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Abstract

For every positive integer n and for every α ∈ [0, 1], let B(n,α) denote the probabilistic
model in which a random setA ⊆ {1, . . . , n} is constructed by picking independently
each element of {1, . . . , n} with probability α. Cilleruelo, Rué, Šarka, and Zumalacárregui
proved an almost sure asymptotic formula for the logarithm of the least common
multiple of the elements ofA.Let q be an indeterminate and let [k]q := 1+ q+ q2 + · · ·
+ qk−1 ∈ Z[q] be the q-analog of the positive integer k . We determine the expected
value and the variance of X := deg lcm

(
[A]q

)
, where [A]q :=

{
[k]q : k ∈ A}. Then we

prove an almost sure asymptotic formula for X , which is a q-analog of the result of
Cilleruelo et al.
Keywords: Asymptotic formula, Least common multiple, q-analog, Random set

Mathematics Subject Classification: Primary: 11N37, Secondary: 11B99

1 Introduction
A nice consequence of the Prime Number Theorem is the asymptotic formula

log lcm(1, 2, . . . , n) ∼ n, as n → +∞, (1)

where lcmdenotes the least commonmultiple. Indeed, precise estimates for log lcm(1, . . . ,
n) are equivalent to the Prime Number Theorem with an error term. Thus, a natural
generalization is to study estimates for Lf (n) := log lcm(f (1), . . . , f (n)), where f is a well-
behaved function, for instance, a polynomial with integer coefficients. (We ignore terms
equal to 0 in the lcm and we set lcm∅ := 1.) When f ∈ Z[x] is a linear polynomial,
the product of linear polynomials, or an irreducible quadratic polynomial, asymptotic
formulas for Lf (n) were proved by Bateman et al. [3], Hong et al. [10], and Cilleruelo [6],
respectively. In particular, for f (x) = x2 + 1, Rué et al. [15] determined a precise error
term for the asymptotic formula. When f is an irreducible polynomial of degree d ≥ 3,
Cilleruelo [6] conjectured that Lf (n) ∼ (d − 1) n log n, as n → +∞, but this is still an
open problem.However, bounds for Lf (n) were proved byMaynard and Rudnick [13], and
Sah [16]. Moreover, Rudnick and Zehavi [14] studied the growth of Lf (n) along a shifted
family of polynomials.
Another direction of research consists in considering the least common multiple of

random sets of positive integers. For every positive integer n and every α ∈ [0, 1], let
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B(n,α) denote the probabilisticmodel inwhich a randomsetA ⊆ {1, . . . , n} is constructed
by picking independently each element of {1, . . . , n}with probability α. Cilleruelo et al. [9]
studied the least common multiple of the elements of A and proved the following result
(see [1] for a more precise version, and [4,5,7,8,12,17–19] for other results of a similar
flavor).

Theorem 1.1 LetA be a random set in B(n,α). Then, as αn → +∞, we have

log lcm(A) ∼ α log(1/α)
1 − α

· n,

with probability 1 − o(1), where the factor involving α is meant to be equal to 1 for α = 1.

Remark 1.1 In the deterministic case α = 1, we have A = {1, . . . , n} (surely) and Theo-
rem 1.1 corresponds to (1).

Let q be an indeterminate. The q-analog of a positive integer k is defined by

[k]q := 1 + q + q2 + · · · + qk−1 ∈ Z[q].

The q-analogs ofmany othermathematical objects (factorial, binomial coefficients, hyper-
geometric series, derivative, integral...) have been extensively studied, especially in Anal-
ysis and Combinatorics [2,11]. For every set S of positive integers, let [S]q := {

[k]q : k ∈
S}.
The aim of this paper is to study the least common multiple of the elements of [A]q for

a random setA in B(n,α). Our main results are the following:

Theorem 1.2 Let A be a random set in B(n,α) and put X := deg lcm
(
[A]q

)
. Then, for

every integer n ≥ 2 and every α ∈ [0, 1], we have

E[X] = 3
π2 · α Li2(1 − α)

1 − α
· n2 + O

(
αn(log n)2

)
, (2)

where Li2(z) := ∑∞
k=1 zk/k2 is the dilogarithm and the factor involving α is meant to be

equal to 1 when α = 1. In particular,

E[X] ∼ 3
π2 · α Li2(1 − α)

1 − α
· n2,

as n → +∞, uniformly for α ∈ [0, 1].

