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a b s t r a c t 

Background: Recently, deep learning has rapidly become the methodology of choice in digital pathology image 

analysis. However, due to the current challenges of digital pathology (color stain variability, large images, etc.), 

specific pre-processing steps are required to train a reliable deep learning model. 

Method: In this work, there are two main goals: i) present a fully automated pre-processing algorithm for a smart 

patch selection within histopathological images, and ii) evaluate the impact of the proposed strategy within a 

deep learning framework for the detection of prostate and breast cancer. The proposed algorithm is specifically 

designed to extract patches only on informative regions (i.e., high density of nuclei), most likely representative 

of where cancer can be detected. 

Results: Our strategy was developed and tested on 1000 hematoxylin and eosin (H&E) stained images of prostate 

and breast tissue. By combining a stain normalization step and a segmentation-driven patch extraction, the pro- 

posed approach is capable of increasing the performance of a computer-aided diagnosis (CAD) system for the 

detection of prostate cancer (18.61% accuracy improvement) and breast cancer (17.72% accuracy improvement). 

Conclusion: We strongly believe that the integration of the proposed pre-processing steps within deep learning 

frameworks will allow the achievement of robust and reliable CAD systems. Being based on nuclei detection, this 

strategy can be easily extended to other glandular tissues (e.g., colon, thyroid, pancreas, etc.) or staining methods 

(e.g., PAS). 
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. Introduction 

Digital pathology, in which histology slides are digitized, plays a

undamental role in modern clinical practice. In fact, the analysis of

istological slides is crucial for cancer detection and diagnosis, often

eighing on expert pathologists who need to review and analyze an

mmense number of slides for a thorough diagnosis [1] . Due to this large

orkload, the manual analysis and quantitative grading (e.g., Gleason

core) of digital histopathological slides is time consuming and is often

ffected by a low inter- and intra- operator variability [ 2 , 3 ]. 

With the onset of whole slide imaging and higher computing power,

he application of artificial intelligence, especially convolutional neural
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etworks (CNNs), has grown exponentially over the last few years in

he field of digital pathology. In fact, the complexity contained within

ne high-resolution whole slide image (a common resolution is 100k x

00k) and the presence of color information due to tissue staining make

he extraction of important information extremely difficult for human

eaders [4] . 

Artificial intelligence and CNNs in particular present numerous ad-

antages to traditional methods, with the capacity of automatically

earning high-level features that are useful for disease detection and clas-

ification without having to extract handcrafted features [5] . While the

otential of using CNNs in medical image analysis is great, particularly

n the field of digital pathology, it is also of fundamental importance to

eed into the network input data that is representative of the problem
 February 2021 
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o  

n  
hat must be solved so as to optimize the potential results. Preparing and

ptimizing the data for a subsequent algorithm or deep learning model

s often referred to as pre-processing. In the field of digital pathology,

here are two main preprocessing steps: stain normalization and patch

xtraction. These two preprocessing steps are used whether the CNN

ask be classification, detection, or segmentation. 

Stain normalization methods modify the colors of the analyzed im-

ge by using the chromatic characteristics of a specific target reference

mage. Numerous studies have shown how including a stain normaliza-

ion step before inputting the image to a CNN can noticeably increase

lassification performance in digital pathology [6–8] . 

Patch extraction, on the other hand, is fundamental in digital pathol-

gy as high-resolution patches of the whole slide image (WSI) include

he discriminative data that are key for proper classification. Due to

his, it is crucial to train the CNN using high-resolution patches and

hen subsequently predict the label of the entire image using the indi-

idual patch predictions. Currently, the mainstream method of patch

xtraction is simply extracting all patches in a grid-like manner, using

 sliding window to extract all patches for CNN training [ 9 , 10 ]. This

echnique, however, is not optimal for histopathological images, as it

s common for the discriminative data to be encrypted only in specific

ypes or areas of tissue. Over the last few years, different segmentation-

uided patch extraction methods have also been proposed for digital

athology image analysis [11] . These methods extract the patch only

n informative regions (which can be even only a small fraction of the

aw image), significantly saving computational resources without sac-

ificing informative input data and, hence, network performance. How-

ver, there is a lack of studies documenting the effect of non-grid patch

xtraction techniques within deep learning frameworks. 

