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Highlights 

• Optimal control of hybrid electric vehicles (HEVs) for fuel economy and battery lifetime 

• Experimental verification of numerically predicted battery lifetime values 

• Satisfactory correlation with empirical results thanks to ageing modeling update 

• Significant down-sizing of HEV battery packs while preserving fuel economy 

Abstract 

Achieving a satisfactory high-voltage battery lifetime while preserving fuel economy is a key challenge in the design of hybrid 

electric vehicles (HEVs). While several battery state-of-health (SOH) sensitive control approaches for HEVs have been 

presented in the literature, these approaches have not typically been experimentally validated. This paper thus aims at illustrating 

an optimal, multi-objective battery SOH sensitive off-line HEV control approach, which is based on dynamic programming 

(DP) and is experimentally validated in terms of prediction capability of the battery lifetime. An experimental campaign is 

conducted which ages cells with current profiles for three different predicted lifetime cases. The predictive accuracy of the 

battery ageing model is subsequently improved by including the effect of temperature and updating the empirical ageing 

——— 
* Corresponding author e-mail: pier.anselma@polito.it  

mailto:pier.anselma@polito.it


       P.G. Anselma, P. Kollmeyer, J. Lempert, Z. Zhao, G. Belingardi, A. Emadi, “Battery state-of-health sensitive energy management 
of hybrid electric vehicles: Lifetime prediction and ageing experimental validation”, Applied Energy, vol. 285, no. 116440, 2021. 

 

2 

characterization curve. The improved ageing model is then used to assess HEV performance in terms of fuel economy and 

battery lifetime for various high-voltage battery pack sizes and control goals. Results suggest that, thanks to the proposed multi-

objective battery SOH sensitive control approach, the battery pack may be downsized by 35% with no impact on battery lifetime 

and a fuel consumption increase of just 1.1%. Engineers and designers could thus potentially adopt the proposed control 

approach to design HEVs which take tradeoffs between fuel economy and battery lifetime into consideration. Considerable 

reductions in battery pack cost, weight and production related CO2 emissions could be achieved in this way. 

© 2020 Elsevier Science. All rights reserved 

Keywords: battery ageing; battery state-of-health; energy management; hybrid electric vehicle (HEV);  optimal control

1. Introduction 

Hybrid electric vehicles (HEVs) are a key 

technology for achieving compliance with road 

vehicle tailpipe emission regulations over the next few 

years [1]. HEV powertrains embed different power 

sources which are thermal and electrical nature. Their 

synergetic operation is controlled by dedicated high-

level energy management strategies (EMSs) [2]. These 

controllers perform high level management tasks 

including the distribution of the requested power 

among the components of the HEV. HEV EMSs 

usually aim to minimize the fuel consumption and 

tailpipe emissions while guaranteeing the battery 

state-of-charge (SOC) stays within desired limits [3]. 

In this framework, the impact of on-board HEV EMSs 

on other vehicle aspects, such as battery lifetime, is 

commonly disregarded from an experimental point of 

view. Nevertheless, several features of HEVs are 

deeply impacted by battery lifetime including 

maintenance, total cost of ownership and life cycle 

assessment [4]. The motivation for developing battery 

lifetime sensitive EMSs for HEVs can be highlighted 

in this framework. The ability to properly estimate the 

impact of the HEV powertrain operation on the high-

voltage (HV) battery lifetime could indeed bring 

remarkable benefits both in the vehicle development 

phases by ameliorating the electrified powertrain 

sizing [5] and in the on-road operation by preventing 

excessive battery state-of-health (SOH) degradation 

[6].  

Over the years many different HEV EMSs have 

been proposed in the literature which account for 

battery ageing by using numerical battery simulations. 

These can be divided into two categories: (1) On-line 

EMSs and (2) Off-line EMSs. On-line EMS’s  operate 

in real-time and can thus find implementation in on-

board HEV control units [7]. Off-line EMSs exploit 

the knowledge of the entire driving mission a priori to 

optimize the HEV powertrain operation throughout 

the overall journey, thus guaranteeing the optimality 

of the solution in terms of the control goals [8].  

For on-line HEV EMSs, the equivalent 

consumption minimization strategy (ECMS) has most 

commonly been used for controlling battery ageing 

[9]. Ebbesen et al. first introduced a battery SOH 

sensitive ECMS in 2012 and applied it to a parallel 

HEV powertrain layout. The authors demonstrated 

that the proposed control approach reduced overall 

battery wear while limiting the impact on fuel 

economy, thus leading to an estimated reduction in 

total cost of vehicle ownership of around $4,000 [10]. 

In 2015, an ECMS applied to a parallel HEV with a 

continuously variable transmission was shown to 

considerably extend battery lifetime for the US06 

cycle [11]. A similar EMS was recently modeled for a 

parallel hybrid electric city bus by Zhang et al., and  

savings of around 15,000 euros were predicted thanks 

to the usage of the same battery pack throughout the 

lifetime of the bus [12]. These studies show that SOH 

perceptive HEV EMSs may offer significant economic 

benefits. Further examples of on-line battery ageing 

sensitive EMSs are convex optimization, used by Xie 

et al. for a hybrid electric city bus considering real-

world speed profiles [13], model-predictive control, as 

recently demonstrated by Cheng and Chen [14] and by 

Guo et al. [15], and interior point optimization, as 

recently proposed by De Pascali et al. [16]. Recently, 

a method for reducing battery capacity fade has been 

proposed using numerical simulations for a hybrid 

electric city bus that communicates with nearby 

vehicles to smooth vehicle speed and acceleration 
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peaks, which in turn mitigate peaks in the battery 

power [17]. Finally, a model-predictive control 

strategy has been proposed and numerically studied 

for an HEV that considers both ageing effects and 

thermal effects on the battery [18]. 

Off-line EMSs are typically used at the 

development stage to determine the optimal, or best 

possible solution an on-line control algorithm could 

achieve. In one example, an off-line stochastic 

dynamic programming (DP) approach was formulated 

for a power-split HEV which accounts for anode side 

resistive film formation and amp-hours processed as 

the battery SOH metrics [19]. In another example in 

2016, Patil et al. implemented a DP approach to solve 

a two-point optimization problem for a plug-in HEV 

while targeting an application-specific value of battery 

lifetime [20]. 

While several battery SOH sensitive HEV EMSs 

have been presented in the literature, these studies only 

use modeling to predict an increase in battery lifetime 

and do not validate these claims with experimental 

tests. Experimental characterization of battery ageing 

has been conducted for similar applications, such as 

start-stop vehicles [21] and mild HEVs [22], but these 

studies did not correlate experimental results with 

numerical models predicting battery capacity fading, 

Nomenclature 

Acronyms 

DP Dynamic programming 

ECMS Equivalent consumption minimization 

strategy 

EMS Energy management strategy 

HEV Hybrid electric vehicle 

HPPC Hybrid pulse power characterization 

HV High-voltage 

ICE  Internal combustion engine 

MG Motor/generator 

RMS Root-mean-square 

SOC State-of-charge 

SOH State-of-health 

WLTP Worldwide harmonized light-vehicle test 

procedure 

 