Theorem 1.3 Let A be a random set in B(n,α) and put X := deg lcm
(
[A]q

)
. Then there

exists a function v : (0, 1) → R
+ such that, as αn/

(
(log n)3(log log n)2

) → +∞, we have

V[X] = (v(α) + o(1)) n3. (3)

Moreover, the upper bound

V[X] 	 αn3, (4)

holds for every positive integer n and every α ∈ [0, 1].

As a consequence of Theorems 1.2 and 1.3, we obtain the following q-analog of Theo-
rem 1.1.
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Theorem 1.4 LetA be a random set in B(n,α). Then, as αn → +∞, we have

deg lcm
(
[A]q

) ∼ 3
π2 · α Li2(1 − α)

1 − α
· n2,

with probability 1 − o(1), where the factor involving α is meant to be equal to 1 for α = 1.

Remark 1.2 In the deterministic case α = 1, we have (see Lemma 4.1 below)

deg lcm
[{1, 2, . . . , n}]q =

∑

1< d ≤ n
ϕ(d),

and Theorem 1.4 corresponds to the well-known asymptotic formula
∑

d≤n ϕ(d) ∼ 3
π2 n2

(Lemma 3.3 below) for the sum of the first values of the Euler function ϕ.

Remark 1.3 In Theorem 1.4 the condition αn → +∞ is necessary. Indeed, if αn ≤ C , for
some constant C > 0, then

P[A = ∅] = (1 − α)n ≥
(
1 − C

n

)n
→ eC

as n → +∞, and so no (nontrivial) asymptotic formula for deg lcm
(
[A]q

)
can hold with

probability 1 − o(1).

We conclude this sectionwith somepossible questions for further research on this topic.
Alsmeyer, Kabluchko, and Marynych [1, Corollary 1.5] proved that, for fixed α ∈ [0, 1]
and for a random set A in B(n,α), an appropriate normalization of the random variable
log lcm(A) converges in distribution to a standard normal random variable, as n → +∞.
In light of Theorems 1.2 and 1.3, it is then natural to ask whether the random variable

deg lcm
(
[A]q

)− 3
π2 · α Li2(1−α)

1−α
· n2

√
v(α)n3

converges in distribution to a normal random variable, or to some other random variable.
Another problem could be considering polynomial values, similarly to the results done

in the context of integers, and studying lcm
(
[f (1)]q, · · · , [f (n)]q

)
for f ∈ Z[x] or, more

generally, lcm
(
[f (k)]q : k ∈ A) withA a random set in B(n,α).

2 Notation
We employ the Landau–Bachmann “Big Oh” and “little oh” notations O and o, as well
as the associated Vinogradov symbol 	, with their usual meanings. Any dependence of
the implied constants is explicitly stated or indicated with subscripts. For real random
variables X and Y , depending on some parameters, we say that “X ∼ Y with probability
1 − o(1)”, as the parameters tend to some limit, if for every ε > 0 we have P

[ |X − Y | >

ε|Y | ] = oε(1), as the parameters tend to the limit. We let (a, b) and [a, b] denote the
greatest common divisor and the least common multiple, respectively, of two integers a
and b. As usual, we write ϕ(n), μ(n), τ (n), and σ (n), for the Euler totient function, the
Möbius function, the number of divisors, and the sum of divisors, of a positive integer n,
respectively.

3 Preliminaries
In this section we collect some preliminary results needed in later arguments.
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Lemma 3.1 We have
∑

m≤ x
τ (m) 	 x log x,

for every x ≥ 2.

Proof See, e.g., [20, Part I, Theorem 3.2]. ��

Lemma 3.2 We have
∑

[e1, e2]> x

1
e1e2[e1, e2]

	 log x
x

,

for every x ≥ 2.

