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Abstract—To detect contaminants accidentally included in
packaged foods, food industries use an array of systems ranging
from metal detectors to X-ray imagers. Low density plastic
or glass contaminants, however, are not easily detected with
standard methods. If the dielectric contrast between the packaged
food and these contaminants in the microwave spectrum is
sensible, Microwave Sensing (MWS) can be used as a contactless
detection method, which is particularly useful when the food
is already packaged. In this paper we propose using MWS
combined with Machine Learning (ML). In particular, we report
on experiments we did with packaged cocoa-hazelnut spread and
show the accuracy of our approach. We also present an FPGA
acceleration that runs the ML processing in real-time so as to
keep up with the throughput of a production line.

I. INTRODUCTION

The quality of the production process is vital for the food
industry. Consumer complaints, in an era where online reputa-
tion can make the difference between survival and death for a
company, must be reduced as much as possible. Furthermore,
for the food industry there is the problem of safeguarding
consumer health. For these reasons, this industrial sector is
constantly seeking for new and improved solutions to detect
food contaminants that might accidentally be included in
packaged foods.

The most common devices installed along a food production
line are X-Ray imagers, metal detectors, and near-infrared
(NIR) hyperspectral imagers. Terahertz imaging is also being
adopted, but besides the high cost, it exhibits poor depth
penetration, which limits its applicability. NIR imaging also
suffers from low penetration depth. Ultrasound imaging re-
quires contact between transducer and sample, which makes
it not applicable to most packaged foods.

The devices currently in use cannot detect all potential con-
taminants. For example, low-density plastic or glass fragments,
which can accidentally detach from the package during the
packaging phase, are transparent for these devices. Although
the occurrence of such events is rare, it is still of the utmost
importance that these contaminants are detected.

Microwave Imaging (MWI) [1] is a technique that uses
low-power electromagnetic waves in the microwave spectrum
to reconstruct an image of the spatial distribution of the
dielectric properties in an object. This is obtained by first
radiating microwaves through a set of antennas and recording
the scattered waves through the same antennas; then the
recorded signals are processed with an algorithm that generates

an image, which is further elaborated to locate targets or to
distinguish different materials. This is possible because two
different materials in contact create a discontinuity that scatters
an incident wave more or less depending on the difference
between the dielectric properties of the two materials.

Although MWI can be used to detect contaminants in
packaged foods, we take a slightly different route. We still use
microwaves to illuminate the object and record the scattered
waves, but instead of running a computationally expensive
imaging algorithm, which might not be appropriate for real-
time detection in a food production line, we train a Machine-
Learning (ML) classifier to work directly on the raw mi-
crowave signals. We refer to this approach as ML-based
Microwave Sensing (MLMWS).

To the best of our knowledge, we are the first to use
this approach for contaminant detection in packaged foods,
although the combination of microwave sensing and machine
learning is not new and has been applied to the biomedical
field first [2][3]. In particular, we use MLMWS to detect plas-
tic and glass contaminants in cocoa-hazelnuts spread packaged
in glass jars with a plastic cap. We use an array of six antennas
working at 10 GHz connected to a switching matrix, which in
turn is connected to a Vector-Network Analyzer (VNA). This
system generates a 6×6 S-matrix of scattering parameters for
each measurement. We collected several of these scattering
matrices related to jars with and without contaminants and
created a dataset of labeled data. Then we trained two ML
classifiers, a Support Vector Machine (SVM) and a Multilayer
Perceptron (MLP), to determine which one worked best for
this application. Finally we implemented the best found MLP
in hardware on an FPGA to guarantee a real-time execution.

In this paper we report on our work on MLMWS. More in
detail, Sec. II makes a brief summary of the state of the art.
Sec. III describes the Microwave Sensing (MWS) system that
we use in our experiments. Sec. IV describes the ML training
and reports the experimental results and the design of the ML
hardware accelerator. Finally, Sec. V concludes the paper.

II. RELATED WORK

Following the successful application of MWI to the medical
imaging field [4], there has been an increasing interest toward
industrial applications of this technique [5]. There is not
abundant literature about MWI and MWS applied to the food
industry. The only noteworthy exceptions [6]-[8] focus on
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sensing rather than imaging, which is also the focus of our
contribution in this work.

The authors of [6] developed a hand-held time-domain
reflectometer working in the microwave spectrum to assess
the food quality by measuring variations in the dielectric
properties, which can be determined by a variation of water
concentration. Our goal is different, since we focus on detect-
ing foreign bodies in packaged food, and since our system
needs to be installed in an automated production line.

