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Abstract: Given a homogeneous ideal I ⊆ k[x0, . . . , xn], the Containment problem studies the relation
between symbolic and regular powers of I, that is, it asks for which pairs m, r ∈ N, I(m) ⊆ Ir holds. In
the last years, several conjectures have been posed on this problem, creating an active area of current
interests and ongoing investigations. In this paper, we investigated the Stable Harbourne Conjecture
and the Stable Harbourne–Huneke Conjecture, and we show that they hold for the defining ideal
of a Complement of a Steiner configuration of points in Pn

k . We can also show that the ideal of a
Complement of a Steiner Configuration of points has expected resurgence, that is, its resurgence
is strictly less than its big height, and it also satisfies Chudnovsky and Demailly’s Conjectures.
Moreover, given a hypergraph H, we also study the relation between its colourability and the failure
of the containment problem for the cover ideal associated to H. We apply these results in the case
that H is a Steiner System.

Keywords: monomial ideals; ideals of points; symbolic powers of ideals; Waldschmidt constant;
Steiner systems

MSC: 13F55; 13F20; 14G50; 51E10; 94B27

1. Introduction

In this paper, we continue the study of Steiner configurations of points and their
invariants, such as Hilbert Function, Betti numbers, Waldschmidt constant, regularity and
resurgence found in [1]. We will focus on the Containment problem, and we will show that
the Stable Harbourne Conjecture and the Stable Harbourne–Huneke Conjecture hold for the
defining ideal of a Complement of a Steiner configuration of points in Pn

k := Pn. As pointed
out in Remarks 2.5 and 2.6 in [1] in the language of Algebraic Geometry/Commutative
Algebra, Steiner configurations of points and their Complement are special subsets of
star configurations.

First, we give an overview on the Containment problem to introduce the related
conjectures. Then, we devote Section 2 to recall notation, definitions and known results
for a Steiner configuration of points and its Complement that we will use to prove the
results of this paper. Let I be a homogeneous ideal in the standard graded polynomial
ring R := k[x0, . . . , xn], where k is a field. Given an integer m, we denote by Im the regular
power of the ideal I. The m-th symbolic power of I is defined as

I(m) =
⋂

p∈Ass(I)

(ImRp ∩ R)
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where Ass(I) denotes the set of associated primes of I and Rp is the localization of R at a
prime ideal p.

If I is a radical ideal (this includes for instance square-free monomial ideals and ideals
of finite sets of points), then

I(m) =
⋂

p∈Ass(I)

pm.

Symbolic powers of ideals play a significant role in the famous Zariski–Nagata Theo-
rem (see in [2,3]). If R is a polynomial ring over an algebraically closed field k, then I(m)

consists precisely of those functions which vanish on the algebraic variety defined by I
with multiplicity at least m. It is easy to show from the definition that Ir ⊆ I(m) if and only
if r ≥ m. The reverse inclusion I(m) ⊆ Ir motivates the following question.

Question 1 (Containment problem). Given a homogeneous ideal I ⊆ k[x0, . . . , xn], for which
pairs m, r ∈ N, does I(m) ⊆ Ir hold?

One of the initial works that introduce Question 1 is [4]. The problem is still open in
general and in the last couple of decades it was extensively studied for several classes of
ideals, in particular for ideals defining finite sets of points in projective and multiprojective
spaces, see in [5–15] just to cite some among all the known results. Containment problems
are useful in giving lower bounds to non-zero homogeneous forms vanishing through a
finite set of points with a fixed multiplicity.

It is of great interest to study the ideals of fat points. Given distinct points P1, . . . , Ps ∈
Pn and non-negative integers mi (not all 0), let Z = m1 p1 + · · ·+ ms ps denote the scheme
(called a fat point scheme) defined by the ideal IZ = ∩s

i=1(Imi
Pi
) ⊆ k[Pn], where IPi is the

ideal generated by all homogeneous polynomials vanishing at Pi. Symbolic powers of IZ

take the form I(m)
Z = ImZ = ∩s

i=1 Immi
Pi

. We say that Z is reduced if IZ is a radical ideal.
The Containment problem also helps us to bound certain useful invariants like Wald-

schmidt constant, α̂(I), of an ideal I defined as

α̂(I) = lim
m→∞

α(I(m))

m
,

where α(I) is the minimum integer d such that Id 6= (0), that is, it is the least degree of a
minimal generator of I. This limit exists and was first defined by Waldschmidt [16] for
ideals of finite sets of points in the context of complex analysis; specifically, in our language,
the problem was to determine the minimal degree of a hypersurface that passed through a
collection of points with prescribed multiplicities.

The following slight different version of Question 1 was introduced in [17]. Recall
that the big height of an ideal I refers to the maximum of all the heights of its associated
prime ideals.

Conjecture 1. Let Z ⊂ Pn be a fat point scheme and I := IZ the ideal defining Z. LetM =
(x0, . . . , xn) be the graded maximal ideal. Then, I(rn) ⊆Mr(n−1) Ir holds for all r > 0.

B. Harbourne conjectured in [18]:

Conjecture 2. Given a non-zero, proper, homogeneous, radical ideal I ⊆ k[x0, . . . , xn] with big
height h,

I(hr−h+1) ⊆ Ir

for all r ≥ 1.

