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Abstract
The active response of cells to mechanical cues due to their interaction with the environment has been of increasing interest, 
since it is involved in many physiological phenomena, pathologies, and in tissue engineering. In particular, several experi-
ments have shown that, if a substrate with overlying cells is cyclically stretched, they will reorient to reach a well-de�ned 
angle between their major axis and the main stretching direction. Recent experimental �ndings, also supported by a linear 
elastic model, indicated that the minimization of an elastic energy might drive this reorientation process. Motivated by the 
fact that a similar behaviour is observed even for high strains, in this paper we address the problem in the framework of �nite 
elasticity, in order to study the presence of nonlinear e�ects. We �nd that, for a very large class of constitutive orthotropic 
models and with very general assumptions, there is a single linear relationship between a parameter describing the biaxial 
deformation and ��� � � ��  , where � ��  is the orientation angle of the cell, with the slope of the line depending on a speci�c 
combination of four parameters that characterize the nonlinear constitutive equation. We also study the e�ect of introducing 
a further dependence of the energy on the anisotropic invariants related to the square of the Cauchy–Green strain tensor. This 
leads to departures from the linear relationship mentioned above, that are again critically compared with experimental data.

Keywords Nonlinear elasticity�· Orthotropic�· Cell orientation�· Cell stretching�· Stress �bers�· Cell mechanosensing

Mathematics Subject Classi�cation 74B20�· 74L15�· 92C10�· 92C37

1  Introduction

From the biological point of view, it is nowadays recognized 
that, in addition to chemical cues, cells actively respond to 
mechanical stimuli exerted on them by the surrounding envi-
ronment. Even though the precise subcellular mechanisms 
governing this interaction still need to be understood, there 

is consistent evidence that the cytoskeleton has a central 
importance in the mechanical response (Hayakawa et�al. 
2001; Neidlinger-Wilke et�al. 2001; Wang 2000; Wang et�al. 
2001). In particular, contractile actin stress �bers display 
the ability to develop reactive mechanical forces and to 
reorganize their structure in response to external changes: 
this mechanosensing is mediated by focal adhesions (Chen 
et�al. 2012), that is, protein assemblies through which the 
actin internal structure is linked to the extracellular matrix 
(ECM). Focal adhesions provide both an anchorage to the 
substrate and a signal transmission, coupling the cell with 
the outside environment by detection of mechanical changes: 
they convert these stimuli into biochemical pathways, induc-
ing a remodelling of the cytoskeletal structure.

These mechanical interactions between the cell and its 
neighbourhood are shown to play a fundamental role in sev-
eral physiological situations, like cell motion, cell di�eren-
tiation (Vlaikou et�al. 2017) and tumour and tissue develop-
ment. For instance, it is well known that cancer development 
is related to the loss of contact inhibition from its beginning 
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(see Chaplain et�al. 2006 and references therein) and that 
ECM sti�ness and cell tensile stress in�uence both their 
proliferation and death (Butcher et�al. 2009; Kass et�al. 2007; 
Kumar and Weaver 2009). Incorrect response to mechani-
cal cues is also related to many other diseases such as atrial 
fibrillation, intimal hyperplasia, scleroderma, diabetic 
nephropathy, glomerulosclerosis, enphysema, pulmonary, 
and liver �brosis (Ingber 2009).

Stem cell fate and stem cell culturing are in�uenced by 
the mechanical interactions with the environment as well 
(Butcher et�al. 2009; Discher et�al. 2009; Guilak et�al. 2009; 
Sun et�al. 2012; Tulloch et�al. 2011; Yan et�al. 2013). This is 
the reason why cell cultures in�vitro and tissue-engineered 
samples tend to reproduce the correct environmental condi-
tions that real cells would live in (Costa et�al. 2012). Con-
sequently, just to mention two relevant examples, muscle 
cells and cardiac cells are often grown on substrata that are 
cyclically stretched, in order to mimic respectively mus-
cle contraction and heartbeat (Kim et�al. 1999; La�amme 
and Murry 2011; Yoon et�al. 2017). Now, when subject 
to a periodic deformation, several types of cells (not only 
those that have a bipolar morphology, such as �broblasts, 
myo�broblasts, myocytes, airway smooth muscle cells, but 
also endothelial cells (Moretti et�al. 2004)) show a peculiar 
response that proves their subtle sensitivity to mechanical 
prompts: when laying on a substratum they tend to re-orient 
themselves until they reach a stable con�guration, with a 
well-de�ned angle between their polarization axis (along 
which the stress �bers become mainly aligned) and the 
direction of stretching. This reorientation process involves 
the cytoskeleton, with disruption and rebuilding of actin 
stress �bers, and the cell body, that follows the cytoskeletal 
reorganization with some delay (Hayakawa et�al. 2001).

In the last two decades, cell reorientation following 
mechanical deformations has been investigated in an attempt 
to gain insight into this complicated phenomenon (Faust 
et�al. 2011; Hayakawa et�al. 2001; Jungbauer et�al. 2008; 
Moretti et�al. 2004; Morioka et�al. 2011; Neidlinger-Wilke 
et�al. 2001, 2002; Wang et�al. 2001, 2018). It is currently 
accepted that such a change in orientation is an active mech-
anism carried out by the cell (Wang et�al. 2001, 2018) and 
that mechanical strain is the main driving force of this pro-
cess. However, experimental settings show a broad variety 
of behaviours: the vast majority of them proved that cells 
head their major axis towards a direction oblique or nearly 
perpendicular to the direction of greater stretch (Chen et�al. 
2012; Hayakawa et�al. 2001; Moretti et�al. 2004; Neidlinger-
Wilke et�al. 2001; Wang et�al. 2001), even though some 
authors reported di�erent results (Bischofs and Schwarz 
2003; Collinsworth et�al. 2000). The �nal orientation angle 
reached by the cell is determined by several factors like the 
amplitude, the frequency (Chen et�al. 2012; Jungbauer et�al. 
2008), the biaxiality ratio of the applied cyclic deformation 

(Livne et�al. 2014), and the substrate sti�ness is sometimes 
thought to have a role as well (Obbink-Huizer et�al. 2014; 
Tondon and Kaunas 2014; Tondon et�al. 2012). For sake of 
completeness, we also mention that in 3D cell behaviour is 
in�uenced by the fact that they are embedded in a network 
of ECM �bers all around. So, under stretch, adhering to the 
�bers they tend to align more with the stretching direction 
(Asano et�al. 2018; Chen et�al. 2018; Eastwood et�al. 1998).