Symbols 

𝛼𝑏𝑎𝑡𝑡        Battery aging cost weighting factor                                                

𝐴ℎ𝑏𝑎𝑡𝑡      Battery capacity 

𝐴𝑓             Ageing factor 

𝐴ℎ𝑡𝑝         Total lifetime ampere-hour throughput 

𝐵               Pre-exponential factor 

𝑐               C-rate 

𝛿               Tolerance on final value of battery SOC 

𝛥𝐴ℎ𝑏𝑎𝑡𝑡%  Percentage of battery capacity loss 

𝑖𝐹𝐷              Final drive ratio 

𝑖𝑀𝐺2−𝑔𝑒𝑎𝑟      MG2 reduction gearset ratio 

𝑖𝑃𝐺                 Planetary gear ratio 

𝐿𝑐𝑦𝑐𝑙𝑒             Drive cycle length 

𝐿𝑖𝑓𝑒𝑏𝑎𝑡𝑡        Battery kilometrical lifetime 

𝑚𝑓𝑢𝑒𝑙𝑐𝑟𝑎𝑛𝑘      Mass of fuel required to start the 

ICE 

𝑚̇𝑓𝑢𝑒𝑙              Rate of fuel consumption 

𝑁                   Total number of battery roundtrip 

cycles allowed 

𝑛𝑃                  Number of cells in parallel 

𝑃𝑏𝑎𝑡𝑡              Battery power 

𝑅𝐼𝑁                Battery internal resistance 

𝑆𝑂𝐶               Battery state-of-charge 

𝑆𝑂𝐶̇                Rate of battery state-of-charge 

𝑆𝑂𝐻         Battery state-of-health 

𝑆𝑂𝐻̇                Rate of battery state-of-health 

𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸         ICE activation 

𝑡0                    Initial time instant 

𝑡𝑒𝑛𝑑                 Final time instant 

𝑇                     Battery temperature 

𝑇𝐼𝐶𝐸                 Torque of ICE 

𝑇𝑀𝐺1               Torque of MG1 

𝑇𝑀𝐺2               Torque of MG2 

𝑇𝑤ℎ𝑒𝑒𝑙𝑠           Torque at the wheels 

𝑉𝑂𝐶                  Battery open-circuit voltage 

𝜔𝐼𝐶𝐸                Angular speed of ICE 

𝜔𝑀𝐺1              Angular speed of MG1 

𝜔𝑀𝐺2              Angular speed of MG2 

𝜔𝑤ℎ𝑒𝑒𝑙𝑠          Angular speed of wheels 

𝑧                     Power-law factor 

$𝑏𝑎𝑡𝑡               Battery cost 

$𝑓𝑢𝑒𝑙                Fuel cost 
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like those used for battery SOH sensitive EMSs. As a 

matter of fact, to the best of the authors’ knowledge, a 

comprehensive experimental evaluation of the impact 

of HEV EMS on the battery lifetime has not yet been 

addressed in the literature. This paper contributes to 

fill the highlighted research gap by performing an 

experimental validation concerning the high-voltage 

battery lifetime predicted by a HEV EMS perceptive 

of the battery capacity fading. To this end, an SOH 

sensitive HEV EMS is first proposed in this paper, and 

the model predicted battery lifetime is experimentally 

verified for several different control cases. 

Subsequently, the numerical model embedded in the 

considered HEV EMS that predicts battery capacity 

fading is updated according to the results of the 

experimental campaign. Finally, a potential 

downsizing of the battery pack of a full HEV without 

compromising fuel economy is assessed thanks to the 

implemented battery SOH sensitive EMS and the 

updated battery ageing model. 

The workflow in this paper is illustrated in Fig. 1 

and involves implementing a battery ageing model, 

creating an SOH sensitive EMS for a power-split 

HEV, and then performing an experimental ageing 

campaign on actual battery cells for several different 

current profiles calculated with the proposed EMS and 

HEV model.  The numerical battery ageing model is 

then updated based on the empirical results and a 

sensitivity study is performed on the impact of battery 

pack size and EMS operation on battery lifetime. The 

main novel contributions of this paper include (1) the 

development of an optimal off-line battery SOH 

perceptive HEV EMS based on DP, (2) a sensitivity 

study of the impact of the developed control approach 

on fuel economy and battery lifetime, (3) an 

experimental campaign to demonstrate the accuracy of 

the model predicted battery lifetime, (4) an update of 

the numerical model of battery ageing on the basis of 

the results obtained from the experiments, and (5) an 

evaluation of how battery pack size and EMS 

operation affect the predicted battery lifetime in a full 

HEV, with focus on downsizing the battery pack while 

maintaining similar fuel economy capabilities. The 

body of the paper is organized as follows: the 

numerical battery ageing model is presented in section 

2, the HEV powertrain modeling and optimal control 

approach is given in section 3, and section 4 and 5 

present the experimental tests and updated ageing 

model. In section 6 the battery pack size sensitivity 

study is performed, and finally the overall results and 

conclusions are discussed.  

2. Battery ageing modeling 

The numerical approach used in this paper to model 

battery ageing is presented in this section. Many 

different ageing modeling methodologies can be found 

in the literature [23]. A first category includes 

physicochemical approaches, that can provide detailed 

information on the local conditions of the battery and 

an accurate understanding of the ageing mechanisms 

[24]. However, their complexity and considerable 

computational cost likely make them impractical to 

implement in on-board real-time controllers used in 

vehicles. A different approach uses event-oriented 

models, which quantify battery ageing as a function of 

predefined events and neglect their order of 

occurrence over time [25]. While this is a 

computationally efficient method, it necessitates a 

time consuming heuristic tuning processes and lacks 

flexibility since the battery ageing process is related to 

a few predefined events. Another category of ageing 

models includes weighted ampere-hour (Ah) models, 

which assume that a battery can achieve an overall 

 
 

 
Fig.  1. Overall workflow of the paper. 

 

Implementation of a numerical

battery ageing model

Implementation of a battery SOH sensitive

optimal off-line EMS for a power-split HEV

Numerical simulations performed to select battery

current profiles corresponding to around 100k km, 200k 

km and 300k km of predicted battery lifetime in WLTP

Experimental campaign replicating the modelled 

battery current profiles on actual test cells

Input : battery data

Input : HEV data 

and modeling

Update the numerical battery ageing model

based on obtained experimental results

Sensitivity study for the impact of the battery pack size

and the EMS operation on the HEV battery lifetime
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lifetime Ah throughput, which is typically weighted 

based on current magnitude, temperature, and other 

factors. These models are computationally efficient 

and easily adaptable to different battery technologies. 

Moreover, they allow the optimization of battery 

operating conditions, which is a fundamental 

requirement for implementation in HEV EMSs. As a 

minor drawback, they do not relate to the physical or 

chemical properties of the cell, rather they rely mostly 

on the statistical interpretation of experimental data. 

Thanks to its effectiveness, an Ah model from [10] is 

implemented in this paper to estimate battery ageing. 

