldenfeld
2008) or the water depth (Camporeale 2015; Bertagni & Camporeale 2017). Another
common approach is to linearly link the dissolution flux to the difference between the
saturation concentration and a certain concentration within the water film, e.g., the –
uniform– bulk concentration (e.g. Camporeale 2017) or the concentration at the solid
wall (e.g. Claudin et al. 2017). A more complete formulation for the dissolution flux is
the seminal PWP (Plummer-Wigley-Parkhurst) equation (Plummer et al. 1978), which
has been successfully used within the context of karst pattern formation (e.g. Camporeale
& Ridolfi 2012; Vesipa et al. 2015). Although these empirical formulations are sustained
by experimental and numerical evidences (Buhmann & Dreybrodt 1985; Hammer et al.
2008; Dreybrodt 2012), they do not address the local gradients of concentration that may
develop within the water film.

The Paper is structured as follows: in Sect. 2, we formulate the problem of linear karren
formation; in Sect. 3, we find the mathematical solutions for the hydrodynamics and the
solute concentration in the initial case of a flat rock surface; in Sect. 4, we investigate
the linear stability of the flat solution to eventually achieve the dispersion relationship
that describes incipient karren formation. The results of the linear stability analysis are
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Figure 2. Sketch of the water film flowing on the soluble rock. The flat state is characterized
by the semi-parabolic profile for the longitudinal velocity u0(ζ) and the two-dimensional
concentration field c0(x, ζ). This is the base state of the transverse (z-direction) stability analysis.

reported in Sect. 5 and further discussed, together with some limits of the present model,
in Sect. 6. We finally add some concluding remarks in Sect. 7.

2. Formulation of the problem

2.1. Governing equations

A steady water film flowing on a flat surface performs a semi-parabolic velocity profile
(Fig. 2). This is commonly referred to as the Nusselt solution and it can be readily
derived from momentum conservation (Nusselt 1916). Accordingly, the dimensional film
thickness and the surface velocity read

ĥ0 =

(
3 ν q̂

g sin θ

)1/3

, ûs =

(
9 g q̂2 sin θ

8 ν

)1/3

, (2.1)

where ν=10−6 m2/s is the water kinematic viscosity, g is the gravitational acceleration,

θ is the angle with the horizontal, and q̂=2ûsĥ0/3 is the flow rate per unit span. The hat
refers to dimensional variables. We use the quantities in eq. (2.1) to scale the governing
equations of the problems, which are the Navier-Stokes equations and the advection-
diffusion equation for the solute concentration c (scaled with its equilibrium value ĉeq,
see Table 1)

∇ · u = 0, (2.2)

Re(u · ∇u +∇p) = ∇2u + f , (2.3)

Pe u · ∇c = ∇2c, (2.4)

where ∇= (∂x, ∂y, ∂z), u = (u, v, w) is the velocity field (Fig. 2), p is pressure – scaled
with ρ û2s being ρ the water density – and f = (2,−δ, 0) is the gravity term, with δ =
2 cot θ. Because of the slow morphological evolution of the rock surface, the quasi-steady
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approximation (∂t=0) is used in eqs. (2.2)-(2.4). The dimensionless numbers appearing
in (2.2)-(2.4) are the Reynolds and Peclet numbers, which read

Re =
ûsĥ0
ν

, Pe =
ûsĥ0
D

= Re Sc, (2.5)

where D is the molecular diffusivity coefficient. For the solute species considered (Tab. 1),
an average value of D'10−9 m2/s can be assumed (Ford & Williams 2013). Notice that
Pe and Re are linked through the Schmidt number Sc=ν/D=103 (Pe=103Re).

2.2. Hydrodynamic boundary conditions

The boundary conditions are defined on the rock-water interface η(x, z, t) and water-
air interface η(x, z, t) + h(x, z, t) (Fig. 2). It is thus convenient to introduce the vertical
coordinate

ζ =
y − η(x, z, t)

h(x, z, t)
, (2.6)

so that the water domain is always defined between ζ=0 (rock-water interface) and ζ=1
(water-air interface). Notice that y and η are measured relative to the position of the

initially flat rock surface and they are scaled with ĥ0.

At the rock-water interface (ζ = 0), the velocity field satisfies the no-slip and imper-
meability conditions, which are respectively

u = w = 0, v = 0, (2.7)

where we neglect the influence of the slow dissolution process in the vertical hydrody-
namic velocity. At the water-air interface (ζ= 1), the continuity of the stress is ensured
by the so-called dynamic conditions

n · T · n = −We K, n · T · t = 0, (2.8)

where n=[∇(y − η − h)]/n and t are the versors normal and tangent to the free-surface

(n = {1 + [∂x(h+ η)]2 + [∂z(h+ η)]2}1/2 is the versor normalization). T is the stress
tensor (Tij=p δij − (∂xi

uj + ∂xj
ui)/Re). The term We K accounts for the normal stress

induced by the surface tension σ, where We is the Weber number and K is the mean
curvature of the free-surface (e.g Chang & Demekhin 2002)

We =
σ

ρĥ0û2s
=

Ka

Re5/3 sin (θ)
, (2.9)

K=∂x

[
∂x(h+ η)

n

]
+ ∂z

[
∂z(h+ η)

n

]
. (2.10)

From (2.9) we notice that We is a function of Re and the angle θ through the Kapitza
number Ka = 21/3σ/

(
g1/3ν4/3ρ

)
. Ka only depends on the water properties and is thus

constant for our purposes.