In this paper, we present and evaluate the impact of an automated

ethod for smart patch selection in histopathological images of prostate

nd breast tissue. The proposed algorithm is specifically designed to ex-

ract the patches only on informative regions, most likely representative

f where cancer can occur. In the specific cases of breast and prostate

ancer, the most representative regions are those with a high density

f cell nuclei, whose morphology and texture can be altered during the

volution of the disease. The aim of this work is to evaluate the im-

act of the proposed strategy within a deep learning framework for the

etection of prostate and breast cancer. 

. Materials and methods 

In this paper, a deep learning pipeline is presented for cancer de-

ection in histopathological images and its impact is assessed. The pro-

osed strategy consists in three steps: stain normalization, segmentation-

uided patch selection and deep network architecture. A detailed de-

cription of the algorithm is provided in the next sections. 

.1. Dataset composition 

Our dataset consists of 1000 hematoxylin and eosin (H&E) stained

mages of prostate and breast tissue. Prostate images were collected from

n anonymized repository used for teaching purposes at the Division of

athology, Department of Oncology, Turin, Italy. Digital images were

canned with a magnification of x100 using an Aperio AT2 digital slide

canner. Five images of 1500 × 1500 pixels were extracted from each

SI ( n = 100), for a total of 500 images. The prostate dataset consisted

f 250 healthy images, 33 Stage I, 118 Stage II, 74 Stage III and 25 Stage

V cancers. For each prostate image, the pathologist manually assigned

 label: 0 for benign images and 1 for tumoral ones. The dataset was

hen divided into two subsets: Train set (400 images, 50% healthy) and

est set (100 images, 50% healthy). 

The breast images were retrieved from the BACH challenge [12] .

his challenge consisted in automatically classifying H&E-stained breast

mages in four classes: 1) Normal, 2) Benign, 3) In situ carcinoma, and 4)

nvasive carcinoma. All the images were collected at x200 magnification
2 
conversion factor: 0.467 𝜇m/pixel). Since the aim of this work is to

erform a binary classification (healthy vs. tumor), we used the label

ealthy images for “Normal ” (127 images) and “Benign ” classes (119

mages), while the label Tumoral images was employed for all the “In

itu carcinoma ” (127 images) or “Invasive carcinoma ” (127 images). A

otal of 500 breast histopathological images were used, 400 for training

50% healthy) and 100 for testing the network (46% healthy). Table S1

hows the details of the dataset employed in this work. 

.2. Stain normalization 

The first preprocessing step of the proposed pipeline is stain color

ormalization. A stain normalization method allows transforming an im-

ge I into another image I N , through the operation 𝐼 𝑁 = 𝑓 ( 𝐼, 𝛼) , where

( ⋅) represents the mapping function that matches the visual appearance

f the source image with a predefined template image and 𝛼 represents

 set of chromatic parameters extracted from the template image. Stain

ormalization represents a crucial step as the appearance of histological

tains often suffers from large variability due to the ability of the labo-

atory technician or the chemical reactions of the dye during the sample

reparation [13] . Previous studies have also shown that the standard-

zation of stain intensity plays a crucial role in the development of deep

earning solutions for quantitative analysis of histopathological images

14] . Starting from the original RGB image of the specimen ( Fig. 1 ), we

pplied the normalization strategy described in Ref. [15] . 

.3. Segmentation-guided patch selection 

This section describes the object detection strategy used to select the

nformative patches used for training deep networks. First, the proposed

trategy applies a segmentation algorithm to detect all the unstained

reas and nuclear regions. Since simple thresholding may be ineffective

o properly segment all the white areas, our algorithm employs a series

f Gabor filters, which are defined as follows: 

 ( 𝑥, 𝑦, 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = exp 

( 

− 

𝑥 
′2 + 𝛾2 𝑦 

′2 

2 𝜎2 

) 

cos 
( 

2 𝜋𝑥 ′
𝜆

+ 𝜓 

) 

(1)

here 𝑥 ′ = 𝑥𝑐𝑜𝑠 ( 𝜃) + 𝑦𝑠𝑖𝑛 ( 𝜃) and 𝑦 ′ = − 𝑥𝑠𝑖𝑛 ( 𝜃) + 𝑦𝑐𝑜𝑠 ( 𝜃) . The parameters

mployed by the Gaussian function are listed in Table S2. Eight direc-

ions ( 𝜃) are considered to make the algorithm faster and to reduce the

oise level. The obtained eight filtered images are thresholded with a

alue equal to 95% of their maximum. Then, the resulting eight binary

asks are merged together with the OR operator (Figure S1). 