Using radar-based MWS for food screening—and so poten-
tially also for detecting foreign bodies—has been suggested
in [7], but without experiments to prove feasibility and ac-
curacy. An industrial implementation of radar-based detection
of foreign contaminants, however, is currently commercialized
[8]. The radar can detect foreign bodies such as wood, plastic,
bone, and fruit stones but is fundamentally different from our
approach as it applies to pipes where liquid food or emulsions
can flow before being packaged.

III. MICROWAVE SENSING SYSTEM

The MWS radiating system consists of six PCB-printed
monopole antennas arranged in an arch lying above the
production line and under which the jars flow uninterrupted.
The antennas resonate around 10 GHz. This frequency, which
we selected after extensive numerical simulations, represents a
good trade-off between penetration depth (the lower the better)
and resolution (the higher the better) [9]. The volume covered
by the field radiated by the antennas is a cylinder with section
∼200 cm2 and height ∼13 cm. The jars that we use in our
experiments have a section of diameter 6.6 cm and height
7.5 cm, but changes in size are possible as long as the jars
fit under the arch.

The antennas are connected to a 2×6 custom-made, electro-
mechanical switching matrix, which in turn is connected to a
2-port VNA. A picture showing the entire MWS system is
in Fig. 1. To collect the experimental data, we use a laptop
connected to the VNA. In a fully engineered industrial system,
the laptop will be replaced by a compact embedded system.

By properly configuring the switching matrix, it is possible
to activate any transmitting path from one VNA port to one
transmitting antenna, and any receiving path from one receiv-
ing antenna to the other VNA port. Thus, we can measure a
6 × 6 scattering matrix by activating all the possible antenna
pairs, including the monostatic combinations in which the
same antenna is used as both transmitter and receiver. Due
to reciprocity, the S-matrix is symmetrical. In our approach
we do not use the monostatic cases that correspond to the
diagonal elements of the matrix. As a result, due to symmetry
and the fact that the diagonal elements are not needed, only
the fifteen elements of the upper triangular part of the S-matrix
are actually measured, which shortens the acquisition time.

To automate the measurements, a photocell triggers the
VNA and the switching matrix every time a new jar is
about to pass under the arch. We performed our experiments
on an industrial production line with an operating speed
of around 30 cm/s and an average distance between jars of

Fig. 1: Picture showing the MWS system.

around 10 cm. This sets a constraint of around 333 ms to
perform one measurement and to process the data. The fifteen
measurements require in total a few tens of milliseconds, due
primarily to the electro-mechanical swithing time, whereas the
VNA measurement time is less than one millisecond. This
means that the measurements are like a sequence of snapshots
of a moving subject (i.e. the jar) that spans around 1.5 cm
between the first and last snapshot. In MWI this might have a
significant impact on the image resolution. For our ML-based
sensing approach, the movement of the target is much less
relevant, especially considering that it is taken into account in
the development of an adequate training set.

IV. MACHINE LEARNING

The diagram in Fig. 2 describes the design flow to obtain
the final implementation of the selected ML algorithm on an
FPGA starting from the collection of the Dataset. Subsection
IV.A and IV.B report on the first two blocks and the last three
blocks of the diagram, respectively.

A. ML design

First of all, the MWS system is used to create a balanced
Dataset obtained by measuring 1200 contaminated and 1200
uncontaminated samples (first block in Fig. 2). For practical
reasons, each sample is a jar filled with safflower oil instead
of hazelnut-cocoa spread. The motivation is that the two
liquids have the same dielectric constant (∼2.86 at 10 GHz),
which makes them behave in the same way in the microwave
spectrum, but the oil is optically transparent, which facilitates
the positioning and monitoring of the contaminants in the ex-
periments. These foreign bodies are (in brackets the max./min.
dimensions or the diameter): a metal sphere (10 mm), a glass
fragment (13/2 mm), a big plastic sphere (20 mm), a small
plastic sphere (3 mm), a triangular plastic fragment (8/1 mm),
and a cap shape plastic (15/9 mm).

For each type of foreign body, 200 samples are measured,
changing their position in the jar: in the middle, at the surface,
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Fig. 2: Flow diagram representing the activities carried out in this work.

and in the horizontal plane at fixed height. The diversity of the
Dataset is further increased by rotating the sample in a range
of ±10◦ with respect to its long-side axis and by displacing
it by ±2cm from its ideal position under the antennas arch.