The SOH of a battery at a generic time instant ti can 

range from 1 (beginning of life) to 0 (end of life) and 

is defined as follows: 

𝑆𝑂𝐻(𝑡𝑖) = 𝑆𝑂𝐻0 −∫ 𝑆𝑂𝐻̇ (𝑐, 𝑇) 𝑑𝑡
𝑡𝑖

0

 

with  𝑆𝑂𝐻̇ (𝑐, 𝑇) = 0.2 
𝑐

3600∙𝑁(𝑐,𝑇)
 

(1) 

where 𝑆𝑂𝐻0 is the initial SOH, 𝑆𝑂𝐻̇  is the reduction 

in SOH at each time step, c denotes the instantaneous 

battery C-rate calculated as the ratio between the 

current in amps and the rated battery capacity in amp-

hours, and N is the number of calculated roundtrip 

cycles before the battery reaches its end-of-life. The 

factor of 0.2 is to account for the factor N being 

calculated for a 20% reduction in residual capacity 

which is synonymous with SOH. The factor of 3600 is 

to covert the units of c from 1/h to 1/s. N is not a 

constant value, it is a function of the battery operating 

conditions (i.e. C-rate and temperature 𝑇). In order to 

determine 𝑁, the percentage of battery capacity loss 

𝛥𝐴ℎ𝑏𝑎𝑡𝑡% needs to be evaluated according to the 

approach proposed by Bloom et al. in 2001 [26]. This 

takes inspiration from the Arrhenius equation which 

describes the behavior of ideal gases. However, the 

general equation has been edited as follows to apply it 

to battery ageing [27]:   

𝛥𝐴ℎ𝑏𝑎𝑡𝑡% = 𝐵(𝑐) ∙ 𝑒
−
𝐴𝑓(𝑐)

𝑇  ∙ 𝐴ℎ𝑡𝑝
𝑧
  (2) 

Following (2), 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% depends on an empirical 

pre-exponential factor 𝐵, the ageing factor 𝐴𝑓, the 

lumped cell temperature 𝑇, a power-law factor 𝑧 and 

the total lifetime ampere-hour throughput 𝐴ℎ𝑡𝑝. 𝐵 and 

𝐴𝑓 depend on the instantaneous battery c-rate 𝑐. The 

numerical values for parameters of an A123 26650 

LiFePO4 chemistry cell are obtained from [10], where 

the authors declared that the numerical model 

parameters were determined from data published in 

[28]. Table 1 reports the ageing parameter values 

utilized. For the initial ageing modeling, the lumped 

cell temperature is assumed to be a constant value of 

25°C.   

For determining how many cycles the HEV battery 

can provide, it is assumed that end of life corresponds 

to a loss of 20% of initial capacity, so a value of 20% 

is used for 𝛥𝐴ℎ𝑏𝑎𝑡𝑡%. By using this value and solving 

(2) for 𝐴ℎ𝑡𝑝(c), the total number of lifetime roundtrip 

cycles 𝑁 can be calculated as a function of c-rate in 

(3),  

𝑁(𝑐, 𝑇) =
𝐴ℎ𝑡𝑝(𝑐,𝑇)

2∙𝐴ℎ𝑏𝑎𝑡𝑡
   (3) 

where 𝐴ℎ𝑏𝑎𝑡𝑡 is the rated battery capacity in ampere-

hours (i.e. 2.5 Ah for the A123 cell). The factor of two 

in the denominator is to account for 𝐴ℎ𝑡𝑝 including 

both the charge and discharge Ah. Fig. 2 illustrates the 

number of allowed battery roundtrip cycles for 

different temperatures as given by the implemented 

ageing model. The experimental data from [28] 

includes ageing results up to a c-rate of 10. However, 

Table 1  

Battery Ageing Parameters for a A123 26650 cell 

Parameter Value 
Units of 

measure 

Ageing factor, Af 3,814.7 – 44.6∙c K 

Power law factor, z 0.55 - 

Temperature, T 298 K 

Empirical pre-

exponential factor B(c) 

[21,681 ; 12,934 ; 

15,512 ; 15,512] 
- 

Current C-rate, c [2; 6; 10; 20] - 

 

 
 

 

Fig.  2. Number of allowed battery roundtrip cycles as function 

of the C-rate as predicted by the implemented ageing model. 
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since this value might likely be exceeded in some 

cases of HV battery operation in real-world driving of 

HEVs, an extension of the ageing model up to C-rate 

values of 20 has been initially performed by retaining 

the same value of B after the C-rate value of 10 in Fig. 

2. 

Predicting the residual battery lifetime is thus 

possible using the described model. For the modeling 

in this paper, it is assumed that all the cells of the 

battery pack are identical and that they exhibit the 

same state conditions such as SOC and SOH.  The 

battery ageing model also assumes that ageing is 

independent of SOC, an assumption supported by the 

ageing tests in [28]. This also is likely the case for this 

application because the HEV powertrain is controlled 

to operate in charge sustaining mode, where the 

battery SOC stays within a narrow band. 

3. HEV powertrain modeling and battery state of 

health sensitive optimal control 

The HEV powertrain layout considered in this 

study is described in this section, along with related 

modeling and the proposed optimal control approach.  

An overview of the concept is provided in Fig. 3 and 

described as follows.  The dynamic programming 

(DP) based battery SOH sensitive controller is 

responsible for commanding the internal combustion 

engine and two motor generators (MG1 and MG2) to 

create the torque at the wheels to follow the drive cycle 

speed profile of interest.  The controller has two 

optimization goals: (1) to minimize fuel consumption, 

𝑚̇𝑓𝑢𝑒𝑙 , and (2) to minimize the reduction in battery 

state of health, 𝑆𝑂𝐻̇ , or in other words to maximize 

battery lifetime.  The battery cost weighting factor  

𝛼𝑏𝑎𝑡𝑡 determines how much battery lifetime is valued 

compared to fuel consumption.  In later analysis, the 

fuel consumption and battery pack lifetime are 

analyzed as a function of 𝛼𝑏𝑎𝑡𝑡 and the battery pack 

stored energy, both shown in Fig. 3.  The remainder of 

this section discusses the powertrain layout, modeling, 

and multi-objective optimal control design. 

3.1. Electrified powertrain layout 

The electrified powertrain layout used in this study 

is of the power-split type, as shown in the schematic 

diagram in Fig. 3. It features an internal combustion 

engine (ICE) and two electric motor/generators (MGs) 

which are linked to the HV battery. MG2 is the main 

traction motor and is directly coupled to the driven 

wheels through a reduction gearset. The other traction 

motor, MG1, the ICE and differential input shaft are 

respectively linked to the sun gear, ring gear, and 

carrier of a planetary gear set. Vehicle and powertrain 

data for the modeled HEV is listed in Table 2. The 

modeled HV battery pack is composed of A123 

ANR26650M1-B cells, where the number of cells is 

  
 
Fig.  3. Schematic diagram of SOH sensitive control algorithm implementation with modelled HEV drivetrain 
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varied to allow the consideration of different size 

packs.  

3.2. HEV modeling 

The electrified powertrain is modeled using a 

backward quasi-static approach for computing the 

requested speed and power values of components 

directly from the driving mission speed and 

acceleration requirements [29]. As it can be noticed 

from Fig. 3, the MG2 angular speed 𝜔𝑀𝐺2 is 

proportionally linked to the angular speed of the driven 

wheels 𝜔𝑤ℎ𝑒𝑒𝑙𝑠, while the MG1 angular speed 𝜔𝑀𝐺1 
depends on the ICE speed 𝜔𝐼𝐶𝐸  as well due to the 

kinematic constraints of the planetary gear set. The 

resulting kinematic constraints for the electrified 

drivetrain  are therefore as follows: 

[
𝜔𝑀𝐺1
𝜔𝑀𝐺2

] = [
−𝑖𝐹𝐷 ∙ 𝑖𝑃𝐺 𝑖𝑃𝐺 + 1

𝑖𝐹𝐷 ∙ 𝑖𝑀𝐺2−𝑔𝑒𝑎𝑟 0 ] [
𝜔𝑤ℎ𝑒𝑒𝑙𝑠
𝜔𝐼𝐶𝐸

] (5) 

where 𝑖𝐹𝐷, 𝑖𝑀𝐺2−𝑔𝑒𝑎𝑟  and 𝑖𝑃𝐺 respectively represent the 

final drive or differential ratio, the MG2 reduction 

gearset ratio and the planetary gear set ratio. Based on 

the torque ratios for standard epicyclic gearing, and 

assuming unitary efficiency for the transmission 

system, torque values for both MG1 (𝑇𝑀𝐺1) and MG2 

(𝑇𝑀𝐺2) can be evaluated depending on the torque 

request coming from road and driver (𝑇𝑤ℎ𝑒𝑒𝑙𝑠) and the 

torque of the ICE (𝑇𝐼𝐶𝐸), which is used as the control 

variable in (6). 

