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Abstract

The active response of cells to mechanical cues due to their interaction with the environment has been of increasing interest
since it is involved in many physiological phenomena, pathologies, and in tissue engineering. In particular, several experi-
ments have shown that, if a substrate with overlying cells is cyclically stretched, they will reorient to reach a well-de ned
angle between their major axis and the main stretching direction. Recent experimental ndings, also supported by a linear
elastic model, indicated that the minimization of an elastic energy might drive this reorientation process. Motivated by the
fact that a similar behaviour is observed even for high strains, in this paper we address the problem in the framework of nite
elasticity, in order to study the presence of nonlinear e ects. We nd that, for a very large class of constitutive orthotropic
models and with very general assumptions, there is a single linear relationship between a parameter describing the biaxia
deformation and , where is the orientation angle of the cell, with the slope of the line depending on a specic
combination of four parameters that characterize the nonlinear constitutive equation. We also study the e ect of introducing
a further dependence of the energy on the anisotropic invariants related to the square of the Cauchy—Green strain tensor. Th
leads to departures from the linear relationship mentioned above, that are again critically compared with experimental data.

KeywordsNonlinear elasticity - Orthotropic - Cell orientation - Cell stretching - Stress bers - Cell mechanosensing
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1 Introduction is consistent evidence that the cytoskeleton has a central
importance in the mechanical response (Hayakawa et al.
From the biological point of view, it is nowadays recognized®2001; Neidlinger-Wilke et al. 2001; Wang 2000; Wang et al.
that, in addition to chemical cues, cells actively respond t8001). In particular, contractile actin stress bers display
mechanical stimuli exerted on them by the surrounding envihe ability to develop reactive mechanical forces and to
ronment. Even though the precise subcellular mechanismeorganize their structure in response to external changes:
governing this interaction still need to be understood, therthis mechanosensing is mediated by focal adhesions (Chen
et al.2012), that is, protein assemblies through which the
actin internal structure is linked to the extracellular matrix
(ECM). Focal adhesions provide both an anchorage to the
substrate and a signal transmission, coupling the cell with
the outside environment by detection of mechanical changes:
they convert these stimuli into biochemical pathways, induc-
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(see Chaplain et a006 and references therein) and thafLivne et al. 2014), and the substrate sti ness is sometimes
ECM sti ness and cell tensile stress in uence both theirthought to have a role as well (Obbink-Huizer et al. 2014;
proliferation and death (Butcher et al. 2009; Kass et al. 2007T,ondon and Kaunas 2014; Tondon et al. 2012). For sake of
Kumar and Weaver 2009). Incorrect response to mechargompleteness, we also mention that in 3D cell behaviour is
cal cues is also related to many other diseases such as atiialenced by the fact that they are embedded in a network
fibrillation, intimal hyperplasia, scleroderma, diabeticof ECM bers all around. So, under stretch, adhering to the
nephropathy, glomerulosclerosis, enphysema, pulmonaryers they tend to align more with the stretching direction
and liver brosis (Ingbe2009). (Asano et al. 2018; Chen et al. 2018; Eastwood et al. 1998).
Stem cell fate and stem cell culturing are in uenced by From the modelling point of view, some attempts to
the mechanical interactions with the environment as webxplain this phenomenon have been done using linear elas-
(Butcher et al. 2009; Discher et al. 2009; Guilak et al. 2009%jcity to describe cell and substrate behaviour. Many works
Sun et al. 2012; Tulloch et al. 2011; Yan et al. 2013). This i®ocused on looking for the directions of minimal strains or
the reason why cell cultures in vitro and tissue-engineereatinimal stress (De et al. 20008; Faust et al. 2011; Livhe
samples tend to reproduce the correct environmental condit al.2014; Wang 2000; Wang et al. 1995) as a preferred ori-
tions that real cells would live in (Costa et al. 2012). Conentation for cellular placement under uniaxial cyclic strain
sequently, just to mention two relevant examples, muscleonditions. However, in a recent work Livne et al. (2014)
cells and cardiac cells are often grown on substrata that asidied the response of cells on a substrate subject to biaxial
cyclically stretched, in order to mimic respectively mus-extensions, nding a linear relation between , Where
cle contraction and heartbeat (Kim et al. 1999; La amme is the angle formed by the principal strain direction and
and Murry 2011; Yoon et al. 2017). Now, when subjecthe most elongated axis of the cell, and ,
to a periodic deformation, several types of cells (not onlyhere and are the two in nitesimal principal strains
those that have a bipolar morphology, such as broblast®f the biaxial test. The theoretical result correlated with the
myo broblasts, myocytes, airway smooth muscle cells, buexperimental data (Faust et al. 2011; Livne et al. 2014), sug-
also endothelial cells (Moretti et al. 2004)) show a peculiagesting that cells tend to minimize an elastic energy.
response that proves their subtle sensitivity to mechanical Nevertheless, it is worth observing that, in several experi-
prompts: when laying on a substratum they tend to re-oriemiental assays, mechanical tests were performed applying
themselves until they reach a stable con guration, with @leformations for which using linear elasticity might be argu-
well-de ned angle between their polarization axis (alongable, at least theoretically. As a matter of fact, for instance,
which the stress bers become mainly aligned) and thé Livne et al. (2014) itself the maximum amplitude of the
direction of stretching. This reorientation process involvegyclic strain reached 24%, while in Faust et al. (2011) defor
the cytoskeleton, with disruption and rebuilding of actinmations up to 32% were applied to the specimen. In the latter
stress bers, and the cell body, that follows the cytoskeletakork, the authors focused on the dependence of the orienta-
reorganization with some delay (Hayakawa ef@aD1). tion angle from the amplitude of the deformation, showing
In the last two decades, cell reorientation followingthe existence of a stretch threshold necessary to induce a sig-
mechanical deformations has been investigated in an attemptcant reorientation. Taken together, these results call for a
to gain insight into this complicated phenomenon (Fausttudy of the presence of nonlinear e ects at high strains, in
et al.2011; Hayakawa et al. 2001; Jungbauer et al. 200&rder to quantify their relevance in cellular mechanosensing