From the modelling point of view, some attempts to 
explain this phenomenon have been done using linear elas-
ticity to describe cell and substrate behaviour. Many works 
focused on looking for the directions of minimal strains or 
minimal stress (De et�al. 2007, 2008; Faust et�al. 2011; Livne 
et�al. 2014; Wang 2000; Wang et�al. 1995) as a preferred ori-
entation for cellular placement under uniaxial cyclic strain 
conditions. However, in a recent work Livne et�al. (2014) 
studied the response of cells on a substrate subject to biaxial 
extensions, �nding a linear relation between ��� � � ��  , where 
� ��  is the angle formed by the principal strain direction and 
the most elongated axis of the cell, and � �� ��� �� � � �� � , 
where � ��  and � ��  are the two in�nitesimal principal strains 
of the biaxial test. The theoretical result correlated with the 
experimental data (Faust et�al. 2011; Livne et�al. 2014), sug-
gesting that cells tend to minimize an elastic energy.

Nevertheless, it is worth observing that, in several experi-
mental assays, mechanical tests were performed applying 
deformations for which using linear elasticity might be argu-
able, at least theoretically. As a matter of fact, for instance, 
in Livne et�al. (2014) itself the maximum amplitude of the 
cyclic strain reached 24%, while in Faust et�al. (2011) defor-
mations up to 32% were applied to the specimen. In the latter 
work, the authors focused on the dependence of the orienta-
tion angle from the amplitude of the deformation, showing 
the existence of a stretch threshold necessary to induce a sig-
ni�cant reorientation. Taken together, these results call for a 
study of the presence of nonlinear e�ects at high strains, in 
order to quantify their relevance in cellular mechanosensing 
and orientation dynamics. To our knowledge, only Lazopou-
los and Pirentis (2007), Lazopoulos and Stamenovi� (2006) 
employed a �nite elasticity framework to describe stress �b-
ers reorganization in strained cells, although they considered 
only uniaxial substrate stretching and addressed the problem 
using a non-convex energy, giving an explanation based on 
the co-existence of phases.

The aim of this work is then to study the problem of cell 
reorientation in a nonlinear elasticity framework. The 
main goal is to understand why and to what extent the 
experimental results follow the same rule justi�ed on the 
basis of linear elasticity also for large strains and are inde-
pendent from the mechanical characteristics of the sub-
stratum and of the cells. We �nd that, considering the 
substratum with seeded cells as a �nite-elastic orthotropic 
material, a very large class of elastic energies is minimized 
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by a relationship that can be considered as the nonlinear 
generalization of the one found in Livne et�al. (2014). Spe-
ci�cally, introducing the parameter � �� � � ��

� � �� �
 (where � �  

and � �  are the principal stretches and � � � � �  without loss 
of generality) that quanti�es the biaxiality of the �nite 
deformation, we put in evidence a linear relation between 
�  and ��� � � ��  , where � ��  is the equilibrium angle of the 
cell with respect to the x-axis. The slope of such a straight 
line turns out to be a combination of the coe�cients that 
multiply the anisotropic invariants based on the right 
Cauchy–Green strain tensor �  and the polarization axis, 
which characterize the orthotropic constitutive model with 
quadratic dependency. The same relationship holds true 
for Fung-type materials as well, making the results valid 
for two energy forms often used in biomechanics.

Instead, a nonlinear dependence of the equilibrium from 
�  comes out visibly if the elastic energy also depends 
on the anisotropic invariants related to the square of the 
Cauchy–Green strain tensor, i.e. � �  . In particular, we �nd 
that the presence of a non-vanishing coe�cient in front 
of the term describing the response to stretch along the 
polarization axis gives rise to a departure from the linear 
behaviour that, for small values of the coe�cient, is still 
compatible with experiments. Conversely, a non-vanishing 
coe�cient in front of the term in charge of describing the 
response to stretch perpendicular to the polarization axis 
gives rise to results that look incompatible with experi-
ments, suggesting this term is not present in the consti-
tutive model. The dependence of the bifurcation point 
between the orientation perpendicular to the stretching 
direction and the oblique one is also examined for all 
cases, observing its disappearance above certain values 
of the energy coe�cients.

In detail, the paper is organized as follows. In Sect.�2, 
we introduce the problem set-up and introduce the needed 
mathematical and mechanical background. In Sect.�3, we use 
the approach proposed in Saccomandi and Vianello (1997), 
Vianello (1996) to describe the stationary points for a gen-
eral orthotropic constitutive equation. In Sect.�4, we focus 
on two very common types of energies employed in biologi-
cal applications, namely a quadratic and Fung-type strain 
energy, showing that they behave identically as far as the 
stability problem is concerned. Afterwards, we calculate the 
speci�c equilibria and discuss their stability as a function of 
the involved material parameters. Section�5 is dedicated to 
the results in two signi�cant cases, namely, in Sect.�5.1 we 
consider an energy which is independent of � �  , showing the 
existence of the linear relationship mentioned above, while 
in Sect.�5.2 we consider the e�ects of including the invari-
ants that involve the square of the Cauchy–Green strain ten-
sor. The �nal Sect.�6 summarizes the results and discusses 
some possible directions for future research.

2 � Mechanical background and�problem 
set-up

We consider a substratum provided with an ensemble of 
cells adherent to its surface in a subcon�uent con�guration, 
as in most experiments, which rules out the in�uence of 
cell-cell interaction. The system is then subject to a biaxial 
deformation, due to pulling and compression performed by 
an external device. As a consequence of this mechanical 
stimulus, following the deformation of the substrate cells 
orient on average along a certain direction, which can be 
identi�ed through a unit vector �  in the �rst quadrant of a 
reference system with the axes along the directions of the 
biaxial deformation (see Fig.�1).

