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A B S T R A C T   

Decarbonisation policies aim at reducing fossil fuel based generation in favour of cleaner renewable energy 
sources. Changes in the generation mix to supply future electricity demand will require tools capable to emulate 
the bidding behaviour of new generation plants. Price forecasting tools lacking this feature and only based on 
historical data time series might soon become not satisfactory for this scope. This paper presents a methodology 
that, by considering hourly electricity generation offers (price, volumes) datasets, allows simulating future 
electricity wholesale’s prices. This is done by taking into account new generation units and the dismissing of old 
(coal-based) units according to the demand and generation forecasts in the European Ten Year Network 
Development Plan (TYNDP) 2030 scenarios. Machine learning, clustering and distribution sampling techniques 
are used in this work to finally estimate prices distribution in 2030 in the biggest bidding zone of the Italian 
market. The results suggest that the prices obtained in the different scenarios do converge to those estimated by 
the TYNDP. The approach used bypasses the need to have access to all the transactions of a given market. 
Probability distributions are in fact enough in the proposed methodology to achieve similar results to those based 
on full knowledge of transaction datasets.   

1. Introduction 

Increasing concerns over global warming have induced important 
technological changes aimed at making society living more sustainable 
and cities less polluted [42]. Scientific evidences [51] are calling for 
urgent cross-sector solutions, such as heating/cooling and transport 
electrification, among others, to cut emissions and mitigate climate 
change. 

For the European Union, the 2030 climate and energy framework 
package [24] set the targets for the year 2030 to a 40% reduction in the 
global emissions from greenhouse gas compared to 1990 levels, 27% 
minimum Renewable Energy Sources (RES) share in gross final energy 
consumption, and 27% minimum energy savings compared to 
business-as-usual scenario. Further updates of the European target for 
2030 increased to 32% the minimum RES share in gross final energy 
consumption [27]. 

The emerging situations that could arise in the future are extremely 
variable. For this reason, probabilistic models where the uncertain pa
rameters are characterised by probability distributions and the results 
are presented as probability density functions of the observed variables, 

might result ineffective to tackle such problems. In practice, large-scale 
uncertainty needs to be addressed through scenario analyses, in which 
different scenarios are analysed in parallel and, if needed, the results are 
then merged by giving a user-defined weighting factor to each scenario. 

In recent years, future energy scenarios have been built for whole 
continents. In Europe, the Ten Year Network Development Plan 
(TYNDP) defined by ENTSO-e – the European Network of Transmission 
System Operators for Electricity [20], sets specific scenarios for the years 
2025, 2030 and 2040. 

The International Renewable Energy Agency (IRENA), whose 
renewable energy roadmap (REmap) programme includes 70 countries 
worldwide, which account for about 90% of the global energy use, has 
also set further scenarios [13, 43]. 

Generally, the designed scenarios take into account decarbonisation 
objectives and the consequent deployment of RES, trying to limit the 
costs of the energy transition and enabling access to electricity in a 
secure and continuous manner [20]. Decarbonisation implies the 
reduction of the generation based on fossil fuels, in favour of larger 
levels of RES installation. In several areas, this reduction would lead to 
substantial changes in the outcomes of the electricity markets, due to the 
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displacement of conventional power plants in favour of RES-based 
generation with null or low bid prices and thus higher despatch prior
ity. However, the diffusion of converter-interfaced RES exacerbates 
other issues that require the provision of ancillary services to a larger 
extent, such as lower generation availability [39, 48, 58], possible 
higher economic volatility [54], as well as reduction of the system 
inertia needed for smoothing dynamic phenomena in the networks [1, 
29]. 

In the transition towards a more decarbonised electricity supply, the 
RES diffusion will have a significant growth when RES will reach cost 
parity with fossil fuel production. However, in this process it is also 
important to consider that the fossil fuel prices could be adapted to the 
future conditions, thus slowing down the decarbonisation process with 
respect to what could be foreseen at present [32]. In the discussion on 
the policies that can support the decarbonisation process, the options 
considered [65] have been carbon tax, innovation subsidies, incentives 
for RES, and elimination of current subsidies to support fossil fuels. Two 
viable options have been identified, one with high carbon tax and 
innovation subsidies for RES, and the other one with lower carbon tax 
and elimination of existing subsidies to fossil fuels; the latter has been 
deemed politically more feasible. 

The results shown in Cardoso Marques et al. [10] for a study carried 
out in ten European countries from 1990 to 2014 indicate that RES 
cannot satisfy electricity consumption without considering electricity 
generation from fossil fuels. A substantial increase of electricity in the 
end-use sectors is also expected, mainly with the diffusion of heat pumps 
and electric vehicles [43]. For the future, the diversification of the en
ergy mix also requires a higher extent of reshaping the electrical de
mand, including the management of electric mobility and the promotion 
of self-consumption for prosumers, as well as more energy storage 
capability, and the establishment of cross-border markets. 

The definition of the energy mix in a region depends on various as
pects, ranging from fuel availability and cost to the specific policies in 
place to promote lower environmental impact and higher energy secu
rity. It strongly depends on social and political decisions as well, e.g., the 
acceptance of nuclear power plants in a given region [2]. All these as
pects need to be taken into account in the defined scenarios. The energy 
mix in the considered area (bidding zone), together with the existing 
market rules, have an important effect on the prices that are cleared 
hourly in the power exchanges throughout the year. 

Because of that, previous data, such as clearing quantities and 
clearing prices obtained from electricity markets, could only partially 
assess future estimates on electricity prices. The main reason behind this 
is the fact that changes in the energy mix cannot be modelled based on 
extrapolations of previous trends. It becomes thus important to consider 
not only historical time series, but also the foreseen bidding structure 
(new suppliers active in the future). 

With these considerations in mind, in this paper, focusing on 
wholesale day-ahead electricity market (DAEM), real hourly data (pri
ces/quantities) coming from hundreds of generators to determine future 
market clearing prices are analysed. The proposed methodology relies 
on several steps:  

1) Identify unknown generators from their bidding behaviour1 through 
an appropriate machine learning technique.  