Moretti et al. 2004; Morioka et al. 2011; Neidlinger-Wilke and orientation dynamics. To our knowledge, only Lazopou-
et al.2001, 2002 Wang et al. 20012018. It is currently  los and Pirentis (2007), Lazopoulos and Stamenovi (2006)
accepted that such a change in orientation is an active me@wmwployed a nite elasticity framework to describe stress b-
anism carried out by the cell (Wang et al. 202d18) and ers reorganization in strained cells, although they considered
that mechanical strain is the main driving force of this proenly uniaxial substrate stretching and addressed the problem
cess. However, experimental settings show a broad varietssing a non-convex energy, giving an explanation based on
of behaviours: the vast majority of them proved that cellshe co-existence of phases.
head their major axis towards a direction oblique or nearly The aim of this work is then to study the problem of cell
perpendicular to the direction of greater stretch (Chen et aleorientation in a nonlinear elasticity framework. The
2012; Hayakawa et al. 2001; Moretti et al. 2004; Neidlingermain goal is to understand why and to what extent the
Wilke et al. 2001; Wang et al. 2001), even though somexperimental results follow the same rule justi ed on the
authors reported di erent results (Bischofs and Schwarbasis of linear elasticity also for large strains and are inde-
2003; Collinsworth et al. 2000). The nal orientation anglependent from the mechanical characteristics of the sub
reached by the cell is determined by several factors like tretratum and of the cells. We nd that, considering the
amplitude, the frequency (Chen et al. 2012; Jungbauer et aubstratum with seeded cells as a nite-elastic orthotropic
2008), the biaxiality ratio of the applied cyclic deformationmaterial, a very large class of elastic energies is minimized
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by a relationship that can be considered as the nonline@2r Mechanical background and problem
generalization of the one found in Livne et 201{4. Spe set-up
ci cally, introducing the parameter —— (where
and are the principal stretches and without loss We consider a substratum provided with an ensemble of
of generality) that quanti es the biaxiality of the nite cells adherent to its surface in a subcon uent con guration,
deformation, we put in evidence a linear relation betwee@s in most experiments, which rules out the in uence of
and , where is the equilibrium angle of the cell-cell interaction. The system is then subject to a biaxial
cell with respect to the-axis. The slope of such a straight deformation, due to pulling and compression performed by
line turns out to be a combination of the coe cients thatan external device. As a consequence of this mechanical
multiply the anisotropic invariants based on the righstimulus, following the deformation of the substrate cells
Cauchy—Green strain tensorand the polarization axis, ©rient on average along a certain direction, which can be
which characterize the orthotropic constitutive model witdenti ed through a unit vector in the rst quadrant of a
quadratic dependency. The same relationship holds trugference system with the axes along the directions of the
for Fung-type materials as well, making the results validiaxial deformation (see Fid).
for two energy forms often used in biomechanics. If we assume that the system composed by the substrate
Instead, a nonlinear dependence of the equilibrium frofgnd the overlying cells behaves as an elastic continuum,
comes out visibly if the elastic energy also dependthe deformation will induce a storage of energy into the
on the anisotropic invariants related to the square of tHeedy that depends on the orientationWe want here to
Cauchy—Green strain tensor, i.e. In particular, we nd Study how the elastic strain energy of the system subject
that the presence of a non-vanishing coe cient in frontto @ biaxial stretch depends on the average direction of the
of the term describing the response to stretch along tHéress bers .
polarization axis gives rise to a departure from the linear For this purpose, we consider a general elastic energy
behaviour that, for small values of the coe cient, is still density for an orthotropic material
compatible with experiments. Conversely, a non-vanishing (1)
coe cient in front of the term in charge of describing the
response to stretch perpendicular to the polarization axgepending on the deformation gradienhrough the invari-
gives rise to results that look incompatible with experi-ants of the right Cauchy—Green deformation tensor
ments, suggesting this term is not present in the consti
tutive model. The dependence of the bifurcation point -
between the orientation perpendicular to the stretching
direction and the oblique one is also examined for all
cases, observing its disappearance above certain values
of the energy coe cients. (2
In detail, the paper is organized as follows. In SBct. where s the direction perpendicular toin the plane
we introduce the problem set-up and introduce the needef the substratum, which is also the plane containing the
mathematical and mechanical background. In Sgate use  principal stretch. Notice that in Xbne could also expect a
the approach proposed in Saccomandi and Vianello (199Qependence on , but it is omitted since it depends
Vianello (1996) to describe the stationary points for a gerpn the other invariants (see, for instance, ORIEIB).
eral orthotropic constitutive equation. In Sektwe focus This kind of energy is commonly used to describe the
on two very common types of energies employed in biologimechanical behaviour of anisotropic materials that show two
cal applications, namely a quadratic and Fung-type straigveferential directions (Holzapfel and Gasser 2001; Ogden
energy, showing that they behave identically as far as th03). For instance, it is employed for ber-reinforced mate-
stability problem is concerned. Afterwards, we calculate thgials, in which there are, say, two orthogonal bundles of b-
speci ¢ equilibria and discuss their stability as a function ofers that in uence the mechanical response of the body (Mel-
the involved material parameters. Sectiois dedicated to nik and Goriely 2013), or for blood vessel walls that present
the results in two signi cant cases, namely, in Sect.we  per bundles in di erent directions. In our case, the system
consider an energy which is independent gfshowing the  displays a natural anisotropy due to the presence in the cells
existence of the linear relationship mentioned above, whilgf aligned stress bers (SF) and actin lament structures that
in Sect.5.2 we consider the e ects of including the invari- are cross-linked by several types of proteins, like fascin, m-
ants that involve the square of the Cauchy—Green strain tefgrin, -actinin, lamin, ARP2-3 (Civelekoglu-Scholey et al.
sor. The nal Sect6 summarizes the results and discusseg005; Lu et al. 2008; Xu et al. 2016) (see Hig.Since SF
some possible directions for future research. are two to even ten times sti er than the lateral actin network
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Fig. 1 Sketch of experimental
set-up and consequent inner
structure of a typical cell