If we assume that the system composed by the substrate 
and the overlying cells behaves as an elastic continuum, 
the deformation will induce a storage of energy into the 
body that depends on the orientation �  . We want here to 
study how the elastic strain energy of the system subject 
to a biaxial stretch depends on the average direction of the 
stress �bers � .

For this purpose, we consider a general elastic energy 
density �  for an orthotropic material

depending on the deformation gradient �  through the invari-
ants of the right Cauchy–Green deformation tensor � � � � �

where � �  is the direction perpendicular to �  in the plane 
of the substratum, which is also the plane containing the 
principal stretch. Notice that in (1) one could also expect a 
dependence on � � � � � �  , but it is omitted since it depends 
on the other invariants (see, for instance, Ogden 2003).

This kind of energy is commonly used to describe the 
mechanical behaviour of anisotropic materials that show two 
preferential directions (Holzapfel and Gasser 2001; Ogden 
2003). For instance, it is employed for �ber-reinforced mate-
rials, in which there are, say, two orthogonal bundles of �b-
ers that in�uence the mechanical response of the body (Mel-
nik and Goriely 2013), or for blood vessel walls that present 
�ber bundles in di�erent directions. In our case, the system 
displays a natural anisotropy due to the presence in the cells 
of aligned stress �bers (SF) and actin �lament structures that 
are cross-linked by several types of proteins, like fascin, �m-
brin, � -actinin, �lamin, ARP2-3 (Civelekoglu-Scholey et�al. 
2005; Lu et�al. 2008; Xu et�al. 2016) (see Fig.�1). Since SF 
are two to even ten times sti�er than the lateral actin network 

(1)� � ��� � � � � � � � � � � � � � � � � � � � � � � ��

(2)

� � �� �� � � � � ��
�
�

�
��� �� � � �� � �

�
� � � �� ��� � �

� � �� � � �� � �� �� � � � � �� � � � � � � ���� � �

� � �� � � � �� � � �� � � � � � � � �� � � � � � � � � ��� � � � �

� � �� � � � �� � � � � � � � � � �
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(Lu et�al. 2008; Mathur et�al. 2007), they induce bidirec-
tional anisotropy in the mechanical response, justifying the 
general assumption (1) to consider the system as orthotropic.

We also observe that a cell does not have a real polari-
zation given by a head and a tail (Wang et�al. 1995). So, 
con�gurations with cells aligned along �  and ��  are geo-
metrically indistinguishable and therefore energetically 
equivalent. A similar thing holds true if we replace � �  with 
�� �  . This implies that the elastic energy should be the 
same under the related symmetry transformations. All the 
invariants mentioned in (2) achieve the same values under 

the symmetry transformations above, except for � �  that 
changes sign, i.e. given �  , � � ���� � � � �� � � � � ��� � � � ��  
and � � ��� �� � � �� � � � � ��� � � � ��  . Therefore, to satisfy 
the symmetry requirements, �  must be an even function 
of � � .

If we orient the x- and y-axes of the reference frame 
along the principal stretching directions, the right 
Cauchy–Green tensor is diagonal and its eigenvalues are 
the principal stretches, i.e.

Fig. 1   Sketch of experimental 
set-up and consequent inner 
structure of a typical cell
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with � � � � �  and � � � �  . Actually, in the case of equi-biaxial 
deformation � � � � �  , cells do not show a preferential orien-
tation (Wang et�al. 2001). Once the deformation is �xed, 
our goal is to study which orientations for the stress �bers 
correspond to minima of the elastic energy.

3 � Stationary points by�the�coaxiality 
approach

The general problem of �nding the critical points of an 
hyperelastic anisotropic strain energy for a body subject to 
a rotation and a deformation has been studied in Saccomandi 
and Vianello (1997), Vianello (1996). In particular, it has 
been shown that the critical points of the energy are achieved 
for those rotations that make the stress and strain tensors 
coaxial. Since two symmetric tensors are coaxial if and only 
if they commute (Vianello 1996), we have to �nd the rota-
tions �  about the z-axis such that

where � � � ��� �  and � � � ��� � � is the second Piola-
Kirchho� stress tensor corresponding to the deformation � �  . 
To explicitly write � �  in our case, we de�ne the structural 
tensors

and recall that

Therefore, the second Piola–Kirchho� stress tensor reads

� �
�
�
�
�

� � � �
� � � �
� � � �

�
�
�
�

�

(3)� � � � � � � � � �

(4)

� �� � � � � � � �� � � � � � � � ��
�
�

�� � � � � � � � � �

(5)

� � �

� �
��� � � �

� � �

� �
��� � � � ���� � � �

� � �

� �
��� � � � ���� �� �

� � �

� �
��� �� � � �

� � �

� �
��� �� � �� � �� �

� � �

� �
�� � � �� � � � �

� � �

� �
�� � � �� � � � � � �� � �

� � �

� �
��� � � � �� � � �

(6)

� � � �
� �
� �

�� � � � �
��

���

� �
� � �

� � �

� �
�� � �

� ��� � � � � � �� � �� � �� � � � � � � � � � �� � ��� � � � �

� � � � � � � ��� � � � � �� � � � � �

� � � �� � � � � � � � � � � � � ���

where we have de�ned

Then, using (6), Eq. (3) leads to the condition

Multiplying both sides of the equation by � �  on the left and 
by �  on the right, one obtains

in which we have set � � �� � � ��  and � � �� � � ��  . 
Exploiting now the fact that � � � � � � � � � �  , where 
� � � � � �  is the axis of rotation of �  , we get

If we focus on the last term on the left-hand side, elementary 
tensor algebra allows to rewrite it as

with

while the operator ���  takes the symmetric part of its tenso-
rial argument. A direct substitution into (9) leads to

or equivalently

where

It is straightforward to observe that the conclusion is not 
in�uenced by the classical �rst three invariants � � � � �  and � �  , 
which represent the isotropic response of the material and do 
not change with rotations. Hence, since we are interested in 
the anisotropic behaviour of the system as a consequence of 
cell orientation, their dependence will be dropped in the fol-
lowing discussion, though one should remember that these 

� � ��
� �
� � �

�� � �� � �� � � � � ��� � � � � � �� � � � �� � � � �

(7)