[
𝑇𝑀𝐺1
𝑇𝑀𝐺2

] = [
0 −

1

𝑖𝑃𝐺+1

1

𝑖𝑀𝐺2−𝑔𝑒𝑎𝑟∙𝑖𝐹𝐷
−(

𝑖𝑃𝐺

𝑖𝑃𝐺+1
) ∙ (

1

𝑖𝑀𝐺2−𝑔𝑒𝑎𝑟
)
] [
𝑇𝑤ℎ𝑒𝑒𝑙𝑠
𝑇𝐼𝐶𝐸

] 

(6) 

    For the electrical energy path, the amount of power 

that the battery is required to either deliver or absorb 

(𝑃𝑏𝑎𝑡𝑡) is calculated as: 

𝑃𝑏𝑎𝑡𝑡 = (∑
𝑃𝑀𝐺𝑖

[𝜂𝑀𝐺𝑖(𝜔𝑀𝐺𝑖,𝑇𝑀𝐺𝑖 )]
𝑠𝑖𝑔𝑛(𝑃𝑀𝐺𝑖)

 2
𝑖=1 ) +  𝑃𝑎𝑢𝑥  (7) 

where 𝑃𝑀𝐺  and 𝜂𝑀𝐺 respectively represent the 

mechanical power and the overall efficiency of an 

MG, which is determined from empirical lookup 

tables with torque and speed as independent variables 

[30]. The sign of 𝑃𝑀𝐺  is utilized as an exponent in the 

denominator to properly account for efficiency in 

motoring or generating cases. Finally, 𝑃𝑎𝑢𝑥 is the 

power consumed by the accessories (e.g. lighting, air 

conditioning) and is assumed having a constant value 

here. The variation in battery SOC for a timestep is 

then determined by calculating battery current with an 

equivalent open circuit model as in (8) and assuming 

a time step of one second: 

𝑆𝑂𝐶̇ =
𝑉𝑂𝐶(𝑆𝑂𝐶)−√[𝑉𝑂𝐶(𝑆𝑂𝐶)]

2−4∙𝑅𝐼𝑁(𝑆𝑂𝐶)∙𝑃𝑏𝑎𝑡𝑡

2∙𝑅𝐼𝑁(𝑆𝑂𝐶)
∙

𝑛𝑃

𝐴ℎ𝑏𝑎𝑡𝑡∙3600
 (8) 

where 𝑅𝐼𝑁 is the internal resistance and 𝑉𝑂𝐶  is the open 

circuit voltage of the full battery pack, as obtained 

from SOC dependent lookup table that can be 

determined from data in  the cell manufacturer 

catalogue [31]. 𝑛𝑃 is the number of cells in parallel for 

the given battery pack configuration and 𝐴ℎ𝑏𝑎𝑡𝑡 is the 

rated Ah for a single cell as defined earlier. 
For the ICE, the instantaneous rate of fuel 

consumption 𝑚̇𝑓𝑢𝑒𝑙 and the corresponding efficiency 

are determined with an experimental steady-state 

lookup table with speed and torque as independent 

variables [32].  

3.3. HEV battery state of health sensitive multi-

objective optimal control 

Dynamic programming, a widely adopted tool 

which can be used for off-line optimal control of an 

HEV [33], is implemented here. This algorithm finds 

the global optimal solution for a control problem by 

exhaustively searching through all possible discretized 

Table 2  

Parameters of the modeled HEV 

Component Parameter Value 

Vehicle Mass 1531 kg 

ICE 

Capacity 1.8 L 

Power max 72 kW @ 5,000 rpm 

Torque max 142 Nm @ 4,000 rpm 

MG1 Power max 42 kW 

MG2 Power max 65 kW 

Transmission 

ratios 

iPG (Ring / Sun) 2.6 

iMG2-gear 1.26 

iFD 3.27 

Auxiliaries 
Electrical 

subsystem power 
500 W 

HV battery 

pack 

Cell type & 

capacity 

A123 ANR26650M1-B, 

2.5Ah 
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values of state and control variables [34]. For the 

implementation here, the DP algorithm is configured 

to minimize the overall value of the cost function 𝐽 for 

the entire driving mission under analysis: 

 

𝐽 = ∫ {[𝑚̇𝑓𝑢𝑒𝑙 +𝑚𝑓𝑢𝑒𝑙𝑐𝑟𝑎𝑛𝑘 ∙ (𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 > 0)] ∙ $𝑓𝑢𝑒𝑙

𝑡𝑒𝑛𝑑

𝑡0

+ 𝛼𝑏𝑎𝑡𝑡 ∙ $𝑏𝑎𝑡𝑡 ∙ 𝑆𝑂𝐻̇ } 𝑑𝑡 

subject to: 

𝑆𝑂𝐶(𝑡0) ≤ 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) ≤ 𝑆𝑂𝐶(𝑡0) + 𝛿 

𝜔𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝜔𝐼𝐶𝐸 ≤ 𝜔𝐼𝐶𝐸𝑀𝐴𝑋 

𝜔𝑀𝐺1𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺1 ≤ 𝜔𝑀𝐺1𝑀𝐴𝑋 

𝜔𝑀𝐺2𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺2 ≤ 𝜔𝑀𝐺2𝑀𝐴𝑋 

0 ≤ 𝑇𝐼𝐶𝐸 ≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋(𝜔𝐼𝐶𝐸) 

𝑇𝑀𝐺1𝑚𝑖𝑛(𝜔𝑀𝐺1) ≤ 𝑇𝑀𝐺1 ≤ 𝑇𝑀𝐺1𝑀𝐴𝑋(𝜔𝑀𝐺1) 

𝑇𝑀𝐺2𝑚𝑖𝑛(𝜔𝑀𝐺2) ≤ 𝑇𝑀𝐺2 ≤ 𝑇𝑀𝐺2𝑀𝐴𝑋(𝜔𝑀𝐺2) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑀𝐴𝑋 

𝑐 ≤ 𝑐𝑀𝐴𝑋 

(9) 

where 𝑚̇𝑓𝑢𝑒𝑙 and 𝑚𝑓𝑢𝑒𝑙𝑐𝑟𝑎𝑛𝑘 are the fuel rate consumed 

by the ICE at each time instant (as computed following 

the HEV model described in section 2.3) and the fuel 

mass required to start the ICE, respectively. 𝑚𝑓𝑢𝑒𝑙𝑐𝑟𝑎𝑛𝑘  

represents a constant quantity here and its value is set 

to 1 gram being contained in the suitable range 

indicated for a 4-cylinder gasoline ICE in [35]. The 

parameter 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 is a binary variable which 

indicates an ICE activation occurrence. The variables 

$𝑓𝑢𝑒𝑙  and $𝑏𝑎𝑡𝑡 denote cost values respectively for fuel 

and for the battery. $𝑓𝑢𝑒𝑙  is based on the June 2020 

averaged US gasoline price of 2.25 $/gallon [36], 

while a value of $3,000 is used for $𝑏𝑎𝑡𝑡 from [37]. 