(Lu et al. 2008; Mathur et al. 2007), they induce bidirecthe symmetry transformations above, except fahat

tional anisotropy in the mechanical response, justifying thehanges sign, i.e. given,

general assumption)(1o consider the system as orthotropic.and . Therefore, to satisfy
We also observe that a cell does not have a real polathe symmetry requirements, must be an even function

zation given by a head and a tail (Wang etl@R5. So, of

con gurations with cells aligned alongand  are geo- If we orient the x and yaxes of the reference frame

metrically indistinguishable and therefore energeticallyalong the principal stretching directions, the right

equivalent. A similar thing holds true if we replacewith ~ Cauchy—Green tensor is diagonal and its eigenvalues are

. This implies that the elastic energy should be théhe principal stretches, i.e.
same under the related symmetry transformations. All the
invariants mentioned in {Z&chieve the same values under
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where we have de ned

with and . Actually, in the case of equi-biaxial

deformation , cells do not show a preferential orien-
tation (Wang et al. 2001). Once the deformation is xed,
our goal is to study which orientations for the stress bers

Then, using (B Eq. (3 leads to the condition

correspond to minima of the elastic energy. )
_ _ o Multiplying both sides of the equation by on the left and
3 Stationary points by the coaxiality by on the right, one obtains
approach

The general problem of nding the critical points of an
hyperelastic anisotropic strain energy for a body subject to (8)
a rotation and a deformation has been studied in Saccomamiwhich we have set and
and Vianello (1997), Vianello (1996). In particular, it hasEproiting now the fact that
been shown that the critical points of the energy are achieved
for those rotations that make the stress and strain tensors
coaxial. Since two symmetric tensors are coaxial if and only
if they commute (Vianello 1996), we have to nd the rota-
tions about thez-axis such that ©)