2) Determine2 meaningful price profiles for clusters of representative 
power plants (CCGT, Coal, Hydro, Wind and Photovoltaic). 

3) Use well-established 2030 scenarios (mainly forecasting hourly de
mand and generation mixes) as an input of the model.  

4) Gather insights on the capabilities of the foreseen generation mix to 
satisfy future electricity demand and evaluate related costs (future 
electricity prices). 

The methodology is applied to an actual case: the biggest of the six 
market zones of Italy3 (i.e., North-Italy). Historical bidding data of each 
generator have been retrieved from the Gestore dei Mercati Energetici 
(GME) platform [33]. However, due to the lack of information on the 
generation technology (i.e., CCGT, Coal, Hydro, Wind and Photovoltaic) 
in this dataset, a machine learning approach based on XGBoost Classifier 
algorithm [44] has been used. This makes it possible to reconstruct 
meaningful results for the generator bidding in the DAEM. Looking 
forward, three main scenarios are presented to understand how the 
future generation capacity park will cope with the demand, and how its 
mix will influence the final day-ahead market price. The scenarios 
assumed are the ones adopted in the Ten Year Network Development 
Plan [20], used by ENTSO-e. 

The paper is organized as follows. Section 2 describes the different 
steps of the proposed methodology used for the determination of future 
DAEM electricity prices. Section 3 shows the methodology applied to a 
concrete case as the North-Italy bidding zone. Section 4 discusses the 
main findings. Finally, the last section recalls some highlights and an
ticipates future lines of research on this matter. 

2. Methodology 

This section describes the proposed methodology to determine future 
electricity prices in the scenario of interest. The proposed approach can 
be considered as a hybrid one, which combines techniques from statis
tical analysis and computational intelligence. The computational intel
ligence is limited to the machine-learning algorithm used in the 
determination of the technology from the bidding behaviour of the 
power plants in the DAEM. The statistical model accuracy depends on 
the quality of data and for the specific case on the ability to include 
important factors, as historical demand, load estimation, weather con
ditions and fuel prices. These points are discussed in the next sections. 

2.1. Overview of the methodology 

Differently from models based on the hourly cleared prices of market 
sessions, the aim is to calculate the cleared market prices by matching all 

1 The estimation of the bidding strategies cannot be based on the knowledge 
of cost information, because this is private information of the electricity market 
players that submit their bids and offers for generation and demand. For this 
purpose, in this paper a procedure for determining the behaviour of the players 
on the basis of publicly available data on the bids and offers is formulated and 
applied.  

2 The electricity price determination procedure used in this paper does not 
belong to the electricity price forecasting models, as there is no historical time 
series of electricity prices to analyse. For more details on electricity price 
forecasting, the reader is directed to specific literature reviews [9, 63] and 
articles that consider solution approaches using statistical methods [15], 
probabilistic methods [49], approaches based on computational intelligence 
[46, 62], and hybrid methods [4, 14, 50].  

3 The Italian DAEM is currently divided into six market zones which have the 
same price if no congestions are present among them The European framework 
for reviewing the existing bidding zone configuration has been defined by the 
Regulation known as the Guideline on Capacity Allocation and Congestion 
Management [25]. 
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the bids of the generators (adjusted quantities) with the hourly demand 
of electricity in the zone. This fact provides a more holistic view on the 
generation features typical of the market in exam. Moreover, all the bids 
become a fundamental input to model the behaviour of the different 
classes of active generators. The proposed methodology relies on the 
following steps:  

1 Classification of the generators: based on a cross-checking exercise 
with a partial database on generator technologies [59], for 70% of 
the active power plants in the market in exam their generation 
technology is identified. For the remaining ones, a machine-learning 
algorithm is used to match them with one of the potential technol
ogies with very high accuracy. The classification process is explained 
in detail in Section 2.2.  

2 Price and quantity distributions to estimate generators behaviour: once 
every generator has been matched with one of the known technol
ogies (e.g. CCGT, Coal, Hydro, Wind and Photovoltaic), a distribu
tion of common prices/quantities bids is built for each category (e.g. 
CCGT, Coal, Hydro, Wind and Photovoltaic) based on several vari
ables (capacity, day, hour).  

3 Consider future capacity and demand scenarios: future scenarios are 
then used as inputs to model the generation mix and the demand in a 
future year of reference (e.g., 2030 in the case analysed).  

4 Future plants bidding sampling: in order to have a more robust bidding 
behaviour,4 new plants (to be built) are added to the generation park 
and price/quantity couples are generated by sampling from the 
distributions obtained by plants in the same cluster. Improvements in 
terms of efficiency in the generation are taken into account as well. 
These usually correspond to a shift of the price distributions, as it will 
be explained in later sections. 

5 Determination of the electricity price ranges: based on the new gener
ators bids, and on the future forecast demand, the future market is 
cleared and the relative prices are derived. This process is done for 52 
Wednesdays (which represent a full year) and the final results are 
averaged over a single day. 

Fig. 1 shows a schematic chart of the proposed methodology. Starting 
from the top left, the two databases on generator bids (in the DAEM) and 
the database that provides information about the technology of (a subset 
of) the same generators are matched. Moving to the right (on the same 
level), based on the machine-learning algorithm described in Section 
3.3, the remaining generators are classified from a technological point of 
view. After that all the generators have been matched with a given 
technology, the distributions of prices and quantities are estimated for 
each technology cluster on the basis of the hour of the day for each 
Wednesday of the year.5 These distributions become fundamental when 
future scenarios are considered (bottom part of Fig. 1, for the year 
2030). In fact, in the market model, the future offers of the current 

generators, together with those coming from the new plants (to be built 
as specified in the considered scenario), are all based on the identified 
distributions and on some other aspect, e.g., fuel and CO2 price fore
casts. After the future DAEM is cleared for each hour of reference, the 
electricity prices curves are shown and the result discussed (bottom right 
part of Fig. 1). 