A counterexample to the above conjecture was initially found in [19].
A celebrated result of the works in [9,15,20] is shown in the next theorem.
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Theorem 1. Let R be a regular ring and I a radical ideal in R. Then, for all n ∈ N,

I(hn) ⊆ In,

whenever h is the big height of I.

One could hope to sharpen the containment by reducing the symbolic power on the
left hand side by a constant or increasing the ordinary power on the right hand side by
a fixed constant. This motivates us to look at stable versions of Conjectures 2.1 and 4.1
in [17], respectively.

Conjecture 3 (Stable Harbourne Conjecture). Given a non-zero, proper, homogeneous, radical
ideal I ⊆ k[x0, . . . , xn] with big height h, then

I(hr−h+1) ⊆ Ir

for all r � 0.

Conjecture 4 (Stable Harbourne–Huneke Conjecture). Let I ⊆ k[x0, . . . , xn] be a homoge-
neous radical ideal of big height h. Let M = (x0, . . . , xn) be the graded maximal ideal. Then,
for r � 0,

1. I(hr) ⊆Mr(h−1) Ir

2. I(hr−h+1) ⊆M(r−1)(h−1) Ir.

In the study of finding the least degree of minimal generators of an ideal I, Chud-
novsky made the following conjecture.

Conjecture 5 (Chudnovsky’s Conjecture). Suppose that k is an algebraically closed field of
characteristic 0. Let I be the defining ideal of a set of points X ⊆ Pn

k . Then, for all h > 1,

α(I(h))
h

≥ α(I) + n− 1
n

.

A generalization of Chudnovsky’s Conjecture is the following.

Conjecture 6 (Demailly’s Conjecture). Suppose that k is an algebraically closed field of charac-
teristic 0. Let I be the defining ideal of a set of points X ⊆ Pn

k and let m ∈ N be any integer. Then,
for all h > 1,

α(I(h))
h

≥ α(I(m)) + n− 1
m + n− 1

.

Two recent preprints [21,22] focus on the Containment problem and related conjectures.
In the first one, the authors show that Chudnovsky’s Conjecture holds for sufficiently many
general points, and to prove it they show that one of the containments conjectured by
Harbourne and Huneke holds eventually, meaning for large powers (see Theorem 4.6
in [21]). They also show other related results, for example, that general sets of points have
expected resurgence and thus satisfy the Stable Harbourne Conjecture.

In the second preprint, the authors show that Demailly’s Conjecture (which is a
generalization of Chudnovsky’s) also holds for sufficiently many general points, for star
configurations (in general, not just points) and for generic determinantal ideals.

In this paper, we prove that the Stable Harbourne Conjecture and the Stable Harbourne–
Huneke Conjecture hold for ideals defining the Complement of a Steiner Configuration of
points in Pn that are special subsets of star configurations and, thus, far from being general.
We will give more details in Section 3.
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We remark that the least degree of a minimal generator of the ideal defining the
Complement of a Steiner Configuration of points in Pn is strictly less than the least degree
of a minimal generator of the ideal of a star configurations (see Theorem 2 and also
Proposition 2.9 in [23]). Therefore, it is worth investigating whether the Containment
problem and its related conjectures hold for the Complement of a Steiner Configuration of
points in Pn.

In [1], the authors constructed a square-free monomial ideal J associated to a set
X of points in Pn constructed from the Complement of a Steiner system. The ideal IX
defining the Complement of a Steiner system is not a monomial ideal. However, the
authors proved that the symbolic powers of IX and J share the same homological invariants
(see Proposition 3.6 in [1]). This was possible because J is the Stanley–Reisner ideal of a
matroid, so its symbolic powers define an arithmetically Cohen–Macaulay (ACM) scheme
which gives, after proper hyperplane sections, the scheme of fat points supported on X.
However, we point out that the regular powers of J are not necessarily ACM any more and
we cannot relate them to square-free monomial ideals. Thus, the homological invariants of
the regular powers of J are not immediately correlated to that of IX .

In [8], the authors proved that the Chudnovsky’s Conjecture, the Harbourne’s Con-
jecture and the Harbourne–Huneke containment conjectures hold for square-free mono-
mial ideals.

As previously remarked, as the ideal IX defining the Complement of a Steiner system
is not a square-free monomial ideal, we cannot recover the Stable Harbourne Conjecture
and the Stable Harbourne—Huneke Conjecture using the method in [8].

We also point out that the two above preprints [21,22] do not compute the Waldschmidt
constant exactly for any class of ideals, they study lower bounds for the Waldschmidt
constant. Furthermore, as in [1] the authors found the exact value of the Waldschmidt
constant for the Complement of a Steiner configurations of points, then Chudnovsky and
Demailly’s Conjectures easily follow for our class of ideals (see Section 3).

For other results on this topic we can also see [24,25].
Another tool useful to measure the non-containment among symbolic and ordinary

powers of ideals is the notion of resurgence ρ(I) of an ideal I, introduced in [6] that gives
some notion of how small the ratio m/r can be and still be sure to have I(m) ⊆ Ir.

