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On the distribution of speaker verification scores:
generative models for unsupervised calibration

Sandro Cumani

Abstract—Speaker verification systems whose outputs can be
interpreted as log-likelihood ratios (LLR) allow for cost-effective
decisions by comparing the system outputs to application-defined
thresholds depending only on prior information. Classifiers often
produce uncalibrated scores, and require additional processing
to produce well-calibrated LLRs. Recently, generative score
calibration models have been proposed, which achieve calibra-
tion performance close to that of state-of-the-art discriminative
techniques for supervised scenarios, while also allowing for un-
supervised training. The effectiveness of these methods, however,
strongly depends on their capabilities to correctly model the
target and non-target score distributions.

In this work we propose theoretically grounded and accurate
models for characterizing the distribution of scores of speaker
verification systems. Our approach is based on tied Generalized
Hyperbolic distributions and overcomes many limitations of
Gaussian models. Experimental results on different NIST bench-
marks, using different utterance representation front-ends and
different back-end classifiers, show that our method is effective
not only in supervised scenarios, but also in unsupervised tasks
characterized by very low proportion of target trials.

Index Terms—Score calibration, log-likelihood ratio, unsu-
pervised training, generalized hyperbolic distribution, variance-
gamma distribution

I. INTRODUCTION

Well-calibrated speaker verification systems output scores
that can be interpreted as the log-likelihood ratio (LLR)
between the same-speaker (target trial) and different-speaker
(non-target trial) hypotheses. Given an application, hard de-
cisions can be taken comparing the score with a suitable
threshold. If a score is a LLR, the optimal threshold depends
only on the prior probability of the two hypotheses, and the
costs of the false acceptance and false rejection errors. In
practice, most speaker verification systems are not able to
directly produce well-calibrated scores. This may depend on
several reasons, for example on the intrinsic nature of the
classifier, on mismatches between the training and evaluation
populations, or on imprecise model assumptions. For these rea-
sons, score calibration techniques are employed to transform
the scores produced by a recognizer so that they approximate
well-calibrated LLRs.

The standard approach for score calibration is based on dis-
criminative prior-weighted Logistic Regression (Log-Reg) [1],
[2], routinely employed as a calibration tool for different
tasks [3]–[6]. Since this approach is supervised, it requires
a labeled dataset that closely matches the testing conditions.
Recently, alternative methods based on generative models have
been proposed [7]–[10]. These models not only provide more
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insights on the behavior of well-calibrated LLRs, but can
be easily extended to handle missing labels. The work [7]
shows the constraints that theoretical distributions of well
calibrated LLRs should satisfy. The authors then propose the
Constrained Maximum Likelihood Gaussian (CMLG) linear
calibration model. It assumes that observed scores are linearly
transformed samples of well-calibrated, Gaussian distributed,
random variables satisfying the LLR constraints. An unsuper-
vised extension of CMLG was proposed in [11].

CMLG can achieve good calibration, but its effectiveness
depends on the accuracy of its Gaussian assumptions. Em-
pirical score distributions often exhibit skewed, asymmetric
and heavier-than-Gaussian tail behavior. In these cases, CMLG
cannot properly model the score distributions, thus producing
significant calibration loss. The behavior of empirical score
distributions should not be surprising: as we show in Sec-
tion III, even under the assumptions of a simplified Probabilis-
tic Linear Discriminant Analysis (PLDA) [12], [13] model,
well-calibrated LLRs are not Gaussian, but rather Variance-
Gamma (VΓ) distributed. This issue is more relevant for
unsupervised tasks. Since non-target scores are usually the vast
majority, target scores can be easily confused as scores gener-
ated from the non-target distribution tails. Accurate modeling
of the score distribution tails is thus very important. Alternative
non-Gaussian models have been investigated in [8], using
Normal Inverse Gaussian (NIG) densities. Contrary to CMLG,
this approach does not assume a specific calibration model, but
estimates a probabilistic model in score space. Well-calibrated
scores are computed as the log-likelihood ratio between the
hypotheses that a score was generated by the target or by the
non-target distribution, respectively. NIG densities allow for
better characterization of the score distributions, and for better
accuracy with respect to CMLG for supervised tasks. However,
as shown in [10], and confirmed in Section VI, they can lead
to poor results for unsupervised scenarios, without appropriate
constraints on the calibration model. In [9], [10] we proposed
the Constrained Maximum Likelihood NIG (CMLNIG in [10],
C-NIG in the following) approach, which combines the bene-
fits of NIG distributions with linear calibration assumptions.

In this work we provide a theoretical analysis of the
distributions of PLDA-based verification scores, showing that
Variance-Gamma (VΓ) densities are good candidates for mod-
eling score distributions, and we propose the Constrained VΓ
(C-VΓ) as alternative to CMLG and C-NIG. Since both VΓ
and NIG belong to the family of Generalized Hyperbolic (GH)
distributions [14], we consider a more general framework,
introducing the Constrained GH (C-GH) method that allows
implementing both C-NIG and C-VΓ as special cases. The
model assumes that target and non-target scores are obtained as
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an affine transformation of random samples of GH-distributed
random variables, with parameters appropriately tied to satisfy
the LLR constraints. We validate our approach on different
datasets (SRE 2019 [15], SRE 2012 [16] and SRE 2010 [17]),
with different front-ends (i-vectors [18], e-vectors [19], x-
vectors [20]), different classifiers (PLDA [12], [13], Non-
Linear PLDA [21], [22] and Pairwise Support Vector Ma-
chines [23], [24]), and different proportions of target to non-
target training samples. The experimental results show that
the C-VΓ approach not only outperforms both the CMLG and
C-NIG approaches, but it achieves close to optimal calibration
even in scenarios characterized by very low target proportions.

The rest of the paper is organized as follows. Section II
recalls the CMLG model [7] and its unsupervised exten-
sion [11]. Section III investigates the distribution of well-
calibrated scores computed by a PLDA model, showing that
Variance-Gamma distributions are good candidates for gener-
ative calibration models. Section IV presents the supervised
and unsupervised C-VΓ and C-GH models and their relation-
ship with C-NIG. Section V describes the model parameter
estimation procedure. The experimental results are reported
in Section VI for supervised and unsupervised tasks, and
conclusions are drawn in Section VII.

II. GAUSSIAN MODELS FOR LINEAR SCORE CALIBRATION

Well-calibrated speaker verification systems compute the
log-likelihood ratio for the evidence e associated to a trial
as:

x = LLR(e) = log
P (e|S,M)

P (e|D,M)
, (1)

where e represents a trial (e.g., a pair of i-vectors [18] or
speaker embeddings [20]), M is a statistical model for e,
and S and D are the target and non-target trial hypotheses,
respectively. Since speaker verification back-ends often do not
output well calibrated scores, calibration techniques are used to
estimate a transformation f that approximates the mapping of
an uncalibrated score s to a well-calibrated score x = fcal(s).

A. Generative score models
Generative approaches estimate fcal through a statistical

model M′ that describes the distribution of the observed
scores. The model interprets an observed score s as a sample
of a Random Variable (R.V.) S, whose conditional densities
given target and non-target hypotheses are fS|S and fS|D, re-
spectively1. Given a score s, the calibration function computes
the log-likelihood ratio for the score under the two hypotheses:

x′ = fcal(s) = log
fS|S(s)

fS|D(s)
. (2)

B. The LLR constraint
In [7], [25] the authors show that well-calibrated scores

satisfy the “LLR of the LLR is the LLR” property, i.e., for a
well-calibrated score x = LLR(e),

fcal(x) = log
fX|S(x)

fX|D(x)
= x = log

P (e|S,M)

P (e|D,M)
, (3)

1For the sake of readability we omit explicitly conditioning the densities
fS|S and fS|D on the model M′

where X denotes the R.V. responsible for the generation of
score x. The LLR property constrains the admissible densities
for target and non-target score distributions of well-calibrated
scores. Indeed, from (3) it follows that:

fX|S(s) = exfX|D(s) . (4)

This constraint can be expressed in terms of Moment
Generating Functions (MGF):

MX|D(t) = EX|D
[
etX
]
, MX|S(t) = EX|S

[
etX
]
, (5)

Assuming2 that MX|D is well defined in an open set OD ⊃
[0, 1] and MX|S is well defined in an open set OS ⊃ [−1, 0],
the LLR constraint can be expressed as [10]:

MX|S(t) =

∫
etxfX|S(x)dx =

∫
e(t+1)xfX|D(x)dx = MX|D(t+ 1).

(6)
The LLR constraint in (4) requires that fX|S and fX|D are
proper densities, i.e.

∫
fX|S(x)dx =

∫
fX|D(x)dx = 1. In

terms of MGFs, this requirement corresponds to MX|D(1) =
MX|S(0) = 1 and MX|S(−1) = MX|D(0) = 1. Equation (6)
will be used to derive the expression for the target and the
non-target densities in Section IV.

C. CMLG

The CMLG approach [7] models uncalibrated scores S as
samples of well-calibrated R.V.s X|S and X|D, transformed
by an affine function s = f−1

cal (x) = x−b
a , leading to the

calibration transformation fcal(s) = as + b. As the name
suggests, the conditional distribution X|D for well-calibrated
non-target scores is assumed to be Gaussian. Imposing the
LLR constraint (4) implies that also the target distribution is
Gaussian, and that the two densities are controlled by a single
free parameter µ:

fX|S(x) = N (x|µ, 2µ) , fX|D(x) = N (x| − µ, 2µ) (7)

The R.V.s that describe the observed scores are given by
S|S = f−1

cal (X|S) and S|D = f−1
cal (X|D), distributed as:

fS|S(s) = N (s|mS, v) , fS|D(s) = N (s|mD, v) (8)

where mS,mD and v are related to the model and calibration
parameters µ, a and b by:

mS =
µ

a
− b

a
, mD = −µ

a
− b

a
, v =

2µ

a2
. (9)

CMLG estimates the parameters mS,mD and v that maximize
a weighted log-likelihood criterion for the observed scores:

L =
ζ

nS

∑
i∈IS

logN (si|mS, v)+
1− ζ
nD

∑
i∈ID

logN (si|mD, v)

(10)
where IS and ID denote the sets of indices, and nS and
nD the corresponding cardinalities, of target and non-target
scores, respectively. ζ is a weight that allows balancing the
contribution of the scores of the different classes to the
objective function. Given mS,mD and v, from (9) one can
get the parameters of the calibration function fcal(s) = as+b.