2.2. Classification of generators 

The database containing all the hourly transactions occurred in the 
DAEM for a given period of time (e.g., one or more years), including 
fully accepted, adjusted and rejected offers, is the starting point of the 
study. Each transaction includes a series of parameters.6 Since the type 
of technology used by the generators to produce electricity is not 
included in this database, other databases are needed to establish this 
match, in particular, the database that associates the Unit reference 
number to the technology. To this aim, the ENTSO-e transparency 
platform [21] can help by providing matching up to 73% of the bids with 
a specific unit reference number to a technology type. Unfortunately, 
this matching exercise does not fully cover all the generators active in 
the market in exam. To cope with it, the missing generators with no 
technology associated are estimated by using the scalable end-to-end 
tree boosting system XGBoost Classifier [11]. Detailed information on 
the XGBoost classifier and on its application on the specific problem is 
reported in Section 3.3. 

2.3. Price and quantity distributions to estimate generators behaviours 

After the matching power plant-generation technology is accom
plished, a statistical analysis is carried-out for each technology class. The 
aim of this step is that of obtaining, for each hour of the day, the dis
tribution of price and quantity for each category. The obtained distri
butions provide useful hints on the generators’ behaviour and on their 
characteristics. 

2.4. Consider future capacity and demand scenarios 

Three scenarios are considered in this study for the year 2030: two of 
them are taken from the TYNDP 2018 developed by ENTSO-e, and one 
from the Directorate General of Energy of the European Commission:  

• ST: The Sustainable Transition scenario developed in the TYNDP 
2018, is built upon the collection of data from the transmission 
system operators (TSO).  

• DG: The Distributed Generation scenario developed in the TYNDP 
2018 is based on the projections from the IEA Energy Outlook 2016, 
and it foresees significant innovation of small-scale generation and 
residential storage technologies as a key driver in climate action. 

• EUCO: The EUCO scenario, constructed on the European Commis
sion figures is based on the European core policy, created using Price- 
Induced Market Equilibrium System (PRIMES) model [17] and the 
EU reference scenario of 2016 [12] with emphasis on large-scale 
renewables, mostly photovoltaic. 

From a general perspective, in the ST scenario, a sustainable CO2 
reduction is achieved by replacing coal-burning plants with gas-based 
plants. The electrification of heat and transport sector is smaller when 
compared with the other two mentioned scenarios. In the DG scenario, 
prosumers are at the centre of the energy transition. Smart grids 

4 Establishing an optimal bidding strategy in the electricity market is outside 
the focus of this paper. Various models, typically based on optimization 
methods [47], perfect competition [35], or game theory concepts [8, 30, 38, 41, 
57], have been used in the literature for optimal bidding. Optimisation methods 
are based on maximising the profit of an individual player, with the challenging 
task of estimating the bidding strategies of the other players. Game 
theory-based methods model the interactions between a player and the other 
players, by using different models. In the Nash-Cournot model, the quantities 
produced are considered as strategic variables [7, 28, 34, 53, 61]. The Stack
elberg model, similar to the Nash-Cournot model, uses a leader-follower 
approach in which the leader (dominant) player improves its strategic vari
ables first; then, follower players change their strategic variables [40, 45, 55, 
56]. In the supply function equilibrium model, the strategy used by the pro
ducers depends on a supply function that links bidding quantity and bidding 
price [3, 6, 52, 64].  

5 Wednesdays are traditionally assumed in Italy as conventional days to 
represent the reference system operation. 

6 ur - Unit reference number: identification code of the unit; m - Merit order 
number, based on market solution algorithm; qa - Offered electricity quantity in 
MWh; ps - Offer price in €/MWh; pa - Awarded market clearing price in €/MWh; 
z - Market zone: zone code to which the unit belongs to; x - Status code: 
accepted/rejected. 
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technology, decentralized development and electric vehicles penetra
tion foster a rapid decarbonisation, which consequently increases the 
demand compared to EUCO and ST scenarios. In the EUCO scenario, the 
decarbonisation of the transportation sector is achieved by electric and 
gas vehicle growth [20]. 

2.5. Future plants bidding sampling 

Every scenario considered foresees changes in the generation mix 
and in the demand curve. From the generation side, several facts need to 
be taken into account: new plants (new capacity foreseen) will be built, 
and those considered too old or too polluting might shut down their 
activity. Note that in the considered scenarios the additional capacity (e. 
g., in 2030) is given in aggregated terms. This poses the problem of how 
to divide this capacity between the new plants to be built (Section 3). 
Additionally, information on electricity import/export from neigh
bouring market zones and fuel and CO2 prices changes with respect to 
the reference year (2017) must be considered. To model the bids of the 
new plants a statistical sampling method based on the distributions 
found per each technology class are used. 

2.6. Determination of the electricity price ranges 

Once the previous steps have been tackled, future supply is matched 
with the demand hourly profile provided by the scenario under 
consideration. The matching between supply and demand determines 
future market clearing prices. It is worth mentioning that the following 
assumptions have been considered: the revenue mechanism in the 
DAEM remains unchanged, no generators constraints (ramp up, mini
mum up time, etc.), no transmission constraints and the weather con
ditions along the year are comparable with those of the reference year. 
Both assumptions will be discussed more in detail in the next sections. 

3. Case study: North-Italy 

In this section, after providing some key figures about the Italian 
electricity market, the previously introduced methodology is applied to 
one of the six Italian market zones: the North-Italy zone. The reason 
behind this choice is that this zone is the most interesting one from an 
energy point of view. This zone in fact contains the most industrialised 
Italian regions and has several cross-border connections with other 
countries. 