Definition 1. Let I be a non-zero, proper ideal in a commutative ring R, the resurgence of the ideal
I is given by

ρ(I) = sup
{m

r
| I(m) * Ir

}
.

It always satisfies ρ(I) ≥ 1. The groundbreaking results of [9,15,20] show that ρ(I) ≤ h,
where h is the big height of the radical ideal I. This motivates us to ask whether ρ(I) can
strictly be less than its big height and which are some of the interesting consequences.
Although there are few cases where the resurgence has been computed, in general, it is
extremely difficult to estimate the exact value for ρ(I). The reader can look at [26] for
the first examples where the resurgence and the asymptotic resurgence are not equal. An
asymptotic version of the resurgence was introduced in the paper [12].

Definition 2. For a non-zero, proper homogeneous ideal I ⊆ k[x0, . . . , xn], the asymptotic resur-
gence ρa(I) is defined as

ρa(I) = sup
{m

r
| I(mt) * Irt, for all t� 0

}
.

It is clear from the definition that 1 ≤ ρa(I) ≤ ρ(I). As pointed out in [27], DiPasquale,
Francisco, Mermin and Schweig showed that ρa(I) = sup{m/r : I(m) * Ir}, where Ir is
the integral closure of Ir (see also [28] Corollary 4.14) .

In this paper, we study the containment properties of the ideal defining a Complement
of a Steiner configuration of points in Pn. Section 2 is devoted to recall notation, definitions
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and known results from the work in [1] that we will use in the next sections. The main result
of Section 3 is Theorem 4 where we prove that an ideal defining the Complement of a Steiner
Configuration of points in Pn satisfies both the Stable Harbourne Conjecture and the Stable
Harbourne–Huneke Conjecture. In Lemma 1, we give a criterion for when the resurgence
number can be computed in finite number of steps. This result improves the bounds found
in Corollary 4.8 in [1]. We also point out that Lemma 1 is similar to results from the work
in [28,29]. As a consequence, in Corollary 4 we show that the ideal of a Complement of a
Steiner Configuration of points has expected resurgence, that is, its resurgence is strictly
less than its big height (see in [30] for the first definition). Moreover, using Theorem 2,
Corollaries 1 and 2, we show that the ideal of a Complement of a Steiner Configuration of
points satisfies Chudnovsky and Demailly’s Conjectures (see Corollaries 2, 5 and 6).

Finally, in Section 4, given a hypergraph H, we also study the relation between its
colourability and the failure of the Containment problem for the cover ideal associated to H.
The ideas come from the paper [31] where the authors start to study the natural one-to-one
correspondence between square-free monomial ideals and finite simple hypergraphs via
the cover ideal construction.

There exists an extensive literature on the subject of colourings both from Design
Theory and Algebraic Geometry/Commutative Algebra point of view. Among all, we make
use of the works in [31–35] as some referring texts for preliminaries on hypergraph theory
and associated primes and for an algebraic method to compute the chromatic number,
respectively.

Most of the existing papers are devoted to the case of weak colourings (or vertex
colourings), i.e., colourings where the colours are assigned to the elements in such a way
that no hyperedge is monochromatic (i.e., no hyperedge has all its elements assigned the
same colour). The reader can see [34] or Chapter 3 in [32] for other different types of colour-
ing a hypergraph, such as strong vertex colouring, vertex equicolouring, good colouring of H.

In this paper, we use the case of weak colouring to get result on the Containment
problem as it is the one commonly used in Combinatorial Commutative Algebra. The
main result of this section is Theorem 5, which more generally predicts the failure of the
containment for square-free monomial ideals based on the definition of coverability (see
Definition 9). We apply these results in the case that H is a Steiner System.

We end the paper recalling some open questions posed in [1] and that are still under
investigations and posing new ones as possible further research problems.

2. Notation, Definitions and Known Results for Ideals of a Steiner Configuration of
Points and Its Complement

In this section, we recall the main results from in [1], where the authors studied
the homological properties of ideals constructed from Steiner systems, especially in the
zero-dimensional case of Pn.

A Steiner system (V, B) of type S(t, n, v) is a collection B of n-subsets (blocks) of a
v-set V such that each t-tuple of V is contained in a unique block in B. The elements in
V are called vertices or points and those of B are called blocks. In particular, a Steiner
triple system of order v, STS(v), is a collection of triples (3-subsets) of V, such that each
unordered pair of elements is contained in precisely one block, and a Steiner quadruple
system of order v, SQS(v), is a collection of quadruples (4-subsets) of V such that each
triple is found in precisely one block.

The existence of a Steiner system strongly depends on the parameters (t, n, v). If a
Steiner system (V, B) of type S(t, n, v) exists, then

|B| =
(v

t)

(n
t)

.

We use the works in [36,37] as the main references for all the background on design
theory.

We recall the most known example.



Mathematics 2021, 9, 210 6 of 15

Example 1. One of the simplest and most known example of Steiner system is the Fano Plane. It is
unique up to isomorphism and it is a Steiner system S(2, 3, 7) with block set

B := {{1, 2, 3}, {3, 4, 5}, {3, 6, 7}, {1, 4, 7}, {2, 4, 6}, {2, 5, 7}, {1, 5, 6}}.