For each sample, the fifteen elements of the triangular upper
part of the 6 × 6 S-matrix are recorded. Since each of these
elements is a complex number with real and imaginary parts,
each sample in the Dataset is a vector of 15×2 = 30 features.

The second block in Fig. 2 uses the Dataset to determine
the best ML algorithm for the classification of the samples.
As a preliminary step, the Dataset is shuffled and split in a
Training Set made of 80% of the data and a Test Set composed
by the remaining 20%. To keep these subsets balanced, their
number of “contaminated” and “free” samples are the same.
Next, standardization with StandardScaler [10] is applied first
to the Training Set, then to the Test Set.

With the standardized Training Set, two binary classifiers
are trained: a Support Vector Machine (SVM) [15] and a Mul-
tilayer Perceptron (MLP) [11]. The SVM is chosen because it
is easy and fast to train, since it has only two hyper-parameters
if the Radial Basis Function (RBF) kernel is used (the regu-
larization parameter C and the kernel-specific parameter γ),
and because it can be used to judge on the suitability of ML
altogether to solve the problem at stake [11]. In addition, SVM
has been applied effectively to other detection problems using
microwaves, like breast-cancer monitoring [12]-[14]. MLP is
chosen as the second classifier because, although slightly more
difficult than SVM to train, it is more suitable for a real-time
hardware implementation, which could favor this choice in
case the discriminating capacity is satisfactory.

The key points of the SVM training procedure are [16]:
1) consider the Radial Basis Function (RBF) kernel;
2) adopt a loose grid with 5-fold cross-validation (CV) and a

fine grid with 10-fold CV;
3) use CV and Grid-Search to find the best hyper-parameters

(C, γ) that maximize the CV accuracy;
4) train the SVM on the entire Training Set with best (C, γ).

Regarding MLPs, we designed three architectures, each with
30 Units in the Input Layer (as many as the number of features)

and only one Sigmoid Unit in the Output Layer to let the
MLP work as a binary classifier. The three MLPs differ in the
number of hidden layers: 1, 2 or 3. More than three hidden
layers would not probably bring about any advantage [18].

Training these MLPs with Grid-Search would be too time-
consuming because of the many hyper-parameters to tune.
Therefore, we used Bayesian Optimization (BO), also known
as Sequential model-based optimization (SMBO), thanks to the
Hyperopt Library [17]. The training procedure is as follows:
1) define constant non-tunable hyper-parameters: Adam Op-

timizer, Binary Cross-Entropy Loss Function, L2 Weight
Regularization (active when Regularization Parameter is
greater than 0), 1000 as maximum number of Epochs;

2) define loose and fine grids for each tunable hyper-
parameter: number of Units per Hidden Layer as powers
of 2; Relu, Selu, and Tanh as Activation Functions; He
Normal, Lecun Normal, and Glorot Normal as Weight
Initializers; Weight Regularization Parameter from 0.0 to
0.1 in logarithmic scale; Dropout Rate from 0.0 to 0.55;
10, 50, and 100 as Batch-size;

3) carry out 5-fold CV and BO to select the most promising
hyper-parameters that minimize the validation loss. Use
early-stopping to monitor the validation loss, with 10
epochs of patience and a triggering condition of 0.002;

4) train new MLPs from scratch with the promising hyper-
parameters on 75% of the Training Set, using the 25% as
Validation Set (arbitrary choice). At the epoch that provides
the lowest validation loss, weights and architectures of
the model are saved for a possible subsequent hardware
implementation. The saving procedure is not done directly
during the 5-fold CV training phase because it would have
slowed it down.

To perform the ML experiments with the two kinds of
classifiers, we used various Python libraries, of which the main
ones are: scikit-learn 0.21.3, keras 2.2.4, and hyperopt 0.1.2.

As a final step, to evaluate and compare the generalization
performance of the SVMs and the MLPs, the most promising
models (those with the highest validation accuracy) have been
tested on the held-out 20% of the Dataset.
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The best SVM has (C, γ) = (56.0, 0.027), Test Accuracy
93.958%, and Error Rate 6.042% as it mispredicts 29 samples
out of 480 of the Test Set (22 False Negatives and 7 False
Positives). Its Area Under the ROC Curve (AUC) is 0.982.