3.1. Electricity market: the Italian context 

The Italian electricity market is divided into four main markets: day- 
ahead (MGP), intraday (MI), ancillary service (MSD ex-ante) and 
balancing (MB) [19]. The day-ahead market amounted in 2017 to 17.9 
billion euros. In terms of energy volumes, this market is definitely the 
predominant one, because 85% of the electricity supplied is in fact 
traded in this market. For this reason, the study presented is focused 
solely on this market. In the day-ahead market, the generators offers (or 
bids) are ranked for each hour, day and market zone, on a merit order 
structure, in ascending order of price, by reporting the amount of energy 
offered taking into account zonal constraints [37]. Currently, six bidding 
market zones exist in Italy: i) North, ii) Central North, iii) Central South, 
iv) South, v) Sicily, and vi) Sardinia. Moreover, there are seven foreign 
virtual zones interconnected with Italy: i) Austria, ii) Corsica, iii) France, 
iv) Greece, v) Slovenia, vi) Switzerland, and vii) Malta. These foreign 
virtual zones are interchanging energy through transmission lines with 
the different Italian zones. Based on the cleared zonal prices (which is 
the same for all the market zones if no inter-zonal grid congestion is 
experienced) the national Italian single price (Prezzo Unico Nazionale, 
PUN) is obtained through EUPHEMIA (Pan-European Hybrid Electricity 
Market Integration Algorithm). It calculates the day-ahead electricity 
price across Europe by allocating cross border transmission capacity 
[23]. The PUN corresponds to the weighted average of the prices 

Fig. 1. Schematic view of the proposed methodology.  
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obtained in the six market zones. The zonal price is determined by the 
marginal technology fixing the price over the zone, and it is the clearing 
price at which all the accepted supply offers are evaluated. The 
day-ahead market, which is an auction market, is managed by the 
Market Operator called Gestore Mercati Energetici (GME) that co
operates with the Italian Transmission System Operator (TSO). 
Regarding the year 2017 in North-Italy, the average zonal price has been 
54.4 €/MWh, with a standard deviation of 18.4 €/MWh and a maximum 
hourly price of 206.1 €/MWh. The total volume exchanged in the same 
zone has been of 159.2 TWh for the whole year, with an hourly average 
value of 18.1 GWh, a standard deviation of 4.4 GWh, and a maximum 
hourly quantity of 27.9 GWh [36]. 

By giving a look at the generation mix in the market zone under 
study, the total installed power of the thermal power plants, divided in 
Coal and Combined-Cycle Gas Turbines (CCGT), covers respectively 1.7 
GW and 24.5 GW [60]. Differently from other market zones, hydro 
power plants (including water reservoir, run-of-river and pumped stor
age) have a remarkable role in this zone. Collectively, they reach a total 
installed power of 16.6 GW. The on-shore wind power plant capacity is 
limited to only 117 MW. The photovoltaic generation has an installed 
nominal capacity of 8.7 GW, but only 6.4% of it (560.9 MW), namely, 
those plants with at least 10 MVA, are connected to the high voltage 
network and are bidding in the day-ahead market [37]. The remaining 
94% PV power production is connected to the distribution grid and thus 
is seldom observable and non-tradable. 

3.2. Electricity market: future scenarios 

Table 1 reports, for each scenario introduced in Section 2.4, the total 
amount of power foreseen for the year 2030 per technology type. The 
first column (2017) reports the current nominal power installed in the 
North-Italy zone for each technology (rows). As it can be observed from 
Table 1, in all the paved scenarios, the on-shore wind installation is 
limited to around 300 MW. Regarding the hydro power plant produc
tion, it seems to reach a saturation level at 19,455 MW for all the 
considered scenarios. An important fact emerges as well: given the ex
pected decrease of capacity coming from coal power plants, photovol
taic plants (but not only that) will need to be massively installed in the 
North-Italy zone. Among the three scenarios, the ST scenario is the only 
exception with respect to this. Despite the paved changes, in terms of 
energy mix, the thermal sector will still account in this scenario for 
around 30% of the energy production [22]. 

3.3. Application of the methodology 

This section goes through the different steps of the proposed meth
odology applied to an actual case. All the relevant details are provided 
here. 

3.3.1. Identification of the generators technology 
From the GME website is possible to gather hourly information about 

generators bidding and about hourly demand. For the year 2017, the 
dataset contains 13 million transactions, 32% of which are rejected of
fers. Meaning that, these offers were above the cleared price in one or 
more time intervals. As mentioned, due to the lack of information about 

the technology of generation of each supplier in this dataset, the GAUDI7 

dataset from Terna – the Italian TSO [59], and the ENTSO-e trans
parency platform [21] were used to match up to around 73% of the 
suppliers with a unique generation technology. This partial dataset is 
indicated in the following as the “known dataset”. The remaining sup
pliers’ technologies have been inferred through the implementation of 
an XGBoost Classifier. Originally developed in C++ language, XGBoost 
was chosen over other classifiers due to its faster and more reliable 
performance when properly tuned [5]. This machine learning method is 
a decision tree model that allows a classification of the sample (with 
respect to a target variable) based on a set of input features. Tree models 
present a high flexibility which make them capable of capturing com
plex non-linear relationships. On the other side, they are prone to 
memorising the noise present in a dataset. To reduce this tendency, 
ensemble methods are implemented in the used algorithms. With 
reference to this, XGBoost relies upon pruning techniques to avoid the 
over-fitting of the dataset. Over-fitting would in fact imply that the 
model obtained from the training data is too close to them and not 
reliable for new data to be classified (or predicted) based on them. More 
in detail, the model itself aims at predicting the Y target variable based 
on the multiple features inputs Xi of the dataset. The goal of the training 
process is that of finding the best parameters (weights, βi) that best fit Y 
with Xi. Starting from the root node, containing the whole sample, the 
splitting into sub-nodes is based on the chosen features. Decision trees 
use multiple algorithms to decide to split a node in two or more 
sub-nodes. A benchmarking on the best feature-based splitting is usually 
done through the calculation of certain functions as Gini, Entropy, Chi 
Square, etc. Stopping criteria, as minimum samples for a node split, 
minimum samples for a terminal node (leaf) are used to stop the tree 
growing in order to avoid the over-fitting issue. While these kinds of 
halting mechanisms are checked at each level of the tree, pruning 
techniques rely on a posteriori check. This means that the tree is let to 
grow and then various levels are compared and pruned based on the 
function used to do the comparison. Coming back to the specific case, 
the following features (Xi) have been considered and listed in order of 
relevance: 

g generation capacity: identification of the code of the unit 
m merit order number 
nq awarded energy quantity in MWh 
np awarded energy price in euro/MWh 
h time interval (hour to which the offer refers) 
uf utilisation factor of each generator along the year 
In a preliminary phase of this study all the features available from the 

original database of the GME, plus the utilization factor that was derived 
from the raw data, were taken. After running the classification algo
rithm, these features were ordered by importance (by assigning to each 
of them a weight in percentage, the sum of the shares being 100%). 
Using a threshold of 1% (that is, weight < 1%) several features which 
had a low impact on the target variable were discarded. As a conse
quence of that, a reduction of the computational effort of the machine 
learning algorithm was observed. Among the features removed there 
were (i) the day of the bids, and (ii) the bilateral contract that indicates if 
the bid was based on a long-term agreement before the opening of the 
market. 