For the ease of the reader, we recall some definitions and results from in [1].
Let V := {1, . . . , v} and H := {H1, . . . Hv} be a collection of distinct hyperplanes of

Pn, where n ≤ v. Say Hj defined by the linear forms `j for j = 1, . . . , n. Assume that any
n hyperplanes in H meet properly, i.e., they meet in a point. There is a natural way to
associate a point in Pn to a subset of n elements of V. For σ := {σ1, . . . , σn} ⊆ V, we denote
by PH,σ the point obtained by intersecting the hyperplanes Hσ1 , . . . , Hσn . Then, the ideal
IPH,σ = (`σ1 , . . . , `σn) ⊆ k[Pn] is the vanishing ideal of the point PH,σ.

Definition 3. Let Y be a collection of subsets of V containing n elements, andH a set of hyperplanes
meeting properly. We define the following set of points in Pn with respect toH

XH,Y :=
⋃

σ∈Y
PH,σ

and its defining ideal
IXH,Y :=

⋂
σ∈Y

IPH,σ .

Denoted by C(n,v) the set containing all the subsets of V with n elements the above
definition applied to a Steiner system gives us two different sets of points.

Definition 4. Let (V, B) be a Steiner system of type S(t, n, v) with t < v ≤ n. We associate to B
the following set of points in Pn

XH,B :=
⋃

σ∈B
PH,σ

and its defining ideal
IXH,B :=

⋂
σ∈B

IPH,σ .

We call XH,B the Steiner configuration of points associated to the Steiner system (V, B) of type
S(t, n, v) with respect toH (or just XB if there is no ambiguity).

Definition 5. Let (V, B) be a Steiner system of type S(t, n, v) with t < n ≤ v. We associate to
C(n,v) \ B the following set of points in Pn

XH,C(n,v)\B :=
⋃

σ∈C(n,v)\B
PH,σ

and its defining ideal
IXH,C(n,v)\B

:=
⋂

σ∈C(n,v)\B
IPH,σ .

We call XH,C(v,n)\B the Complement of a Steiner configuration of points with respect to H (or
C-Steiner XC if there is no ambiguity).

As pointed out in [1], Remarks 2.5 and 2.6 a Steiner configuration of points and its
Complement are subschemes of a star configuration of (v

n) points in Pn (see in [23,38–40]
just to cite some reference on star configurations).

We also have

deg XH,C(n,v)\B =

(
v
t

)
− |B| =

(
v
t

)
−

(v
t)

(n
t)

.
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We recall the most known construction of Steiner Configuration of points and its
Complement.

Example 2. Consider the Steiner configuration associated to (V, B) of type S(2, 3, 7) as in
Example 1. Take H := {H1, . . . , H7} a collection of 7 distinct hyperplanes Hi in P3 defined
by a linear form `i for i = 1, . . . , 7, respectively, with the property that any 3 of them meet in a
point PH,σ = Hσ1 ∩ Hσ2 ∩ Hσ3 , where σ = {σ1, σ2, σ3} ∈ B. We get that XH,C(3,7)

is a star con-

figuration of (7
3) = 35 points in P3, XH,B := ∪σ∈B {PH,σ} is a Steiner configuration consisting

of 7 points in P3 and XH,C(3,7)\B is a C-Steiner configuration consisting of (7
3)− 7 = 28 points in

P3. Their defining ideals are, respectively,

IXH,B := ∩σ∈B IPH,σ and IXH,C(3,7)\B
:= ∩σ∈C(3,7)\B IPH,σ .

In [1], the authors constructed a square-free monomial ideal J associated to a set
XH,C of points in Pn constructed from the Complement of a Steiner system. The ideal
IXH,C defining the Complement of a Steiner system is not a monomial ideal. However,
the authors proved that the symbolic powers of IXH,C and J share the same homological
invariants (see Proposition 3.6 in [1]).

The following results give the least degree of a minimal generator and the regu-
larity and the Waldschmidt constant of an ideal defining the Complement of a Steiner
configuration of points, respectively.

Theorem 2 (Ref. [1], Theorem 3.9). Let (V, B) be a Steiner system of type S(t, n, v). Set
IXH,C := IXC the ideal defining the Complement of the Steiner configuration of points associated to
S(t, n, v). Then,

(i) α(IXC ) = v− n;

(ii) α(I(q)XC
) = v− n + q for 2 ≤ q < n;

(iii) α(I(m)
XC

) = α(I(q)XC
) + pv, where m = pn + q and 0 ≤ q < n and α(I(n)XC

) = α(I(0)XC
) + v = v.

Corollary 1 (Ref. [1], Corollary 4.2). Let reg(IXC ) be the regularity of a Complement of a Steiner
configuration. Then, reg(IXC ) = α(IXC ) + 1 = v− n + 1.

Corollary 2 (Ref. [1], Corollary 3.12). If (V, B) is a Steiner system of type S(t, n, v), then the
Waldschmidt constant of its Complement is α̂(I) = v

n .