Proof From Lemma 3.1 and partial summation, it follows that

∑

m> x

τ (m)
m2 =

[∑
m≤t τ (m)
t2

]+∞

t = x
+ 2

∫ +∞

x

∑
m≤t τ (m)
t3

dt

	
∫ +∞

x

log t
t2

dt =
[
− log t + 1

t

]+∞

t = x
	 log x

x
.

Let e := (e1, e2) and e′i := ei/e for i = 1, 2. Then we have

∑

[e1, e2]> x

1
e1e2[e1, e2]

≤
∑

e≥ 1

1
e3

∑

e′1e′2 > x/e

1
(e′1e′2)2

=
∑

e≥ 1

1
e3

∑

m> x/e

τ (m)
m2

	
∑

e≤ x/2

1
e3

log(x/e)
x/e

+
∑

e> x/2

1
e3

	 log x
x

+ 1
x2

	 log x
x

,

as desired. ��
Let us define

�(x) :=
∑

n≤ x
ϕ(n) and �(a1, a2; x) :=

∑

n≤ x
ϕ(a1n)ϕ(a2n),

for every x ≥ 1 and for all positive integers a1, a2.

Lemma 3.3 We have

�(x) = 3
π2 x2 + O(x log x),

for every x ≥ 2.

Proof See, e.g., [20, Part I, Theorem 3.4]. ��

Lemma 3.4 We have

�(a1, a2; x) = C1(a1, a2) x3 + O
(
σ (a1) σ (a2) x2(log x)2

)
, (5)

for every x ≥ 2, where

C1(a1, a2) := a1a2
3

∑

d1, d2 ≥ 1

μ(d1)μ(d2)
d1d2

[
d1/(a1, d1), d2/(a2, d2)

] (6)

and the series is absolutely convergent.
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Proof From the identity ϕ(n)/n = ∑
d |n μ(d)/d, it follows that

∑

n≤ x

ϕ(a1n)
a1n

ϕ(a2n)
a2n

=
∑

n≤ x

⎛

⎝
∑

d1 | a1n

μ(d1)
d1

∑

d2 | a2n

μ(d2)
d2

⎞

⎠

=
∑

d1 ≤ a1x
d2 ≤ a2x

μ(d1)
d1

μ(d2)
d2

#
{
n ≤ x : d1 | a1n and d2 | a2n

}

=
∑

[
d1

(a1, d1)
, d2
(a2 , d2)

]
≤ x

μ(d1)
d1

μ(d2)
d2

(
x

[
d1/(a1, d1), d2/(a2, d2)

] + O(1)
)

.

Let ci := (ai, di) and ei := di/ci, for i = 1, 2. On the one hand, we have

E1 :=
∑

[
d1

(a1, d1)
, d2
(a2 , d2)

]
≤ x

1
d1d2

≤
∑

c1 | a1

1
c1

∑

c2 | a2

1
c2

∑

e1 ≤ x

1
e1

∑

e2 ≤ x

1
e2

	 σ (a1) σ (a2)
a1a2

(log x)2.

On the other hand, thanks to Lemma 3.2, we have

E2 :=
∑

[
d1

(a1, d1)
, d2
(a2 , d2)

]
> x

1
d1d2

[
d1/(a1, d1), d2/(a2, d2)

]

≤
∑

c1 | a1

1
c1

∑

c2 | a2

1
c2

∑

[e1, e2]> x

1
e1e2[e1, e2]

	 σ (a1) σ (a2)
a1a2

log x
x

,

which, in particular, implies that the series

C0(a1, a2) :=
∑

d1, d2 ≥ 1

μ(d1)μ(d2)
d1d2[d1/(a1, d1), d2/(a2, d2)]

is absolutely convergent. Therefore, we obtain

∑

n≤ x

ϕ(a1n)
a1n

ϕ(a2n)
a2n

= (
C0(a1, a2) + O(E2)

)
x + O(E1)

= C0(a1, a2) x + O
(

σ (a1) σ (a2)
a1a2

(log x)2
)
. (7)

Now (5) follows from (7) by partial summation and since C1(a1, a2) = a1a2
3

C0(a1, a2). ��

Remark 3.1 The obvious bound ϕ(m) ≤ m yields C1(a1, a2) ≤ a1a2
3

(which is not so
obvious from (6)).