The temporal evolution of the free-surface is described by the kinematic condition in
ζ=1

∂th = u · n = v − u(h+ η)x − w(h+ η)z, (2.11)

where, as in eq. (2.7), we neglected the influence of ηt in the hydrodynamics. Eq. (2.11)
ensures the water mass conservation and will be later used as the first solvability equation.
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Dissolution reaction
ρs

(kg/m3)
ĉeq

(kg/m3)
γ

Calcite CaCO3+H2O+CO2 ↔ Ca2++2HCO−
3 2700 0.055 49091

Gyspum CaSO4·2H2O → Ca2++SO2−
4 +2H2O 2300 2.4 958

Halite (salt) NaCl+H2O → Na++Cl−+H++OH− 2300 360 6.4

Table 1. Dissolution reaction, density, and solubility of some representative karst minerals.
Solubility is given as the amount of mineral that can be dissolved in water at 25° and
pCO2 =4 · 10−4 atm (Dreybrodt 2012; Ford & Williams 2013).

2.3. Concentration boundary conditions

Differently from the hydrodynamic quantities, the concentration c has also a longi-
tudinal dependence due to the downstream solute accumulation within the water film
(see Fig. 2). Basically, this makes the concentration field a three-dimensional problem.
In fact, c depends on x because of the downstream solute accumulation, on y due to the
normal-to-wall effect of the dissolution occurring at the rock-water interface, and on z
because of the transverse nature of linear karren forms.

Upstream, as the water film is generally produced by rain or snow-melt, it might be
considered free of solute

c|x=0= 0. (2.12)

With the dissolution of the rock surface, solute molecules are dissociated from the
solid through chemical reactions and then transported into the film bulk by diffusion.
In general, the slowest between these two processes (surface reaction and transport
by diffusion) controls the dissolution kinetics of a karst rock. Very soluble minerals,
such as salt, have a rapid dissolution reaction and thus the kinetics is always diffusion-
controlled (Ford & Williams 2013). For relatively less soluble minerals, such as gypsum
or calcite, numerous studies have demonstrated that in very undersaturated waters, as
those commonly found in exposed karst environments, a diffusion-controlled dissolution
kinetics prevail (see the review on dissolution kinetics by Morse & Arvidson 2002, and
references therein). As equilibrium is approached, there is a transition region to surface-
controlled dissolution kinetics. Moreover, for calcite, which dissolves in water enriched of
CO2, the slow uptake of CO2 from the atmosphere may also become a limiting factor
as equilibrium is approached (Buhmann & Dreybrodt 1985; Kaufmann & Dreybrodt
2007). Notice that CO2-conversion does not influence salt and gypsum dissolution as
they directly dissociate in pure water (Tab 1).

Since we wish to model incipient karren formation and linear karren forms have been
observed to develop upstream first, i.e., where the water is very undersaturated (Glew &
Ford 1980; Ginés et al. 2009; Slabe et al. 2016), we consider a dissolution kinetics that is
diffusion-controlled. This implies that surface reactions are fast compared to diffusion and
that the solute accumulates in a very thin diffusion boundary layer (DBL) at the solid-
liquid interface that is nearly saturated (e.g. Ford & Williams 2013). By also imposing
no-flux of solute between water and air, the vertical boundary conditions eventually read

∂ζc|ζ=1 = 0, c|ζ=0 = 1. (2.13)

The morphological evolution of the rock surface is thus regulated by the flux of solute
that moves into the bulk of the water film through diffusion, i.e. ρs(V̂ +∂t̂η̂)=D∂ŷ ĉ, where

ρs is the rock density and V̂ is the dissolution rate induced by the uniform hydrodynamic
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flow (V̂ <0). In dimensionless form, the same equation reads

γ Pe h (V + ∂tη) = ∂ζc, (2.14)

where γ=ρs/ĉeq�1 is related to the mineral considered (Tab. 1). Equation (2.14) will
be used as the second solvability equation.

3. Flat rock solution

We here find the solution to the problem (2.2)-(2.14) for an initially flat rock surface,
i.e., η0 =∂z=0 and h0 =1, where the subscript 0 denotes the absence of karren patterns.