Cell nuclei are segmented using the blue-ratio (BR) segmentation

cheme [16] . The BR image allows highlighting all pixels with a strong

lue component, often representative of the hematoxylin-stained areas

i.e., nuclei). The BR image is computed as: 

 𝑅 𝐼 𝑀 𝐴𝐺𝐸 = 

100 × 𝐵 

𝑅 + 𝐺 + 𝐵 

× 1 
1 + 𝑅 + 𝐺 + 𝐵 

(2)

here R, G, and B are the red, green, and blue layers of the normalized

mage, respectively. After applying min-max scaling to the BR image, the

bject-based thresholding described in Ref. [17] is employed to obtain a

aw binary mask of cell nuclei. Then, all the segmented objects with an

rea less than 10 𝜇m 

2 are deleted as they are too small to be considered

s potential nuclei. Finally, a morphological opening with a disk of 3-

ixel radius is carried out to obtain smoother contours. 

Since the discriminative information are encrypted in high-

esolution tiles, a sliding window approach is employed to extract all

he relevant patches within the histological tissue. Specifically, a smart

atch extraction is adopted that exploits the segmentation masks (nu-

lei and white) previously identified. All the patches (500 × 500 pixel,

0% overlap) that show a minimum of 15% of nuclei and a maximum

f 40% of white areas are selected by the algorithm to train the deep

etwork. In this way, the patches are only extracted from regions with
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Fig. 1. Schematic representation of the smart patch extraction proposed in this work. Starting from the original RGB image, a preprocessing stage is employed to 

standardize the staining intensity. Then, cell nuclei and white areas are detected to automatically extract the patches based on local nuclear density. 
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p  
 high density of nuclei, most likely representative of where cancer can

ccur. The flowchart of the proposed strategy is illustrated in Fig. 1 . 

.4. Deep network architecture 

After patch extraction, the proposed pipeline performs tumor de-

ection using a CNN. Specifically, the InceptionV3 architecture [18] is

mployed for the classification task (Figure S2). This network adopts

Inception ” modules that consist in the concatenation of convolutional

ayers having different kernel sizes to extract multiscale characteristics

rom the image. The Inceptionv3 is pretrained on ILSVRC 2012 Im-

geNet [19] and the transfer learning strategy is applied during the

etwork’s training in order to overcome the limitations of our limited

ataset and to reduce the training time [ 20 , 21 ]. Moreover, on-the-fly

ata augmentation is implemented by applying random transformations

i.e., flipping, shifting, rotation) to the input images. This strategy pre-

ents network overfitting and makes the model more robust by increas-

ng the amount of data available during training. The deep network is

rained with a mini-batch size of 256 and an initial learning rate of 10 − 3 .

inary cross-entropy and the Adam optimizer are employed as a loss and

ptimization function, respectively. Finally, the total number of epochs

s set to 50, with a validation patience of 10 for early stopping of the

raining process. 

.5. Performance metrics 

The overall accuracy of the deep learning model in classifying

atches (patch-level accuracy) and in providing the label of the entire

mage (image-level accuracy) is evaluated by computing the classifica-

ion accuracy. Sensitivity and specificity of the model are also computed

o quantify the fraction of true positive and true negative examples

orrectly classified by the model. Finally, the ROC curves are calcu-

ated to assess the overall performance of the proposed deep learning

ipeline. 
3 
. Results 

The classification performance provided by our approach (smart ex-

raction from normalized images) is compared with two different strate-

ies: grid extraction from original images and grid extraction from nor-

alized images. In this way, it is possible to isolate the contribution of

ach pre-processing step within our pipeline (i.e., image normalization

nd segmentation-guided patch selection). Figs. 2 and 3 show a visual

omparison between the three different strategies for a prostate image

nd a breast image, respectively. The entire processing is performed on

 custom workstation with 3.1 GHz octa-core processor and 32-GB of

AM (Turin, Italy). 