2These assumptions guarantee that both MGFs are well-defined around 0
and thus the uniqueness of the corresponding probability density function.
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D. Unsupervised CMLG

An unsupervised extension of CMLG was presented in [11].
The authors introduce a latent R.V. that represents the (un-
known) label. The conditional distributions given the labels
are derived from CMLG. Well-calibrated scores are therefore
samples of R.V. X with density:

fX(x) = πN (x|µ, 2µ) + (1− π)N (x| − µ, 2µ) . (11)

where π is the prior probability for the target class. The
observed scores are again interpreted as samples of the affine-
transformed R.V. S = f−1

cal (X):

fS(s) = πN (s|mS, v) + (1− π)N (s|mD, v) . (12)

where mS, mD and v have the same meaning as in (8). The
model parameters, which include the additional weight π, can
be estimated by maximizing the log-likelihood:

L =
∑
i∈I

log fS(si) , (13)

where I denotes the set of all score indices I = IS ∪ ID.
Since labels are not available, the objective function does not
allow for different weights for target and non-target samples.

The CMLG approach allows obtaining good results when-
ever the target and non-target score distributions have similar,
approximately Gaussian, shape. However, empirical score dis-
tributions are usually asymmetric, skewed and present heavier-
than-Gaussian tail behavior. For example, Figure 1 plots
the histogram of target and non-target scores for the SRE
2019 Progress set using an x-vector front-end and a PLDA
classifier. The non-target score distribution presents a heavier
left tail, and the shapes of the two histograms are significantly
different. In these cases, CMLG is less effective, especially
for unsupervised scenarios with highly unbalanced classes.
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Fig. 1: Target (red) and non-target (blue) scores histogram for
the SRE 2019 Progress set using an x-vector front-end with a
PLDA classifier, and CMLG estimates of the target and non-
target densities.

III. THE DISTRIBUTION OF LOG-LIKELIHOOD RATIOS OF
PLDA-DISTRIBUTED SPEAKER VECTORS

To better capture the characteristics of the target and non-
target scores in this section we analyze the distribution of well-

calibrated scores generated by a PLDA back-end. We consider
the simplified two-covariance version of the PLDA model3

Φ = Y + E , (14)

where Φ is the R.V. responsible for generating an observed
speaker vector (e.g. i-vector or speaker embedding), Y is
the R.V. representing the speaker identity and E represents
residual noise. The prior distributions of Y and E are:

Y ∼ N (m,B) , E ∼ N (0,W) . (15)

Without loss of generality4, we also assume that m = 0,
and that both B and W are diagonal. We consider pairs of
speaker vectors (φ1,φ2) that are generated by model (14).
Under the same-speaker hypothesis, the i-vectors are sampled
from [

Φ1

Φ2

]
|S ∼ N

(
0,

[
B + W B

B B + W

])
. (16)

Under the different-speaker hypothesis, the pair distribution is[
Φ1

Φ2

]
|D ∼ N

(
0,

[
B + W 0

0 B + W

])
. (17)

The two speaker vectors are independent under the different
speaker hypothesis, whereas they are correlated under the same
speaker hypothesis. It is therefore useful to recast the model in
terms of R.V.s that are independent under both assumptions.
We consider the R.V.s:

Z+ =
(Φ1 + Φ2)√

2
, Z− =

(Φ1 −Φ2)√
2

, Z =

[
Z+

Z−

]
. (18)

The distributions of Z conditioned on the same and different
speaker hypothesis are, respectively:

Z|S ∼ N (0,ΣS) , Z|D ∼ N (0,ΣD) , (19)

with covariance matrices:

ΣS =

[
2B + W 0

0 W

]
, ΣD =

[
B + W 0

0 B + W

]
(20)

ΣS and ΣD are diagonal, and Z+ and Z− are independent
under both hypotheses. The LLR for a pair of speaker vectors
(φ1,φ2) can be written in terms of z =

[
zT+ zT−

]T
, with

z+ =
1√
2

(φ1 + φ2) , z− =
1√
2

(φ1 − φ2) , (21)

as:

LLR(φ1,φ2) = `(z) = log
fZ|S(z)

fZ|D(z)
. (22)

where fZ|S and fZ|D are the densities of Z|S and Z|D.
Replacing the densities with their expressions, we obtain that
the LLR `(z) is a quadratic function of z:

`(z) = −1

2
log
∣∣ΣSΣ−1

D

∣∣− 1

2
zT
(
Σ−1

S −Σ−1
D

)
z . (23)

3Our derivations can be easily extended to subspace-constrained models.
4These assumptions can be recovered through an affine transformation of

the data, f(Φ) = A(Φ −m), where A = UW− 1
2 , with U given by the

SVD of W− 1
2 BW− 1

2 = UΣUT
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Function `(z) maps pairs of speaker vectors to scores. If
speaker vectors are samples of R.V. Z, then the LLRs `(z)
are themselves samples of R.V. L = `(Z). The target and
non-target scores are thus samples of L|S = `(Z|S) and
L|D = `(Z|D). To derive the distribution of L|D we rewrite
Z|D as:

Z|D = Σ
1
2

DY , Y ∼ N (0, I) , (24)

so that the R.V. L|D can be expressed as

L|D = KΣ −
1

2
(Z|D)T

(
Σ−1

S −Σ−1
D

)
(Z|D)

= KΣ −
1

2
YTΣ

1
2

D

(
Σ−1

S −Σ−1
D

)
Σ

1
2

DY

= KΣ −
1

2
YT

(
ΣD/S − I

)
Y , (25)

where we set

ΣD/S = Σ
1
2

DΣ−1
S Σ

1
2

D , KΣ = −1

2
log
∣∣ΣSΣ−1

D

∣∣ . (26)

Following a similar approach, we rewrite Z|S as

Z|S = Σ
1
2

SY , Y ∼ N (0, I) , (27)

and L|S is thus given by:

L|S = KΣ −
1

2
(Z|S)T

(
Σ−1

S −Σ−1
D

)
(Z|S)

= KΣ −
1

2
YTΣ

1
2

S

(
Σ−1

S −Σ−1
D

)
Σ

1
2

SY

= KΣ −
1

2
YT

(
I−ΣS/D

)
Y (28)

with
ΣS/D = Σ

1
2

SΣ−1
D Σ

1
2

S . (29)

Recalling that B and W are diagonal, it follows that also
ΣD/S and ΣS/D are diagonal, with ΣS/D = Σ−1

D/S, and

Diag(ΣD/S) =
[[

b1+w1

2b1+w1
. . . bM+wM

2bM+wM

] [
b1+w1

w1
. . . bM+wM

wM

]]
(30)

where bi and wi are the i-th elements of the diagonal of B
and W, respectively, and M is the size of the feature space
(i.e. the size of the speaker vectors φ).

Matrices ΣD/S and ΣS/D depend on the between and
within class variability only through the between-over-within
variance ratios ρi = bi

wi
:

bi + wi
2bi + wi

=
ρi + 1

2ρi + 1
,

bi + wi
wi

= ρi + 1 . (31)

The matrices ΣD/S−I and I−ΣS/D are thus diagonal, with:

Diag(ΣD/S − I) =
[[
− ρ1

2ρ1+1 · · · −
ρM

2ρM+1

]
,
[
ρ1 . . . ρM

]]
(32)

and

Diag(I−ΣS/D) =
[[
− ρ1
ρ1+1 · · · −

ρM
ρM+1

] [
ρ1
ρ1+1 . . .

ρM
ρM+1

]]
(33)

Rewriting the quadratic forms in (25) and (28) in terms of the
components of Y we get:

L|D = KΣ +
1

2

[
M∑
i=1

ρi
2ρi + 1

Y 2
i,+ −

M∑
i=1

ρiY
2
i,−

]
(34)

L|S = KΣ +
1

2

[
M∑
i=1

ρi
ρi + 1

Y 2
i,+ −

M∑
i=1

ρi
ρi + 1

Y 2
i,−

]
(35)

where Yi,+ and Yi,− are 1-dimensional, independent, standard
normal distributed R.V.s, corresponding to the components of
the first and second half of Y, respectively. Since each Yi,· is
standard normal distributed, we have that:

Yi,· ∼ N (0, 1) =⇒ aY 2
i,· ∼ Γ

(
1

2
,

1

2a

)
, a > 0. (36)

where Γ(a, b) denotes a Gamma distribution with shape a and
rate b. L|D and L|S can be rewritten as

L|D ∼ KΣ +
M∑
i=1

GD
i,+ −

M∑
i=1

GD
i,− (37)

L|S ∼ KΣ +

M∑
i=1

GS
i,+ −

M∑
i=1

GS
i,− (38)

where G·,· are independent, Gamma-distributed R.V.s:

GD
i,+ ∼ Γ

(
1

2
,

2ρi + 1

ρi

)
, GD

i,− ∼ Γ

(
1

2
,

1

ρi

)
(39)

GS
i,+ ∼ Γ

(
1

2
,
ρi + 1

ρi

)
, GS

i,− ∼ Γ

(
1

2
,
ρi + 1

ρi

)
(40)

The term KΣ can also be expressed as a sum of M terms:

KΣ =
M∑
i=1

µi , µi = log

(
(ρi + 1)

2

2ρi + 1

) 1
2

. (41)

Replacing KΣ in (37) and (38) we can write L|D and L|S as

L|D =
M∑
i=1

Li|D , L|S =
M∑
i=1

Li|S (42)

where Li|D and Li|S are independent R.V.s:

Li|D = µi +GD
i,+ −GD

i,− , Li|S = µi +GS
i,+ −GS

i,− .
(43)

The distributions of target and non-target LLRs of a M -
dimensional PLDA model are given by the sum of M inde-
pendent terms, each representing the contribution of a different
speaker vector direction. Furthermore, these terms depend only
on between-over-within class variance ratios. To characterize
the LLR distributions we therefore focus our attention to
the distribution of the different terms Li|D and Li|S. Both
variables correspond to a difference of two Gamma-distributed
R.V.s with the same shape parameter. In [26] it was shown that
the result is a R.V. with a Variance-Gamma distribution:

X ∼ VΓ(λ, α, β, µ) ⇐⇒ MX(t) = etµ
(

1− 2β

γ2
t− t2

γ2

)−λ
(44)

with γ2 = α2 − β2 > 0, α > 0 and t ∈ (−α− β, α− β).
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This result derives from the properties of MGFs, and from
the MGF of the Gamma distribution:

X ∼ Γ(a, b) ⇐⇒ MX(t) =

(
1− t

b

)−a
for t < b . (45)

For the non-target components we have

MLi|D(t) = etµi ·MGD
i,+

(t) ·MGD
i,−

(−t)

= etµi
(

1 +
2ρ2
i

2ρi + 1
t− ρ2

i

2ρi + 1
t2
)− 1

2

, (46)

for t ∈
(
− 1
ρi
, 2ρi+1

ρi

)
⊃ [0, 1]. The MGF of the target

components is

MLi|S(t) = etµi

(
1− ρ2

i

(ρi + 1)
2 t

2

)− 1
2

(47)

for t ∈
(
−ρi+1

ρi
, ρi+1

ρi

)
⊃ [−1, 0]. Both Li|D and Li|S are

thus Variance-Gamma distributed:

Li|D ∼ VΓ(λi,D, βi,D, αi,D, µi,D)

Li|S ∼ VΓ(λi,S, βi,S, αi,S, µi,S) . (48)

The parameters can be inferred by inspection:

Li|D:

µi,D = µi = log

(
(ρi + 1)

2

2ρi + 1

) 1
2

γ2
i,D =

2ρi + 1

ρ2
i

βi,D = −1

α2
i,D = γ2

i,D + 1 =
(ρi + 1)

2

ρ2
i

λi,D =
1

2
(49)

Li|S:

µi,S = µi

γ2
i,S =

(ρi + 1)
2

ρ2
i

βi,S = 0

α2
i,S = γ2

i,S =
(ρi + 1)

2

ρ2
i

λi,S =
1

2
(50)

From (49) and (50) we can notice that, for a given direction
i, the two distributions Li|D and Li|S share all parameters
except βi,D and βi,S. These parameters control the skewness
of the distributions. In particular, the target distribution is
not skewed, while the non-target distribution has negative
skewness, corresponding to a longer left tail. Furthermore,
the parameters only depend on the between-to-within class
variance ratios ρi, and do not depend on the scale of the input
space. Finally, we can observe that each pair Li|D and Li|S
satisfies the LLR constraint (6), since there exists an open set
Oi ⊃ [0, 1] such that, for t ∈ Oi,

MLi|D(t) = MLi|S(t− 1) . (51)

The R.V.s that model target and non-target scores L|D
and L|S are sums of Variance-Gamma components with
parameters specified by (49) and (50). In the general case
the density of L|D and L|S cannot be written in closed
form. Closed form expressions can be recovered if we assume
isotropic between-over-within variance ratios:

bi
wi

= ρi = ρ , ∀i = 1, . . . ,M (52)

In this case, letting µ =
∑M
i=1 µi = KΣ, the MGF of L|D

and L|S are

ML|D =
M∏
i=1

MLi|D = etµ
(

1 +
2ρ2

2ρ+ 1
t− ρ2

2ρ+ 1
t2
)−M2

,

ML|S =
M∏
i=1

MLi|S = etµ

(
1− ρ2

(ρ+ 1)
2 t

2

)−M2
, (53)

corresponding to the Variance-Gamma distributions

L|D ∼ VΓ(λ, α, βD, µ) , L|S ∼ VΓ(λ, α, βS , µ) (54)

where

βD = −1 , α2 =
(ρ+ 1)

2

ρ2
,

βS = 0 , λ =
M

2
. (55)

As expected, also L|D and L|S satisfy the LLR constraint.
Let O be the smallest open set that includes all sets Oi. The
LLR constraint is satisfied since [0, 1] ⊂ O, and, for t ∈ O,

ML|D(t) =
∏
i

MLi|D(t) =
∏
i

MLi|S(t− 1) = ML|S(t− 1)

(56)
We have so far shown that, even for well-calibrated PLDA

systems, scores are not Gaussian distributed, but rather present
skewness and semi-heavy tailed behavior. In presence of mis-
calibration sources the score distribution will, in general,
present different shapes than those we investigated in this
Section. However, the effectiveness of discriminative linear
calibration approaches suggests that, except for location and
scale, the shape of the score distributions does not change sig-
nificantly with respect to well-calibrated scores in many practi-
cal cases. This motivates us to investigate the use of Variance-
Gamma densities for modeling target and non-target distribu-
tions, following an approach similar to CMLG. The method
we propose, Constrained ML Variance Gamma (C-VΓ), shares
many aspects with our previously proposed approach based
on Normal Inverse Gaussian (NIG) distributions [9], [10].
Indeed, both NIG and VΓ belong to the family of Generalized
Hyperbolic (GH) distributions. Furthermore, we observed that
estimated NIG densities provide good approximations of VΓ
densities estimated from verification scores. This can explain
the effectiveness of the Constrained Maximum Likelihood NIG
(C-NIG) [10] method. As we show in the experimental section,
however, the C-VΓ approach outperforms not only the CMLG
approach, but also the C-NIG one. Additionally, given the
effectiveness of both C-VΓ and C-NIG, we investigate the
broader class of Generalized Hyperbolic distributions. This
will allow us to unify the estimation procedures for both
approaches.

IV. CONSTRAINED GENERALIZED HYPERBOLIC MODELS
FOR LINEAR CALIBRATION

The Generalized Hyperbolic distribution [14] belongs to the
family of Gaussian mean-variance mixtures, i.e., distributions
that are defined as:

X = µ+ βV +
√
V Y (57)
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where V and Y are independent R.V.s, Y is standard normal
distributed and the density of the mixing variable V is fV (v).

A. Normal Inverse Gaussian model

Score calibration based on constrained Gaussian mean-
variance mixtures was first analyzed in [9], where sufficient
conditions were derived for target and non-target densities of
well-calibrated R.V.s

X|S = µS + βSVS +
√
VSY

X|D = µD + βDVD +
√
VDY (58)

We proved that, as long as the mixing densities are equal,
fVS

= fVD
, and the parameters are tied (µS = µD = 0, and

βS = −βD = 1
2 ), the distributions in (58) satisfy the LLR

constraint. However, these conditions correspond to target
distributions that are symmetric to non-target densities. In [10]
we further showed that these conditions can be relaxed to fit
a wider range of possible score distributions. In this Section
we briefly recall the relaxed C-NIG model of [10].

The Normal Inverse Gaussian [27] is a 3-parameter distri-
bution corresponding to a mean-variance mixture (57) where
the mixing distribution is an Inverse Gaussian (IG). The NIG
density is given by:

fNIG(x|α, β, δ, µ) =

αδK1

(
α

√
δ2 + (x− µ)

2

)
π

√
δ2 + (x− µ)

2
eδγ+β(x−µ) ,

(59)
where µ is a location parameter, δ > 0 is a scaling parameter,
β controls the skewness of the distribution, α > |β| controls
the heaviness of the distribution tails, and γ =

√
α2 − β2.

Kν(x) is the modified Bessel function of the third kind of
order ν. The C-NIG model assumes that target and non-target
scores si are obtained as an affine transformation of well-
calibrated scores xi, si = xi−b

a . The calibrated scores are
sampled from NIG-distributed R.V.s:

X|D ∼ NIG
(
α, β, δ, δ (γS − γD)

)
,

X|S ∼ NIG
(
α, β + 1, δ, δ (γS − γD)

)
, (60)

where α > max(|β|, |β + 1|), γS =

√
α2 − (β + 1)

2 and
γD =

√
α2 − β2. The location parameter µ is tied to the

other parameters to satisfy the LLR constraint. As in CMLG,
the R.V.s that generates the observed scores are:

S|S =
1

a
(X|S)− b

a
, S|D =

1

a
(X|D)− b

a
, (61)

and they are also NIG-distributed, with parameters depending
on the free parameters α, β, δ and the calibration parameters
a, b. As we show in Section IV-D, the C-NIG model is a special
case of the Constrained GH model.