3.1. Hydrodynamics

The Navier-Stokes equations (2.2)-(2.3) reduce to

u′′0 = −2, p′0 = −δ/Re, (3.1)

with boundary conditions

u0|ζ=0 = 0, u′0|ζ=1 = 0, p0|ζ=1 = 0, (3.2)

where ′ denotes differentiation in ζ. The solutions are the Nusselt semi-parabolic profile
for the longitudinal velocity and the hydrostatic pressure profile

u0 = (2− ζ)ζ, v0 = w0 = 0, p0 =
δ

Re
(1− ζ). (3.3)

3.2. Concentration

The advection-diffusion equation (2.4) reduces to

Pe u0(ζ) ∂xc0 = c′′0 , (3.4)

where the longitudinal diffusion has been neglected since its effect is smaller than that
of longitudinal advection. The initial and boundary conditions (2.12)-(2.13) read

c0|x=0 = 0, c0|ζ=0 = 1, c′0|ζ=1 = 0. (3.5)

Equation (3.4) highlights the coupling between the concentration field c0 and the velocity
profile u0(ζ), as well as the x-dependency of the concentration distribution due to the
downstream solute accumulation. The solution to this problem is resumed in Polyanin
et al. (2001, p. 130-132) and it is here more extensively reported. For x≥0, we seek the
solution in the form of the series (Davis 1973)

c0 = 1−
∞∑
m=0

AmFm(x)Gm(ζ), (3.6)

where Am, Fm(x), Gm(ζ) are unknown functions that must be determined. Substituting
the expansion (3.6) into (3.4) and then separating the variables, we obtain

∂xFm(x) +
α2
m

Pe
Fm(x) = 0, (3.7)

G′′m(ζ) + α2
mu0(ζ)Gm(ζ) = 0. (3.8)

The solution to the x-problem (3.7) is readily given by

Fm(x)=exp
(
−α2

m

x

Pe

)
. (3.9)
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Instead, eq. (3.8) defines a Sturm–Liouville problem, whose boundary conditions, that
are obtained after replacement of (3.6) into the second and third equations in (3.5), are

Gm|ζ=0 = 0, G′m|ζ=1 = 0. (3.10)

The solution of the Sturm–Liouville problem for the eigenfunctions Gm (up to a constant
factor) is

Gm(ζ) = exp
[
−αm

2
(1− ζ)2

]
Φ

(
1

4
− αm

4
,

1

2
;αm(1− ζ)2

)
, (3.11)

where Φ(·, ·; ·) is the degenerate hypergeometric function (Abramowitz et al. 1966).
Substituting (3.11) into the first of the boundary conditions (3.10) provides the tran-
scendental equation for the eigenvalues αm>0

Φ

(
1

4
− αm

4
,

1

2
;αm

)
= 0. (3.12)

For the definition of the coefficients Am, the first step is to substitute the series (3.6)
into the first equation in (3.5), which yields

∞∑
m=0

AmGm(ζ) = 1. (3.13)

Multiplying eq. (3.13) by u0Gn, with n 6=m, then integrating between ζ = 0 and ζ = 1,

and using the orthogonality condition
∫ 1

0
u0GmGndζ=0, one obtains

Am =

∫ 1

0
u0Gm(ζ)dζ∫ 1

0
u0Gm(ζ)2dζ

. (3.14)

Notably, instead of solving numerically eq. (3.12) and (3.14), it is possible to evaluate
the constants Am and αm with the approximated relationships (Polyanin & Nazaikinskii
2015)

αm = 4m+ 1.68 (m = 0, 1, 2...), (3.15)

A0 = 1.2, Am = (−1)m2.27α−7/6m (m = 1, 2, 3...), (3.16)

whose maximum error is less than 0.2%. It is also worth mentioning that, for x/Pe→0,
an easier asymptotic solution for c0 can be obtained (Polyanin et al. 2001)

c0 = Γ

(
1

3
,

2ζ3

9X

)
/Γ

(
1

3

)
for x/Pe = X → 0, (3.17)

where Γ(·) and Γ(·, ·) are the complete and incomplete Gamma functions (Abramowitz
et al. 1966). X = x/Pe is a convenient scaling that maps the dissolution domain of the
problem between X = 0, where the water is free of solute, and X = 1, where the water
film is basically saturated. In fact, some easy algebra shows that the timescale τ̂ needed
by water to go from X=0 to X=1 is τ̂∼ ĥ20/D, i.e., equivalent to the timescale required
by diffusion to involve the full water depth.

The spatial trends of the exact solution (3.6) and the asymptotic solution (3.17) for
c0 are shown in Fig. 3.
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Figure 3. Vertical profiles of c0 at different X (log-scale). The solid red lines refers to the exact
solution (3.6).The dotted-black lines refer to the asymptotic solution (3.17), which is shown to
be valid up to X ∼ 0.1. The coloured areas evidence the saturation ratio of water in the solute.

3.3. Dissolution

The dissolution rate V can be evaluated by combining the evolution equation for the
rock surface (2.14) and the solution for c0

V =
1

γ Pe
c′0|ζ=0. (3.18)

It is also convenient to define the saturation ratio s as

s=

∫ 1

0

c0 dζ, (3.19)

where s= 0 indicates pure water and s= 1 corresponds to saturated water (ion-pairing
is neglected). Because the concentration has been scaled with its saturation value, s is
also equivalent to the dimensionless depth-averaged concentration. A graphical evidence
of the saturation ratio of the water film is given by the light red areas in the panels of
Fig. 3.

The trend V = V (X), obtained after replacing (3.6) in (3.18), is reported in in
Fig. 4a. Notice that the quantity γPe |V | is independent of the rock type and the
film hydrodynamics. The dissolution rate decreases with X as the water loses chemical
aggressivity by increasing its saturation ratio s (right y-axis). Because clear water
enhances dissolution, half saturation (s = 0.5) is reached in the upstream part of the
flow (X∼0.2) and the rate of solute accumulation progressively decreases downstream.
Although at X=1 the flow is not completely saturated (coloured area in Fig. 3d) at those
levels of saturation – and even before (s >0.9) – dissolution is known to drop drastically
because of the inhibitory action of other chemical species in the rock texture (Kaufmann
& Dreybrodt 2007; Ford & Williams 2013).