If we focus on the last term on the left-hand side, elementary

3) tensor algebra allows to rewrite it as

where and is the second Piola-
Kirchho stress tensor corresponding to the deformation
To explicitly write  in our case, we de ne the structural
tensors

, Where
is the axis of rotation of , we get

with

(4) (10)

and recall that ] ] .
while the operator  takes the symmetric part of its tenso

rial argument. A direct substitution into)(@ads to

®)  or equivalently
(11)
where

12
Therefore, the second Piola—Kirchho stress tensor reads (12)

It is straightforward to observe that the conclusion is not
in uenced by the classical rst three invariants and ,
which represent the isotropic response of the material and do
not change with rotations. Hence, since we are interested in
the anisotropic behaviour of the system as a consequence of
cell orientation, their dependence will be dropped in the fol-
(6) lowing discussion, though one should remember that these
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terms might appear in any coe cient or as an additional4.1 The elastic energy
term in the energy.

Equation (11) states that stationary points are identi edn order to investigate the existence of other stationary con-
by the rotations about the axis which make the tensors  gurations in addition to the trivial ones, and to study their
and de ned in (12) commute. As pointed out in Vianello stability, we need now to specialize the elastic energy, try
(1996), there are always at least two solutions, which can leg to keep it as general as possible. We consider then the
easily identi ed in this case. In fact, if is such that is  class of elastic energies that can be written as a homogene-
along one of the principal directions, then, on the one handus second-order polynomial in the variables ,

is diagonal and therefore commutes with  for , and , plus a term related to the isotropic
which is diagonal by de nition. On the other hand, we haveesponse:
that which vanishes. Con-
sequently, is null as well because it is an odd function - (15)
of , because of the symmetry requirements amhich is
assumed to be even in where and is the symmetric matrix

We conclude that con gurations with cells oriented alongof coe cients (that might possibly depend on the isotropic
the principal stretching direction or perpendicularly to itinvariants), while is the purely isotropic contribution that
always correspond to stationary points of the elastic energydepends on

However, one might have further equilibria for other pos- We observe that the following analysis can be straightfor

sible rotations satisfyind.{), which will depend in general on wardly repeated for a Fung-type energy
the speci ¢ energy functional considered. In the following we

will show that, for a large class of elastic energies, there might
be two symmetric equilibria and we will study the stability of
all con gurations.

— (16)

that is often used in biomechanical applications (Fung
4 Stability conditions for a quadratic-like 1967), giving rise to the same results. In fact, the stationary
energy points of  coincide with the ones of. Moreover, their
stability character may be identi ed by the second deriva-

If we use the reference frame with the axes along the prilli'—\t/)e (_)f da;nd then |dsth_e Same as lwelfl}. ':'(T?refore, the resgltls
cipal stretching directions, so thatis diagonal, it is con- obtained for a quadratic energy also hold for an exponential-

venient to identify the cell major axis through the angle like enelrgy, ampl:zylr:lg the validity 0{, Orl:rl conclusmrr:s.
it forms with the xaxis, so that and We also remark that, in order to slightly reduce the terms

This angle is univocally associated in uencing the stability analysis, we do not consider here
to a rotation in the framework of the previous Section andpOSSible isotropic-anisotropic couplings in the energy (15),

in the following will be used as our main variable. With thisthat IS, we eXCIUdﬁ_ termsbllke ,.:Nf;jere d thei alnd il
choice, the invariants in Y2ead . This can be easily done and their role wi

be analysed in a future work.
For future convenience, it is useful to denote byor
the coe cients of the matrix (e.g., isthe
coe cient in the top left corner of the matrix). In particular,
(13) the coecient s related to the sti ness along the pofari
zation axis of the cell and to the one along the direction
orthogonal to the cell major axis. Considering that stress
bers are mainly aligned to the polarization direction, ceher

and can be compactly rewritten as ently with Butler et al. (2002) we will assume that

We also point out that the coe cient is related to the

response to shear, i.e. at the microscopic level to the resist-

ance of changing angle among actin bers, also involving the

action of actin cross-linking proteins, such as lamin, Rho/

Rac GTPases (Civelekoglu-Scholey eP&l05; Wang et al.

2001) and Arp2/3 as well (Goley and Welch 2006; Rouiller
(14)  etal.2008) (see Figl).

where
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We nally observe that, because of the symmetry condi-
tions related to a switching of the orientation of the axis, the
coe cients (and ), must vanish. In fact,
they multiply the cross terms that change sign under
these symmetry transformations. Then, their inclusion would
break the symmetry of the energy, leading to a biologically
unfeasible situation.