.1. Patch-level performance 

A quantitative comparison is carried out to assess the performance

f the proposed approach for cancer detection. Specifically, the over-

ll accuracy, sensitivity, and specificity of the deep learning model are

valuated in terms of patch classification. Table 1 shows the comparison

etween our preprocessing strategy and the other two approaches for

rostate and breast images. The segmentation-guided patch extraction

oupled with the stain normalization strategy showed excellent perfor-

ance, obtaining an accuracy of over 93% in prostate cancer detection

nd an accuracy of 84% in breast cancer detection. During the detec-

ion of prostate cancer, the proposed strategy improved the performance

f the deep network with an increase in accuracy of 22%, sensitivity

f 13%, and specificity up to 30% compared to the baseline approach

grid extraction from original images). Similar results were obtained for

reast cancer, where the proposed strategy allowed a 17% accuracy im-

rovement compared to the baseline. Moreover, sensitivity increased

y 5% while specificity increased by up to 27% with respect to the grid

xtraction from the original images. 

.2. Image-level performance 

During testing, the proposed algorithm extracts all the relevant

atches and feeds them into the Inceptionv3 to perform classification. A
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Fig. 2. Visual comparison in patch extraction between three different strategies for a prostate case. (a) patches are selected using a sliding window approach with a 

50% overlap on the original image, (b) patches are selected using a sliding window approach with a 50% overlap on the normalized image, (c) patches are selected 

using an automatic segmentation-driven approach with a 50% overlap on the normalized image. 

Fig. 3. Visual comparison in patch extraction between three different strategies for a breast case. (a) patches are selected using a sliding window approach with a 

50% overlap on the original image, (b) patches are selected using a sliding window approach with a 50% overlap on the normalized image, (c) patches are selected 

using an automatic segmentation-driven approach with a 50% overlap on the normalized image. 

4 
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Table 1 

Patch-level performance of the proposed method during the classification of prostate and breast cancer. 

Pre-processing strategy Subset 

Prostate tissue Breast tissue 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Original + grid 

sampling 

Train 0.7123 0.8167 0.6080 0.6714 0.8121 0.5327 

Test 0.7016 0.8288 0.5744 0.6811 0.8651 0.4652 

Normalization + grid 

sampling 

Train 0.7977 0.7391 0.8562 0.7199 0.8187 0.6211 

Test 0.7904 0.7456 0.8352 0.7151 0.8259 0.5851 

Normalization + smart 

sampling 

Train 0.9386 0.9369 0.9410 0.8422 0.8692 0.8082 

Test 0.9300 0.9530 0.9001 0.7700 0.7327 0.8311 

Table 2 

Image-level performance of the proposed method during the classification of prostate and breast cancer. 

Pre-processing strategy Subset 

Prostate tissue Breast tissue 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Original + grid 

sampling 

Train 0.8111 0.9222 0.7000 0.7278 0.8833 0.5722 

Test 0.8100 0.9400 0.6800 0.7300 0.9630 0.4565 

Normalization + grid 

sampling 

Train 0.8972 0.8389 0.9556 0.7833 0.9000 0.6667 

Test 0.8600 0.7800 0.9400 0.8100 0.9444 0.6522 

Normalization + smart 

sampling 

Train 0.9972 1.000 0.9944 0.9050 0.9000 0.9101 

Test 0.9900 1.000 0.9800 0.8400 0.8519 0.8261 

v  

m  

b  

w  

w

 

p  

t  

s  

T  

u  

t  

s  

s  

c  

o  

a  

s  

a

 

b  

d  

M  

i  

w  

f  

i  

p  

r

4

 

e  

o  

w  

t  

c  

p  

p

 

f  

i  

fi  

a  

i  

b

 

t  

g  

s  

a  

n  

o  

f

 

t  

n  

p  

b  

u  

w  

t  

b  

i  

s  

g  

(  

l  

a  

t  

o  

i

 

p  

s  

t  

m  

w  

t  

i  

a  

c  

i  

n  

b

oting procedure is then applied to the patch-level predictions to deter-

ine the class of the entire image: the final label of the image is decided

y majority voting on the label of classified patches (Figure S3). In other

ords, the image-level label is equal to the predicted label of the patch

ith maximum probability over all other patches and classes. 