B. Variance-Gamma model

As we have shown in Section III the Variance-Gamma
distribution corresponds to the distribution of well-calibrated

scores generated from a PLDA model with isotropic between-
over-within class variance ratio. VΓ distributions are Gaussian
mean-variance mixtures (57), where the mixing R.V. has a
Gamma density. The result is a 4-parameter family:

fVΓ(x|λ, α, β, µ) =
γ2λ|x− µ|λ− 1

2Kλ− 1
2
(α|x− µ|)

√
πΓ(λ)(2α)

λ− 1
2

eβ(x−µ)

(62)
where µ, β and α > |β| control the location, skewness
and tail heaviness, respectively, and λ is a shape parameter.
Following the CMLG and C-NIG approach, we assume that
well-calibrated scores are generated according to the VΓ
distributions:

X|D ∼ VΓ(λ, α, βD, µ) , X|S ∼ VΓ(λ, α, βS, µ) . (63)

According to model (54), µ and α both depend on the single
parameter ρ, and are therefore tied, whereas λ depends only
on the speaker vector dimensionality, λ = M

2 , and βD and
βS should be fixed to −1 and 0, respectively. Letting γS =√
α2 − β2

S = α and γD =
√
α2 − β2

D =
√
α2 − 1, µ can be

expressed as a function of the remaining parameters as:

µ =
M

2
log

(ρ+ 1)
2

2ρ+ 1
= log γ2λ

S − log γ2λ
D . (64)

Model (63) corresponds to well-calibrated scores of a PLDA
model with isotropic between-over-within class variance ratios
ρi. In general, the ratios will be different, and the direc-
tions with larger ratio will have more impact over the final
score. Therefore, rather than fixing λ, we estimate an optimal
value from the data. The estimated λ can be interpreted
as representing an “effective” number of relevant speaker
embedding dimensions. Furthermore, in many practical cases
mis-calibration sources can slightly affect the skewness of both
distributions. The C-NIG model allows capturing these effects
by allowing for non-symmetric target distributions. Since the
VΓ skewness can be controlled in a similar way, we relax the
model assumptions on βD, and we consider the more flexible
VΓ model:

X|D ∼ VΓ(λ, α, βD, µ) , X|S ∼ VΓ(λ, α, βD + 1, µ) .
(65)

where, in contrast with (63), βD, α and λ are all free
parameters of the distribution. In the next section we show
that model (65) satisfies the LLR constraint, as long as
µ is properly tied to the remaining parameters. Assuming
linear calibration as in CMLG and C-NIG, we can write the
distribution of observed scores as:

S|S =
1

a
(X|S)− b

a
, S|D =

1

a
(X|D)− b

a
, (66)

and estimate by Maximum Likelihood βD, α and λ, and
the calibration parameters a, b. Constrained Variance Gamma
(C-VΓ), as C-NIG, is a particular instance of the Constrained
GH model. Thus its parameters can be trained as detailed for
the GH approach in Sections IV-D and IV-E.
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C. Generalized Hyperbolic distributions

GH distributions are mean-variance mixtures (57) where the
mixing distribution is the 3-parameters Generalized Inverse
Gaussian (GIG):

fGIG(x|λ, δ, γ) =
(γ
δ

)λ xλ−1

2Kλ(δγ)
e
− 1

2

(
δ2

x +γ2x
)
. (67)

The resulting GH distribution has 5 parameters, with density:

fGH(x|λ, α, β, δ, µ) =

∫
N (x|µ+ βv, v)fGIG(v|λ, δ,

√
α2 − β2)dv

=

( γ
δ

)λ
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
√

2παλ−
1
2Kλ(δγ)

(√
δ2 + (x− µ)2

) 1
2
−λ

eβ(x−µ) . (68)

where α > |β| , δ > 0 and γ =
√
α2 − β2. The NIG

distribution corresponds to the special case λ = − 1
2 :

fNIG (x|α, β, δµ) = fGH

(
x

∣∣∣∣−1

2
, α, β, δ, µ

)
. (69)

The Variance-Gamma distribution corresponds to the boundary
case where λ > 0 and δ → 0. In this case, the GIG density
converges to a Gamma density:

fGIG(x|λ, δ, γ)
δ→0−−−→ fΓ

(
x

∣∣∣∣λ, γ2

2

)
=
γ2λ

2λ
xλ−1

Γ(λ)
e−

1
2γ

2x ,

(70)
and the GH density converges to the VΓ density (62)

fGH(x|λ, α, β, δ, µ)
δ→0−−−→ fVΓ(x|λ, α, β, µ) . (71)

In the following we will derive the Constrained GH model
using the proper GH density (68). Similar considerations can
be readily extended to derive the Constrained Variance Gamma
model from the slightly more general GH formulation given
in [28], which includes both proper GH (68) and VΓ as special,
proper cases. In practice, we implement the VΓ model using
proper GH densities with fixed, very small values of δ.

D. Constrained GH model

GH distributions can model well-calibrated scores, provided
that the target and non-target distributions are tied. To derive
the constraints that well-calibrated GH distributions should
satisfy, we assume that non-target scores are generated by a
GH density with parameters (λ, α, β, δ, µ):

X|D ∼ GH(λ, α, β, δ, µ) . (72)

The MGF of X|D is:

MX|D(t) = eµt
γλ

Kλ(δγ)

Kλ

(
δ

√
α2 − (β + t)

2

)
(√

α2 − (β + t)
2

)λ , (73)

defined for t ∈ (−α−β, α−β). The LLR constraint requires
MX|D to be defined around t = 1, thus we have to constrain

the parameters from α > |β| to α > max(|β| , |β + 1|).The
MGF of X|S is then given by:

MX|S(t) = MX|D(t+ 1) = eµt
eµγλ

Kλ(δγ)

Kλ

(
δ
√
α2 − [(β + 1) + t]2

)
(√

α2 − [(β + 1) + t]2
)λ ,

(74)
with parameters tied to satisfy MX|S(0) = MX|D(1) = 1.

Letting γS =

√
α2 − (β + 1)

2:

MX|S(0) = 1 ⇐⇒ eµγλ

Kλ(δγ)

Kλ (δγS)

γλS
= 1 , (75)

and solving for µ:

eµ =
Kλ(δγ)

γλ
γλS

Kλ (δγS)
. (76)

Letting βS = β + 1, and replacing (76) in (74) we get the
MGF of X|S:

MX|S(t) = eµt
γλS

Kλ(δγS)

Kλ

(
δ

√
α2 − (βS + t)

2

)
(√

α2 − (βS + t)
2

)λ , (77)

which is the MGF of a GH distribution with parameters

X|S ∼ GH(λ, α, β + 1, δ, µ) , (78)

Summarizing, the C-GH model assumes that well-calibrated
scores are samples of the GH distributions:

X|D ∼ GH(λ, α, β, δ, µ) , X|S ∼ GH(λ, α, β + 1, δ, µ) ,
(79)

with µ = log Kλ(δγ)
γλ

γλS
Kλ(δγS) . Setting λ = − 1

2 gives the
C-NIG model of (60), whereas letting λ > 0 and δ → 0 leads
to the C-VΓ model (65). In this case the parameters constraint
becomes µ = log γ2λ

S − log γ2λ
D , which corresponds to (64).

Assuming linear mis-calibration, the observed scores are
distributed according to

S|D =
1

a
(X|D)− b

a
, S|S =

1

a
(X|S)− b

a
, (80)

corresponding to the GH distributions [29]

S|D ∼ GH(λ, α, βD, δ, µ) , S|S ∼ GH(λ, α, βS, δ, µ)
(81)

with

µ =
µ− b
a

, α = aα, βD = aβ, βS = aβ+a, δ =
δ

a
. (82)

The distributions depend on six free parameters,
λ, α, βD, βS, δ, µ, which are related to the calibration
parameters through (82). The parameters can be estimated by
maximizing the weighted log-likelihood

L =
ζ

nS

∑
i∈IS

log fS|S(si)+
1− ζ
nD

log
∑
i∈ID

fS|D(si) . (83)
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Let γD =

√
α2 − β2

D and γS =

√
α2 − β2

S. Given λ, α,

βS, βD, δ, µ, since µ = log
γλSKλ(δγD)

γλDKλ(δγS)
= log

γλSKλ(δγD)
γλDKλ(δγS)

,

the calibration parameters can be computed as5 :

a = βS − βD , b = −aµ+ log
γλSKλ

(
δγD

)
γλDKλ

(
δγS

) (84)

E. Unsupervised C-GH

The unsupervised extension of the C-GH model follows the
same strategy of [11] and [10]. Let π denote the target class
prior probability. We model observed scores as samples of a
random variable S, with density given by:

fS(s) = πfGH(s|λ, α, βS, δ, µ)+(1−π)fGH(s|λ, α, βD, δ, µ)
(85)

i.e. a two-component mixture model whose components are
the GH densities of S|D and S|S in (81). The model param-
eters can be estimated by maximizing the log-likelihood:

L (λ, α, βD, βS, δ, µ) =
∑
i∈I

log fS(si) (86)

using the EM algorithm, as for CMLG and C-NIG.

V. THE EM ALGORITHM FOR C-GH

Training the C-GH model requires optimizing either (83) or
(86) depending on the task. We have observed that general pur-
pose solvers such as L-BFGS [30]–[33], although applicable,
often converge to bad local optima of the log-likelihood. We
therefore apply an Expectation-Maximization (EM) procedure
to estimate the model parameters. For the sake of readability,
we drop all the overline symbols, rewriting the model as

S|D ∼ GH(λ, α, βD, δ, µ) , S|S ∼ GH(λ, α, βS, δ, µ)
(87)

A. Supervised C-GH

We consider a more general version of the log-
likelihood (83), in which each trial score is weighted by factor
ζi. This will simplify the derivations of the EM steps for the
unsupervised model. The objective function is therefore:

L =
∑
i∈IS

ζi log fS|S(si) +
∑
i∈ID

ζi log fS|D(si) (88)

Since the GH distributions are normal mean-variance mix-
tures, it’s natural to consider the mixing R.V. as the hidden
variable for the EM algorithm. Let S = µ+βV +

√
V Y , Y ∼

N (0, 1), denote a GH-distributed R.V. S ∼ GH(λ, α, β, δ, µ).
The distribution of S given a value v for V is Gaussian:

fS|V (s|v) = N (s|µ+ βv, v) . (89)

The mixing density is the prior distribution for V :

fV (v) = fGIG

(
v|λ, δ,

√
α2 − β2

)
= fGIG (v|λ, δ, γ) .