The output of the XGBoost classifier is a categorical class, which in 
the case under study corresponds to the possible technology type (CCGT, 
Coal, etc.). As for other classifiers, XGBoost uses some training data to 
infer how given input variables are related to the target class (i.e., the 
technology type). To this aim, part of the known dataset is used to train 
the classifier. The accuracy of the model has afterwards been estimated 
by means of a k-Fold Cross-Validation procedure. With respect to other 
methods, this procedure offers less biased and less optimistic estimates 
of the model skills. This cross validation works as follows: it shuffles the 

Table 1 
Amount of total capacity divided per technology in three presented scenarios.   

2017 2030ST 2030DG 2030EUCO 

Coal (MW) 1689 560 0 935 
CCGT (MW) 16,938 18,067 18,607 22,838 
Hydro (MW) 16,630 19,455 19,455 19,455 
Wind (MW) 117 312 312 300 
PV (MW) 8703 10,382 22,377 15,281 
Demand (TWh) 159 206 214 179  7 This dataset contains the data of the registered production units in Italy. 
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dataset randomly; splits it into k groups; each group k = 1…K is divided 
in training and test; finally, the model is fit and evaluated [44]. 

Fig. 2 shows a scheme of the machine learning process. The process is 
subdivided into four phases: pre-processing, learning, evaluation and 
prediction. In the pre-processing the known dataset (73%) is split into 
training (80%) and test set (20%). In the learning phase, a weight βi is 
assigned to each feature Xi. The internal function evaluates, through an 
iterative process, the possible target technology type based on the 
weights given to each feature. After the model has been trained, the test 
set is used to calculate the model accuracy. 

The validation of the results is carried out by constructing the 
confusion matrix, which helps visualise the performance of the algo
rithm. The confusion matrix is the metric used to measure the perfor
mance of the classifier. It is used on the XGBoost to understand its 
accuracy and performance based on the training model. In the case 
under study, the confusion matrix has size 8 × 8, since 8 are the 
meaningful variables/categories. As columns indicates the predicted 
values and rows indicate the real ones, on the main diagonal are rep
resented those predictions (in percentage) which correctly matched the 
corresponding real values. For instance, obtaining a diagonal matrix 
would correspond to the case of perfect prediction. Outside the diagonal 
are represented instead those predictions which were incorrectly clas
sified as a different category. For instance, looking at category 4 (Wind 
generation), the diagonal value (element [4,4] in the confusion matrix) 
shows that 90% of the times the bidding behaviour of a UNI
T_REFERENCE_NO variable was recognized and assigned correctly to 
the corresponding category (Wind). On the same row the confusion 
matrix indicates that 6% of the times Wind bidding behaviour was 
confused with a Geothermal plant, 1% of the times respectively with 
CCGT, Hydro Pumped and Hydro Pumped Storage. 

Table 2 highlights the most relevant features needed to be able to 
detect correctly the type of technology. 

The initial GME dataset was thus split into two portions, the known 
dataset (73%) and the unknown dataset (27%). Additionally, the known 
dataset was divided into a training set (80%) and a test set (20%). This 
procedure is quite common in machine learning in order to train the 
algorithm in use. Based on it, the XGBoost classifier model was fit on this 
80% of the dataset and its accuracy was tested on the remaining known 
20%. The model accuracy η reaches 91% (with a standard deviation of 
3% on the known dataset). In a nutshell, this means that the proposed 
algorithm is able to detect correctly 9 out of 10 power plants only based 
on their bids in the market. For the sake of clarity, Fig. 3 shows the 
confusion matrix for each identified technology. The matching between 
the technologies and the numbers reported in the figure is the following: 
0 for Coal, 1 for CCGT, 2 for total Hydro, 3 for Geo-thermal, 4 for Wind, 5 
for PV, 6 for Hydro Pumped, 7 for Hydro run-of-river and 8 for Hydro 
Pumped Storage. 

After all the suppliers in the dataset have been assigned a generation 
technology from the classifier, another validation exercise has been 
done by comparing the total power installed in the zone (which is known 
to the TSO) with that coming from the obtained dataset. Table 3 high
lights this benchmark. The comparison shows that the dataset values 
coming from the classification are slightly lower than those of the TSO. 
This is due in our opinion to the fact that the total capacity for each 
technology is calculated by summing up the maximum energy offered 
during the year by each unit (or supplier). This difference is higher for 
thermal generators, and it might be attributed to current Grid Codes. 
According to the latter, thermal generators are generally not allowed to 
bid all their rated capacity which might be needed for balancing services 
which ensure the security of supply, e.g., frequency containment reserve 
[26]. 

With respect to the PV technology, it is worth mentioning that since 
94% of the 8703 MW installed have a capacity below 10 MVA, they do 
not bid in the DAEM [37]. For this reason, the value shown in Table 3 
corresponds to 6.4% of the one listed in the first column of Table 1. 

3.3.2. Suppliers’ bid behaviour analysis 
In order to reconstruct the day-ahead market for the year 2030, it is 

fundamental to give a close look at the current suppliers’ features. 
Currently, there are 617 generators in the North-Italy zone bidding in 
the day-ahead market, 17% of which from neighbouring countries 
(Austria, France, Slovenia and Switzerland). In all the presented sce
narios for 2030, Italy is an importing country, with a slight average (all 
scenarios) increase of the import to 20.6%, compared to 18.7% in 2017. 
For this reason, in the following, the same profiles of imported and 
exported energy have been considered multiplied only by a coefficient 
for each foreign market zone as specified in the TYNDP 2018. 