Between the saturation ratio s and the dissolution rate, there is a nonlinear relationship
(Fig. 4b). This nonlinearity, which here arises thanks to the spatially-dependent solution
for the concentration, highlights the limits of the common assumption of a diffusive flux
linearly related to the saturation ratio, i.e., V ∝ (s − 1). Indeed, the dissolution of the
rock surface is better specified by the local gradient of concentration at the rock surface
(c′0|ζ=0), rather than by the average concentration gradient along the film thickness

(s − 1 dimensionally scales with (ĉ − ĉeq)/ĥ0). Furthermore, it is remarkable to notice
that the trend in Fig. 4b is qualitatively similar to experimental evidences for calcite
dissolution (Buhmann & Dreybrodt 1985; Kaufmann & Dreybrodt 2007), even though
we here consider a simplified dissolution kinetics that is controlled just by diffusion.
Kaufmann & Dreybrodt (2007) have in fact shown that two quasi -linear regimes (for
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Figure 4. Dissolution of an initially flat rock. (a) Longitudinal trends of the scaled dissolution
rate γPe|V | (blue) and the saturation ratio s (red). (b) γPe|V | versus s, from the previous
panel, highlighting a nonlinear relationship with a change of dissolution rate around s∼0.3.

s<0.3 and s> 0.3) can be considered in the dissolution rate of calcite. These regimes have
linear coefficients separated by an order of magnitude and they have been qualitatively
plotted with dashed lines in Fig. 4b.

4. Linear Stability Analysis

We here evaluate the stability of the flat-rock solution reported in the previous section
to a small transverse perturbation written in normal modes

(u, p, c, h, η) = (u0(ζ), p0(ζ), c0(ζ,X), 1, 0) + ε(u1(ζ), p1(ζ), c1(ζ,X), h1, η1) eωt+ikz,
(4.1)

where ε is an infinitesimal parameter, k is the transverse wavenumber, and ω is the
growth rate. Due to the transverse invariance of the problem, ω is a real number, i.e.,
there is no angular phase. When ω> 0, the base-state is unstable and the perturbation
grows in time to eventually form periodic longitudinal patterns.

The ansatz (4.1) follows the assumption of longitudinal invariance (∂x = 0) just for
the hydrodynamic quantity (u, p, h) and not for the concentration field, which has a
longitudinal structure given by the solute accumulation within the water film. The
variableX defines the transverse section wherein the linear stability analysis is performed.

4.1. Hydrodynamics

Since the hydrodynamic problem is longitudinally invariant, the continuity equation
(2.2) at the linear order (ε) imposes v′1+i k w1 =0. Therefore, we can introduce the scalar
stream function ϕ, such that

v1 = − ikϕ, w1 = ϕ′. (4.2)

After some algebraic manipulations, the Navier-Stokes equations (2.2)-(2.3) are reduced
to the Orr-Sommerfeld equation for a domain longitudinally invariant (e.g. Chang &
Demekhin 2002; Kalliadasis et al. 2011)

ϕiv − 2k2ϕ′′ + k4ϕ = 0, (4.3)

with boundary conditions

ϕ′ = ϕ = 0 in ζ = 0, (4.4)

ϕ′′ + k2ϕ = ϕ(3) − 3k2ϕ′ − ik(η1 + h1)
(
k2Re We + δ

)
= 0 in ζ = 1. (4.5)
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We remind that equations (4.4) are the no-slip and impermeability conditions at the rock-
water interface (corresponding to eqs. (2.7)), while equations (4.5) are the linearized
dynamic conditions at the water-air interface, (eqs. (2.8)). The advantage of the Orr-
Sommerfeld approach is that the transverse hydrodynamic problem is reduced to the
biharmonic equation (4.3), the solution thereof is

ϕ = i
(
δ + k2ReWe

)
(η1 + h1)f(ζ), (4.6)

where

f(ζ) =
(kζ coth(kζ)− 1)(k sinh k + cosh k)− k2ζ cosh k

k (2k2 + cosh(2k) + 1)
sinh (kζ). (4.7)

Combining (4.2) and (4.6) readily provides the solution for v1 and w1 (where the latter
can be shown to be much larger than the former). Because of the longitudinal invariance
of the linear problem, u1 is not explicitly related to ϕ. Thus, for its evaluation, we directly
address the conservation of longitudinal momentum (2.3), which at order ε reads

u′′1 − k2u1 = −k2u′0(η1 + ζh1) + Re u′0v1 + 2u′′0h1, (4.8)

with boundary conditions

u1|ζ=0 = 0, u′1|ζ=1 = 0. (4.9)

The terms in the left side of eq. (4.8) are the vertical and transverse diffusion of
momentum, respectively. The terms in the right side arise from advection (Re u′0v1)
and the change of the vertical coordinate (from y to ζ, see eq. (2.6)).