(90)

5Alternatively, the calibration transformation can be computed directly from
the GH densities x = fcal(s) = as+ b = log

fGH (s|λ,α,βS,δ,µ)

fGH (s|λ,α,βD,δ,µ)
.

The joint distribution of S and V is therefore given by:

log fS,V (s, v) = c− 1

2
log v − 1

2

(s− µ− βv)
2

v
+ λ log γ

− λ log δ + (λ− 1) log v − logKλ(δγ)− 1

2

δ2

v
− 1

2
γ2v ,

(91)

where c collects all constant terms. The posterior distribution
for V given S is also a GIG [27]:

fV |S(v|s) = fGIG

(
v

∣∣∣∣λ− 1

2
,

√
δ2 + (s− µ)

2
, α

)
. (92)

It is worth noting that the posterior distribution does not
depend on parameter β, thus it has the same shape both if si
is a target or it is a non-target score. Therefore, we will denote
the posterior distributions for both target and non-target scores
as fV |S rather than fV |S,S and fV |S,D.

The EM auxiliary function is given by

Q(θ,θ∗) =
∑
i∈ID

ζiEfV |S(vi|si,θ∗)
[
log fS,V |D(si, vi|θ)

]
+
∑
i∈IS

ζiEfV |S(si|vi,θ∗)
[
log fS,V |S(si, vi|θ)

]
(93)

where θ = (λ, α, βD, βS, δ, µ) is the set of parameters to
estimate, θ∗ = (λ∗, α∗, β∗D, β

∗
S, δ

∗, µ∗) is the current set of
parameters, and

fS,V |D(s, v) = N (s|µ+ βDv, v) · fGIG(v|λ, δ, γD)

fS,V |S(s, v) = N (s|µ+ βSv, v) · fGIG(v|λ, δ, γS) (94)

The expectations in (93) can be computed as:

EfV |S(s|v,θ∗)
[
log fS|V,D(s|v,θ)fV |D(v|θ)

]
= c1+µsE

[
1

v

]
− 1

2
µ2E

[
1

v

]
+ βDs− βDµ+ λ log γD − λ log δ

+ λE [log v]− logKλ(δγD)− 1

2
δ2E

[
1

v

]
− 1

2
α2E [v] ,

(95)

where c1 collects all terms that do not depend on the
model parameters θ. The expressions for the target class
EfV |S(s|v,θ∗)

[
log fS|V,S(s|v,θ)fV |S(v|θ)

]
are obtained sim-

ply replacing γD by γS, and βD by βS in (95). We make use
of well known results for GIG distributions [34] to compute
the expectations. Let

φ∗(s) =

√
δ∗2 + (s− µ∗)2

. (96)

Recalling the posterior distribution for V |S in (92), the ex-
pectations are given by:

EfV |S(v|s,θ∗) [v] =
φ∗(s)Kλ∗+ 1

2
(α∗φ∗(s))

αKλ∗− 1
2

(α∗φ∗(s))

EfV |S(v|s,θ∗)

[
1

v

]
=

αKλ∗+ 1
2

(α∗φ∗(s))

φ∗(s)Kλ∗− 1
2

(α∗φ∗(s))
−

2λ∗ − 1

[φ∗(s)]2

EfV |S(v|s,θ∗) [log v] = log
φ∗(s)

α
+ (∂ν [logKν ])λ∗− 1

2
(αφ∗(s))

(97)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2020.3040103

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 10

where (∂ν [logKν ])λ∗− 1
2
(x) denotes the derivative of the

logarithm of the Bessel function [logKν(x)] with respect to
the order ν, evaluated at ν = λ∗ − 1

2 . Since we are not
aware of simple expressions for ∂ν [logKν ], in this work we
approximate this derivative through finite differences. Replac-
ing the expectations in (93), and applying some algebraic
manipulations, we can express the auxiliary function in terms
of class-dependent statistics:

ZS =
∑
i∈IS

ζi , ZD =
∑
i∈ID

ζi ,

FS =
∑
i∈IS

ζisi , FD =
∑
i∈ID

ζisi ,

VS =
∑
i∈IS

ζiE [vi] , VD =
∑
i∈ID

ζiE [vi] ,

WS =
∑
i∈IS

ζiE
[

1

vi

]
, WD =

∑
i∈ID

ζiE
[

1

vi

]
,

GS =
∑
i∈IS

ζisiE
[

1

vi

]
, GD =

∑
i∈ID

ζisiE
[

1

vi

]
,

LS =
∑
i∈IS

ζiE [log vi] , LD =
∑
i∈ID

ζiE [log vi] , (98)

and global statistics:

Z = ZS + ZD , W =WS +WD ,

G = GS + GD , L = LS + LD . (99)

The auxiliary function is given by:

Q(θ,θ∗) = c2 + Gµ− 1

2
Wµ2 + FDβD + FSβS −ZDµβD

−ZSµβS + ZDλ log γD + ZSλ log γS −Zλ log δ + Lλ

−ZD logKλ(δγD)−ZS logKλ(δγS)− 1

2
Wδ2 − 1

2
Vα2 ,

(100)

where c2 collects all terms that do not depend on the param-
eters θ, and γD and γS are functions of α, βD and βS.

Maximization of Q(θ,θ∗) with respect to θ cannot be per-
formed in closed form. We thus rely on numerical optimization
to estimate the updated parameters in the M-step. However,
for some parameters the domain is not R. The constraints that
should be enforced are α >

√
max(β2

D, β
2
S), βS > βD and

δ > 0. Furthermore, the complexity of the computation of
Bessel functions is proportional to the order λ of the function
itself. We have shown in section IV that the effective NIG
approximation corresponds to λ = − 1

2 . We have also shown
that, for the C-VG model, we can interpret λ as the number of
“effective” input dimensions. Therefore, we add an additional
(not required by the model) constraint to bound the value of λ
to λ ∈ (−M2 , M2 )6, where M is the input dimensionality. To
avoid using numerical optimizers with explicit constraints, we
re-parametrize the objective function expressing the distribu-

6The densities of the C-VΓ model would require λ > 0. Since we
implement C-VΓ as a C-GH model with small δ, we can relax the constraint
λ > 0. In practice, we did not obtain estimated values λ ≤ 0 in our tests.

tion parameters (λ, α, βD, βS, δ) as an invertible function of
the optimization parameters (λ̂,∆α, β0,∆

log
β , δlog):

βD = β0 −
1

2
e∆log

β , βS = β0 +
1

2
e∆log

β , δ = eδ
log

α =
√
σk(β2

S, β
2
D) + ∆2

α , λ =
M

2
tanh(λ̂) , (101)

where σk(a, b) is the log-sum-exp or softmax7 function8

σk(a, b) =
1

k
log
(
eka + ekb

)
(102)

where k controls the smoothness of the softmax function
(in our experiments we found k = 1 to be effective).
Maximization of the auxiliary function is based on the L-
BFGS [30]–[33] algorithm. The algorithm requires computing
the gradients with respect to the optimization parameters
(λ̂,∆α, β0,∆

log
β , µ, δlog). These gradients can be computed

from the derivatives of Q w.r.t. the original parameters. Re-
calling the derivative of the log-Bessel function:

Dλ(x) =
∂ logKλ(x)

∂x
=
λ

x
− Kλ+1(x)

Kλ(x)
= −Kλ−1(x)

Kλ(x)
− λ

x
,

(103)
the partial derivatives of Q are:

∂Q

∂γD
= ZDδ

Kλ+1(δγD)

Kλ(δγD)
,

∂Q

∂γS
= ZSδ

Kλ+1(δγS)

Kλ(δγS)
,

∂Q

∂βD
= FD −ZDµ−

βD

γD

∂Q

∂γD
,

∂Q

∂βS
= FS −ZSµ−

βS

γS

∂Q

∂γS
,

∂Q

∂α
=

α

γD

∂Q

∂γD
+

α

γS

∂Q

∂γS
− αV ,

∂Q

∂δ
= −ZDγD

Kλ−1(δγD)

Kλ(δγD)
−ZSγS

Kλ−1(δγS)

Kλ(δγS)
− δW ,

∂Q

∂µ
= G −Wµ−ZDβD −ZSβS , (104)

The derivative ∂Q
∂λ requires differentiating the Bessel function

w.r.t. its order, and was therefore approximated by finite
differences. The derivatives with respect to the optimization
parameters (λ̂,∆α, β0,∆

log
β , δlog) can be obtained by applying

the chain rule, and are given by:

∂Q

∂∆α
=
∂Q

∂α

∆α

α
,

∂Q

∂δlog
=
∂Q

∂δ
eδ ,

∂Q

∂λ̂
=
∂Q

∂λ

M

2

(
1− tanh2(λ)

)
,

∂Q

∂∆log
β

=
∑

h∈{S,D}

(
∂Q

∂α

βh

α

ekβh

ekβD + ekβS
+
∂Q

∂βh

)(
βh − β0

)
,

∂Q

∂β0
=

∑
h∈{S,D}

(
∂Q

∂α

βh

α

ekβh

ekβD + ekβS
+
∂Q

∂βh

)
, (105)

Although more effective than numerical optimization, the EM
algorithm exhibited, in our experiments, slow convergence.
We therefore applied a Quasi-Newton (QN) acceleration
scheme [35]. The method combines the log-likelihood gradient
with the ascent direction given by the M-step solution. The
log-likelihood gradient can be computed from the auxiliary

7The name softmax is commonly used to refer to the multivariate function
exi∑
i e
xi , which, however, does not correspond to a soft maximum, but rather

to a soft arg max. The soft arg max is the gradient of the softmax function
in (102)

8We replace the maximum with a smooth maximum function to keep the
re-parametrization differentiable.
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function derivatives or, alternatively, from the derivatives of
the logarithm of a GH density log fGH(x|µ, α, β, δ, λ):

∂ log fGH

∂α
=
αλ

γ2
−
αδ

γ
Dλ(δγ) + φ(x)Dλ− 1

2
(αφ(x))−

λ− 1
2

α
,

∂ log fGH

∂β
=
δβ

γ
Dλ(δγ)−

λβ

γ2
+ x− µ ,

∂ log fGH

∂δ
=

αδ

φ(x)
Dλ− 1

2
(αφ(x))− γDλ (δγ)−

λ

δ
+

(
λ−

1

2

)
δ

φ(x)2
,

∂ log fGH

∂µ
=

(
α

φ(x)
Dλ (αφ (x)) +

λ− 1
2

φ(x)2

)
(µ− x)− β , (106)

where φ(x) =

√
δ2 + (x− µ)

2. As for the EM auxiliary func-
tion, the derivative w.r.t. λ requires differentiating the Bessel
function with respect to its order, which we approximate via
finite differences.