Fig. 4 shows the average normalised load demand for all the 
Wednesdays in the year 2017 supplied from national generators, that is, 
no cross-border imports have been considered. An important feature of 
the machine learning algorithm is that it is able to capture the hourly 
share for each technology. In Fig. 4, the reddish colours are used for 
technologies that can be grouped under the thermal power plants 
category. Blue shades are used to group hydro, pumped, pumped storage 
and wind technologies, and finally orange is used for PV generation. 
Differently, from the other Italian bidding zones, the North-Italy zone is 
characterised by a low share of renewable technologies connected at the 
high voltage level. In fact, an almost constant level of energy supply 
from thermal power plants can be seen in the same figure (between 20% 
and 40% of the average demand). The residual load, defined as the 
difference between total demand and the generation coming renewable 
technologies, has a relatively flat profile. This seems to indicate that the 
thermal power plant operation is not currently stressed (steep increases 
or decreases of the generated electricity) by renewables in this market 
zone. Looking forward to the year 2030 (Table 1), expected higher 
shares of renewables could definitely have an impact on traditional 
generators’ operation. However, it can still be assumed that this fact will 
not affect much the thermal power plant bidding. 

Given these premises, below it is explained how the distributions of 
price/quantity pairs have been derived for the different classes of 
generator active in the North-Italy bidding zone. 

It is worth mentioning that differently from other European Power 
Exchange markets, e.g., NordPool, [23], in Italy there is no block order 
bid option. A block order is a conditional offer (all or nothing) that a 
market participant does for a set of consecutive periods (more than 1 
hour). This is done from thermal producers in order to recover start-up 
costs and other costs, which could not be recovered otherwise. Due to 
the lack of this option, suppliers in Italy bid at 0 €/MWh for some hours 
to ensure their consecutive production. In the dataset used, bids of this 
kind especially for CCGT and Coal, amount to 47% and 32% respectively 
of the total. To avoid biased in the derived distributions, bids at 
0 €/MWh have been neglected. Figs. 5 and 6 show the resulting pri
ce/quantity distributions for these two classes of generators (CCGT and 
Coal). In particular, Fig. 4 reports the price/quantity probability distri
bution profile in 2017 based on all the offers from CCGT. The figure 
shows on the horizontal axis the quantity supplied in MWh, and the 
corresponding price offered in €/MWh on the vertical axis. Prices in the 
range of 30 - 50 €/MWh occur 55% of the times. Furthermore, 38% of 
the bids do not exceed 25 MWh. 

From Fig. 5, three main peaks can be identified: the first, the biggest 
one at 10 MWh, and other two smaller ones at 50 MWh and 130 MWh. 
These three values suggest which are the three most common sizes of 
CCGT plants active in the zone considered. Then the same magnitudes 
are considered to simulate the representative power plants to be built in 
2030. Considering only three sizes of plants per technology helps us 
speed up the computation to match future supply and demand. Note that 
this factor can be changed if one wants to consider more than three sizes. 

Moving to coal power plants, Fig. 6 illustrates the price/quantity 
probability distribution for the set of all active generators. Differently 
from CCGT, price and quantity ranges are much lower in this case. 
Almost 90% of the bids lay in the range 30 - 50 €/MWh and the average 
quantity is close to 11 MWh. Concerning PV power plants, they always 
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bid at 0 €/MWh, thus having the highest acceptance priority in the 
market. By looking at Figs. 5 and 6, it can be checked from the dataset 
that the most dominant price peaks, for both CCGT and Coal, coincide 
with the average clearing price of the North-Italy zone: 54.4 €/MWh. 

Fig. 2. Schematic view of machine learning process.  

Table 2 
Machine learning input parameter importance to predict the 
technology type.  

Feature relevance Parameter (%) 

uf utilization factor 35.8 
g generation capacity 23.5 
np energy price 15.6 
m merit order 14.8 
nq awarded quantity 7.5 
h interval 2.8  

Fig. 3. Confusion matrix of the XGBoost classifier.  

Table 3 
Installed capacity benchmark between the dataset used after XGBoost and Ter
na’s data (year 2017).  

Technology Dataset Terna 

Coal (MW) 1550 1689 
CCGT (MW) 16,130 16,938 
Hydro(MW) 16,580 16,630 
Wind (MW) 117 118 
PV (MW 550 556  

Fig. 4. Normalized load demand, not considering cross border imports.  

Fig. 5. Price/quantity probability distribution of CCGT in the year 2017 in the 
North-Italy market zone. 
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This information seems to suggest that these plants are those setting the 
day-ahead market clearing price in this zone.8 

With respect to hydro power plants, the most frequent peaks coincide 
with 5, 20 and 35 €/MWh, while wind power plants, bid on average at 
around 15 €/MWh. These power plants are subject to premium for dif
ference incentives, as established in two Italian Decrees (Decreto Min
isteriale - DM 6/2/2012, and DM 23/6/2016). These incentives have 
two different mechanisms, for a new power plant (in €/MWh) or for a 
refurbishment (in €/kW). The incentives are categorised based on the 
power plant size. The average incentive, based on the capacity of the 
power plant in the North-Italy zone, is 55 €/MWh. This incentive ends 
up in two possible situations:  

■ first, if the bid price is below the zonal market price, an extra revenue 
is passed to the electricity bills to cover the gap with the zonal market 
price [36];  

■ second, if the bid price is above the zonal market price, no extra 
remuneration is provided (max value 205 €/MWh). 

In the latter case, this may indicate that wind power plants are well 
aware about their position in the merit order market situation, and thus 
are exploiting the maximum profit out of it [18]. 