� � ��� � � � � �� � � � ���� � � � � � � � � � �� � � � �� � � � � � � � � ��

� � � �� � �� � � � � � � � � � � � � � � � ��� � � � � �� � ��

(8)

� � �� � � � �� � � � � � �� � � � � � � � � � � � � �� �
� � � �� �

� ��

� � � �� �
� � � � � � � �

� � � � � �� � � � �� � � � ��

(9)

� � ��� � � � � �� � � � � � � � �� � � � �� � � � � � ��

� � � � � � � �� � �� � � � � �� � � � �� � � � � �

� � � � �� � � ��� �� � � � � � � � ��

� � ��� �� � � � � � � � �

� ��� � � � � � � ��� � � ��

(10)� �� � � � � � � � � �

�
�� � � � � �� � � � � ��� ��� � � � � � � � ��

�
�

� �
�
�� � � � � �� � � � � ��� ��� � � � � � � � ��

�
� � �

(11)��� � � �� � � �

(12)�� �� �� � � � � � � � � � � ��� � � ��
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terms might appear in any coe�cient or as an additional 
term in the energy.

Equation (11) states that stationary points are identi�ed 
by the rotations �  about the z-axis which make the tensors �  
and ��  de�ned in (12) commute. As pointed out in Vianello 
(1996), there are always at least two solutions, which can be 
easily identi�ed in this case. In fact, if �  is such that ��  is 
along one of the principal directions, then, on the one hand, 
� � � � � ��  is diagonal and therefore commutes with �  , 
which is diagonal by de�nition. On the other hand, we have 
that � � ��� � � � � � � � � � �� � �� � � � � � � � which vanishes. Con-
sequently, � � �� � � is null as well because it is an odd function 
of � �  , because of the symmetry requirements on �  which is 
assumed to be even in � � .

We conclude that con�gurations with cells oriented along 
the principal stretching direction or perpendicularly to it 
always correspond to stationary points of the elastic energy.

However, one might have further equilibria for other pos-
sible rotations satisfying (11), which will depend in general on 
the speci�c energy functional considered. In the following we 
will show that, for a large class of elastic energies, there might 
be two symmetric equilibria and we will study the stability of 
all con�gurations.

4 � Stability conditions for�a�quadratic-like 
energy

If we use the reference frame with the axes along the prin-
cipal stretching directions, so that �  is diagonal, it is con-
venient to identify the cell major axis through the angle �  
it forms with the x-axis, so that � � � ��� � � ��� � � � � and 
� � � �� ��� � � ��� � � � � . This angle is univocally associated 
to a rotation �  in the framework of the previous Section and 
in the following will be used as our main variable. With this 
choice, the invariants in (2) read

and can be compactly rewritten as

where

(13)

� � � � � ��� � � � � � ��� � � � � � � � � � � ��� � � � � � �

� � � � �
� ��� � � � � �

� ��� � � � � � �
� � � �

� � ��� � � � � �
� �

� � � � � ��� � � � � � ��� � � � � � � � � � � � � � ��� � � �

� � � � �
� ��� � � � � �

� ��� � � � � �
� � � � �

� � � �
� � ��� � � �

� � � ��� � � � � � ��� � ��� � �

�� � � � � ��� � � � � � � ��� � � �� �� �� �

(14)

� � � � � � � � � � � � � � � � �
� � � � �

� � � �
� � � � �� � � � � � � � � � � �

� � � � � � �� � � �� �
� � � ��� � � � � � � � � � � � � � � � � � �
� � � ��� �

� � � �
� � � � � � � � � � �� � � � � � � � � � � �

� � � � � � �� � � �� �

4.1 � The elastic energy

In order to investigate the existence of other stationary con-
�gurations in addition to the trivial ones, and to study their 
stability, we need now to specialize the elastic energy, try-
ing to keep it as general as possible. We consider then the 
class of elastic energies that can be written as a homogene-
ous second-order polynomial in the variables �� � �� � � � �  , 
for � � �� �� �� �  , and � �  , plus a term related to the isotropic 
response:

where � ��
� �� � � �� � � �� � � �� � � � �

�
 and �  is the symmetric matrix 

of coe�cients (that might possibly depend on the isotropic 
invariants), while �  is the purely isotropic contribution that 
depends on �� � � � � � � � �.

We observe that the following analysis can be straightfor-
wardly repeated for a Fung-type energy

that is often used in biomechanical applications (Fung 
1967), giving rise to the same results. In fact, the stationary 
points of � �  coincide with the ones of �  . Moreover, their 
stability character may be identi�ed by the second deriva-
tive of �  and then is the same as well. Therefore, the results 
obtained for a quadratic energy also hold for an exponential-
like energy, amplifying the validity of our conclusions.

We also remark that, in order to slightly reduce the terms 
in�uencing the stability analysis, we do not consider here 
possible isotropic-anisotropic couplings in the energy (15), 
that is, we exclude terms like � �

�� � , where � � � �� �� ��  and 
� � � �� �� �� �� ��  . This can be easily done and their role will 
be analysed in a future work.

For future convenience, it is useful to denote by � �� for 
�� � � �� � � �  the coe�cients of the matrix �  (e.g., � ��  is the 
coe�cient in the top left corner of the matrix). In particular, 
the coe�cient � ��  is related to the sti�ness along the polari-
zation axis of the cell and � ��  to the one along the direction 
orthogonal to the cell major axis. Considering that stress 
�bers are mainly aligned to the polarization direction, coher-
ently with Butler et�al. (2002) we will assume that

We also point out that the coe�cient � ��  is related to the 
response to shear, i.e. at the microscopic level to the resist-
ance of changing angle among actin �bers, also involving the 
action of actin cross-linking proteins, such as �lamin, Rho/
Rac GTPases (Civelekoglu-Scholey et�al. 2005; Wang et�al. 
2001) and Arp2/3 as well (Goley and Welch 2006; Rouiller 
et�al. 2008) (see Fig.�1).

(15)� ��� �
�
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(16)� � � �
�
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�
�
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� �
�

� �
�

�

� �� � � �� �
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We �nally observe that, because of the symmetry condi-
tions related to a switching of the orientation of the axis, the 
coe�cients � ��  (and � ��  ), � � �� �� �� �  must vanish. In fact, 
they multiply the cross terms �� �� �  that change sign under 
these symmetry transformations. Then, their inclusion would 
break the symmetry of the energy, leading to a biologically 
unfeasible situation.