B. Unsupervised C-GH

We introduce a latent variable H for class labels, with
Bernoulli prior distribution

PH(S) = π , PH(D) = 1− π . (107)

Given H, the conditional distributions for target and non-target
scores are the same as in the supervised model.

The complete data log-likelihood can be expressed as9

fS,V,H(s, v, h) = fS|V,h(s|v)fV |h(v)PH(h) (108)

where h ∈ {D,S}. The marginal distribution for the score is:

fS(s) =
∑

h∈{D,S}

PH(h)

∫
v

fS|V,h(s|v)fV |h(v)dv

= πfS|S(s) + (1− π) fS|D(s) (109)

where
fS|h(s) = fGH(λ, α, βh, δ, µ) , (110)

and the log-likelihood for the observed scores is:

L =
∑
i∈I

log
[
πfS|S(si) + (1− π) fS|D(si)

]
(111)

The EM algorithm allows computing ML estimates of the dis-
tribution parameters. In contrast with the supervised case, the
latent variables include both V and H. The prior distribution
for V and H can be factorized as

fV,H(v, h) = fV |h(v)PH(h) . (112)

The EM algorithm requires maximizing the auxiliary function

Q(θ,θ
∗
) =

∑
i∈I

EfV,H|S(vi,hi|si,θ
∗
)

[
log fS,V,H(si, vi, hi|θ)

]
,

(113)

where we made explicit the optimization parameters θ =
(λ, α, βD, βS, δ, µ, π) and the current parameter estimate
θ
∗

= (λ∗, α∗, β∗D, β
∗
S, δ

∗, µ∗, π∗). The posterior distribution
required for the E-step can be expressed as

fV,H|S(v, h|s,θ∗) = fV |S(v|s,θ∗)PH|S(h|s,θ∗) (114)

9We denote densities conditioned on values of H = h as f·|h(·) rather
than f·|H(·|h). The choice allows keeping the notation of previous sections
for target and non-target densities (e.g. f·|S(·) rather than f·|H(·|S))

where fV |S does not depend on h (Section V-A) and
PH|S(h|s,θ∗) can be computed as

PH|S(h|s,θ∗) =
fS|h(s|θ∗)

π∗fS|S(s|θ∗) + (1− π∗) fS|D(s|θ∗)
.

(115)
Let θ∗ = (λ∗, α∗, β∗D, β

∗
S, δ

∗, µ∗) be the current GH parame-
ters estimate. The auxiliary function can be rewritten as

Q(θ,θ
∗
) =

∑
i∈I

EPH|S(hi|si,θ
∗
)

[
EfV |S(vi|si,θ∗)

[
log fS,V |hi(si, vi|θ) + logPH(hi|θ)

] ]
. (116)

Let ζ̂i = PH|S(S|si,θ
∗
), so that PH|S(D|si,θ

∗
) = 1 − ζ̂i.

The auxiliary function can be written as the sum of two
terms, the first depending only on the GH parameters θ =
(λ, α, βD, βS, δ, µ), and the second only on the weight π:

Q(θ,θ
∗
) = Q1(θ,θ

∗
) +Q2(π,θ

∗
) (117)

with

Q1(θ,θ
∗
)=
∑
i∈I

ζ̂iEfV |S(vi|si,θ∗)
[
log fS,V |S(si, vi|θ)

]
+
∑
i∈I

(
1− ζ̂i

)
EfV |S(vi|si,θ∗)

[
log fS,V |D(si, vi|θ)

]
,

Q2(π,θ
∗
)=
∑
i∈I

ζ̂i log π +
∑
i∈I

(
1− ζ̂i

)
log (1− π) . (118)

We can thus independently optimize Q1 and Q2. We observe
that Q1(θ,θ

∗
) has a very similar expression as the auxiliary

function for the supervised task (93). In particular, we can
interpret Q1 as the auxiliary function of a supervised task,
where the samples are considered as belonging to both the
target and non-target class with weights ζ̂i and 1− ζ̂i, respec-
tively. Q1(θ,θ

∗
) can be expressed as in (100), provided that

the statistics (98) are computed taking the summations over all
samples, and using weights ζ̂i for the summations of statistics
with subscript S, and weight 1 − ζ̂i for the statistics with
subscript D. For example, the zero and first order statistics
are obtained as:

ZS =
∑
i∈I

ζ̂i , ZS =
∑
i∈I

(
1− ζ̂i

)
, Z = ZS + ZD

FS =
∑
i∈I

ζ̂isi , FD =
∑
i∈I

(
1− ζ̂i

)
si , (119)

and the same applies to the other terms. The M-step for Q1

can be implemented as the M-step for the supervised auxiliary
function. The second term Q2(π,θ

∗
) can be optimized in

closed form, with the optimum given by:

π =
ZS

Z . (120)

Since the QN approach cannot enforce the constraint π ∈
(0, 1), we re-parametrize π as π = 1

1+e−ω , and optimize the
log-likelihood w.r.t. the parameter ω.

VI. EXPERIMENTAL RESULTS

In this section we analyze the performance of the proposed
models for supervised and unsupervised tasks with different
speaker vector front-ends and classification back-ends.
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A. Classifiers

The considered back-ends are PLDA and two PLDA-derived
classifiers: Non-Linear PLDA (NL-PLDA) [21], [22] and
Pairwise Support Vector Machine (PSVM) [23], [24].

1) NL-PLDA: NL-PLDA extends PLDA introducing a non-
linear, invertible function aimed at transforming the speaker
vectors so that their distribution better matches the PLDA
assumptions, improving accuracy and reducing mis-calibration
effects due to inaccurate modeling assumptions.

2) Pairwise SVM: The PSVM approach trains a single
classifier on speaker vector pairs aimed at separating same-
speaker from different-speaker trials. The separation surfaces
are derived from the PLDA log-likelihood ratio expression,
whereas the model is trained using the standard SVM ob-
jective. The resulting model outperforms PLDA in several
benchmarks. Since PSVM and PLDA scoring functions have
the same formal expression, we expect our approach to be
effective also for the PSVM back-end.

B. Benchmarks

We consider three different datasets: SRE 2019 [15], SRE
2012 [16] and SRE 2010 [17], each based on a different
front-end. For the unsupervised scenario, we consider different
percentages of target and non-target priors. However, rather
than sampling different amounts of non-target trials, we keep
the same training set, but we differently re-weight target and
non-target samples. This allows comparing models trained
using different proportions of trials.

1) SRE 2019: The SRE 2019 front-end consists of a Deep
Neural Network (DNN) with the same topology as in [36]. The
DNN input consists of 24-dimensional Perceptual Linear Pre-
dictors (PLP) features, and the speaker embeddings are 512-
dimensional. The speaker embeddings have been processed
by means of LDA, which reduces the dimensionality to 400
for PSVM and to 150 for PLDA and NL-PLDA, followed by
whitening. For PLDA, we consider both length-normalized and
raw embeddings. The NL-PLDA backend can incorporate an a
utterance-dependent scaling factor similar to length normaliza-
tion as detailed in [21], [22]. We test the model both with and
without this scaling factor. Within-Class Covariance (WCCN)
normalization was applied to length-normalized embeddings
for PSVM training. Since typical applications of unsupervised
calibration involve development data that closely mimics the
test population, the calibration models were trained on a subset
of the SRE 2019 Progress set. The calibration performance was
evaluated on the SRE 2019 Evaluation set.

2) SRE 2012: The SRE 2012 system is based on the
hybrid GMM/DNN framework [37]–[39]. The acoustic fea-
tures consist of 20 PLP coefficients and their delta and delta-
delta parameters. The DNN comprises 256 outputs. For each
DNN output, we fit an 8-dimensional, full covariance GMM
using the approach in [40]. Overall, the UBM has 2048
components. The speaker vectors are obtained from a 400-
dimensional e-vector extractor [19]. The NL-PLDA model
has been trained on whitened e-vectors, and includes an
utterance-dependent scaling factor [21], [22], whereas length
normalization followed by WCCN was applied for the PSVM

back-end. Tests were performed on the extended tel-tel core
condition (condition 5). The test sets were divided in two,
non overlapping, parts. The first part, that comprises 25% of
the enrollment segments, was used to estimate the calibration
parameters. The remaining part was used as evaluation.

3) SRE 2010: The SRE 2010 system is based on 400-
dimensional i-vectors, estimated from a gender-dependent,
1024-components, diagonal covariance UBM based on 45-
dimensional MFCC features, incorporating delta and double-
delta parameters. The backend is a PLDA classifier. I-vectors
pre-processing consists in whitening and length normalization.
The tests were performed on the female extended tel-tel
condition (condition 5). The test set was divided in two, non
overlapping, parts. The first part, that comprises 25% of the
enrollment segments, was used to estimate the calibration
parameters. The remaining part was used as evaluation.