The nontrivial solution , also called oblique orientation,
4.2 Stationary con gurations exists if and only if

Taking into account the consequences of symmetry on the ———— (18)
coe cients of matrix in (15), the stationary con gurations

are then identi ed by the solutions of or equivalently if

19)
that can be explicitly written as

4.3 Stability

As far as stability is concerned, we need to evaluate the

Recalling the form of the coe cients (14), the previous S€cond derivative of the energy
equation reads

As already discussed at the end of the previous Section, the
con gurations with and (which in the fol-
lowing will sometimes be referred to parallel and per

pendicular orientation, respectively) are always stationarymposing the positivity of then leads to the following
However, there might be additional equilibria satisfying  stability conditions:

or (20)
where in the last condition we have used the fact that
- - - (7) requires to simplify the existence
condition (19).
where In the following, we will sometimes refer to the preferen-

tial orientations of Eq. (20) as equilibrium angles. However,
we remark that they are not in general solutions of the elastic
problem, but only stationary points of the elastic energy.

that can also be explicited as
5 Bifurcation results

Starting from the computations performed above, in this
Section by means of a bifurcation analysis we discuss the

and preferential orientations of cells on a stretched substrate, for
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an elastic energy given by (15) or (16). We rstly discuss the
case in which the strain energy does not depend on the invar
iants related to , and then we analyse the e ects of their (21)
correction, since they introduce a signi cant change in the
predicted behaviour. In particular, we consider three type%Uttlng In clear evidence a linear relationship between
of nite deformation: in the rst one we x the stretch in and the parameter
they-direction to a certainvalue and , while letting
vary. In the second one we keep , corresponding
to an isochoric planar deformation if . Finally, we set
~, equivalent to a pure isochoric deformation thatwhich compares the elongation alongith respect to the
involves also the-direction. Although we do not have any sum of elongation and contraction along
experimental information on, it does not a ect the discus-  The slope of the straight line (21) is determined by the
sion on equilibria or on their stability character. inverse of the combination of coe cients

5.1 Independence from

Let us rstly consider the case in which the elastic energ

is independent from terms containing, that is, from

the anisotropic invariants and . This case can be eas-

ily obtained from the previous computations settin
. Doing so, we

%s shown in Fig2. Actually, data from Faust et al. (2011),
Livne et al. (2014) suggest a slope for the straight line in
Eq. (21) of , corresponding to

g(data reported in Figp).

It is also worth to observe that the line always passes

can get simpli ed forms for the terms through the point corresponding to (i.e.
) when , for any values of the elastic
parameters. This is explained by the fact that, for a defor
and mation satisfying (or equivalently ),

the minimum of the energy coincides with the direction of
minimal strain. Indeed, the latter is given by the angle such
Hence, in addition to the trivial equilibria, Eq. (17) simpli- that , that is,
esto

a<0
1 2P T
7
--—1l<a<0 ’ ///
4 -
-—a< -1 .. 7
-
/7 //
/
T & e
< < 1 A
i i 9 7
S S “ G
o (>3 Lo
// /
_-
s /
// //
7
[ S———
0 1+a 1 1-a 1
2 2 2
A

Fig. 2 Bifurcation diagram of equilibrium angles in terms of stable ones. In (b) full lines indicating the stability of till the
—— with —— positive in a and negative in b. bifurcation point and of - for are not drawn. The area
The black lines refer to the case  and the red lines to with is not shown because of the pulling characteristics of the

while dashed lines represent unstable con gurations and full line§XPeriments
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- — 5.1.1 Case

When , the stability conditions (20) become

Therefore, when , we have which coincides
with  obtained using Eq. (21). This is not true in general,
since satis es

- E— (22)

di erently from what is found through energy minimiza-
tion in Eq. (21) except for the case , which does not t
the experimental data (Faust etal. 2011; Livne et al. 2014}5; is, the non-trivial equilibrium position is stable when-
In fact, as pointed out in Livne et al. (2014), choosing thg,qr it exists.

minimal strain direction as the preferential one for cell ori- Recalling that and focusing for the moment only

entation does not allow to describe the experimental ©bs€l, the case there are two relevant subcases to discuss

vations, while an energetic approach does. The only case {yending on the following relationships between parameters:
which the minimal strain direction and the minimal energy

direction coincide is precisely when . These obser .
vations also allow us to justify even more the need of choos- M T
ing an orthotropic constitutive model instead of a purely (ii) —_
transversely isotropic one. In fact, the elastic strain energy
for a transversely isotropic medium only depends @mnd
in addition to the three isotropic invariants, and then Onlﬁeferring to Fig2a, in case (i)—represented by red lines—
on when the dependence onis not considered as done e have two supercritical bifurcation points at
in this Section. However, in such a case one obtains
and so minimizing a transversely isotropic energy would be
equivalent to choosing the minimal strain direction again,

which as just discussed does not seem accurate. The con guration with orientation perpendicular to the