We end this section with an easy observation that will be useful later.

Remark 3.2 It holds 1 − (1 − x)k ≤ kx, for all x ∈ [0, 1] and for all integers k ≥ 0.

4 Proofs
Henceforth, let A be a random set in B(n,α), let [A]q be its q-analog, and put L :=
lcm

(
[A]q

)
and X := deg L. For every positive integer d, let us define

IA(d) :=
⎧
⎨

⎩
1 if d | k for some k ∈ A;

0 otherwise.
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The following lemma gives a formula for X in terms of IA and the Euler function.

Lemma 4.1 We have

X =
∑

1< d ≤ n
ϕ(d) IA(d). (8)

Proof For every positive integer k , it holds

[k]q = qk − 1
q − 1

=
∏

d |k
d > 1

�d(q),

where�d(q) is thedth cyclotomic polynomials. Since, as it is well known, every cyclotomic
polynomial is irreducible over Q, it follows that L is the product of the polynomials �d(q)
such that d > 1 and d | k for some k ∈ A. Finally, the equality deg

(
�d(q)

) = ϕ(d) and
the definition of IA yield (8). ��

Let β := 1 − α. The next lemma provides two expected values involving IA.

Lemma 4.2 For all positive integers d, d1, d2, we have

E
[
IA(d)

] = 1 − β�n/d� (9)

and

E
[
IA(d1)IA(d2)

] = 1 − β�n/d1� − β�n/d2� + β�n/d1�+�n/d2�−�n/[d1, d2]�.

Proof On the one hand, by the definition of IA, we have

E
[
IA(d)

] = P
[∃k ∈ A : d | k] = 1 − P

⎡

⎣
∧

m≤ �n/d�
(dm /∈ A)

⎤

⎦ = 1 − β�n/d�,

which is (9). On the other hand, by linearity of the expectation and by (9), we have

E
[
IA(d1)IA(d2)

] = E
[
IA(d1) + IA(d2) − 1 + (

1 − IA(d1)
)(
1 − IA(d2)

)]

= E
[
IA(d1)

]+ E
[
IA(d2)

]− 1 + E
[(
1 − IA(d1)

)(
1 − IA(d2)

)]

= 1 − β�n/d1� − β�n/d2� + E
[(
1 − IA(d1)

)(
1 − IA(d2)

)]
,

where the last expected value can be computed as

E
[(
1 − IA(d1)

)(
1 − IA(d2)

)] = P
[∀k ∈ A : d1 � k and d2 � k

]

= P

⎡

⎢⎢
⎣

∧

k ≤ n
d1 | k or d2 | k

(k /∈ A)

⎤

⎥⎥
⎦ = β�n/d1�+�n/d2�−�n/[d1, d2]�,

and second claim follows. ��

We are ready to compute the expected value of X .
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Proof of Theorem 1.2 From Lemmas 4.1 and 4.2, it follows that

E[X] =
∑

1< d ≤ n
ϕ(d)E

[
IA(d)

] =
∑

1< d ≤ n
ϕ(d)

(
1 − β�n/d�). (10)

Moreover, since �n/d� = j if and only if n/(j + 1) < d ≤ n/j, we get that

∑

d ≤ n
ϕ(d)

(
1 − β�n/d�) =

∑

j≤ n
(1 − β j)

∑

n/(j+1)< d ≤ n/j
ϕ(d)

=
∑

j≤ n
(1 − β j)

(
�

(
n
j

)
− �

(
n

j + 1

))

= α
∑

j≤ n
β j−1�

(
n
j

)

= 3
π2 · α

∑

j≤ n

β j−1

j2
· n2 + O

⎛

⎝α
∑

j≤ n

n
j
log
(
n
j

)⎞

⎠

= 3
π2 · α Li2(1 − α)

1 − α
· n2 + O

(
αn(log n)2

)
, (11)

where we used Lemma 3.3. Putting together (10) and (11), and noting that, by Remark 3.2,
the addend of (11) corresponding to d = 1 is 1 − βn = O(αn), we get (2). The proof is
complete. ��
Now we consider the variance of X .