By solving the equation (4.8) through the method of variation of parameters (e.g.
Bender & Orszag 2013), we eventually obtain

u1 = 2 sech k [(η1 + h1) sinh(kζ)/k − η1 cosh(k − kζ)] + 2(1− ζ)(η1 + ζh1), (4.10)

where the contribution of v1 in (4.10) has been neglected as it would considerably
complicate the solution without any perceptible numerical change.

4.2. Concentration

At O(ε), the linearized advection-diffusion equation (2.4) reads

c′′1 − k2c1 + Υ(ζ,X) = u0(ζ) ∂Xc1 (4.11)

where Υ is the inhomogeneous term

Υ(ζ,X) = k2c′0(η1 + ζh1)− Pe c′0v1 − 2h1c
′′
0 − u1∂Xc0, (4.12)

and the initial and boundary conditions (2.12)-(2.13) are

c1|X=0 = 0, c1|ζ=0 = 0, c′1|ζ=1 = 0. (4.13)

The solution to the problem (4.11)-(4.13) is (Polyanin & Nazaikinskii 2015)

c1 =

∫ X

0

∫ 1

0

Υ(ζm, Xm)G(ζ, ζm, X −Xm)dζmdX, (4.14)

where ζm and Xm are dummy variables, and G is the modified Green function

G(ζ, ζm, X) =

∞∑
m=0

Hm(ζ)Hm(ζm)

‖H2
m‖

Fm(X), ‖H2
m‖=

∫ 1

0

u0H2
mdζ. (4.15)

Hm(ζ) and Fm(X) are the solutions associated to the homogeneous part of the equation
(4.11). They can be obtained, after separation of variables, following the procedure used
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to solve the base-state problem (3.4)-(3.5) for c0. The X-problem leads to

Fm(X)=exp
(
−λ2mX

)
. (4.16)

The ζ-problem defines the Sturm–Liouville problem

H′′m(ζ) +
(
λ2mu0(ζ)− k2

)
Hm(ζ) = 0, (4.17)

Hm|ζ=0= 0, H′m|ζ=1 = 0, (4.18)

whose solution for the eigenfunctions Hm (up to a constant factor) is

Hm(ζ) = exp

[
−λm

2
(1− ζ)2

]
Φ

(
k2 + λm − λ2m

4λm
,

1

2
;λm(1− ζ)2

)
. (4.19)

Substituting (4.19) into the first of the boundary conditions (4.18) provides the tran-
scendental equation for the eigenvalues λm>0

Φ

(
k2 + λm − λ2m

4λm
,

1

2
;λm

)
= 0, (4.20)

which highlights how the eigenvalues λm are function of the wavenumber k.
We remind that to evaluate the rock dissolution, we only need the concentration

gradient at the rock-water interface (see eq. (2.14)). Using the solution (4.14) and
separating the terms related to h1 and η1, the gradient at the rock-water interface reads

c′1|ζ=0= Ih1
h1 + Iη1η1, (4.21)

where the expressions for the integral terms Ih1 and Iη1 are reported in Appendix A.

4.3. Dispersion relationship

At this point, (2.11) and (2.14) are adopted as solvability equations. These describe
the temporal evolution of the rock-water and water-air interfaces and, at order ε, they
read

ω h1 = ikϕ|ζ=1 (4.22)

ω η1 =
1

γPe
c′1|ζ=0−h1 V. (4.23)

Substituting the solutions for the stream function (4.6) and the concentration gradient
(4.21), we obtain the linear system

ω

(
h1

η1

)
=

(
a1 a2

a3 a4

)
·

(
h1

η1

)
, (4.24)

where

a1 = a2 =

(
k2Re We + δ

)
(k − cosh k sinh k)

k (2k2 + cosh(2k) + 1)
, (4.25)

a3 =
Ih1

γ Pe
− V, a4 =

Iη1
γ Pe

. (4.26)

The system (4.24) admits two non-trivial solutions for the eigenvalues

ωη,h =
(a1 + a4)±

√
(a1 + a4)2 − 4a1(a4 − a3)

2
, (4.27)

which we discriminate with the subscripts h and η, as it will be shown in the following
that the former is related to the free surface and the latter to the rock surface.



The hydrodynamic genesis of linear karren patterns 13

By assuming the Rigid Lid Approximation (RLA) on the free surface i.e., imposing
ht = 0 in the kinematic condition (2.11), the first equation in the system (4.24) reduces
to h1 =−η1. In this case, the problem provides just one eigenvalue

ωRLA = V +
(Iη1 − Ih1

)

γPe
. (4.28)

By substituting h1 = −η1 into the stream function (4.6), it is also evident that the
RLA induces zero spanwise and vertical velocities, i.e., v1 = w1 = 0. The existence of
a secondary flow in the cross-section plane is in fact strictly related to the free surface
dynamics. Instead, the streamwise velocity perturbation (4.10) is still non-null as it is
triggered by the bottom perturbation. In the next Section, we will discuss on the validity
and the convenience of this approximate solution in the context of karren formation.