4.2 � Stationary con�gurations

Taking into account the consequences of symmetry on the 
coe�cients of matrix �  in (15), the stationary con�gurations 
are then identi�ed by the solutions of

that can be explicitly written as

Recalling the form of the coe�cients (14), the previous 
equation reads

As already discussed at the end of the previous Section, the 
con�gurations with � � �  and � � � ��  (which in the fol-
lowing will sometimes be referred to as parallel and per-
pendicular orientation, respectively) are always stationary. 
However, there might be additional equilibria satisfying

or

where

that can also be explicited as

and

� �� � � �
� �
��

�� � � � �
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�����
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� �
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�����
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�

��� � ��� � � � �
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�
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�
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�� � � � � � � � � �� � �� �� � � �� ��� � � � � �
� �

The nontrivial solution � ��  , also called oblique orientation, 
exists if and only if

or equivalently if

4.3 � Stability

As far as stability is concerned, we need to evaluate the 
second derivative of the energy

Imposing the positivity of � ��  then leads to the following 
stability conditions:

where in the last condition we have used the fact that 
� �� � � �� � � �  requires � � � � �� � �  to simplify the existence 
condition (19).

In the following, we will sometimes refer to the preferen-
tial orientations of Eq. (20) as equilibrium angles. However, 
we remark that they are not in general solutions of the elastic 
problem, but only stationary points of the elastic energy.

5 � Bifurcation results

Starting from the computations performed above, in this 
Section by means of a bifurcation analysis we discuss the 
preferential orientations of cells on a stretched substrate, for 
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an elastic energy given by (15) or (16). We �rstly discuss the 
case in which the strain energy does not depend on the invar-
iants related to � �  , and then we analyse the e�ects of their 
correction, since they introduce a signi�cant change in the 
predicted behaviour. In particular, we consider three types 
of �nite deformation: in the �rst one we �x the stretch in 
the y-direction � �  to a certain value and � � � �  , while letting 
� �  vary. In the second one we keep � � � � � �  , corresponding 
to an isochoric planar deformation if � � � �  . Finally, we set 
� � � ��

�
� �  , equivalent to a pure isochoric deformation that 

involves also the z-direction. Although we do not have any 
experimental information on � �  , it does not a�ect the discus-
sion on equilibria or on their stability character.

5.1 � Independence from�� �

Let us �rstly consider the case in which the elastic energy 
is independent from terms containing � �  , that is, from 
the anisotropic invariants � �  and � �  . This case can be eas-
ily obtained from the previous computations setting 
� �� � � �� � � �� � � �� � � �� � � �� � � �� � �  . Doing so, we 
can get simpli�ed forms for the terms

and

Hence, in addition to the trivial equilibria, Eq. (17) simpli-
�es to

� � � � �� � �� �� � � �� �

� � � � �� �� � � � � � � �� �� � � � � � � � �� �� � � �� �

putting in clear evidence a linear relationship between 
��� � � ��  and the parameter

which compares the elongation along x with respect to the 
sum of elongation and contraction along y.

The slope of the straight line (21) is determined by the 
inverse of the combination of coe�cients

as shown in Fig.�2. Actually, data from Faust et�al. (2011), 
Livne et�al. (2014) suggest a slope for the straight line in 
Eq. (21) of ����� � ����  , corresponding to � � ����� � ����  
(data reported in Fig.�5).

It is also worth to observe that the line always passes 
through the point corresponding to ��� � � �� � �� �  (i.e. 
� �� � � ��  ) when � � ���  , for any values of the elastic 
parameters. This is explained by the fact that, for a defor-
mation satisfying � � ���  (or equivalently � � � � � � � � �  ), 
the minimum of the energy coincides with the direction of 
minimal strain. Indeed, the latter is given by the angle such 
that � � � �  , that is,

(21)

��� � � �� �
�
�

�
� �� � � ��

� �� � � �� � �� �� � � ��
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�
�

�
� � � �
� � � � �

�
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� ��
� � � �
� � � � �

�

� ��
� �� � � �� � �� �� � � ��

� �� � � ��
�

(a) (b)

Fig. 2   Bifurcation diagram of equilibrium angles in terms of 
� �� � � ��

� � �� �
 with � �� � �� �� �� �� � �� �� ��

� �� �� ��
 positive in a and negative in b. 

The black lines refer to the case �� � � �  and the red lines to �� � � �  , 
while dashed lines represent unstable con�gurations and full lines 

stable ones. In (b) full lines indicating the stability of � � �  till the 
bifurcation point and of � � �

�
 for � � ��  are not drawn. The area 

with � � �  is not shown because of the pulling characteristics of the 
experiments
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Therefore, when � � ���  , we have �� � � ��  which coincides 
with � ��  obtained using Eq. (21). This is not true in general, 
since ��  satis�es

di�erently from what is found through energy minimiza-
tion in Eq. (21) except for the case � � �  , which does not �t 
the experimental data (Faust et�al. 2011; Livne et�al. 2014). 
In fact, as pointed out in Livne et�al. (2014), choosing the 
minimal strain direction as the preferential one for cell ori-
entation does not allow to describe the experimental obser-
vations, while an energetic approach does. The only case in 
which the minimal strain direction and the minimal energy 
direction coincide is precisely when � � ���  . These obser-
vations also allow us to justify even more the need of choos-
ing an orthotropic constitutive model instead of a purely 
transversely isotropic one. In fact, the elastic strain energy 
for a transversely isotropic medium only depends on � �  and 
� �  in addition to the three isotropic invariants, and then only 
on � �  when the dependence on � �  is not considered as done 
in this Section. However, in such a case one obtains � � �  
and so minimizing a transversely isotropic energy would be 
equivalent to choosing the minimal strain direction again, 
which as just discussed does not seem accurate.

We also remark that � � �  corresponds to clamping 
the specimen, so that � � � �  , while � � �  corresponds to 
stretching also along y, still keeping � � � � �  . On the other 
hand, values of � � �

�
 correspond to � � � � � � � � �  , i.e. 

compressions along y are stronger than elongations along x, 
which is not done in experiments reported in the literature.