We al§o remark that cgrresponds to clamping stretching direction (i.e. , ) is sta
the specimen, so that , while corresponds t0 o it "__ \when is decreased below this value, the
stretching also along, wtill keeping . On the other

polarization axis of the cell tends instead to orient obliquely,

hand, valges of - correspond to ) 1€ nally becoming completely aligned to the stretching direc-
compressions alongare stronger than elongations along Xtion if — However, in case (i), represented by the

whigh Is not done in experiments_reported in the Iiterat_ureolack line in Fig.2a, this value is negative and so it cannot
hF|_naIIy% we o!oserveht_hﬁ fo_Illlowmg cases r_elated_lt(la 'So_be physically achieved in the usual experimental set-up. In
choric deformations, which will be examined in detail latery,;q situation, cells will never orient themselves along the
stretching direction.
In order to compare this behaviour with previous linear

- elasticity results, we observe that if we de nand rsuch

— _— - that and , we have that —. So,
one recovers the linear relationship between and—
with for very large and the lower extremum of the discussed in Livne et al. (2014). Actually, since
interval achieved in the limit of no stretching. Of course,  the situation observed in their experi-
for these types of finite deformation, the case is Ments seems to correspond to case (ii). In this case, the two
unfeasible. bifurcation points fall in the interval [0, 1]. We recall that
In terms of and the existence condition for the non- ~ corresponds to  , that is no stretching in the

trivial equilibrium (18) writes as y-direction, i.e. a clamped condition.

The analysis done here shows, in particular, that any
model of type (15) or of Fung type (16) independent of
and (i.e. the invariants depending on) with the follow
ing relation
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(23)

among the coe cients is able to t the parameters, in a way,
that is independent of the magnitude of the applied strain,
even outside the range of validity of linear elasticity. This
explains why the experimental behaviour shown in Faust
etal. (2011), Livne et al. (2014) seems to be independent $ih€"®
nearly independent of the magnitude of the applied strain.

5.1.2 Case

For the sake of completeness, we analyse the case in
which , Which can occur, for instance, if is much
larger than the other parameters. In this case, noticing that -
— —, the stability conditions are the following:
After computation, we can explicit the nontrivial equilib-
— rium (17) as

(24)

More precisely, also in this case there are two distinct situ- —
ations to be considered:

(25)
(i) —— — We notice that the terms, and are the corrections
(iv) _ related to the presence of-dependent terms through the

invariants and . Indeed, when the elastic energy does not

lines—one has two admissible subcritical bifurcation point§elationship between  and . However, since the cor
with coexistence of two critical equilibriaif — — ,  rection coe cients depend on and , Eq. (25) does not
represent a straight line anymore. It is worth remarking that

corresponding to the parallel and perpendicular orientatior?i,]e last term in (25) represents a shift from the equilibrium
and only one of them stable outside this range. In case i}%gle that looks close to the one observed when
the equilibrium is always stable while is sta-

ble only if —. In all cases, if the oblique orienta-

tion is unstable. o
5.2.1 Small deformation limit

5.2 correction We observe that, in the limit of small deformation, the zero-
th order approximations of the corrections become

We now analyse the correction that will be introduced if a
dependence of the energy on the invariants depending on

(i,e. and ) is allowed. For this purpose, it is convenient
to rewrite

and in Eq. (25) the last term vanishes, so that the approxi-
with mating curve is again a straight line:
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In the following, in order to evaluate the in uence of
corrections, we change one parameter at a time while
keeping the slope of the straight line in (26) constant, in
when (that corresponds to order to start from the same linear dependence. For instance,
). Hence, in the linear limit, the only when , then, recalling (27), is decreased accord-
di erence from the case analysed in the previous Sectioigly, so that the value of is mantained constant. In
is that more coe cients contribute to the identi cation of particular, with this idea in mind, we x the coe cients
the slope, or viceversa, given some experimental data it is and in order to
hard to distinguish which coe cients contribute to the slopematch the experimental tting value reported in Eq. (23).
of the line. This is not surprising: in the linear limit, for

(26)

such that

instance, the contribution to the energy a$ indistinguish-
able from that of , and the dependence ormerges with

the one on .