𝑆𝑂𝐻̇  is the instantaneous rate of battery SOH as 

evaluated using the numerical ageing model described 

in section 2, while 𝛼𝑏𝑎𝑡𝑡 is a scaling coefficient which 

tunes the cost of the battery. The higher the 𝛼𝑏𝑎𝑡𝑡 
value, the more value is placed on the battery, resulting 

in a reduction of battery ageing at the expense of fuel 

economy. When solving the optimal control problem, 

the battery SOC is set to have similar values at the 

beginning and end of the considered driving missions 

assuming an appropriate tolerance δ, guaranteeing that 

charge is sustained. Finally, both battery SOC, battery 

C-rate and the torque and speed of power components 

are constrained within the corresponding allowed 

operating regions. 

The power-split HEV has two operating modes, 

pure electric or hybrid. During pure electric operation, 

the HV battery supplies or absorbs power from MG2, 

which is the only active source of power to the wheels. 

In hybrid mode all of the power components – MG1, 

MG2, and the ICE – are active. The speed and torque 

of the ICE is controlled by the EMS, while MG1 is 

mainly used to allow the ICE speed to be independent 

of wheel speed and to generate electrical energy. The 

HEV operation is managed with the following control 

variable set 𝑈 containing speed and torque values for 

the ICE as formulated in (10).  

𝑈 = {
𝜔𝐼𝐶𝐸
𝑇𝐼𝐶𝐸
}                                 (10) 

Pure electric operation corresponds to a value of 0 

for both 𝜔𝐼𝐶𝐸  and 𝑇𝐼𝐶𝐸 . These two control variables are 

sufficient for establishing the operating conditions of 

all the remaining power components of the hybrid 

electric powertrain. The DP states are, by definition, 

the parameters which depend on the preceding time 

steps, and consist of 𝑋 for this system: 

𝑋 = {
𝑆𝑂𝐶

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓
}           (11) 

where battery SOC represents a state as it is the 

integral of the battery current and the ICE state (i.e. 

on/off) is considered because each cranking event 

consumes a specified amount of fuel and cranking 

events are only allowed at a certain frequency (around 

once every 110 seconds) so the comfort of the ride is 

reasonable.  

4. Design of three battery lifetime cases and 

experimental campaign 

This section describes the development of test cases 

which vary the battery pack size and control function 

to achieve three different predicted battery lifetimes. 

The experimental test procedure and the setup utilized 

for the selected tests is also described. 

4.1. Selection of test cases 

The multi-objective HEV optimal control algorithm 

presented in section 3.3 can be used to size the battery 

pack and tune the controller to achieve both good fuel 

economy and a reasonable lifetime for the battery 
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pack. To demonstrate this, a range of test cases are 

modeled, with battery pack size varying from 0.3 kWh 

to 2.0 kWh, and battery aging cost weighting 

coefficient 𝜶𝒃𝒂𝒕𝒕 varied from 0.0 to 0.2. For the 

prediction of battery aging, the worldwide harmonized 

light-vehicle test procedure (WLTP) is considered to 

repeat continuously for the life of the vehicle. The 

predicted lifetime in kilometers 𝑳𝒊𝒇𝒆𝒃𝒂𝒕𝒕 is calculated 

following (12): 

 𝐿𝑖𝑓𝑒𝑏𝑎𝑡𝑡 = 0.2 ∙
𝐿𝑐𝑦𝑐𝑙𝑒

𝑆𝑂𝐻𝑡0−𝑆𝑂𝐻𝑡𝑒𝑛𝑑
                       (12) 

where 𝐿𝑐𝑦𝑐𝑙𝑒   is the spatial distance in kilometers 

driven for the considered drive cycle, and 𝑆𝑂𝐻𝑡0  and 

𝑆𝑂𝐻𝑡𝑒𝑛𝑑 are the values of battery SOH at the 

beginning and at the end of the drive cycle, 

respectively. The factor of 0.2 is to account for 80% 

SOH being considered end of life. SOH is calculated 

using the numerical ageing model illustrated in 

Section 2 and following (1) to (3).  

The modeled battery lifetime and vehicle fuel 

consumption for the considered cases is plotted in Fig. 

4.  With a larger battery pack, peak current in the 

battery is smaller, resulting in a longer lifetime. Larger 

packs are also able to provide more power and energy 

resulting in reduced fuel consumption. When 𝛼𝑏𝑎𝑡𝑡 is 

0, the DP controller only considers fuel consumption, 

and as 𝛼𝑏𝑎𝑡𝑡 is increased the controller values battery 

lifetime more, resulting in as much as five times 

greater battery life at the expense of increased fuel 

consumption as it can be seen in Fig. 4.  

 

Fig.  4. Simulated WLTP drive cycle fuel consumption and 

predicted battery lifetime as a function of the battery pack capacity 

and battery aging cost weighting coefficient 𝛼𝑏𝑎𝑡𝑡 

 

The goal of the experimental testing is to prove the 

accuracy of the model predicted battery lifetime.  

Three cases are selected to demonstrate both 

dimensions of the model – lifetime as a function of 

battery pack size, and lifetime as a function of the 

aging cost weighting coefficient 𝛼𝑏𝑎𝑡𝑡.  The three 

selected cases, namely the ‘95k’, ‘206k’, and ‘300k’ 

km battery lifetime cases, are highlighted in Fig. 4.  

The ‘95k’ and ‘206k’ cases both have 𝛼𝑏𝑎𝑡𝑡 = 0 and 

have 1.06 and 1.82 kWh battery pack sizes 

respectively.  The ‘206k’ and ‘300k’ cases both have 

1.82 kWh battery packs and have 𝛼𝑏𝑎𝑡𝑡 = 0 and 𝛼𝑏𝑎𝑡𝑡 
= 0.2 respectively.   

The modeled current and SOC for a single battery 

cell from the pack for each test case is plotted in Fig. 

5, showing that as predicted battery lifetime goes up 

battery current and SOC deviation decrease. Table 3 

also shows that as predicted battery lifetime increases 

there is a considerable decrease in the root-mean-

square (RMS) current, from 10.36 to 6.19A, and in the 

Ah throughput, from 1.91 to 1.10Ah. It can also be 

observed in Fig. 5 that a battery charging current limit 

of 20A was implemented in the control algorithm. This 

is necessary because predicted battery lifetime is 

calculated assuming the battery can always supply the 

commanded current. The charging current limit 
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ensures that the battery will not hit the upper voltage 

limit of 3.6V, resulting in the actual current being less 

than the commanded value. 

Additional results for a wide range of battery pack 

sizes are also presented in the final section of the paper 

to give greater insight into how the control algorithm 

can be used to tune battery lifetime. 

4.2. Battery characterization and ageing test 

procedure 

The main goal of the experimental tests is to 

determine the actual battery lifetime of the cells for 

continued repetition of the WLTP current profiles 

shown in Fig. 5. The tests are conducted in a thermal 

chamber set to 25°C (the same value of temperature 

used in the numerical modelling), and the current, 

terminal voltage and temperature of each cell is 

recorded.  