Finally, we observe the following cases related to iso-
choric deformations, which will be examined in detail later:

with � � �  for very large � �  and the lower extremum of the 
interval achieved in the limit of no stretching. Of course, 
for these types of finite deformation, the case � � �  is 
unfeasible.

In terms of �  and �  the existence condition for the non-
trivial equilibrium (18) writes as
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5.1.1 � Case � � �

When � � �  , the stability conditions (20) become

that is, the non-trivial equilibrium position is stable when-
ever it exists.

Recalling that � �� � � ��  and focusing for the moment only 
on the case � � �  , there are two relevant subcases to discuss, 
depending on the following relationships between parameters: 

	 (i)	 � �� �
� ��

�
� � �� � � � � � ��

	 (ii)	 � �� � � �� �
� ��

�
�

� �� � � ��

�
� � � � � �

.

Referring to Fig.�2a, in case (ii)—represented by red lines—
we have two supercritical bifurcation points at

The con�guration with orientation perpendicular to the 
stretching direction (i.e. � �� � � ��  , ��� � � �� � �  ) is sta-
ble if � � ���

�
 . When �  is decreased below this value, the 

polarization axis of the cell tends instead to orient obliquely, 
�nally becoming completely aligned to the stretching direc-
tion if � � ���

�
 . However, in case (i), represented by the 

black line in Fig.�2a, this value is negative and so it cannot 
be physically achieved in the usual experimental set-up. In 
this situation, cells will never orient themselves along the 
stretching direction.

In order to compare this behaviour with previous linear 
elasticity results, we observe that if we de�ne �  and r such 
that � � � � � �  and � � � � � � �  , we have that � � �

���
 . So, 

one recovers the linear relationship between ��� � �  and �
���

 
discussed in Livne et� al. (2014). Actually, since 
� � ����� � ���� � �  , the situation observed in their experi-
ments seems to correspond to case (ii). In this case, the two 
bifurcation points fall in the interval [0,�1]. We recall that 
� � �  corresponds to � � � �  , that is no stretching in the 
y-direction, i.e. a clamped condition.

The analysis done here shows, in particular, that any 
model of type (15) or of Fung type (16) independent of � �  
and � �  (i.e. the invariants depending on � �  ) with the follow-
ing relation

(22)
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among the coe�cients is able to �t the parameters, in a way 
that is independent of the magnitude of the applied strain, 
even outside the range of validity of linear elasticity. This 
explains why the experimental behaviour shown in Faust 
et�al. (2011), Livne et�al. (2014) seems to be independent or 
nearly independent of the magnitude of the applied strain.

5.1.2 � Case � � �

For the sake of completeness, we analyse the case in 
which � � �  , which can occur, for instance, if � ��  is much 
larger than the other parameters. In this case, noticing that 
���

�
� ���

�
 , the stability conditions are the following:

More precisely, also in this case there are two distinct situ-
ations to be considered: 

	 (iii)	
� �� � � ��

�
� � �� �

� ��

�
� � �� � �� � � � � � ��

	 (iv)	 � �� � � �� �
� ��

�
� � � � � �

Referring to Fig.�2b, in case (iii)—corresponding to red 
lines—one has two admissible subcritical bifurcation points 
with coexistence of two critical equilibria if � �

�
���

�
� ���

�

�
 , 

corresponding to the parallel and perpendicular orientation, 
and only one of them stable outside this range. In case iv) 
the equilibrium � � � ��  is always stable while � � �  is sta-
ble only if � � ���

�
 . In all cases, if � � �  the oblique orienta-

tion is unstable.

5.2 � � � � correction

We now analyse the correction that will be introduced if a 
dependence of the energy on the invariants depending on � �  
(i.e. � �  and � �  ) is allowed. For this purpose, it is convenient 
to rewrite

with

(23)
� �� � � �� � �� �� � � ��

� �� � � ��
� �����

(24)

� � � � ������ � � �
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� � �

�
�

� � � �� � �������� �� � ��

� � � � �� � �� �� � � �� � � � �

and

where

After computation, we can explicit the nontrivial equilib-
rium (17) as

We notice that the terms � �  , � �  and � �  are the corrections 
related to the presence of � � -dependent terms through the 
invariants � �  and � �  . Indeed, when the elastic energy does not 
include their contribution, we recover (21), i.e. the linear 
relationship between ��� � �  and �  . However, since the cor-
rection coe�cients depend on � �  and � �  , Eq. (25) does not 
represent a straight line anymore. It is worth remarking that 
the last term in (25) represents a shift from the equilibrium 
angle � � � ��  that looks close to the one observed when 
� � ��� .

5.2.1 � Small deformation limit

We observe that, in the limit of small deformation, the zero-
th order approximations of the corrections become

and in Eq. (25) the last term vanishes, so that the approxi-
mating curve is again a straight line:
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�
�
�

�
� �� � � ��

� �� � � �� � �� �� � � �� � � �

� �
�

� �
�

�

� �

�
� � � � � � �

� �� � � �� � �� �� � � �� � � �
�

� � � �� � �� ��� �� � � �� � � �� � � �� � � �� � �� �� � � �� � �

� � � �� � �� ���� �� � �� �� � � �� � � �� � �� �� � �

� � � �� � �� ��� �� � � �� � � �� � � �� � �
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such that � �� � � ��  when � � ���  (that corresponds to 
� � � � � � � � � � �  ). Hence, in the linear limit, the only 
di�erence from the case analysed in the previous Section 
is that more coe�cients contribute to the identi�cation of 
the slope, or viceversa, given some experimental data it is 
hard to distinguish which coe�cients contribute to the slope 
of the line. This is not surprising: in the linear limit, for 
instance, the contribution to the energy of � �  is indistinguish-
able from that of � �  , and the dependence on � �  merges with 
the one on � � .