5.2.2 Eectof

In Fig. 3 we focus on the e ect of a non-vanishing, keep-

In fact, Eq. 26) can be rewritten in the same form asing to zero the other coe cients involving the indices 5 and

(21) with the following formal substitutions:

Fig. 3 Analysis of non-trivial

7. As already stated above, to keep the same valueawfd
therefore the same linear limit given by (26), as we vary

(27)  we accordingly change . To observe how the
non-trivial equilibrium is changed, we focus on the three

(28) typesof deformation de ned at the beginning of SeaDne
can observe that in all cases changindeads to a depar

29) ture of the equilibrium curve from a straight line, becom-

ing convex. In addition, keeping xed and changing
as in Fig.3a, one can appreciate a decrease in the value of
, which means an increase in the equilibrium angle,

for

y = 1 x
0.5 )‘\J / )\2

equilibrium position for
and to keep
the same linear limit. The 08¢
other non-vanishing param-
eters are , and 0.6}
.Ina

cos? Ocq

while in b andinc
", For all the three
types of deformation, we see
that the presence of leads
to a departure from the linear
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On the other hand, when as in Fig.3b, If " we have that
stays fixed at if . In fact, in the latter case

and the numerator of the last term in

(25) vanishes for . This does not occur in the former
case. At the other extreme, when , then the denomina-

tor of the second term in (25) grows inde nitely, while the

last term tends to 1/2. So, the curve given by (25) tends back

which corresponds to

to 0 when (not visible in the gure because the curve - - —
becomes negative). .
Finally, in the third case shown in Fig3c we  These relations can be exploited to plot the variation of the
have a minimal possible value of , corresponding 10 pjfyrcation point as a function of , as shown in Figad.
an equilibrium angle such that 1€ » The bifurcation point approaches 1 for increasing values
that is sometimes reported in some discussions of experimepfs , eventually leading to a disappearance of the bifurca-
(see, for instance, Wara00; Wang et all995). tion for some critical values of the parameter. To be more
As regards the bifurcation point between the equilibriun},peci c, if  for the branch relative to
branch and the one given b9, it is implicitly  the oblique equilibrium and do not cross for physi-
de ned by cally admissible values of and therefore the perpendicular

orientation is always unstable. In particular, we observe that
(30) inthe case of xed the threshold value is higher, while
for the other two types of deformation it is the same and

. h . d Iso d q h amounts to . This follows immediately from3@)
since the coe cients and also depend on . There- o (33) for _while in the case it is

fore, while we_have seen that the introductipn of no_nlineaénough to observe that
terms depending on, and does not modify the bifur
cation obtained in the linearized theory, the dependence of
the energy on the invariants related tcentails an identi -
able shift of the bifurcation point between the perpendicular — —
orientation and the oblique one that may also disappear for
large values of , as shown in Fig3d.
If we assume , the shift of the bifurcation point for (35)
can be evaluated through

Substituting into (32) and recalling that means
_ immediately leads to , coherently
(31)  with Fig. 3d.
In order to evaluate the relevance of the nonlinear

This means that, for given coe cients but, (31) implicitly ~ orrection, we performed a tting of experimental data
denes intermsof that, actually, can be made explicit extracted from Livne et al. (2014) where, using a biaxial
by writing experiment, the stretches in the two directions are actually

controlled. Although we do not know the exact value of
_ , we observe that if , then would be identically
(32)  equalto 1. So, we x it to be . Then, focusing on
Fig. 4, we explored the possibility of a better tting using
We notice that, in the equation above, the ternfionlinear elasticity and correction. Actually, as already
is a function of , given, for instance, by ©Observed, data are already tted quite well by the straight
line. However, using a nonlinear regression estimation we
nd that a small value of gives an even better
(33) tting for data in Livne et al. (2014). We also nd that,
if we increase the xed value of , a higher value of the
and by coe cient  is neededto tthe data. For instance, when
we take we nd a best tting value of ,
an order of magnitude greater than the one obtained for
. This is due to the fact that, when , a small
(34)  stretch in the xdirection is su cient to span all the




A nonlinear elastic description of cell preferential orientations over a stretched substrate

Fig. 4 Nonlinear tting of o Ay =08 05 A, =08, ks~ 0.008
experimental data with . R ‘ ‘ —k;,;, —0 IS ‘ ‘ ks ~ 0.008
Data from Livne et al. (2014) —— k55 = 0.01 — ks =0
are compared with the family 0.4} kss = 0.04 1 0.4 Experimental data|]
of curves obtained for ka5 = 0.07
and di erent values of ina 03] © Experimental data/| 03}
and with the best tting value S Ny
inb 3 0.2} N ks S 0.2F
0.1} 1 0.1F
0 : : : 0 : : : AN
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9
A A
@) (b)
admissible values of . Consequently, nonlinear e ects and in the two cases. In Fi®a, we then tried to

become less relevant and to t the nonlinear model wet the data (Faust et al. 2011; Livne et al. 2014) simul-
need to take very high values of the related coe cients. taneously to assess if a nonlinear correction could better