5. Results

The dispersion relationship (4.27) links the two growth rates, ωh and ωη, to the
transverse wavenumber k and the control parameters that embody the physics of the
problem. In particular, ωh is associated to development of hydrodynamic waves on the
free-surface (rivulets) and ωη is related to the growth of patterns on the rock surface
(karren). Hence, our focus is on the morphological eigenvalue ωη. The control parameters
are: the Reynolds number Re, which is related to the flow rate; the longitudinal coordinate
X, which is a proxy for the saturation ratio s (Fig. 4a); the angle of the rock inclination
θ; the parameter γ, which is associated to the mineral type (Tab. 1).

Summarizing, when ωη>0, the perturbation grows in time (instability) generating the
karren pattern. On the opposite, ωη < 0 indicates that the perturbation decays in time
(stability) restoring the base-state solution. The condition ωη=0 discriminates between
stable and unstable domains, and its trend in the parameter space evidences the neutral
stability curve. Figure 5a shows that the rock-water interface is unstable to a band of
wavenumbers between 0 and a cutoff value kc for any Re, i.e., there is no critical Reynolds
number for karren formation. The cutoff wavenumber kc is independent of Re (vertical
line in Fig. 5a) meaning that, dimensionally speaking, kc scales with the flow depth.
For a fixed value of Re, the behaviour of the morphological eigenvalue ωη versus the
wavenumber is reported in Figure 5b. The maximum of the growth rate, i.e., the fastest
growing mode, is indicated with km. As commonly done in linear stability analyses (Cross
& Hohenberg 1993), we assume km to be pattern wavenumber. Yet, as karren instability
shows a band of wavenumbers (indicated with ∆k) with growth rates very close to the one
of km, we will later add some considerations on the validity of this assumption (Sect. 6.2).

Figure 5b also reports the trends of the hydrodynamic eigenvalue ωh and the approx-
imated morphological eigenvalue ωRLA, obtained in the rigid lid approximation. The
hydrodynamic eigenvalue is always stable (ωh < 0) for the angles of karren formation
(θ<π/2) due to the stabilizing effects of gravity and surface tension, which prevent any
transverse wave (rivulet) to form. It is interesting to notice that gravity becomes instead
destabilizing in overhanging conditions (θ > π/2), creating water rivulets that initiate
longitudinal precipitation patterns (Camporeale 2015; Bertagni & Camporeale 2017).

The morphological eigenvalue ωRLA well reproduces the overall system dynamics when
the free-surface responds very quickly to the rock evolution (|ωh| � ωη) and thus it
can be considered flat (∂th= 0). This is indeed the case for the wavenumbers involved
in karren formation. In fact, ωRLA = ωη for the fastest growing mode km. However,
ωRLA loses reliability for perturbations with wavelengths so long that hydrodynamic
and morphological timescales are comparable (|ωh| ∼ ωη). Although these very long
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Figure 5. Karren instability. (a) Contour plot of the least stable growth rate ωη in the {k,Re}
plane (X = 0.05, θ = π/4, calcite). The neutral stability curve is reported with a black solid
line. The cutoff kc and fastest growing km wavenumbers are highlighted. The numbers on the
contours are the values of ωη. (b) Growth rates versus the wavenumber k (X=0.01,Re =1). ωh
and ωη (red solid lines) are the hydrodynamic-stable and morphological-unstable eigenvalues,
respectively, from eq. (4.27). ∆k is the interval of unstable wavenumbers with growth rate very
close to the one of km (see Sect. 6.2). ωRLA (dotted light line) is the morphological growth rate
obtained in the rigid lid approximation, from eq. (4.28). (c) Role of mass (∂2

zc) and momentum
(∂2
zu) diffusion on ωη. The light-blue line is ωη evaluated including v1 in the solution for u1 and

c1 (it is indistinguishable from the red line for k > 10−4).

wavelengths are outside the range of karren patterns, to neglect them by freezing the free-
surface dynamics prevents to mathematically obtain the fastest growing mode km. We
also notice that the rigid lid approximation introduces an error in the mass conservation
(ωRLA 6=0 for k=0). In fact, in the particular case k=0, which corresponds to a spatially
uniform perturbation of the base state – the so-called Goldstone mode (e.g., Kalliadasis
et al. 2011) – the base state is vertically and uniformly shifting, and the water depth
must preserve its length to assure mass conservation. So the correct solution should be
h1 = 0 instead of h1 =−η1 as imposed by the RLA. Yet, the latter approximation may
be adopted, for example, for a quicker evaluation of the timescale of the instability as
ωRLA(km)=ωη(km).

In Figure 5c, we show that the stabilization of the high wavenumbers (short wave-
lengths) is induced by a coupling of the transverse diffusion of longitudinal momentum
– ∂2zu in eq. (2.3) – and solute – ∂2zc in eq. (2.4) –. In particular, the dashed green
and orange lines are the eigenvalues obtained without the transverse diffusion of solute
and momentum, respectively. Instead, the dash-dot line is the eigenvalue without both
diffusion processes (∂2zc and ∂2zu) that highlights how diffusion in needed for a cutoff
mode kc and a fastest growing mode km to arise.

Furthermore, we may notice by observing the dotted line in Fig. 5c that including the
vertical velocity v1 in the solutions of u1 (4.10) and c1 (4.14) complicate their analytical
expressions (which are not reported here) and causes numerical issues when solving the
integrals in (4.21) for small k, but overall it does not affect karren instability (the dotted
and solid lines in Fig. 5c are indistinguishable for k>10−4).