In fact, Eq. (26) can be rewritten in the same form as 
(21) with the following formal substitutions:

(26)��� � � �� �
�
�

�
� �� � � �� � �� �

� �� � � �� � �� �� � � �� � �� �

� �
�

� �
�

(27)� �� � � � � � �� � �� �� � �� �� �

(28)� �� � � � � � �� � �� �� � �� �� �

(29)� �� � � � � � � �� � �� �� � �� �� � �� �� �

In the following, in order to evaluate the in�uence of 
� �  corrections, we change one parameter at a time while 
keeping the slope of the straight line in (26) constant, in 
order to start from the same linear dependence. For instance, 
when � �� � �  , then, recalling (27), � ��  is decreased accord-
ingly, so that the value of � �  is mantained constant. In 
particular, with this idea in mind, we �x the coe�cients 
� � � ��� � � � � � ��� � � � � ���  and � �� � ������  in order to 
match the experimental �tting value reported in Eq. (23).

5.2.2 � E�ect of�� ��

In Fig.�3 we focus on the e�ect of a non-vanishing � ��  , keep-
ing to zero the other coe�cients involving the indices 5 and 
7. As already stated above, to keep the same value of � �  and 
therefore the same linear limit given by (26), as we vary � ��  
we accordingly change � �� � � � � �� ��  . To observe how the 
non-trivial equilibrium is changed, we focus on the three 
types of deformation de�ned at the beginning of Sect.�5. One 
can observe that in all cases changing � ��  leads to a depar-
ture of the equilibrium curve from a straight line, becom-
ing convex. In addition, keeping � �  �xed and changing �  
as in Fig.�3a, one can appreciate a decrease in the value of 
��� � � ��  , which means an increase in the equilibrium angle, 
for � � ��� .

Fig. 3   Analysis of non-trivial 
equilibrium position for � �� � �  
and � �� � ��� � �� ��  to keep 
the same linear limit. The 
other non-vanishing param-
eters are � �� � � �� � ���  , and 
� �� � ������  . In a � � � ���  
while in b � � � ��� �  and in c 
� � � ��

�
� �  . For all the three 

types of deformation, we see 
that the presence of � ��  leads 
to a departure from the linear 
relation between ��� � � ��  and 
�  . In d the bifurcation point � �  
for which � �� � � ��  is shown 
as a function of � ��  : the plot 
highlights that, for su�ciently 
high values of � ��  (for instance 
� �� � �����  for � � � ���  ), the 
bifurcation point disappears, 
since values of � � � �  are not 
admissible for the deformations 
we consider

(a) (b)

(c) (d)
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On the other hand, when � � � � � �  as in Fig.�3b, � ��  
stays fixed at � ��  if � � ���  . In fact, in the latter case 
� � � � � � � � � �� ��  and the numerator of the last term in 
(25) vanishes for � � ���  . This does not occur in the former 
case. At the other extreme, when � � �  , then the denomina-
tor of the second term in (25) grows inde�nitely, while the 
last term tends to 1/2. So, the curve given by (25) tends back 
to 0 when � � �  (not visible in the �gure because the curve 
becomes negative).

Finally, in the third case � � �
�

� �  shown in Fig.�3c we 
have a minimal possible value of � � ���  , corresponding to 
an equilibrium angle such that ��� � � �� � ����  , i.e. � �� � �� �  , 
that is sometimes reported in some discussions of experiments 
(see, for instance, Wang 2000; Wang et�al. 1995).

As regards the bifurcation point between the equilibrium 
branch � � � ��  and the one given by (25), it is implicitly 
de�ned by

since the coe�cients � �  and � �  also depend on � �  . There-
fore, while we have seen that the introduction of nonlinear 
terms depending on � �  , � �  and � �  does not modify the bifur-
cation obtained in the linearized theory, the dependence of 
the energy on the invariants related to � �  entails an identi�-
able shift of the bifurcation point between the perpendicular 
orientation and the oblique one that may also disappear for 
large values of � ��  , as shown in Fig.�3d.

If we assume � �� � �  , the shift of the bifurcation point for 
� �� � � ��  can be evaluated through

This means that, for given coe�cients but � ��  , (31) implicitly 
de�nes � �  in terms of � ��  that, actually, can be made explicit 
by writing

We notice that, in the equation above, the term 
�� � � � ��� � � � � � is a function of � �  , given, for instance, by

and by

(30)� � �
� �� � � �� � � ��

�
� � �

� �� � � �� � � �
�

(31)� � �
� �� � � �� � � ��

�
� � �� �� � � � ��� � � � � �

� �� � � �� � � �� �� � � � ��� � � � � �
�

(32)� �� �
�� �� � � �� �� � � � �� � � �� � � ��

�

�� � � � ��� � � � ��� � � � � �
�

(33)�� � � � ��� � � � � � �
� � �� � � �� �

�

� �
� �� � � � �

�� � � � � � � �

(34)

�� � � � ��� � � � � � � � � � �� � �
� � �� � � � �� � � �

� � � �
��� ���� � � � �� � �

If � � � ��
�

� �  we have that

which corresponds to

These relations can be exploited to plot the variation of the 
bifurcation point as a function of � ��  , as shown in Fig.�3d. 
The bifurcation point � �  approaches 1 for increasing values 
of � ��  , eventually leading to a disappearance of the bifurca-
tion for some critical values of the parameter. To be more 
speci�c, if � � � ���  , for � �� � �����  the branch relative to 
the oblique equilibrium and � � � ��  do not cross for physi-
cally admissible values of �  and therefore the perpendicular 
orientation is always unstable. In particular, we observe that 
in the case of �xed � �  the threshold value is higher, while 
for the other two types of deformation it is the same and 
amounts to � �� � � �� ��  . This follows immediately from (32) 
and (33) for � � � �� � �  , while in the case � � � ��

�
� �  it is 

enough to observe that

Substituting into (32) and recalling that � � � �  means 
� � � ��  immediately leads to � �� � � �� ��  , coherently 
with Fig.�3d.