The image-level prediction provided by the algorithm is then com-

ared with the manual label assigned by an expert pathologist. A quan-

itative comparison is carried out by evaluating the accuracy of the pre-

ented method during the classification of prostate and breast cancer.

able 2 shows the performance of the three pre-processing strategies

sing the train and test subsets, respectively. The confusion matrixes of

he compared methods are reported in Table S3. The combination of

tain normalization and smart patch selection allowed to reach 100%

ensitivity and almost 100% accuracy and specificity for prostate can-

er. Our preprocessing strategy also outperformed the compared meth-

ds for breast cancer detection, obtaining an overall accuracy of 90%. In

ddition, as occurred for patch-level performance, our approach has re-

ulted in improved image-level performance in terms of both sensitivity

nd specificity, showing at most a 2% and 33% increase, respectively. 

Figure S4 illustrates the ROC curves obtained during prostate and

reast cancer detection for each of the three pre-processing strategies. A

etailed description of the ROC curves is reported in the Supplementary

aterial. The extraction of patches from normalized images allows to

ncrease the area under the curve (AUC) for both tumor types. Starting

ith the same extraction strategy (grid sampling), a 6% increase in AUC

or prostate cancer detection and a 5% improvement in AUC for breast

mages were observed. Even more interesting, the segmentation-driven

atch selection allowed to further increase the AUC of the deep network,

eaching 1.0 for prostate cancer and 0.97 for breast cancer. 

. Discussion and conclusions 

While CNNs are still sometimes viewed as a black box that does not

xplain predictions in a manner that is easily understandable by humans,

ne fact remains true: the input data is of pivotal importance. If the net-

ork receives non-informative data as input, the final performance of

he network can only be compromised [ 10 , 22 ]. In light of this, data

uration and preprocessing techniques are fundamental to properly pre-

are the data for the network that can then be trained to its maximum

otential. 

In this study, we present a fully automated pre-processing strategy

or the smart selection of the informative patches inside histopatholog-

cal images of prostate and breast tissue, and assess its impact on the
5 
nal network’s performance. By combining a stain normalization step

nd a segmentation-driven patch extraction, our approach is capable of

ncreasing the performance of a CAD system designed for prostate and

reast cancer detection. 

Our data curation and preprocessing strategy was compared with

wo common strategies: grid extraction from the original images and

rid extraction from normalized images. Many previous studies have

hown the benefits from using stain normalization before implementing

 deep learning framework. As expected, by simply inserting the stain

ormalization step before classifying each patch, the overall accuracy

f the deep learning model increased, both in terms of single-patch per-

ormance and of image-level performance ( Tables 1 and 2 ). 

While the impact of stain normalization is duly detailed in litera-

ure, there are not nearly as many studies documenting the impact of

on-grid techniques of patch extraction. Hence, in this study, the im-

act of the proposed patch selection on the deep learning model has

een investigated. The increase in accuracy, sensitivity and specificity

sing a smart patch extraction is greater than the improvement that

as observed by implementing only stain normalization. The combina-

ion of stain normalization and smart patch selection allows to increase

oth the sensitivity (false negative reduction) and specificity (false pos-

tive reduction) of the deep learning model. In particular, integrating

tain normalization with a smart segmentation-driven patch selection

ave forth an accuracy of 99% (AUC = 1.0) for prostate cancer and 90%

AUC = 0.97) for breast cancer. These results demonstrate that the se-

ection of representative patches has a great impact on the training of

 deep learning model for digital pathology image analysis. In fact, a

argeted extraction of patches allows the training of the network only

n informative regions, which in the case of breast and prostate cancer,

s where neoplasm could be potentially manifested. 

In this work, we present a simple yet effective pipeline for smart

atch extraction in histopathological images of prostate and breast tis-

ue. Being based on nuclei detection, this strategy can be easily extended

o other glandular tissues (e.g., colon, thyroid, pancreas, etc.) or staining

ethods (e.g., PAS). In addition, we are planning to extend our dataset

ith images acquired from multiple centers and with different scanners

o further increase the robustness of the algorithm. Our research group

s currently working on an extension of the proposed method for the

nalysis of entire prostate biopsies, with the aim of developing an ac-

urate and reliable tool for prostate cancer screening. We also plan to

mplement a classifier specifically designed to distinguish between be-

ign areas and early-stage tumors, which still represents a challenge for

oth pathologists and machine learning models. 
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