3. Asymptotic Resurgence and Stable Harbourne Conjecture

Containment problems have been of interest among commutative algebraists and
algebraic geometers. In the last decade, several conjectures related to this problem have
been posed creating an active area of current interests and outgoing investigations.

A celebrated result of the works in [9,15,20] is that I(hn) ⊆ In for all n ∈ N, whenever h
is the big height of I. One could hope to sharpen the containment by reducing the symbolic
power on the left hand side by a constant or increasing the ordinary power on the right
hand side by a fixed constant. This motivates us to look at the Stable Harbourne Conjecture
and the Stable Harbourne–Huneke Conjecture and study which class of ideals satisfies
them. Here, we prove that the ideal defining a Complement of a Steiner configurations of
points satisfies both conjectures. We need to recall some known results.

In [41], the Conjecture 3 is shown to hold

1. if there exists k > 0 such that I(hk−h) ⊆ Ik;
2. if I(hk−h+1) ⊆ Ik for some k and I(r+h) ⊆ I I(r) for all r ≥ k; and
3. if the resurgence satisfies ρ(I) < h.

In particular, condition (2) gives a criterion for the Stable Harbourne Conjecture
(SHC for short) to hold. Namely, for a radical ideal of big height h, if for all k ≥ 1, it is
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I(k+h) ⊆ I I(k) and fix an integer C and m such that I(hm−C) ⊆ Im holds, then for all q ≥ m,
we have

I(hq−C) = I(h(q−m)+hm−h+h−C) ⊆ I I(h(q−m−1)+hm−C) ⊆ Iq−m I(hm−C) ⊆ Iq−m Im = Iq,

that is, I(hq−C) ⊆ Iq.

Theorem 3 (Theorem 2.5, ref. [41]). Let R be a regular ring containing a field, and let I be a
radical ideal in R with big height h. If I(h(m−1)) ⊆ Im for some m ≥ 2, then I(h(k−1)) ⊆ Ik for all
k >> 0 (indeed for all k ≥ hm).

We have learned that Harbourne, Kettinger and Zimmitti in [27] and DiPasquale and
Drabkin in [29] proved independently that ρa(I) < h if and only if ρ(I) < h. As pointed
out in [29] Remark 2.3, the next result is similar as Proposition 4.1.3 of Denkert’s thesis [42],
as Lemma 4.12 in [28] and as Proposition 2.2 in [29].

For the ease of the reader, we adapt the proof in our case.

Lemma 1. Let I ⊆ k[x0, . . . , xn] be a homogeneous radical ideal with big height(I) = h, such
that ρ(I) > ρa(I). Suppose we have the equality

ρa(I) =
hr1 − h

r1

for some r1 > 0. Then ρ(I) can be computed by taking the maximum of finitely many s
r with I(s) * Ir.

Proof. Using Briancon Skoda Theorem (Corollary 13.3.4 in [43]), we have that Ir+n ⊆ Ir,
where n + 1 is the number of variables in the polynomial ring and Ī denotes the integral
closure of the ideal I. For s, r ∈ N such that I(s) * Ir then I(s) * Ir+n. Using [28],
Lemma 4.12, we get s

r+n < h(1− 1/r1) = ρa(I), that is,

s
r
< (1 + n/r)h(1− 1/r1).

If ρ(I) > ρa(I), applying [29] Proposition 2.2, then there exist s0, r0, such that I(s0) *
Ir0 and

ρ(I) ≥ s0

r0
≥ (1 +

n
r
)h(1− 1

r1
),

solving for r gives us the inequality

r ≥ n
s0/r0

h(1−1/r1)
− 1

,

so whenever r ≥ n
s0/r0

h(1−1/r1)
−1

and s is such that I(s) * Ir, we have s
r < s0

r0
.

Therefore, it suffices to look at

r ≤ n
s0/r0

h(1−1/r1)
− 1

and s ≤ (r + n)h(1− 1
r1
).

Corollary 3. If the resurgence can be computed by taking the maximum of finitely many ratios of
the form m

r for which I(m) * Ir, then ρ(I) < h.

Proof. Suppose we have a
b = h, then I(hb) * Ib is a contradiction as I(hk) ⊆ Ik for all k ∈ N

(from in [9,15,20]). Hence, ρ(I) < a
b = h.
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The next proposition shows that Conjecture 3.1 in [44] holds for the Complement of a
Steiner Configuration of points.

Proposition 1. Let I ⊂ k[Pn] be an ideal defining a Complement of a Steiner Configuration of
points and letM = (x0, . . . , xn) be the homogeneous maximal ideal. Then I(nr) ⊆Mrn Ir holds
for all r ∈ N.

Proof. From Theorem 2, we have α(I(nr)) = rv. From [1], Corollary 4.7, we have ω(Ir) =
α(Ir) = r(v − n), where ω(I) is the maximum of the generating degrees of the ideal I.
As I(nr) ⊆ Ir for all r ≥ 1, we have α(I(nr)) ≥ rω(I) = rα(I) and α(Ir) = r(v − n), so
α(I(nr))− rω(I) = rv− r(v− n) = rn. As every minimal generator of I(nr) is contained
inside Ir and the difference between the degree of any nonzero homogeneous polynomial
in I(nr) and that of generators of Ir is at least rn, we have that I(nr) ⊆Mrn Ir, the conclusion
follows.