The testing is grouped into two sections, 

characterization tests and 300 WLTP ageing cycles, 

which are repeated until the battery SOH has fallen to 

at least 80%.  The characterization tests consist of a 1C 

rate discharge capacity test and a hybrid pulse power 

characterization (HPPC) test, as listed in step I of 

Table 4.  The HPPC test results are used to calculate 

discharge resistance versus SOC for a 10 second 1C 

current pulse. In step II the cell is fully charged and 

then discharged to 50% SOC, which is defined as 50% 

of the 1C capacity measured in step I.  Basing the amp-

hours discharged on the measured capacity ensures 

that as the cell ages the WLTP cycles are always 

performed around the midpoint of cell capacity. For 

Step III sixty WLTP cycles are performed, and charge 

is adjusted back to 50% SOC following each cycle as 

needed. Steps II and III are then repeated five times, 

for a total of 300 WLTP cycles, and all the steps are 

repeated until capacity fades to at least 80% of the 

initial value. The experimental setup will be described 

in the following sub-section. 

 
 

 
 

Fig.  5. Battery cell current and SOC profiles for WLTP drive 
cycle for each experimental test case. 

 

Table 3  

Statistics for the experimental test cases selected in WLTP 

Test name 95k 206k 300k 

Number of battery pack 

cells 
140 240 240 

Battery pack capacity [kWh] 1.06 1.82 1.82 

Estimated fuel  

economy [l/100 km] 
3.73 3.57 3.57 

𝛼𝑏𝑎𝑡𝑡 0 0 0.2 

Estimated battery lifetime  

[km * 10^3] 
95 206 300 

Estimated number of WLTP 
cycles 

4,086 8,860 12,903 

Current RMS [A] 10.36 7.31 6.19 

Ah throughput [Ah] 1.91 1.30 1.10 

Max charging current [A] -19.9 -20.0 -19.4 

Max discharging current [A] 45.9 44.2 25.6 
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4.3. Experimental test setup 

The experimental tests were performed on three 

A123 ANR26650M1-B cells, with one of the three 

current profiles defined in Fig. 5 applied to each cell 

during the WLTP cycle portion of the ageing tests. The 

cells were placed in a thermal chamber and connected 

to a battery cycler, as shown in Fig. 6 and Fig. 7.  Cell 

voltage is measured at the battery terminals via the 

battery cycler and a temperature sensor was fixed to 

the front center face of the cell, as is visible in Fig. 6.  

A +/-75A, 0-5V rated channel of an MCT 75-0/5-8ME 

Digatron Power Electronics battery cycler illustrated 

in Fig. 7(b) was used to test each cell. The voltage and 

current measurement and control accuracy of the 

battery cycler is +/- 0.1% of full scale and the accuracy 

of the temperature sensor is +/- 0.5⁰C. The cycler can 

regulate voltage from 0-5V, current from -75 to +75A, 

and power from -375 to +375W. The battery cycler 

utilizes an automated software, Battery Manager, 

which is provided by Digatron, runs on a desktop 

computer, and can be used to create test programs 

consisting of hundreds of steps and to save the results 

in a database. Each program step can be a pause, 

constant voltage, constant current, or constant power 

step, or a power or current profile as is used for the 

WLTP cycles in this test.  

The battery cells were tested at a fixed temperature 

of 25⁰C in a 16 cubic foot Envirotronics SH16C 

thermal chamber shown in Fig. 7(a).  The chamber is 

rated to regulate temperature to within +/- 0.3⁰C of the 

setpoint, which can vary from -68 to 177⁰C.  The 

chamber can also provide 1400W of cooling power 

and cool at a rate of about 5⁰C per minute, although 

this is not relevant for these constant temperature tests. 

The testing was performed continuously on this 

equipment for a period of more than nine months.  
Table 4 

Battery cell ageing test plan 

Test 

step 
Description 

I 
Characterize cells: HPPC and two repeated 1C 

discharge capacity tests 

II 

Fully charge and then discharge to 50% SOC: Amp-

hours discharged to attain 50% SOC is based on cell 

capacity measured in step I 

III 
Perform 20 WLTP cycles: Adjust charge to 50% SOC 
following each WLTP cycle using measured Amp-

hours 

IV 
Repeat steps II and III 14 additional times: For a total 

of 300 WLTP cycles 

V 

Return to step I: Repeat test sequence until battery 

capacity fades to 80% of its initial value or until time 

available for testing is exceeded 

 

 

 
 

Fig.  6. Tested cells mounted in the thermal chamber. 
 

  
(a) Envirotronics SH16C thermal 

chamber 

(b) Digatron MCT 75-

0/5-8ME battery cell 

cycler  

Fig. 7. Battery test equipment for ageing test 
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5. Experimental results and updated empirical 

ageing model 

The experimental results obtained from the ageing 

tests are presented in this section. A summary of the 

results for the three test cases are first presented. Then, 

an updated version of the numerical ageing model is 

created based on the empirical outcomes. 

5.1. Summary ageing test results for all cells 

As it has been highlighted in section 4, each group 

of 300 WLTP cycles is preceded by an HPPC test, a 

1C discharge capacity test and a discharge to 50% 

SOC. Fig. 8 illustrates examples of time series results 

for HPPC and one of the WLTP tests. For the HPPC 

test, as shown in Fig. 8(a), a series of current pulses 

are applied to the cell at different states of charge and 

the cell resistance is calculated from the voltage 

response.  For the 1C discharge capacity test, the cell 

starts fully charged and is discharged at a 1C (2.5A) 

rate until voltage reaches 2.5V.  The cell is then 

recharged and discharged to half of the measured 1C 

discharge capacity (50% SOC), and the series of 

WLTP cycles is started.  The voltage for one full 

WLTP cycle for each test case is given in Fig. 8(b), 

showing that there is significant more voltage 

deviation for the more aggressive, shorter lifetime test 

cases. 

Seven to eight days were typically necessary to 

perform the characterization tests along with each 

group of 300 WLTP cycles, which sum up to around 

8,000 km of driving. Since the predicted values of cell 

lifetime ranged from around 4,000 to around 13,000 

WLTP cycles, this translated into a total testing time 

ranging from around 106 days to around 303 days as it 

has been illustrated in Fig. 9. Each of the cell tests 

were initiated simultaneously, but due to test 

equipment issues there were occasional delays which 

were deemed to have a minimal effect on the results. 

Both the 95k and 206k test cases were kept running 

even after the cell residual capacity felt below 80% of 

its initial value, thus reaching its nominal end of 

lifetime.  

To demonstrate how the battery characteristics vary 

as the ageing test progresses, the 1C discharge voltage 

and the resistance calculated from the HPPC test are 

shown for each characterization test in Fig. 10 and Fig. 

11.  A progressive shift towards left can be observed 

for both the 1C discharge voltage and the resistance 

curves as the cells age, capacity reduces, and 

resistance increases. As predicted by the numerical 

ageing model, the 95k test case in Fig. 10(a) and Fig. 

11(a) ages much more quickly than the other test cases.   

The measured 1C capacity versus distance driven is 

given in Fig. 12(a) for both numerical and 

experimental results, showing that the 95k case had 

lifetime similar to that expected, while the 206k and 

 
 

Fig.  8. Experimental measurements for ‘95k’ test case. 
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Fig.  9. Trend of residual capacity over time for tested cells. 
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300k cases aged somewhat more quickly than 

predicted by the model.  Capacity is plotted in Fig. 

12(b) versus the equivalent number of roundtrip cycles 

(i.e. lifetime Ah throughput divided by twice the rated 

capacity), showing that the ageing is more than just a 

function of number of cycles.  Finally, Fig. 12(c) 

shows that cell resistance is relatively constant until 

capacity falls below 80% SOH.  

The differences between the model predicted and 

experimental ageing results are highlighted in Table 5. 