C. Evaluation Metrics
Results are reported in terms of Cost of Log-Likelihood

Ratio Cllr [4], [41], [42] and of the primary metric Cprim
defined for each task. In several real applications low False
Acceptance (FA) operating points are far more interesting
than low False Rejection (FR) operating points. Since Cllr
does not differentiate from bad calibration in low FA and
low FR regions, we also propose a metric that computes the
re-normalized contribution to Cllr due to applications where
the FA cost cfa is larger than the FR cost cfr. Rather than
assuming a uniform prior over [0, 1] for the parameter that
represents the range of possible applications t =

cfa
cfa+cfr

as
for Cllr [4], [41], [42], we assume a uniform prior over [0.5, 1].
We denote this measure as C`llr

10 We also provide normalized
Bayes error rate [41] plots for some of the systems. These
graphs show the normalized Detection Cost Function (DCF)
corresponding to different target prior log-odds x = log p

1−p ,
where p is a synthetic prior.

D. Baseline systems and model initialization
For supervised scenarios the baseline systems are Log-

Reg, CMLG, and the unconstrained NIG model of [8]. For
the unsupervised scenario, the baselines are an unsupervised
CMLG [11] model, and the unsupervised extension of the
unconstrained NIG model [10]. To avoid possible bias due to
poor initialization, the unsupervised CMLG and NIG models
have been initialized using oracle values obtained from the
corresponding supervised models. For C-NIG and C-VΓ we
investigate both the oracle and a completely unsupervised
initialization, consisting in the following steps: (i) scores are
centered and whitened to avoid possible numerical issues due
to score dynamics; (ii) a single NIG or VΓ distribution is fitted
over all scores, and the resulting parameters are used as initial
estimates for the tied parameters and for βD; (iii) calibration
parameters are set to a = 1 and b = 0, so that initial value
for the target distribution skewness becomes βS = βD + 1.
Oracle-initialized models are denoted by a symbol * in the
following tables and plots.

10The corresponding measure for low FR regions, Crllr , can be obtained
assuming uniform prior for t over [0, 0.5]. Cllr is then given by the average
of Clllr and the Crllr .
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Fig. 2: Estimated densities, calibration transformation and Bayes error plots for the unsupervised SRE 2010 task with PLDA
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Fig. 3: Estimated densities, calibration transformation and Bayes error plots for the unsupervised SRE 2010 task with PLDA.
Symbol * denotes oracle-initialized models. The score histograms reflect the target trial proportion π = 0.5%.

E. Results

To assess the performance of the proposed approach, we
start considering the SRE 2019 task with a PLDA classifier
that does not employ length normalization. Figure 2-a plots the
normalized score histograms, whereas Figure 2-b allows com-
paring the calibration transformations of the different models
with the solution provided by isotonic regression computed
through the PAV [43] algorithm on the calibration set. Finally,
Figure 2-c shows the corresponding Bayes error plots. Cllr,
C`llr and Cprim are shown in Table I-a. The supervised models
have been trained with target weight set to ζ = 0.01.

As expected, the unconstrained NIG model, having more
parameters, provides the best fit to the two distributions, and
the corresponding non-linear transformation better approxi-
mates the PAV curve. The resulting model thus achieves better
performance than the linear alternatives. Nevertheless, C-NIG
and C-VΓ are also able to provide good estimates of the score
distributions, achieving results similar to those of Logistic
Regression. Although effective in terms of Cllr, in the low FA
regions CMLG provides bad calibration even in the supervised
task, while C-NIG and C-VΓ deliver very low calibration error.

The benefits of the proposed approaches become more
evident in the unsupervised scenarios. Figure 3-a shows the
score histograms and the estimated densities for an unsu-
pervised task with a target trial proportion π = 0.5%. The
corresponding calibration transformation and Bayes error plots
are shown in Figures 3-b and 3-c. Cllr, C`llr and Cprim are
shown in Table I-a, together with the results for different target
proportions. In this table, and in the following ones, entries
marked by a † symbol correspond to performance worse than
that of a system based on prior information only.

We can observe that, even with oracle initialization, the
CMLG model fails at estimating the distribution of target
trials, thus resulting in worse-than-chance performance. In
Figure 3-a the CMLG target distribution is not visible, since
its mass is concentrated outside of the region that contains the
target scores. Indeed, since the non-target right tails decreases
faster than the values predicted by CMLG, the model assigns
the target scores to the non-target distribution While CMLG
fails due to poor modeling assumptions, unconstrained NIG
suffers from the opposite issue. The excessive freedom, which
was beneficial for the supervised task, allows the model to
assign a significant part of non-target scores to the target class.
The C-NIG and C-VΓ models, on the other hand, provide good
estimates of the target distribution density. From Figure 3-
b we can observe that C-VΓ provides the best fit to the
PAV curve. It is also worth noting that, in this case, the
unconstrained NIG transformation is slightly non-monotonic.
The superior performance of the C-VΓ approach is confirmed
by the normalized Bayes error plot in Figure 3-c.

Table I-a summarizes the results for different target pro-
portion. The C-NIG results are similar to those we reported
in [10]: with oracle-initialization, the model obtains perfor-
mance equal or better than oracle-initialized NIG for the very
low FA regions (Cprim metric) for all but the hardest scenario.
However, the model tends to provide inaccurate results for
low FR regions. Furthermore, the fully unsupervised model
is able to reach the performance of the oracle-initialized
approach in some, but not all cases. This suggests that better
initialization procedures might be necessary for C-NIG. The
fully unsupervised C-VΓ model, on the other hand, achieves
accuracy similar to that of supervised models in all scenarios.
Although for the easier cases π = 0.5% and π = 0.2% the
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TABLE I: Results for the SRE 2019 task using x-vectors. Oracle-initialized models are denoted by *. A † denotes performance
worse than that of a system based only on prior information.

(a) PLDA backend without length normalization.

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.245 — min cost: 0.219
Supervised 0.263 0.220 0.266 0.253
π = 0.5% † 0.414 0.549 / 0.549 0.288 / 0.289
π = 0.2% † 0.377 0.630 / 0.971 0.264 / 0.264
π = 0.05% † † 0.970 / 0.880 0.256 / 0.256

C`llr : — Log-Reg: 0.181 — min cost: 0.173
Supervised 0.212 0.174 0.175 0.183
π = 0.5% † 0.199 0.194 / 0.194 0.183 / 0.183
π = 0.2% † 0.227 0.200 / † 0.190 / 0.190
π = 0.05% † 0.220 0.949 / † 0.199 / 0.199

Cprim: — Log-Reg: 0.409 — min cost: 0.405
Supervised 0.843 0.409 0.406 0.407
π = 0.5% † 0.438 0.405 / 0.405 0.451 / 0.452
π = 0.2% † 0.429 0.405 / † 0.435 / 0.435
π = 0.05% † 0.670 † / 0.438 0.422 / 0.422

(b) PLDA backend with length normalization.

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.205 — min cost: 0.193
Supervised 0.204 0.195 0.217 0.211
π = 0.5% † 0.299 0.281 / 0.921 0.221 / 0.220
π = 0.2% † 0.580 0.253 / 0.253 0.218 / 0.219
π = 0.05% † 0.674 0.221 / † 0.239 / 0.242

C`llr : — Log-Reg: 0.165 — min cost: 0.161
Supervised 0.169 0.162 0.163 0.166
π = 0.5% † 0.182 0.164 / 0.865 0.172 / 0.172
π = 0.2% † 0.342 0.163 / 0.163 0.186 / 0.186
π = 0.05% † 0.552 0.173 / † 0.208 / 0.211

Cprim: — Log-Reg: 0.418 — min cost: 0.416
Supervised 0.559 0.417 0.423 0.423
π = 0.5% † 0.442 0.434 / † 0.467 / 0.465
π = 0.2% † 0.422 0.441 / 0.441 0.451 / 0.449
π = 0.05% † 0.589 0.475 / † 0.429 / 0.430

(c) NL-PLDA backend without x-vector scaling

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.212 — min cost: 0.199
Supervised 0.214 0.201 0.224 0.218
π = 0.5% † 0.345 0.349 / 0.933 0.230 / 0.231
π = 0.2% † 0.550 0.356 / 0.356 0.221 / 0.222
π = 0.05% † 0.692 0.889 / 0.861 0.222 / 0.222

C`llr : — Log-Reg: 0.172 — min cost: 0.166
Supervised 0.181 0.167 0.169 0.173
π = 0.5% † 0.191 0.175 / 0.886 0.175 / 0.175
π = 0.2% † 0.265 0.175 / 0.175 0.182 / 0.181
π = 0.05% † 0.581 0.813 / † 0.189 / 0.190

Cprim: — Log-Reg: 0.400 — min cost: 0.398
Supervised 0.633 0.400 0.399 0.401
π = 0.5% † 0.421 0.400 / † 0.430 / 0.431
π = 0.2% † 0.402 0.402 / 0.402 0.420 / 0.422
π = 0.05% † 0.691 † / 0.845 0.410 / 0.411

(d) NL-PLDA backend with x-vector scaling

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.194 — min cost: 0.183
Supervised 0.190 0.184 0.203 0.198
π = 0.5% † 0.190 0.254 / 0.254 0.199 / 0.198
π = 0.2% † 0.191 0.231 / 0.231 0.197 / 0.197
π = 0.05% † 0.315 0.216 / 0.216 0.197 / 0.197

C`llr : — Log-Reg: 0.159 — min cost: 0.156
Supervised 0.164 0.157 0.158 0.160
π = 0.5% † 0.157 0.160 / 0.160 0.164 / 0.164
π = 0.2% † 0.158 0.158 / 0.158 0.168 / 0.168
π = 0.05% † 0.176 0.158 / 0.158 0.169 / 0.168

Cprim: — Log-Reg: 0.392 — min cost: 0.391
Supervised 0.520 0.392 0.395 0.395
π = 0.5% † 0.392 0.398 / 0.398 0.405 / 0.405
π = 0.2% † 0.392 0.399 / 0.399 0.395 / 0.396
π = 0.05% † 0.393 0.399 / 0.399 0.395 / 0.394

(e) PSVM backend.