We prove the main result of this section:

Theorem 4. Let I ⊆ k[x0, . . . , xn] be the ideal defining the Complement of a Steiner Configuration
of points in Pn

k . Then, I satisfies

1. Stable Harbourne–Huneke Conjecture;
2. Stable Harbourne Conjecture.

Proof. (1) Consider the Steiner Configuration of points S(t, n, v) in Pn
k and I := IC the ideal

defining its Complement.
Using Theorem 2 , (iii), it is α(I(n(r−1))) = (r− 1)v. Using Corollary 1, and choosing

r � 0, such that
(r− 1)v ≥ r · reg(I) = r(v− n + 1)

we get I(n(r−1)) ⊆ Ir. Moreover, as α(I(n(r−1)))− α(Ir) = v(r− 1)− r(v− n) = rn− v, we
get I(n(r−1)) ⊆Mrn−v Ir. Using Euler’s Formula, we get

I(n(r−1)+1) ⊆ MI(n(r−1)) ⊆Mrn−v+1 Ir =Mrn−v−n+n+1 Ir =Mrn−n−(v−n)+1 Ir

⊆ Mrn−n−r+1 Ir =M(r−1)(n−1) Ir.

(2) We have the containment I(n(r−1)) ⊆ Ir for r � 0.
Let k = nm + t. From [45], we have I(ns+a1+···+as) ⊆ I(a1+1) I(a2+1) · · · I(as+1), letting

s = n + t, a1 = a2 = · · · = an = nm− n− 1, an+1 = · · · = an+t = 0.
Let k = nm + t = (v− 1)n + t for t ≥ 0 and let s = n + t and a1 = a2 = · · · an =

nm− n− 1 = n(v− 1)− n− 1, an+1 = · · · = at = 0. Therefore,

I(n(n+t)+n(nm−n−1)) = I(n
2+nt+n2m−n2−n) = I(nk−n) ⊆ (I((n(v−1)−n)))n It = In(v−1) It = Ik.

Therefore, I(nk−n) ⊆ Ik for k� 0.

As a consequence, we can show that the ideal of a Complement of a Steiner Configu-
ration of points has expected resurgence, that is, its resurgence is strictly less than its big
height (see [30]).

Corollary 4. Let I ⊆ k[x0, . . . , xn] be the ideal defining the Complement of a Steiner Configuration
of points in Pn

k . Then, ρ(I) < n.

Proof. From Theorem 4, we have ρa(I) < n. Note that ρa(I) ≤ ρ(I). If ρa(I) = ρ(I), then
clearly ρ(I) < n. On the other hand, if ρa(I) < ρ(I), then from Lemma 1 and Corollary 3,
we conclude that ρ(I) < n.

We give an alternative proof of Chudnovky’s Conjecture:
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Corollary 5. Let I ⊆ k[x0, . . . , xn] be the ideal defining the Complement of a Steiner Configuration
of points in Pn

k . Then, Chudnovky’s Conjecture holds for I.

Proof. From Theorem 2, item (i) α(I) = v− n and from Theorem 2 it is α̂(I) = v
n . Then,

α̂(I) ≥ α(I) + n− 1
n

⇔ v
n
≥ v− 1

n
.

Corollary 6. Let I ⊆ k[x0, . . . , xn] be the ideal defining the Complement of a Steiner Configuration
of points in Pn

k . Then, Demailly’s Conjecture holds for I.

Proof. From Theorem 2, for m = pn + q and for 2 ≤ q < n it is α(I(m)) = pv + α(I(q)) =
pv + v− n + q. From Corollary 2, we have that α̂(I) = v

n . Therefore, whenever

1. m = pn + q, with 2 ≤ q < n, we have

α(I(m)) + n− 1
m + n− 1

=
pv + v− n + q + n− 1

pn + q + n− 1
=

(p + 1)v + q− 1
(p + 1)n + q− 1

≤ v
n
= α̂(I)

2. q = 1 and m = np + 1, we have

α(I(m)) + n− 1
m + n− 1

=
pv + v− n + n− 1

pn + 1 + n− 1
=

(p + 1)v− 1
(p + 1)n

<
v
n
= α̂(I)

3. q = 0 and m = np, we have

α(I(m)) + n− 1
m + n− 1

=
pv + n− 1
pn + n− 1

<
v
n
= α̂(I).

Remark 1. Chudnovsky’s Conjecture can be showed from Proposition 1. We have that I(nr) ⊆
Mrn Ir. This gives us the inequality α(I(nr)) ≥ rn + rα(I) ≥ rn + rα(I)− r. Dividing both sides
by nr and letting r → ∞ gives

α̂(I) ≥ α(I) + n− 1
n

.

4. Containment and Colouring

In this section, we focus on the relation between the colourability of a hypergraph
H and the failure of the containment problem for the cover ideal associated to H. Then,
we apply these results in the case that H is a Steiner System. There exists an extensive
literature on the subject of colourings both from Design Theory and Algebraic Geome-
try/Commutative Algebra point of view. Among all, we make use of [31–35] as some of
referring texts.

