Direct reprogramming of human cardiac fibroblasts towards the cardiac phenotype through non-viral approaches.

Camilla Paoletti^{1,2}, Letizia Nicoletti^{1,2}, Giulia Tarricone^{1,2}, Carla Divieto³, Franca Di Meglio⁴, Daria Nurzynska⁴, Clara Mattu^{1,2}, Ilaria Andreana⁵, Silvia Arpicco⁵, Barbara Stella⁵, Valeria Chiono^{1,2}

Myocardial infarction (MI) is the leading cause of mortality worldwide. Direct reprogramming of cardiac fibroblasts into induced cardiomyocytes (iCMs) represents a new promising strategy for cardiac regeneration [1]. In this work, we demonstrated that non-viral transient transfection of human adult cardiac fibroblasts (AHCFs) with four miRNAs (miRcombo: miR-1, 133, 208, 499 [2]) is able to reprogram AHCFs into iCMs, and reprogramming efficiency is further enhanced by a 3D culture environment. Novel lipoplexes were also designed for safer and efficient miRNA delivery [3,4].

This project received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme grant agreement No-772168.

- [1] Paoletti et al. Cells 2018.
- [2] Paoletti et al. Front. Bioeng. Biotechnol. 2020.
- [3] Lee & Paoletti et al. J. Cont. Rel. 2019.
- [4] Arpicco et al. Farmaco 2004.

¹ Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy

² Politecnico di Torino, Polito Biomedlab, Turin, Italy

³ Istituto Nazionale di Ricerca Metrologica, Advanced Materials Metrology and Life Science, Torino, Italy

⁴ University of Naples Federico II, Department of Public Health, Napoli, Italy

⁵ University of Turin, Department of Drug Science and Technology, Turin, Italy