The numerical prediction correlates very well with the 

95k case experimental data, with an error of just 1.6% 

or 1000km.  For the other two cases the model 

significantly underestimates the capacity fade though, 

with the cells reaching end of life earlier than 

expected. The empirically observed number of cycles 

before end of life were around 14% and 11% less than 

predicted for the 206k and 300k respectively. To 

overcome this drawback, several methods to improve 

the numerical ageing model are investigated in the 

next section. 

5.2. Updating of numerical ageing model  

While the ageing model does correlate fairly well 

with the experimental measurements, there are several 

significant factors which likely contributed to the 

mismatch between modeled and measured results: 

1. The model is based off data for A123 

ANR26650M1 cells (rated capacity: 2.2 Ah) 

[28], whereas the tested cells are a newer model, 

A123 ANR26650M1-B (rated capacity: 2.5 Ah).  

It was assumed the new cell ages identically, in 

terms of cycles, as the older cell. 

2. The model only accounts for cyclic ageing and 

does not explicitly consider calendar ageing.  

Since the 206k and 300k tests are of longer 

duration, calendar ageing may result in more 

ageing than is predicted for these cases. 

3. Battery temperature is assumed to be 25°C, but 

actual battery temperature is a couple degrees 

higher due to losses in the cell, reducing the 

lifetime of the cell.   

 
 

Fig.  10. Voltage for 1C rate discharge versus km driven by the cells for the WLTP cycle 

 

 
Fig.  11. Internal 1C rate discharge resistance versus amp-hours as a function of number of km driven by the cells in WLTP. 

 

(c) 300k test case(b) 206k test case(b) 95k test case

0k km driven

102k km driven

197k km driven
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0k km driven

197k km driven
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4. The ageing model calculations neglected to 

include the characterization cycles, which 

account for 10.5 additional roundtrip cycles per 

300 WLTP repetitions, causing slightly more 

ageing than that predicted by the model. 

5. The 10C rate model parameters were used up to 

a 20C rate.  The battery may age more quickly or 

more slowly beyond 10C than is calculated by 

this extrapolation of the test data 

While data is not available to account for the first 

two factors listed above, the modeling methodology 

can be adjusted in consideration of items three, four, 

and five.  In the next subsection, the actual cell 

temperature and the extra characterization cycles will 

be included in the model, and in the following 

subsection the shape of the ageing curve beyond 10C 

will be adjusted to achieve a better match between the 

modeled and measured results. 

5.2.1 Accounting for temperature and extra-

characterization cycles 

Of all the factors influencing cell ageing which are 

mentioned in the previous section, cell surface 

temperature, which is well known to have a major 

impact on the service life of batteries [38], is likely the 

most significant. According to the adopted Arrhenius 

type ageing model, given in equation 2, an increase in 

battery temperature of just 5⁰C will reduce battery life 

by 25%. The impact of temperature becomes more 

apparent when translated to predicted battery lifetime 

in km, as shown in Fig. 13.  A difference in the average 

cell surface temperature of only 1°C can result in as 

much as an 15 thousand km, or 7% decrease in the cell 

lifetime.     

An analysis of the measured temperature data, 

which included corrections for temperature sensor 

offset error, determined that temperature during the 

WLTP ageing cycles was approximately 27.6, 26.8, 

and 26.6⁰C for the 95k, 206k, and 300k cases 

respectively, as listed in Table 6. The increased 

temperature causes faster aging as is illustrated in Fig. 

2, and offers an explanation for why experimentally 

observed cell lifetime is less than the lifetime initially 

 
 

Fig.  13. Sensitivity results for cell ageing as function of surface 

temperature for the 206k test case. 

BL = 165k km 

BL = 191k km 
BL = 220k km 

BL = 178k km 

Table 5 

Comparison between numerical predictions and experimental 

results for lifetime of all tested cells 

Test 
case 

Predicted cell 
lifetime [km*103] 

Experimental cell 
lifetime [km*103] 

Difference 
[%] 

‘95k’ 95 94 -1.6% 

‘206k’ 206 177 -14.1% 

‘300k’ 300 268 -10.7% 

 

 
 

Fig. 12 Battery capacity fade and resistance increase with 

ageing 
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forecasted using the numerical ageing model 

described in Section 2. When utilizing the measured 

temperatures rather than 25⁰C, the predicted lifetime 

falls by about 20,000 km for each case, as shown in 

column 3 of Table 6. 

The extra cycles for characterization and setting the 

battery to the 50% SOC can also be considered when 

calculating the ageing. The 10.5 extra roundtrip 

cycles, which are performed for each group of 300 

WLTP drive cycles, consist of one cycle for the HPPC 

test, two for the 1C discharge tests, and 15 half cycles 

for the discharge from 100% to 50% SOC which is 

performed every 20 WLTP drive cycles. Because the 

c-rate is so low for these cycles, they only reduce 

predicted lifetime by at most 3,000 km, as shown in 

column 4 of Table 6.     

In summary, as reported in Table 6, the correlation 

between numerical predictions and experimental 

measurements for the values of cell lifetime 

considerably improves for the 206k and the 300k cases 

when temperature and the extra cycles are accounted 

for. The correlation for the 95k test case is made much 

worse though, with a prediction error of 17% rather 

than 1.6% as observed with the original modeling. To 

reduce this error, the shape of the ageing curve, which 

was extrapolated beyond 10C, will be updated in the 

following section. 

5.2.2 Empirical ageing curve update 

Currents above 6C contribute dramatically to 

battery ageing, as is illustrated in Fig. 14.   Because of 

this, every timestep the battery is providing these high 

currents have an outsized effect on lifetime. Fig. 14 

shows the distribution of current points, and that for 

the 95k case there are 284 points at 10C or greater, 

while there are just 107 points for the 206k case and 

70 points for the 300k case.  The models attribute a 

substantial amount of ageing to these points, 

especially for the 95k case, so a small change in how 

the ageing curve is interpolated between the 6C and 

10C experimental points and extrapolated beyond 10C 

could result in much better alignment between 

modeled and measured results.   

The ageing parameters associated with 8, 12, 14, 

16, 18, and 20C current values are therefore updated 

to achieve better correlation with the experimental 

results. The new parameters are determined through an 

iterative calibration procedure which aims to minimize 

the gap between the updated predicted values of cell 

lifetime and the corresponding experimental results. 

The resulting updated ageing curve is overlaid in Fig. 

15 with the original curve, and the ageing model 

parameters which were updated are provided in Table 

7. While the changes in the curve appear quite small, 

 

 

Fig.  14. Distribution of C-rate values operated by the cells and corresponding predicted cumulative SOH consumption for all test cases. 

 

Table 6  

Comparison between numerical predictions and experimental results for lifetime of all tested cells 
 

Test 

case 

Measured 

Temperature 
[°C] 

Estimated cell lifetime considering measured temperature  
Experimental cell 

lifetime [km*103] 

Difference 

[%] 
(WLTP only) 

 [km*103] 
(WLTP + characterization) 

[km*103] 

‘95k’ 27.6 78 78 94 -17.0% 

‘206k’ 26.8 183 181 177 +2.3% 

‘300k’ 26.6 279 276 268 +3.0% 

 

(a) ‘95k’ test case (b) ‘206k’ test case (c) ‘300k’ test case
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they result in near perfect correlation between 

measured and updated modeled data as shown in Fig. 

16, demonstrating the importance of how the data is 

extrapolated beyond 10C. 