Most of the existing papers are devoted to the case of weak colourings (or vertex
colourings), i.e., colourings where the colours are assigned to the elements in such a way
that no hyperedge is monochromatic (i.e., no hyperedge has all its elements assigned the
same colour). The reader can see [34] or Chapter 3 in [32] for other types of colouring a
hypergraph, such as strong vertex colouring, vertex equicolouring, good colouring of H.

In this paper, we use the case of weak colouring to get results on Containment problem.
We first recall some known definitions and results from [32] or [34], Chapter 2.
A hypergraph is a pair H = (V, E), where E = {x1, . . . , xn} is a finite nonempty set

containing n elements called vertices and E = {ei}i∈I (I set of indices) is a family of subsets
of X, called edges, or otherwise hyperedges, such that for all e ∈ E, e 6= ∅ and ∪e∈E e = X.
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A colouring of a hypergraph H = (V, E) is a surjective mapping c : V → C where C
is the set of colours. When |C| = m, then a proper m-colouring of a hypergraph H = (V, E)
is a mapping c : V → {1, 2, . . . , m} for which every edge e ∈ E has at least two vertices of
different colours.

As for graphs, proper colourings generate partitions of the vertex set into a number of
stable (independent) non-empty subsets called colour classes, with as many classes as the
number of colours actually used.

Thus, we use an equivalent definition from [31,33], used in Combinatorial Algebraic
Geometry/Commutative Algebra research, i.e.,

Definition 6. Let H = (V, E) be a hypergraph. An m-colouring of H is any partition of V =
U1 ∪ · · · ∪Um into m disjoint sets such that for every e ∈ E we have e 6⊆ Uj for all j = 1, . . . , m.
The Uj’s are called the colour classes.

The chromatic number of H, denoted by χ(H), is the minimum m such that H has an
m-colouring.

Definition 7. A hypergraph H = (V, E) is m-colourable if there exists a proper m-colouring, i.e.,
if χ(H) ≤ m.

Definition 8. We say H is m-chromatic if it is m-colourable but not (m− 1)-colourable.

When χ(H) ≤ 2, the hypergraph H is called bicolourable. (In parts of the literature the
term “bipartite” is also used.)

Definition 9. Let H := (V, E) be a hypergraph. For an integer c, we say that H is c-coverable if
there exists a partition U1, U2, . . . , Uc of V such that e ∩Ui 6= ∅ for each i = 1, . . . , c and for each
e ∈ E.

Remark 2. Note that, as an immediate consequence of the above definitions, if H is c-coverable,
c > 1, then H is c-colourable.

Example 3. Set V := {x1, x2, x3, x4, x5, x6, x7}. Let H be the set of blocks of a STS(7)

H := {{x1, x2, x3}, {x1, x4, x5}, {x1, x6, x7}, {x2, x4, x6}, {x2, x5, x7}, {x3, x4, x7}, {x3, x5, x6}}. (1)

Take, for instance, the partition {x1, x2, x5}, {x3, x4, x6}, {x7} (see Figure 1). H is 3-colourable
but it is not 3-coverable.

Notice also that no colouring of H with two colours exists. Then χ(H) = 3.

Figure 1. The three colour classes of a STS(7).
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Remark 3. We refer the reader to Section 3.5 in [32] to see examples of different types of colourings
that give different chromatic numbers for the same H. In particular, in Example 8 of [32], the strong
vertex colouring of H as in (1) gives χ(H) = 7 (recall that a mapping c is a strong colouring of
vertices of H if for all e ∈ E it is |c(e)| = |e|).

For a non-empty hypergraph H, i.e., H ⊂ 2V , we define the ideal

JH :=
⋂

σ∈H
pσ ⊆ k[V]

called the cover ideal of H, where for a subset of V, σ := {i1, i2, . . . , in} ⊆ V, the ideal

pσ := (xi1 , xi2 , . . . , xin) ⊆ k[V]

denotes the prime ideal generated by the variables indexed by σ.
For a hypergraph H = (V, B), we denote by τ(H) := minb∈B{|b|}.
We study some properties of the cover ideals of B. The following results show a

relation between the coverability of a hypergraph H and that the Containment problem
can fail.

Theorem 5. Let H = (V, B) be a hypergraph. If H is not d-coverable then J(τ(H))
H 6⊆ Jd

H .

Proof. We put τ := τ(H) and w := x1 · x2 · · · xn. In order to prove the statement it
is enough to show that w ∈ J(τ)H but w /∈ Jd

H . For each b ∈ B the ideal pb has height

|b| ≤ τ. Therefore xb ∈ (pb)
τ . Thus, w ∈ pτ

b for each b ∈ B. This implies w ∈ J(τ)H . By
contradiction, assume w ∈ Jd

H . Thus, there exist w1, . . . , wd ∈ JH such that w = w1 · · ·wd.
We Uj := {xu ∈ V | xu divides wj}, then U1, . . . , Ud is a partition of V. Thus, for each
b ∈ B we have wi ∈ pb, therefore Ui ∩ e 6= 0 with i = 1, . . . , d. This contradicts that H is not
d-coverable.