Based on the categorisation of the different set of suppliers active in 
the market, one of the first issues tackled is that of reducing the number 
of generators to a smaller number per each generation technology. After 
this mapping is done, one can sample from a smaller number of the built 
distributions (price, quantity, hour, …). For instance, for the CCGT, the 
representative power plants have been grouped according to three ca
pacity sizes (0 - 25 MW, 25 - 75 MW, > 75 MW) identified in the previous 
section. As stressed, this partitioning has been based on the three peaks 
observed in CCGT power plants (Fig. 5). This means that each CCGT 
generator is mapped to one of these three types in such a way that only a 
tractable number of discrete frequency distributions is used. To validate 
the proposed sampling approach, a Monte-Carlo simulation has been run 
(with 1000 runs), for 52 Wednesdays in 2017. The results are compared 
with the historical data of 2017. In a nutshell, the real offers are 
substituted by a random sampling over the probability distributions 

obtained for each class of generator. The results are shown in Fig. 7. 
The coloured bands, in light orange, around the average values 

contain the historical data of the years 2017. Moreover, to further 
validate the results of the proposed sampling approach, the total cost of 
the simulated Wednesdays have been compared with the historical data 
of the year 2017. Regarding the year 2017, the total cost in the day- 
ahead market, calculated by multiplying the average hourly zonal 
clearing price with the total yearly hour demand (for the North-Italy 
zone), is 1.54 B€. The relative difference with the simulated data is 
+0.92% for 2017. Based on these considerably small errors, the pro
posed model is assumed to be accurate enough to provide realistic 
electricity prices in the North-Italy market zone in future scenarios. It is 
worth stressing that the proposed method has moved from a high 
number of operators and bids to a simpler system, based on a random 
sampling over the probability distributions obtained for each class of 
generator. From a modelling perspective, this approach can reveal quite 
helpful when dealing with complex systems where for instance the 
power flow equations needs to be considered. 

3.3.3. Supply and demand in 2030 
As done for the year 2017, the supply curve for 2030 has been built 

by sampling from the distributions of the representative power plants. 
To take into account the different generation mix for the future in the 
considered scenarios, the number of suppliers’ bids has been propor
tionally increased or reduced. For instance, in line with Table 1, in the 
case of CCGT for the DG scenario the number of offers is increased by a 
factor of 1.07 (18,067/16,938) compared to 2017. The opposite case 
occurs instead for coal power plants, with capacity in the year 2030 
considerably lower than in 2017. For this specific case, the bids are 
sorted in descending order, thus from the most expensive bid to the least 
one. Then, bids are removed until the energy obtained from the new 
capacity is reached. By doing so, it is considered that the least efficient 
power plant has been substituted with a new one, or it has been refur

Fig. 6. Price/quantity probability distribution of Coal in the year 2017 in the 
North-Italy market zone. 

Fig. 7. Price results comparison between simulated and real data from 2017 
to 2018. 

Table 4 
Fuel and CO2 prices for the different 2030 scenarios.  

Scenario Coal (€/GJ) CCGT (€/GJ) CO2 (€/ton) 

2017 2.3 6.1 18 
2030ST 2.7 8.8 84.3 
2030DG 2.7 6.9 50 
2030EUCO 4.3 8.8 27  

8 Unfortunately from the dataset it is not always possible to have the infor
mation on the technology setting the clearing price. 
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bished.9 Additionally, apart from capacities changes, fuel and CO2 costs 
have been taken into account as well (Table 4). For completeness, the 
equations showing how future prices are modified based on these factors 
are reported hereby: 

p2030
gens,gt

= p2030
est,gt + ΔCO2s,gt + ΔFuels,gt (1)  

ΔCO2s,gt =
(

p2030
CO2 s,gt

− p2017
CO2 s,gt

)
(2)  

ΔFuels,gt =
(

p2030
Fuels,gt

− p2017
Fuels,gt

)
(3) 

The emission factors for fuel combustion adopted are 0.341 tonnes of 
CO2/MWh and 0.202 tonnes of CO2/MWh, for Coal and CCGT power 
plants, respectively [16]. 

Fuel and CO2 costs have been considered as follows. After identifying 
the coal and CCGT power plants that set the marginal price in the year 
2017, as provided by GME for each hour of the year [33], fuel and CO2 
costs from the year 2017 were subtracted from the offered prices. The 
remaining values were considered as the average cost of these power 
plants. After the subtraction, the average cost accounts for 71% and 62% 
of the offered prices for coal and CCGT, respectively. From Table 4 it is 
evident, particularly in the ST scenario, that the CO2 price would have a 
major impact on the costs of Coal and CCGT suppliers. Fig. 8 shows how 
a frequency price distribution for CCGT is shifted to the right once new 
elements as fuel price and CO2 costs are considered. 

With respect to the demand side, in the TYNDP three demand profiles 
were built based on the weather condition of three reference years 
(Fig. 9). They are respectively 1982 (dry condition), 1984 (normal 
condition), and 2007 (wet condition). The demand profiles take into 
account average domestic electrical heat pumps installation of 8%, 
which may have challenging effects on the distribution grids (ENTSO-e 
2020). The EV growth is defined as very high for DG, high for EUCO and 
moderate for ST [20]. The DG scenario has the highest demand and peak 
ramp up in the early morning. The average demand amounts to 26.6 
GWh, which compared to the year 2017 corresponds to an increase of 
25%. Further devices increasing the expected demand are related to the 
boost in the implementation of heat pumps installation. 

Furthermore, the new electricity demand accommodates a very high 
growth in flexibility demand, which flattens the demand profile during 
the day [20]. The growth in the morning peak demand can be attributed 
to the EV recharging occurring at the office location [31], when no 
specific incentives are given to consumers in order to shift the 
recharging time. In the future this price or time constraints elements will 
be key to allow a smarter charging mechanism. 

Known the supply and demand, the proposed model to determine the 
electricity prices matches supply and demand orders in order to estimate 
the electricity price in the North-Italy market zone. Summarising, the 

final electricity price is a function of the demand, suppliers bid prices, 
import and export, fuel and CO2 prices. 

In particular, the electricity prices in the future have been calculated 
as follows: for each generator bids (price-quantity pairs) in 2017 new 
pairs of bids were built taking into account future fuel cost and carbon 
prices in 2030 as specified in the previous formulas. Additionally, new 
bids were built based on the new generators (to be built by 2030 as 
specified by the scenario under study) and on the price-quantity distri
butions obtained per each technology. The supply offers were then 
matched with the given demand (which is deterministic for each 
considered scenario). As a result of the matching the clearing price was 
obtained. As discussed throughout the manuscript, the bids coming from 
the new generators (in 2030) were based on the price-quantity distri
bution of the corresponding technology with the capacity levels 
opportunely scaled. 