In order to evaluate the relevance of the nonlinear 
correction, we performed a �tting of experimental data 
extracted from Livne et�al. (2014) where, using a biaxial 
experiment, the stretches in the two directions are actually 
controlled. Although we do not know the exact value of 
� �  , we observe that if � � � �  , then �  would be identically 
equal to 1. So, we �x it to be � � � ���  . Then, focusing on 
Fig.�4, we explored the possibility of a better �tting using 
nonlinear elasticity and � �  correction. Actually, as already 
observed, data are already �tted quite well by the straight 
line. However, using a nonlinear regression estimation we 
�nd that a small value of � �� � �����  gives an even better 
�tting for data in Livne et�al. (2014). We also �nd that, 
if we increase the �xed value of � �  , a higher value of the 
coe�cient � ��  is needed to �t the data. For instance, when 
we take � � � ����  we �nd a best �tting value of � �� � ����  , 
an order of magnitude greater than the one obtained for 
� � � ���  . This is due to the fact that, when � � � �  , a small 
stretch � �  in the x-direction is su�cient to span all the 

� � � � �
�

� � �
�

� � � �

� � �
�

�
�
�

�
�
�

�
�

� � � �
� �

� �

�

(35)
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admissible values of �  . Consequently, nonlinear e�ects 
become less relevant and to �t the nonlinear model we 
need to take very high values of the related coe�cients.

In Fig.�5, we present the �tting using also the data by 
Faust et�al. (2011): we explored the �xed � �  case since, 
even if the Poisson ratio of the specimen is taken to be 
� � ���  , the actual reported biaxiality ratio is di�erent. 
In particular, considering the experimental settings with 
32% and 31.7% strain, one �nds a value of � � � �����  and 
� � � ����  , respectively, since the biaxiality ratio is � � ����  

and � � ����  in the two cases. In Fig.�5a, we then tried to 
�t the data (Faust et�al. 2011; Livne et�al. 2014) simul-
taneously to assess if a nonlinear correction could better 
explain the experimental observations in di�erent settings. 
It is found that, for a �xed value of � � � �����  , taking 
� �� � ����  gives a slightly better �tting than the straight 
line approximation, while nonlinear regression performed 
only on the data in Livne et�al. (2014) returns a value of 
� �� � ����  . To highlight this di�erence, in Fig.�5b we plot 
the deviation �  from the linear approximation, that is

Fig. 4   Nonlinear �tting of 
experimental data with � �� � �  . 
Data from Livne et�al. (2014) 
are compared with the family 
of curves obtained for � � � ���  
and di�erent values of � ��  in a 
and with the best �tting value 
� �� � �����  in b 

(a) (b)

Fig. 5   Nonlinear �tting 
of experimental data from 
Faust et�al. (2011) and Livne 
et�al. (2014). a Best �tting 
for � � � �����  obtained for 
� �� � ����  . b Deviation �  from 
the straight line when �tting all 
data (blue curve) and only data 
from Livne et�al. (2014) for a 
�xed � � � �����  (red curve; in 
this case, the best � �� � ����  ). 
c Equilibrium orientation as 
a function of � ��  for � � � ����  
and � � � �����  , related to 
experimental actin orientations 
obtained by Faust et�al. (2011) 
for a 32% stretch (represented 
by the circle). As shown, a 
value of � �� � �����  is able to 
capture the experimental orien-
tation precisely

(a) (b)

(c)
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as a function of �  . Since most of the experimental data fall 
below the straight line, i.e. below 0 in Fig.�5b, a convex 
curve obtained with the introduction of � ��  is able to better 
approximate the observed behaviour, even if the di�erence 
is of the order of �� �� .

Finally, we chose one of the experimental actin angle val-
ues obtained in Faust et�al. (2011) for a 32% stretch and �xed 
� �  and � �  in order to have the same value of �  used in the 
experiment. Doing so, we tried to �nd a value of � ��  able to 
capture this experimental point: as shown in Fig.�5c, a value 
of � �� � �����  precisely �ts the orientation angle for such a 
�xed deformation.

We conclude our analysis by making a comparison with 
the transversely isotropic case, which we already discussed 
as inadequate to �t the experimental data. This is con�rmed 
by the curves reported in Fig.�6. Indeed, if we consider a 
transversely isotropic energy that depends only on �ve invar-
iants, recalling (25) we get:

(36)

� ��� �� ��� � � �� ��� �
�

�
�

�
� �� � � ��

� �� � � �� � �� �� � � ��

� �
�

� �
� �

�

(37)

��� � � �� �
� �� � � �� �� � � ���� � � � � � � � �� �� � � �� � � ��

� �� � �� �� �� � � � � � � � �� �� � � � � � �
�� � �� �

In Fig.�6a we plot the relationship (37) for di�erent values of 
� ��  and � �� � �  , while in Fig.�6b the case � �� � �  is shown. 
It is clearly observed that, in both cases, the transversely 
isotropic model provides a �tting which is not satisfactory 
compared to the orthotropic one reported in Fig.�4. To have 
a better insight, in Fig.�6c we show a direct comparison 
between the best �tting curves in the transversely isotropic 
and orthotropic case: in the latter, there is a signi�cant 
improvement in the �tting of experimental data.

5.2.3 � E�ect of�� ��

We turn now the attention to the e�ect of a non-vanish-
ing � ��  , keeping � �  �xed, and perform a similar reasoning 
as we did for � ��  . Again, as shown in Fig.�7b, if � � � � � �  
then � � � ��  when � � ���  for any value of � ��  . In fact, 
in this case, � � � �� ��  and � � � � �� ��  , while � � � �  . So, 
the numerator in the last term of (25) vanishes. This does 
not occur if � �  is kept �xed, as shown in Fig.�7a. In fact, the 
value of � ��  slightly decreases for increasing values of � �� .

A more dramatic e�ect occurs if � �� � �  when � � �  , 
because as before the second term in (25) tends to zero, but 
on the contrary of the previous case the last term tends to 
����  . This implies that the curve in (25) tends to 1 when 
� � �  and, as a consequence, there are two bifurcation 

Fig. 6   Nonlinear �tting of 
experimental data from Livne 
et�al. (2014) with a transversely 
isotropic model, in the case 
� � � ���  . In a the family of 
curves obtained from Eq. (37) 
for di�erent values of � ��  is 
shown, while in b the e�ect of 
� ��  is investigated. In c a direct 
comparison between the best �t-
ting curves for the transversely 
isotropic and orthotropic case is 
provided, showing that the latter 
is more accurate

(a) (b)

(c)