Recall that an m-colouring of (V, B) is called an m-bicolouring if the vertices of each
b ∈ B are coloured with exactly two colours. A Steiner Triple Systems (V, B) admitting an
m-bicolouring is m-bicolourable. Thus, in a bicolouring of a Steiner Triple System (V, B),
every triple has two elements in one colour class and one in another class, so there are
no monochromatic triples nor polychromatic triples (i.e., triples receiving three colours).
For instance, for a deep investigation of colouring properties of Steiner Triple Systems the
reader can see [46].

As a consequence, we get a failure of the containment for the cover ideals associated
to Steiner Triple Systems (V, B) of type S(t, n, v).

Proposition 2. If v > 3 and S(2, 3, v) = (V, B) is a Steiner Triple System, then J(3)B 6⊆ J2
B.

Proof. It is enough to show that B in not 2-coverable. Assume by contradiction V = U1 ∪U2.
By definition, for each {i, j, k} ∈ B we have {i, j, k} ∩U1 6= ∅ and {i, j, k} ∩U2 6= ∅. This
implies that S(2, 3, v) is 2-bicolourable contradicting a well-known fact about Steiner Triple
Systems, see in [47].

We end the paper showing the failure of the containment for the cover ideals associated
to Steiner Systems.

Proposition 3. Let S = (V, B) be a Steiner System with parameters S(t, t + a, v) where 1 ≤ a ≤
t− 2 and v > (a + 1)t. Then, J(t+a)

B 6⊆ Jt
B.

Proof. Note that, from Theorem 5, it is enough to show that B is not t-coverable. Assume
by contradiction there is a partition of V in t colour classes, V = C1 ∪ · · · ∪ Ct such that
B∩Cj 6= ∅ for each j = 1, . . . , t and B a block of S . We denote by cj the number of elements
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in Cj for j = 1, . . . , t. Note that cj ≤ a + 1. Indeed if i1, i2, . . . , ia+2 ∈ Cj are different
elements, then a block containing i1, i2, . . . , ia+2 cannot intersect t colour classes. This
implies v ≤ (a + 1)t.

The next example shows that Theorem 5 does not characterize the failure of the
containment.

Example 4. Let B denote the blocks of a Steiner quadruple system SQS(8) = S(3, 4, 8) on the
vertex set V = {x1, x2, x3, x4, x5, x6, x7, x8},

B := { {x1, x2, x3, x4}, {x1, x2, x5, x6}, {x1, x2, x7, x8}, {x1, x3, x5, x7}, {x1, x3, x6, x8},
{x1, x4, x5, x8}, {x1, x4, x6, x7}, {x2, x3, x5, x8}, {x2, x3, x6, x7}, {x2, x4, x5, x7},

{x2, x4, x6, x8}, {x3, x4, x5, x6}, {x3, x4, x7, x8}, {x5, x6, x7, x8} }.

From Proposition 3, B is not 3-coverable. Therefore, Theorem 5 ensures J(4)B 6⊆ J3
B. However, one

can check that, for instance, x1x2 · · · x7 ∈ J(3)B \ J2
B, so the failure of the containment J(3)B ⊆ J2

B
cannot be motivated from Theorem 5.

5. Conclusions

Several conjectures have been posed on the Containment problem, creating an active
area of current interests and ongoing investigations. In this paper, we show that the
Stable Harbourne Conjecture and the Stable Harbourne–Huneke Conjecture hold for the
defining ideal of a Complement of a Steiner configuration of points in Pn

k . Moreover,
given a hypergraph H, we also study the relation between its colourability and that the
Containment problem can fail for the cover ideal associated to H. We wish to continue
the study of Steiner configurations of points and their Complements, as they are special
subsets of star configurations whose Hilbert Function is the same as sets of generic points
while geometrically they are far of being generic.

We end this section recalling some open questions that are still under investigations
and posing new ones.

We recall from the work in [1] that from a combinatorial point of view, two Steiner sys-
tems having the same parameters could have very different properties and such differences
effect the homological invariants. Using experiments with [48,49] we ask:

Question 2. Let (V, B) be a Steiner system of type S(t, n, v), and XH,B the associated Steiner
configuration of points. Assume that the hyperplanes inH are chosen generically. Do the Hilbert
function and the graded Betti numbers of XH,B only depend on t, n, v?

Question 3. Let (V, B) be a Steiner system of type S(t, n, v), and XH,B the associated Steiner
configuration of points. Assume that the hyperplanes inH are chosen generically. Are the Hilbert
function and the graded Betti numbers of XH,B generic with respect to the Hilbert function? (i.e.,
the same as a set of |B| generic points in Pn?)

Given a hypergraph H, we also study the relation between its colourability and
the failure of the containment problem for the cover ideal associated to H. We suggest
the following.

Question 4. Can different types of colourings of a hypergraph give different answers to the
Containment problem and related conjectures?

We also thank one of the referees to point out [50,51], where the author studies graph
partitioning (fragmentation criteria) that has many fields of applications in engineering,
especially in applied sciences as applied chemistry and physics, computer science and
automation, electronics and telecommunication. See [52–54] just to cite some of them.
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Question 5. Can different types of colourings of hypergraphs give also different answers to frag-
mentation criteria?
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