The influence of the other control parameters (X, θ, γ) on the morphological growth
rate ωη is shown in Fig. 6. The contourplot 6a in the plane {k,X} shows two maxima:
one very close to the water inlet (X<10−2) and one further downstream (X∼0.5). This
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Figure 6. Influences of X, the rock angle θ and the rock mineral on karren instability for a fixed
water flow (Re = 1). (a) Contourplot of the morphological growth rate ωη in the {k,X} plane
(calcite, θ=π/4). The dashed line marks the fastest growing modes. (b) Morphological growth
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mark the fastest growing modes. (c) Morphological growth rate ωη versus k for several mineral
types (θ=π/4, X=0.01 and the γ from Tab. 1 for the three minerals.)

suggests that the pattern may first develop at two different longitudinal locations. Yet, a
fully nonlinear analysis could probably reveal some influence of the upstream part of the
growing pattern to the downstream dissolution process. The wavenumber km (dashed
line) is not strongly affected by X.

For a fixed Re, the angle θ seems to have very little influence on karren instability,
besides a stabilizing effect of long wavelengths (Fig. 6b). In contrast, the solubility of
the mineral is shown to boost the instability (Fig. 6c), so that the timescale of karren
formation with respect to the rock type is salt<gypsum<limestone, in agreement with
field observations (Mottershead & Lucas 2001).

6. Discussion

The positive feedback responsible for karren instability can be understood observing
the longitudinal velocity and concentration fields in perturbed conditions (Fig. 7). In
correspondence of the rock trough, the deeper and faster flow (panel a) more efficiently
transports away the solute concentration. This leads to a lower concentration of solute
into the water (panels b and c) and to an increased dissolution, which further deepens
the rock trough. The opposite happens on the rock crest, where dissolution is dampened.
This positive feedback mechanism generates linear karren forms. The spatial scale of
the instability is influenced by the transverse diffusive processes of longitudinal velocity
and solute (Fig. 5c). In Fig. 7, we may also notice that the free-surface is basically flat,
further indicating the validity of the rigid lid approximation for the wavenumber of karren
formation (k∼km).

6.1. Dimensional features

The fastest growing mode km of the linear stability analysis provides the dimensional
wavelength L̂=2π/km and an indication of the timescale of the instability T̂ =1/ω̂η(km).
Figure 8 explores the dependence of these dimensional quantities on the control param-
eters Re and X.

The water flow rate (Re) is shown to have a crucial role in karren formation. In
fact, L̂ increase with the Reynolds number, spanning several orders of magnitude: from
millimetric to decimetric values (Fig. 8a). This result supports the so far speculative idea
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that is the flow rate to discriminate the linear karren type: very thin water films (Re∼
10−3) originated by dew or sea spray give rise to millimetric microrills; thicker water films
(Re ∼ 10−1−1) produced by rainwater are responsible for the formation of centimetric
rillenkarren; and decimetric wandkarren are formed by high water flows (Re>10), which
develop downstream of a basin where rain or snow-melt water accumulates (e.g., on a
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hill slope). Even T̂ is highly dependent on Re, ranging from tens of minutes to weeks
(Fig. 8b). These timescales seem pretty short. Indeed, they are closer to experimental
evidences of karren formation under a constant water flow (Guérin et al. 2020), rather
than to field observations (Mottershead & Lucas 2001), where the intermittent nature of
rains prolongs the karren development. Furthermore, the reason for the low values of T̂
may be twofold: the diffusion-controlled dissolution kinetics may overestimate the karren-
formation rate as the temporal transients of the slow chemical reactions are neglected;
the linear stability analysis provides just an indication of the timescale of the instability,
while nonlinear effects are expected to slow down the pattern formation (by roughly an
order of magnitude if nonlinearities are included into a classical Landau equation (Cross
& Hohenberg 1993)).

The wavelength and the timescale very weakly depend on the longitudinal coordinate
X, and thus on the level of saturation of water (the values of s are reported on the upper
x-axis). In particular, the timescale T̂ shows a maximum at X ∼ 0.5 (for a fixed Re),
which is due to the second maximum in the growth rate ωη shown in Fig. 6a.

6.2. Open issues

The water that shapes some linear karren forms, such as rillenkarren, normally comes
from rain events (Ginés et al. 2009). For this reason, experimental efforts have mainly
focused on reproducing rillenkarren by dissolving blocks of minerals under artificial rain
(Glew & Ford 1980; Slabe et al. 2016). Although rain might affect some features of
karren formation (as we discuss in the following), our model shows that a water flow –
without falling raindrops being involved – is sufficient to generate linear karren forms.
This is in agreement with some notable recent experiments by Guérin et al. (2020), who
observed initially millimetric rills forming on plaster blocks dissolving under the action
of a wall-induced turbulent flow (200 < Re < 700)†. One experimental run was in the
laminar regime (Re∼54) and the same millimetric rills were first observed to arise. The
experiments have also shown that, as the dissolution process endures and the effect of the
nonlinearities grow, the rills coalesce in time to eventually form wider karren patterns.
The range of Reynolds number that was experimentally investigated and the narrow
width of the plaster blocks (10 cm) limit the possibility of a deeper comparison with our
theory, which is developed under the assumption of a laminar flow and predicts a linear
wavenumber, for Re ∼ 54, that is the same order of the block width. Further research,
both at the theoretical and experimental levels, might shed more light on the complex
dynamics that create these fascinating patterns.