The winning MLP has 2 Hidden Layers with [128, 256]
Relu Units. It also mispredicts 29 out of 480 samples, which
leads to the same Error Rate of 6.042%, even though the
balance of False Negatives and Positives is slightly different
(21 False Negatives and 8 False Positives). Its AUC is 0.980.

Tab. I reports the errors of both classifiers on the Test Set.
The reason why the triangular plastic fragment determines the
largest number of errors is not its small dimensions, but rather
the fact that it always floats on the surface of the liquid in the
jar. As a result, the low dielectric contrast of the plastic-oil
interface with respect to the plastic-air one makes the fragment
almost invisible in the back-scattered signal. This is clearly an
aspect that needs further investigation in future works.

Type of
Sample

Occur-
rences in
Test Set

SVM
Errors
→

Error
Rate (%)

MLP
Errors

→ Error
Rate (%)

Free = No contaminant 240 7 → 2.917 8 → 3.333

Metal sphere 45 1 → 2.222 0 → 0

Glass fragment 43 1 → 2.326 0 → 0

Big plastic sphere 37 0 → 0 0 → 0

Small plastic sphere 35 0 → 0 0 → 0

Triang. plastic fragment 41 20 → 48.780 21 → 51.220

Cap shape plastic 39 0 → 0 0 → 0

Sum 480 29 → 6.042 29 → 6.042

Sum without
triang. plastic fragment 439 9 → 2.050 8 → 1.822

TABLE I: Types of samples in the Test Set and their contribution
to the final Error Rate for both SVM and MLP.

Based on these results, we chose the MLP classifer for
hardware implementation over the SVM one because:
• it has lower False Negatives, which are more important than

False Positives because jars with foreign bodies must be
eliminated at all costs, including wasting some jars declared
as contaminated even if they are free;

• it correctly predicts all the hazards, except the triangular
plastic fragment, which is also the defect of the SVM;

• its hardware realization is simpler and faster;
• it has the same Error Rate of the SVM on the Test Set.

B. Hardware Acceleration

To implement on FPGA the Hardware Accelerator for the
best found MLP, the first step is to produce a synthesizable
code, which corresponds to the transition between the second
and the third block in Fig. 2. For this, we used the hls4ml tool
[19], which converts the MLP Keras model (architecture and
weights) in a C/C++ code. This code is ready to be synthesized
in hardware using the High-Level Synthesis (HLS) design

flow of Vivado HLS, which is the Xilinx FPGA development
tool. In fact, our target FPGA is the Xilinx xc7z020clg484-1
mounted on the ZedBoard Zynq-7000 Development Board.

The HLS code produced by hls4ml needs to be edited to
add the Standardization Block, which standardizes the inputs
with the mean and standard deviation values obtained during
a preprocessing phase1. In this way, new unseen samples
undergo the same standardization of the training samples: this
is a crucial step to make the MLP work as expected.

In the conversion from Keras to HLS, hls4ml allows config-
uring clock period, internal fixed-point precision, pipelining,
resource reuse, etc. Different combinations of those settings
are tested, with the goal of maintaining the correct function-
ality, the latency under 100 ms, and the resource utilization
below the limits of the target FPGA.

To select the best implementation, many simulations in
Vivado HLS with various configurations have been performed.
This activity corresponds to the fourth block in Fig. 2. The
results matched the predictions of the Keras MLP only for
the cases with precision no less than <64, 32>, where 64 is
the internal bit-width parallelism and 32 (out of 64) are the
fractional bits. Therefore, we selected this precision in our
final implementation. For reasons of space we cannot provide
more details about the other configuration parameters that we
set to minimize the computation latency.

After the physical implementation, which is the last block in
Fig. 2, we obtain the results in Tab. II in terms of performance,
utilization of FPGA resources, and power.

Freq.
(MHz)

Latency
(ms)

BRAMs
(%)

DSPs
(%)

FFs
(%)

LUTs
(%)

Power
(W)

100 2.997 43 11 9 14 1.974

TABLE II: Characteristics of the solution implemented on FPGA.

V. CONCLUSION

In this paper we have shown how the combination of
Microwave Sensing and Machine Learning can detect the
presence of contaminants in packaged jars when the liquid
has different dielectric properties than the foreign bodies. Our
thorough ML design procedure led to select the best Support-
Vector Machine and Multi-Layer Perceptron classifiers, of
which the last was implemented in FPGA to guarantee real-
time performance in the industrial environment. The focus
of future investigation will be on improving the accuracy for
some particular contaminants.
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