Proof of Theorem 1.3 From Lemmas 4.1 and 4.2, it follows that

V[X] = E
[
X2]− E[X]2

=
∑

1< d1, d2 ≤ n
ϕ(d1)ϕ(d2)

(
E
[
IA(d1) IA(d2)

]− E
[
IA(d1)

]
E
[
IA(d2)

])

=
∑

1< d1, d2 ≤ n
ϕ(d1)ϕ(d2)β�n/d1�+�n/d2�−�n/[d1 ,d2]�(1 − β�n/[d1 ,d2]�). (12)

Let us define

Vn(α) := 1
n3

∑

d1, d2 ≤ n
ϕ(d1)ϕ(d2)β�n/d1�+�n/d2�−�n/[d1 ,d2]�(1 − β�n/[d1 ,d2]�).

Clearly, we have

Vn(α) − V[X]
n3

	 1
n3
∑

d ≤ n
ϕ(d)βn(1 − β�n/d�) ≤ 1

n3
∑

d ≤ n
d 	 1

n
.

Hence, in order to prove (3), it suffices to show that Vn(α) = v(α) + o(1).
For all vectors a := (a1, a2) and j := (j1, j2, j3) with components in the set of positive

integers, define the quantities

ρ1(a, j) := max
(

1
a1(j1 + 1)

,
1

a2(j2 + 1)
,

1
a1a2(j3 + 1)

)

and

ρ2(a, j) := min
(

1
a1j1

,
1

a2j2
,

1
a1a2j3

)
.
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Let d := (d1, d2) and ai := di/d for i = 1, 2. Then the equalities

j1 =
⌊
n
d1

⌋
, j2 =

⌊
n
d2

⌋
, j3 =

⌊
n

[d1, d2]

⌋
,

are equivalent to

j1 ≤ n
a1d

< j1 + 1, j2 ≤ n
a2d

< j2 + 1, j3 ≤ n
a1a2d

< j3 + 1,

which in turn are equivalent to
n

a1(j1 + 1)
< d ≤ n

a1j1
,

n
a2(j2 + 1)

< d ≤ n
a2j2

,
n

a1a2(j3 + 1)
< d ≤ n

a1a2j3
,

that is,

ρ1(a, j) n < d ≤ ρ2(a, j) n.

Therefore, letting

Sn := {
(a, j) ∈ N

5 : (a1, a2) = 1, ∃d ∈ N s.t.ρ1(a, j) n < d ≤ ρ2(a, j) n
}

and

S(a, j; n) := 1
n3

∑

ρ1(a, j) n< d ≤ ρ2(a, j) n
ϕ(a1d)ϕ(a2d),

we have

Vn(α) =
∑

(a, j)∈Sn

β j1+j2−j3 (1 − β j3 ) S(a, j; n).

Now let us define

v(α) :=
∑

(a, j)∈S∞

β j1+j2−j3 (1 − β j3 )D(a, j), (13)

where

S∞ :=
⋃

m≥ 1
Sm = {

(a, j) ∈ N
5 : (a1, a2) = 1, ρ1(a, j) < ρ2(a, j)

}

and

D(a, j) := C1(a1, a2)
(
ρ2(a, j)3 − ρ1(a, j)3

)
,

recalling that C1(a1, a2) is defined by (6). The convergence of series (13) follows easily
fromRemark 3.1, ρ2(a, j) ≤ 1/(a1a2j3), and the fact that min(j1, j2) ≥ j3 for all (a, j) ∈ S∞.
Thanks to Lemma 3.4, for each (a, j) ∈ Sn we have

S(a, j; n) = D(a, j) + O
(

σ (a1) σ (a2) ρ2(a, j)2 · (log n)
2

n

)
.

Consequently, we get that

Vn(α) = v(α) − �1 + O
(

�2 · (log n)
2

n

)
, (14)

where

�1 :=
∑

(a, j)∈S∞\Sn

β j1+j2−j3 (1 − β j3 )D(a, j)
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and

�2 :=
∑

(a, j)∈Sn

β j1+j2−j3 (1 − β j3 ) σ (a1) σ (a2) ρ2(a, j)2.