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.165 — min cost: 0.156
Supervised 0.170 0.160 0.169 0.166
π = 0.5% † 0.259 0.216 / 0.919 0.168 / 0.168
π = 0.2% † 0.277 0.216 / 0.216 0.169 / 0.169
π = 0.05% † 0.596 0.211 / 0.847 0.169 / 0.170

C`llr : — Log-Reg: 0.136 — min cost: 0.134
Supervised 0.147 0.134 0.134 0.136
π = 0.5% † 0.144 0.141 / 0.860 0.139 / 0.139
π = 0.2% † 0.147 0.140 / 0.140 0.142 / 0.142
π = 0.05% † 0.412 0.139 / 0.949 0.142 / 0.142

Cprim: — Log-Reg: 0.359 — min cost: 0.352
Supervised 0.543 0.355 0.354 0.354
π = 0.5% † 0.354 0.354 / † 0.353 / 0.353
π = 0.2% † 0.355 0.354 / 0.354 0.354 / 0.354
π = 0.05% † 0.579 0.353 / 0.403 0.355 / 0.355

model performs slightly worse than the oracle-initialized NIG
or the C-NIG approach in terms of Cprim, it significantly
outperforms the other models in terms of C`llr and Cllr.

Similar results are obtained when length normalization is
applied to the embeddings. Even though length normalization
modifies slightly the score distributions, the C-VΓ model
remains effective. Even without oracle initialization it is able to
achieve similar or better performance than the other methods,
as can be observed from the results in Table I-b and in
Figure 4-a.

The NL-PLDA classifier was introduced to transform
speaker vectors so that they better fit the PLDA assumptions.
We therefore expected the C-VΓ approach to be well suited
for this classifier. This is confirmed by the results in Table I-
c, I-d and in Figure 4-b. Since NL-PLDA incorporates an
utterance dependent scaling factor similar to length normal-
ization we considered both NL-PLDA without (Table I-c) and
with scaling factor (Table I-d and Figure 4-b). In both cases,
CMLG fails for all unsupervised scenarios. For scaled NL-
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(a) PLDA with length normalization.
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(b) NL-PLDA with scaling factor.
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(c) PSVM.

Fig. 4: Calibration transformations and normalized Bayes error plot for the unsupervised SRE 2019 task using x-vectors.
Symbol * denotes oracle-initialized models. The target proportion is π = 0.5%.

PLDA (Table I-d) the C-NIG results are similar to the PLDA
ones. The model provides very good calibration in the low FA
region, but is less accurate for low FR. Unconstrained NIG
is more effective for the easier tasks, but significantly worse
for the hardest π = 0.05% scenario. Without x-vector scaling
(Table I-c), the two models have similar behavior, and provide
good calibration only for the easier tasks and in the low FA
region. C-VΓ proves more robust, achieving close to optimal
calibration in both cases even without oracle-initialization.

Finally, the results for the PSVM classifier are shown in
Table I-e and Figure 4-c. As for PLDA with length nor-
malization, oracle-initialized C-NIG is more effective than
oracle-initialized NIG. Both provide very good results for low
FA. On the other hand, C-NIG performs better than NIG,
but both are not accurate, in the low FR region. Moreover,
also in this case we were not able to achieve the same
accuracy with fully unsupervised C-NIG models for some
target proportions. On the contrary, fully unsupervised C-VΓ
provides very good calibration for a wide range of operating
points and all considered tasks.

A second set of experiments on the SRE 2010 and SRE 2012
tasks confirm the robustness of the proposed approach. Fig-
ure 5-a plots the score distribution and the estimated densities
for the different models for the SRE 2010 task with i-vectors
and a PLDA backend. In this case all models approximately
locate the target scores. However, the CMLG model over-
estimates the non-target distribution right tail, whereas the
unconstrained NIG approach significantly under-estimates the
left tail of the target distribution. The C-NIG and C-VΓ both
provide a better fit of the two histograms, and the latter more
accurately models the distribution tails. As can be observed in
Figures 5-b and 5-c and in Table II, the CMLG transformation
leads to good Cllr, but results in a significant degradation
in terms of Cprim, whereas the unconstrained NIG model
provides accurate calibration only for the very low FA regions.
The C-NIG and C-VΓ models are both very accurate in terms
of Cprim, but the latter is much more effective for a large range

TABLE II: Results for the SRE 2010 task using i-vectors and
PLDA. Oracle-initialized models are denoted by *. A † denotes
performance worse than that of a system based only on prior
information.

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.098 — min cost: 0.094
Supervised 0.103 0.097 0.101 0.100
π = 0.5% 0.100 0.715 0.133 / 0.134 0.113 / 0.108
π = 0.2% 0.102 † 0.150 / 0.148 0.117 / 0.111

C`llr : — Log-Reg: 0.090 — min cost: 0.089
Supervised 0.094 0.091 0.091 0.091
π = 0.5% 0.096 0.144 0.103 / 0.104 0.096 / 0.094
π = 0.2% 0.100 0.177 0.109 / 0.108 0.098 / 0.095

Cprim: — Log-Reg: 0.443 — min cost: 0.420
Supervised 0.597 0.441 0.428 0.437
π = 0.5% 0.614 0.440 0.431 / 0.432 0.432 / 0.428
π = 0.2% 0.612 0.440 0.428 / 0.429 0.443 / 0.439

of operating points and results in significantly lower Cllr.
The results for SRE 2012 reported in Figure 6 and Table III

show a similar trend. Supervised models achieve similar Cllr,
but the CMLG approach suffers in the low FA regions,
obtaining significantly worse Cprim. In the unsupervised
scenarios with low target proportions CMLG is competitive
in terms of Cllr for NL-PLDA backend, but provides bad
results for the PSVM backend. Furthermore, the calibration
error in the low FA regions is significant in all cases. For
the oracle-initialized, unconstrained NIG approach, we also
observe inconsistent Cllr results: the model is accurate for
PSVM scores, but provides the worst results for NL-PLDA.
The oracle-initialized C-NIG is much more effective. In this
case the fully initialized models achieve the same accuracy as
the oracle-initialized ones. Once again, the fully unsupervised
C-VΓ model outperforms C-NIG and achieves close to optimal
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Fig. 5: Estimated densities, calibration transformation and Bayes error plots for the unsupervised SRE 2010 task with PLDA.
Symbol * denotes oracle-initialized models. The target proportion is π = 0.5%.

TABLE III: Results for the SRE 2012 task using e-vectors. Oracle-initialized models are denoted by *. A † denotes performance
worse than that of a system based only on prior information.

(a) PSVM

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.061 — min cost: 0.057
Supervised 0.065 0.062 0.062 0.062
π = 0.5% 0.080 0.067 0.089 / 0.089 0.076 / 0.078
π = 0.2% † 0.074 0.117 / 0.117 0.087 / 0.084

C`llr : — Log-Reg: 0.058 — min cost: 0.057
Supervised 0.063 0.058 0.059 0.058
π = 0.5% 0.080 0.059 0.069 / 0.069 0.063 / 0.063
π = 0.2% † 0.061 0.078 / 0.078 0.066 / 0.065

Cprim: — Log-Reg: 0.212 — min cost: 0.210
Supervised 0.317 0.212 0.217 0.214
π = 0.5% 0.347 0.211 0.224 / 0.224 0.215 / 0.215
π = 0.2% † 0.212 0.228 / 0.228 0.217 / 0.216

(b) NL-PLDA

CMLG* NIG* C-NIG* / C-NIG C-VΓ* / C-VΓ

Cllr : — Log-Reg: 0.068 — min cost: 0.064
Supervised 0.073 0.067 0.069 0.068
π = 0.5% 0.095 0.130 0.106 / 0.106 0.089 / 0.091
π = 0.2% 0.114 0.148 0.157 / 0.157 0.115 / 0.111

C`llr : — Log-Reg: 0.059 — min cost: 0.058
Supervised 0.068 0.059 0.060 0.059
π = 0.5% 0.096 0.063 0.074 / 0.074 0.066 / 0.067
π = 0.2% 0.109 0.062 0.087 / 0.087 0.073 / 0.072

Cprim: — Log-Reg: 0.203 — min cost: 0.199
Supervised 0.376 0.200 0.214 0.208
π = 0.5% 0.423 0.201 0.226 / 0.226 0.208 / 0.208
π = 0.2% 0.434 0.200 0.230 / 0.230 0.207 / 0.206

calibration in the low FA regions.

VII. CONCLUSIONS

We analyzed the theoretical distribution of the scores of a
PLDA classifier, showing that Generalized Hyperbolic, and in
particular Variance-Gamma distributions, are good candidates
for modeling scores generated by PLDA-like models. We
introduced the Constrained GH calibration approach, that
includes as special cases our previous C-NIG and the novel
C-VΓ model. The experimental results show that these meth-
ods, in particular the latter, are able to provide good calibration
accuracy even for unsupervised scenarios with unbalanced
target proportions. C-VΓ outperforms not only CMLG, but
also our previous C-NIG method. In the future we plan to
refine these analyses focusing on the effects of train and
test mismatch on the score distributions. This would allow
us to incorporate, for example, duration or noise effects at
calibration level, reducing not only actual but also minimum
detection costs. Furthermore, we believe that accurate models
of score distributions may have the potential for improving
score normalization approaches.
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initialized models. The target proportion is π = 0.5%.
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