4. Results 

This section presents the results and shows a qualitative benchmark 
analysis by comparing the results with those coming from the TYNDP. 
Firstly, the electricity marginal cost considered by TYNDP in the year 
2017 at the European level is 38 €/MWh, which corresponds to 0.7 times 
the North-Italy market zone price of 54 €/MWh. To compare the prices 
from the TYNDP 2018 electricity marginal cost forecast at the European 
level, the same factor of 0.7 should perhaps be considered 

The marginal clearing prices, the whole set of price and quantity 
pairs, of each generator, were sorted in ascending order. The marginal 
clearing price is by the generator bids matching demand, and this 
calculation is performed for each hour. A similar rejected ratio (30%) of 
bids was also obtained in future scenarios. When calculating the hourly 

Fig. 8. Frequencies distribution for the CCGT technology for the year 2017 
and 2030. 

Fig. 9. Time series of the daily demand in the year 2017 and for the three 
scenarios in 2030. 

Fig. 10. EPF model price results for ST, DF and EUCO. Year 2017 is reported 
as reference. 

9 This can be seen as adding a given price for the CO2 emissions produced by 
the coal power plant. 
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marginal clearing prices, no physical constraints were taken into ac
count. For the three scenarios, the average yearly prices correspond in 
the TYNDP 2018 to 86 €/MWh in ST, to 72 €/MWh in DG, and to 67 
€/MWh in EUCO. These forecasts show that, even though higher shares 
of zero-marginal cost generators are included in the generation mix, a 
potential increase in the range of 19%− 37% should be observable when 
compared to the 2017 electricity prices. This increase considering the 
0.7 factor would correspond for the North-Italy zone to 122 €/MWh for 
ST, to 102 €/MWh for DG and to 95 €/MWh for EUCO scenarios, 
respectively. However, the prices resulting from the proposed model 
(Fig. 10) point out that the average marginal electricity price follows the 
same trend of the ENTSO-e forecasts. In fact, the ST scenario has an 
average price of 80 €/MWh (with a standard deviation of 17.3 €/MWh); 
the DG scenario reaches 71 €/MWh (with a standard deviation of 22 
€/MWh); while, the EUCO scenario achieves a mean value of 48 €/MWh 
(with a standard deviation of 25.7 €/MWh), which is even lower than 
the prices of the year 2017. The high standard deviation for the EUCO 
scenario can be definitely related to the high share of PV generation in 
combination with the relatively low growth of demand considered for 
this scenario. The convergence of the resulting prices between the pro
posed model and the one used by ENTSO-e seems to suggest as well, that 
in the latter in ten years time the cross-border congestions will be 
reduced considerably having a unique price for all Europe. 

Table 5 shows the total cost in the day-ahead market for the year 
2030 scenarios. The total cost is calculated by multiplying the average 
hourly price with the total yearly demand supplied in that hour. 

The results show an increase compared to 2017, except for the EUCO 
case where the total price is below the current one. In 2017 the total cost 
for Wednesday in the day-ahead North-Italy market zone amounted to 
1.54 B€. This opposite trend may be caused by the lower demand fore
cast (compared to DG and ST scenario) as well as to a very high pene
tration of renewable energy generation. It is important to stress as well 
that the existing differences with the results of the TYNDP are obvious, 
due to the fact that is not really possible to compare the results for a 
single bidding zone (as North-Italy) with those obtained at European 
level. 

5. Conclusions 

The energy system will meet the decarbonisation and sustainability 
goals if reliable tools can help policy makers to take evidence-based 
decisions. For this reason, methodologies able to provide future elec
tricity prices by considering also the evolution of both the generation 
park and the demand are needed. This paper has presented a method
ology that aims to overcome the limitation linked to the projection of 
past trends on the prices, by introducing a model aimed at emulating the 
market mechanism. The information regarding the bids in the biggest 
zone of the Italian day-ahead market have been matched with the 
relative technologies. The match has been found partially in a deter
ministic way, and partially by using a machine learning method called 
XGBoost Classifier that, after proper training, is able to indicate the 
technology associated to a particular generation unit. The approach has 
been validated by comparing the calculated capacities with the capac
ities existing in 2017, demonstrating its effectiveness. After the identi
fication of the technologies associated to the bids, the most common 
energy/price pairs offers (organised into probability distributions) have 
been identified, by also providing information on the fossil fuel plants’ 
size. This information has been essential to model those new generators 
that will be added (e.g., CCGT) to the generation park according to the 
three future TYNDP scenarios, or reduced accordingly (e.g., coal plants 
in all the scenarios). The results of the methodology applied to the 
North-Italy market zone, show that the average marginal electricity 
price follows the same trend of the ENTSO-e forecast, namely, the ST 
scenario has an average price of 80 €/MWh (against 86 €/MWh ac
cording to ENTSO-e); the DG scenario reaches 71 €/MWh (against 72 
€/MWh); while, the EUCO scenario achieves a mean value of 48 €/MWh 

(against 67 €/MWh). By considering the EUCO scenario, it is worth 
nothing that the average price is lower than the one reported by ENTSO- 
e; however, this particular case shows a high standard deviation (around 
25 €/MWh) due to the high share of PV generation in combination with 
the relatively low growth of demand. The way in which the PV pro
duction is considered in the two models can partially explain this dif
ference. Another aspect that demonstrates the possible benefits of using 
the proposed model for policy making is the evaluation of the electricity 
costs in the future, comparing the current scenarios by changing the 
energy mix, considering similar weather conditions and similar bidding 
strategies with respect to the ones from which the data are taken. These 
peculiarities of the model will allow energy analysts to identify viable 
bidding strategies and run future scenarios avoiding the need to get 
private information on the generation assets. The proposed approach in 
fact allows taking into account the bidding behaviour of a myriad of 
generators without knowing exactly each financial transactions but only 
relying on probability distributions which are used to random sampling 
from them. Additionally, the proposed method helps simplify the 
modelling of the generation layer, which becomes fundamental when 
other layers (for instance, power flow equations, retailers modelling, 
energy communities preferences, etc.) are considered in the model, 
which definitely increase its complexity and make the finding of a so
lution harder. 
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