In Fig. 5, we present the tting using also the data byexplain the experimental observations in di erent settings.
Faust et al. (2011): we explored the xedcase since, It is found that, for a xed value of , taking
even if the Poisson ratio of the specimen is taken to be gives a slightly better tting than the straight

, the actual reported biaxiality ratio is di erent. line approximation, while nonlinear regression performed
In particular, considering the experimental settings witlonly on the data in Livne et al. (2014) returns a value of
32% and 31.7% strain, one nds a value of and . To highlight this di erence, in Figbb we plot
, respectively, since the biaxiality ratio is the deviation from the linear approximation, that is

Fig. 5 Nonlinear tting 05 Ay =0.952, ks; ~ 0.04 0.06 Ay = 0.952
of experimental data from TN ‘ -y ‘ T T Livner Faust
Faust et al. (2011) and Livne k5 =0 0.05r 1 Tivne ©
etal. (2014). a Best tting 041 ~ Exp. data (Livne) | 0.04} | Linear limit
for obtained for o Exp. data (Faust) oal | o gpr SZE: E;:lr;:))
.b Deviation from E i
the straight line when tting all S w 0027
data (blue curve) and only data 8 02 0.01}
from Livne et al. (2014) for a ol
xed (red curve; in ol e _
this case, the best ). ' 001y - °
¢ Equilibrium orientation as 0.02f
X 0 ‘ ‘ ‘ ‘ ‘
afgnctlon of folr ted t 0.5 0.6 0.5 0.6 0.7 0.8 0.9
an , related to A
experimental actin orientations (b)
obtained by Faust et al. (2011)
for a 32% stretch (represented
. (rep A =132, A, = 0.952
by the circle). As shown, a 0.11 ‘ : ‘ :
value of is able to o1l
capture the experimental orien- '
tation precisel
P Y 0.085 |

%.3-

i ik55

3

0.06 + o Exp. data
0.0

3 L L L L L
0 0.088 0.2 0.3 0.4 0.5
ks
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In Fig. 6a we plot the relationship (37) for di erent values of
and , while in Fig.6b the case is shown.
(36) Itis clearly observed that, in both cases, the transversely

as a function of . Since most of the experimental data faIIiSOtrOpiC model provides a tting which is pot §atisfactory
below the straight line, i.e. below 0 in Figh, a convex compareq tq the c_>rthc_>trop|c one reportgd in #ig.o ha,Ve
curve obtained with the introduction of is able to better & better insight, in Figec we show a direct comparison

approximate the observed behaviour, even if the di erencBetWeen the b?St tting Ccurves in the transvgrsely_isqtropic

is of the order of and orthotropic case: in the latter, there is a signi cant
Finally, we chose one of the experimental actin angle va/mprovementin the tting of experimental data.

ues obtained in Faust et &0( 1) for a 32% stretch and xed
and in order to have the same value ofised in the

experiment. Doing so, we tried to nd a value ofable to

capture this experimental point: as shown in Biga value ~ Y/€ turn now the attention to the e ect of a non-vanish-
of precisely ts the orientation angle for such a9 keeping  xed, and perform a similar reasoning
xed deformation as we did for . Again, as shown in Figib, if

We conclude our analysis by making a comparison witlﬁhen_ when for any valug of . In fact,
the transversely isotropic case, which we already disc:usslanth'S case, and ’ Wh'le. : S.O’
as inadequate to tthe experimental data. This is con rme&he numerato.r in the last term of (25) vgnlshes. This does
by the curves reported in Fif. Indeed, if we consider a not occur if is kept xed, as shown in Figa. In fact, the

transversely isotropic energy that depends only on ve invarValue of  slightly _decreases for Increasing values of
iants, recalling (25) we get: A more dramatic e ect occurs if when ,

because as before the second term in (25) tends to zero, but
on the contrary of the previous case the last term tends to
. This implies that the curve in (25) tends to 1 when

5.2.3 Eectof

(37) and, as a consequence, there are two bifurcation

Fig. 6 Nonlinear tting of Ay =0.8 Ay =08, ks5=0.01

. . 0.5 ‘ : : ‘ 0.5 ‘ : : ‘
experimental data from Livne i — " p—
et al. (2014) with a transversely —— kg5 = 0.01 —— kg5 = 0.01
isotropic model, in the case 0.4f kss = 0.04 1 0.4 kg5 = 0.04

. Ina the family of —hss = 0.07 ——kis = 0.08

curves obtained from Eq. (37) 03l Experimental data | 03l Experimental data|

for di erent values of is
shown, while in b the e ect of

is investigated. In ¢ a direct
comparison between the best t-
ting curves for the transversely
isotropic and orthotropic case is
provided, showing that the latter 06 07 08 09 1 06 07 08 09 1
is more accurate A A

@) (b)
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