Here we further discuss on how rain might affect the present model and the results
of the linear stability analysis. A first interesting aspect regards rain stochasticity, that
implies that the water flow is intermittent and highly variable (Re changes in time). This
discloses several questions on the influence of stochasticity on rillenkarren formation,
e.g., are extreme events more efficient? Does it exist a constant flow that would create
the same rock morphology produced by the stochastic sequence of rain events? The
answers remain undisclosed for further numerical or experimental research. A second
aspect regards rain spatial extension, which makes it a diffuse source of water: raindrops
falling along the karren length add pure water to the flow, introducing X-dependencies in
several parameters (e.g., Re raises, the saturation ratio s decreases, and the penetration
length L̂ increases).

Rain might also affect some outputs of the linear stability analysis, such as the selected

† The experimental Reynolds number (Reexp) is defined through the depth-averaged velocity
instead of the free-surface velocity, i.e., Reexp∼2 Re/3
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wavenumber km. In fact, the classical assumption of the fastest growing mode as the
pattern wavenumber is based on the hypotheses that: i) the rock-water system is initially
flat; ii) all modes are decoupled as they are initially perturbed with an infinitesimal
perturbation; iii) the fastest growing mode overcomes the others. However, Fig. 5b shows
that there is an interval of unstable wavenumbers, indicated with ∆k, with growth rates
very close to the one associated to km. This might indicate that, when more realistic finite
perturbations are taken into account, any mode within the interval ∆k may overcome the
others (km included) and become the pattern wavenumber. In this perspective, raindrops,
which have a characteristic (sub-)millimetric length-scale, may act as a random spatial
forcing on the water film and boost the growth of a mode with a comparable length-scale.
In a similar way, defects in the rock texture, moss, decantation wells and preferential
channels for the water flow upstream of the rock, may act as spatial forcings and affect
the selection of the pattern wavenumber.

7. Summary and Conclusion

In this manuscript, we have framed the pivotal role of water hydrodynamics into a
theoretical model that explains the genesis of linear karren forms. The model addresses a
film of water that flows on a dissolving rock under some simplifying assumptions: i) the
water film is laminar; ii) the overall chemistry is reduced to the solute concentration; iii)
diffusion is considered as the limiting process in the dissolution kinetics.

The linear stability analysis of the flat solution has revealed that a transverse instability
is responsible for the appearance of longitudinal parallel channels on the rock surface.
The instability mechanism is a positive feedback between the increased flow rate within
the channels and the enhanced dissolution (Fig. 7). The results show that the transverse
diffusive processes of solute and longitudinal velocity stabilize the high wavenumbers
and affect the wavenumber selection (Fig. 5c). Furthermore, the flow rate is shown to
be a discriminating factor in the transverse wavelength of the pattern (Fig. 8), possibly
explaining why many similar linear karren of different sizes are observed in karst areas
(Fig. 1). The results also suggest that, even though rain might affect some features of
karren formation (as discussed in Sec. 6.2), a water film without falling raindrops is
sufficient for the pattern occurrence.

Although the linear stability analysis provides encouraging results, we shall remind that
these are strictly valid just at the pattern genesis, i.e., before nonlinear effects induced by
the finite size of the pattern become preponderant in the overall dynamics. Hence, a (fully)
nonlinear analysis could greatly benefit to the present formulation, providing further
insights on several features of the pattern formation: such as the nonlinear wavelength
selection and the amplitude growth.

We thank the research group at the Paris Diderot University (M. Berhanu, A. Guérin,
J. Derr, S. Courrech du Pont) for interesting discussions on karren formation. We
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acknowledge the anonymous Referees for their valuable review work.

Appendix A. Integral terms

The terms in eq. (4.21) read

Ih1 =

∞∑
m=0

H′m(0)

∫ X

0

∫ 1

0

Υh1(ζm, Xm)
Hm(ζm)

‖H2
m‖
Fm(X −Xm)dζmdXm, ,
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Iη1 =

∞∑
m=0

H′m(0)

∫ X

0

∫ 1

0

Υη1(ζm, Xm)
Hm(ζm)

‖H2
m‖
Fm(X −Xm)dζmdXm,

where the inhomogeneous term (4.12) has been divided into Υ=Υh1
h1 + Υη1η1 and

Υh1
(ζ,X) =

[
k2ζ∂ζc0 − 2∂2ζ c0 − 2∂Xc0

(
sech k sinh kζ

k
+ ζ(1− ζ)

)]
, (A 1)

Υη1(ζ,X) = {k2∂ζc0 − 2∂Xc0

[
1− ζ − sech k

(
cosh (k − kζ)− sinh(kζ)

k

)]
}. (A 2)

Notice that the contribution of v1 in Υ has been neglected as it would considerably
complicate the solution without any perceptible numerical change
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