Fig. 16 also demonstrates one other aspect of the 

model which is not immediately evident, the relation 

between SOH and cycles is not linear but a power 

function due to the 𝐴ℎ𝑡𝑝
𝑧
 factor in the capacity loss 

equation (2).  The 95k case exhibits a linear ageing 

trend, while the 300k test case aligns with the 

nonlinear numerical curve and the 206k case lies 

between the two tendencies, suggesting the curve 

shape embedded in the model is only applicable for 

certain test conditions. Despite this, the updated model 

parameters result in much better alignment with the 

experimental data and will therefore be used for the 

final section of the paper in which performance is 

investigated for a range of battery pack sizes.   

6. Sensitivity analysis based on pack capacity and 

HEV control optimization goal 

This section examines the sensitivity of fuel 

economy and battery lifetime to the battery pack size 

and the control goal. To this end, several WLTP drive 

cycle numerical simulations have been performed for 

the power-split electrified powertrain layout which is 

the focus of this study. For the simulations, the battery 

pack energy capacity is varied from 0.2 to 2.6kWh by 

adjusting the number of cells in the pack. For each 

battery pack size two control optimization goals are 

also considered by varying the coefficient 𝛼𝑏𝑎𝑡𝑡 in (9). 

The first goal, maximizing fuel economy only, is 

achieved by setting 𝛼𝑏𝑎𝑡𝑡 equal to 0, and the second 

goal, a battery lifetime of 300 thousand km, is 

achieved by progressively increasing 𝛼𝑏𝑎𝑡𝑡 until the 

desired lifetime is achieved. 

Fig. 17 illustrates the numerical results obtained 

from the sensitivity analysis, reporting fuel 

consumption and battery lifetime for both control goal 

cases and for all the considered battery pack sizes. In 

general, the results show that as the HEV battery pack 

size increases fuel consumption decreases and battery 

lifetime improves. Three key points have been 

identified and highlighted in Fig. 17 for detailed 

discussion.  

Key point A highlights the largest battery pack size 

considered, 2.6 kWh, where more than 300k km of 

battery lifetime is achieved when optimizing for fuel 

economy only. Without consideration of an SOH 

sensitive EMS, this larger battery pack size would 

likely be selected by a design engineer. Key point B 

highlights the smallest battery pack size (1.7 kWh) 

which can be utilized without a significant increase in 

fuel consumption for the 300 thousand km battery 

lifetime case. This 1.7 kWh pack is 35% smaller than 

the large key point A pack, but results in an increase 

of fuel consumption of just 1.1%.  Likewise, for the 

 
Fig.  15. Update of the number of cell roundtrip cycles as 

function of the C-rate as a result of the calibration upon 

obtained experimental data. 
 

 
 

Fig.  16. Correlation between numerical predictions and 

experimental observations for the cell lifetime of all test cases 
after the model update. 

 

Table 7  

Updated ageing parameters for a A123 26650 cell 

Parameter Value 

C-rate index [1/s] 
[2 ; 4 ; 6 ; 8 ;  

10 ; 12 ; 14 ; 16 ;  

18 ; 20] 

Empirical pre-

exponential factor B(c) 

[21,681 ; 17,307 ; 12,934 ; 13,512 ; 

15,512; 12,099 ; 11,380 ; 13,656 ; 
16,342  ; 14,599] 
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1.7 kWh pack when controlling for 300 thousand km 

of battery lifetime rather than for fuel economy only, 

the predicted battery lifetime increases by 58% and 

fuel consumption only increases by 0.6%. This 

suggests that the proposed multi-objective control may 

allow a considerable downsizing of the HEV battery 

pack without any substantial deterioration of the fuel 

economy of the electrified powertrain.  

For key point C a much smaller 1.1kWh pack is 

considered. In this case, to achieve 300 thousand km 

of battery lifetime fuel consumption is increased by 

around 3.8% compared to the fuel economy only case, 

and fuel consumption is increased by 9% compared to 

key point A. Since the battery pack size of 1.1 kWh is 

only 42% of the key point A size, this instance 

demonstrates the potential to maintain battery lifetime 

while further downsizing of battery pack at the cost of 

higher fuel consumption. Overall, these examples 

suggest how design engineers could exploit the 

illustrated methodology to achieve effective down-

sizing of power-split HEV battery packs without 

excessively reducing fuel economy. 

7. Conclusions 

This paper deals with the integration of battery 

lifetime prediction into the optimal energy 

management of electrified powertrains. 

A numerical Ah-based battery ageing model and a 

power-split HEV powertrain layout are used. 

Consequently, an optimal multi-objective off-line 

HEV EMS approach based on DP has been 

implemented which is capable of optimizing both the 

fuel economy and the battery lifetime of the HEV. The 

proposed EMS was used to calculate battery current 

profiles, assuming a fixed battery temperature of 25⁰C 

for battery lifetime cases of 95, 206, and 300 thousand 

km. An experimental campaign was conducted for the 

three lifetime cases to validate the numerical battery 

ageing model, and the model was found to predict 

lifetime in km with an error ranging from -1.6 to -

14.1%. The results achieved with the ageing model 

were then improved by considering the measured 

battery temperature (rather than fixed 25⁰C), by 

including the characterization tests in the calculation, 

and by updating how the ageing curve was 

extrapolated beyond 10C current magnitudes. Thanks 

to the applied improvements, the overall accuracy of 

the battery ageing prediction model was considerably 

improved and now matches the achieved lifetime to 

within 5%.  

Finally, a sensitivity study was performed to assess 

the impact of the battery pack size and the control 

optimization goal on the predicted fuel economy and 

battery lifetime of the retained HEV. The sensitivity 

results show, thanks to the proposed multi-objective 

control approach, that for a fixed battery lifetime of 

300 thousand km the battery pack can be downsized 

by 35%, from 2.6 to 1.7kWh, while the fuel 

consumption increases by only 1.1%.  

 
Fig.  17. Results for fuel economy and battery lifetime depending on the battery pack capacity and the control goal for WLTP.  
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The proposed methodology is generalized and can 

be applied to any HEV to allow the battery pack size 

and vehicle control strategy to be tuned to achieve 

battery lifetime and vehicle fuel consumption targets.  

To apply the methodology to other vehicles, an ageing 

test must first be performed on the batteries of interest 

and then the aging model presented in section II should 

be fit to the experimental results.  Then the HEV must 

be modelled with the battery health sensitive EMS, as 

is done in section III.  Finally, an analysis of vehicle 

fuel consumption and battery lifetime as a function of 

battery pack size and battery aging cost weighting 

factor αbatt can be performed, as is done in Fig. 17, to 

determine the smallest size battery pack which will 

meet battery lifetime and vehicle fuel consumption 

goals.  A second aging study, as is done in this work 

to validate the predicted battery lifetime, could also be 

performed to provide confidence in the model 

predicted results. The final step, which is beyond the 

scope of this work, would be to create a real-time 

version of the proposed control algorithm and to 

implement it in the HEV.   

Related future work could involve improvement of 

the model fidelity level for both the electrified 

powertrain and battery ageing, e.g. by accounting for 

the evolution of the battery temperature over time or 

by including calendar ageing. Additional testing and 

correlation activities could also be carried out at the 

overall battery pack level. Furthermore, rapid near-

optimal battery SOH sensitive EMS approaches might 

be developed to enhance the employment of control 

optimization techniques in the optimal sizing of 

electrified powertrains. The reader can refer to [39] for 

an example of a rapid HEV EMS that could be fostered 

by integrating the prediction of the HV battery lifetime 

as a further control goal. Finally, a real-time 

implementable battery SOH sensitive control 

approach could be developed and compared to the 

optimal control approach developed here.  
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