Now we have to bound both �1 and �2.
If (a, j) ∈ S∞ \ Sn then

(
ρ2(a, j)− ρ1(a, j)

)
n < 1 and consequently, also by Remark 3.1,

D(a, j) 	 a1a2
(
ρ3
2 − ρ3

1
) = a1a2

(
ρ2
1 + ρ1ρ2 + ρ2

2
)
(ρ2 − ρ1) 	 a1a2ρ2

2
n

≤ 1
a1a2j23n

, (15)

where, for brevity, we wrote ρi := ρi(a, j) for i = 1, 2.
If (a, j) ∈ S∞ then, as we already noticed, min(j1, j2) ≥ j3 and, moreover,

j2
j3 + 1

< a1 <
j2 + 1
j3

and
j1

j3 + 1
< a2 <

j1 + 1
j3

.

Hence, we have

∑

(a, j)∈S∞

β j1+j2−j3 (1 − β j3 )
a1a2j23

≤
∑

j3 ≥ 1

1 − β j3

j23

∑

j1 , j2 ≥ j3

β j1+j2−j3
∑

j2/(j3+1)< a1 < (j2+1)/j3
j1/(j3+1)< a2 < (j1+1)/j3

1
a1a2

	
∑

j3 ≥ 1

1 − β j3

j23

∑

j1 , j2 ≥ j3

β j1+j2−j3 = 1
α2

∑

j≥ 1

(1 − β j)β j

j2

≤ 1
α

∑

j≤ 1/α

1
j

+ 1
α2

∑

j> 1/α

1
j2

	 log(1/α) + 1
α

, (16)

where we used the inequality 1 − β j ≤ αj, which follows from Remark 3.2.
On the one hand, from (15) and (16) it follows that

�1 	 log(1/α) + 1
αn

= o(1), (17)

as αn/
(
(log n)3(log log n)2

) → +∞ (actually, αn/log n → +∞ is sufficient).
On the other hand, from ρ2(a, j) ≤ 1/(a1a2j3), (16), and the bound σ (m) 	 m log logm

(see, e.g., [20, Part I, Theorem 5.7]) it follows that

�2 ≤
∑

(a, j)∈Sn

β j1+j2−j3 (1 − β j3 )
a1a2j23

· σ (a1) σ (a2)
a1a2

	 (log(1/α) + 1)(log log n)2

α

= o
(

n
(log n)2

)
, (18)

as αn/
(
(log n)3(log log n)2

) → +∞.
At this point, putting together (14), (17), and (18), we obtain Vn(α) = v(α) + o(1), as

desired. The proof of (3) is complete.
It remains only to prove the upper bound (4). From (12) it follows that

V[X] ≤
∑

[d1, d2]≤ n
ϕ(d1)ϕ(d2)β�n/d1�+�n/d2�−�n/[d1 ,d2]�(1 − β�n/[d1 ,d2]�)

≤
∑

[d1, d2]≤ n
d1d2 · αn

[d1, d2]
= αn

∑

[d1, d2]≤ n
(d1, d2) ≤ αn

∑

d ≤ n
d

∑

a1a2 ≤ n/d
1

= αn
∑

d ≤ n
d
∑

m≤ n/d
τ (m) 	 αn2

∑

d ≤ n
log
(n
d

)
= αn2

(
n log n − log(n!)

)
< αn3,
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where we used Remark 3.2, Lemma 3.1, and the bound n! > (n/e)n. Thus (4) is proved. ��

Proof of Theorem 1.4 By Chebyshev’s inequality, Theorems 1.2 and 1.3, we have

P
[ |X − E[X]| > εE[X]

] ≤ V[X]
(
εE[X]

)2 	 αn3

(εαn)2
= 1

ε2αn
= oε(1),

as αn → +∞. Hence, using again Theorem 1.2, we get

X ∼ 3
π2 · α Li2(1 − α)

1 − α
· n2,

with probability 1 − o(1), as αn → +∞. ��
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