
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Double-Step deep learning framework to improve wildfire severity classification / Monaco, Simone; Pasini, Andrea;
Apiletti, Daniele; Colomba, Luca; Farasin, Alessandro; Garza, Paolo; Baralis, Elena. - ELETTRONICO. - (2021).
(Intervento presentato al  convegno Workshops of the 24th International Conference on Extending Database
Technology/24th International Conference on Database Theory, EDBT-ICDT 2021 tenutosi a Nicosia (Cyprus) nel March
23-26, 2021).

Original

Double-Step deep learning framework to improve wildfire severity classification

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2871352 since: 2022-04-14T09:30:13Z

OpenProceedings



Double-Step deep learning framework
to improve wildfire severity classification

Simone Monaco
Politecnico di Torino

Torino, Italy
simone.monaco@studenti.polito.it

Andrea Pasini
Politecnico di Torino

Torino, Italy
andrea.pasini@polito.it

Daniele Apiletti
Politecnico di Torino

Torino, Italy
daniele.apiletti@polito.it

Luca Colomba
Politecnico di Torino

Torino, Italy
luca.colomba@polito.it

Alessandro Farasin
Politecnico di Torino

Torino, Italy
alessandro.farasin@polito.it

Paolo Garza
Politecnico di Torino

Torino, Italy
paolo.garza@polito.it

Elena Baralis
Politecnico di Torino

Torino, Italy
elena.baralis@polito.it

ABSTRACT
Wildfires are dangerous events which cause huge losses under
natural, humanitarian and economical perspectives. To contrast
their impact, a fast and accurate restoration can be improved
through the automatic census of the event in terms of (i) delin-
eation of the affected areas and (ii) estimation of damage severity,
using satellite images. This work proposes to extend the state-
of-the-art approach, named Double-Step U-Net (DS-UNet), able
to automatically detect wildfires in satellite acquisitions and to
associate a damage index from a defined scale. As a deep learning
network, the DS-UNet model performance is strongly dependent
on many factors. We propose to focus on alternatives in its main
architecture by designing a configurable Double-Step Framework,
which allows inspecting the prediction quality with different loss-
functions and convolutional neural networks used as backbones.
Experimental results show that the proposed framework yields
better performance with up to 6.1% lower RMSE than current
state of the art.

1 INTRODUCTION
In the recent years, European countries witnessed an increasing
trend in the occurrence of wildfires. According to the annual
report of the European Forest Fire Information System, in 2019
more than 1,600 wildfires have been recorded in the European
Union: about three times more than the average over the past
decade [2, 3]. Those events are causing large losses not only to
forests and animals, but also to human lives and cities. The geo-
graphical delineation of the affected regions and the estimation
of the damage severity are fundamental for planning a proper
environment restoration.

The European Union is active in natural disasters monitoring
and risk management through the Copernicus Emergency Man-
agement Service platform (EMS) [1]: it provides data about past
disasters such as forest wildfires and floods. The census of an haz-
ard is usually performed either manually or semi-automatically
using in-situ information, images captured from aircrafts and
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remote-sensing sensors such as satellites. The latter two data
sources can be used to develop computer vision systems, mainly
based on neural networks, to automatize the entire detection and
damage estimation process.

For this purpose, we use satellite images acquired by Coperni-
cus Sentinel-2 mission to automatically identify burnt areas [22]
and to assess the damage severity without requiring human ef-
forts. We can identify two different approaches to address this
task: (i) assigning a class label to each pixel of the satellite image
(i.e., burnt or unburnt), or (ii) an increasing number represent-
ing the damage intensity. The former can be modeled with the
well-known computer vision task called semantic segmentation,
while the latter requires a regression methodology.

The current state of the art proposes a solutions based on Con-
volutional Neural Networks (CNNs), called Double-Step U-Net
(DS-UNet) [7], which involves both binary semantic segmenta-
tion and regression to obtain a damage-severity map. Specifically,
each pixel is labeled with a numerical value representing the
damage level: 0 - No damage, 1 - Negligible to slight damage, 2 -
Moderately damaged, 3 - Highly Damaged, and 4 - Completely
destroyed. The network is trained according to the official hazard
annotations, named grading maps, publicly available on Coper-
nicus EMS [1].

Previous works on semantic segmentation showed that the
appropriate configuration of the CNN structure and the choice
of loss functions have significant impacts on the final results [12,
15]. In this work we aim to improve the performances of the
Double-Step U-Net maintaining the base architecture, composed
of two separated CNNmodules, but assessing different CNNs and
loss functions. Hence, we propose the Double-Step Framework
(DSF), a configurable architecture whose modules allow an in-
depth analysis on the effects of different loss-functions and CNNs,
comparing the results with the baseline in [7].

Our contribution can be summarized as follows: (i) we define
the Double-Step Framework, inspired by the DS-UNet neural net-
work, and (ii) we show detailed experimental results on classifica-
tion and regression tasks, comparing the different configurations.

Our paper is organized as follows. Section 2 presents the re-
lated works, while Section 3 discusses the neural network model
and the proposed variations in terms of deep network backbones



Figure 1: Double-Step Framework architecture.

and loss-functions. Finally, Section 4 shows the experimental
results and Section 5 draws conclusions.

2 RELATEDWORK
In this section, we firstly review previous works on wildfire
prediction and severity classification, then we analyze the state-
of-the-art architecture, addressing the semantic segmentation
problem. Then we focus on the adopted loss functions, highlight-
ing the differences with the proposed techniques.

Many previous works are used to monitor the evolution of
wildfires during the event to support domain experts. Some
of these techniques are implemented via deep learning mod-
els [5, 18]. Differently, in this paper we are focused on automatic
detection of involved areas and damage estimation after the event,
by only exploiting post-event satellite images.

The burnt area identification problem is well-known in re-
mote sensing literature: many different approaches have been
proposed and recently, machine learning and deep learning-
based approaches are being considered, such as [9, 19]. Some
mapping operations are performed based on in-situ information,
such as the Composite Burned Index (CBI) [14], which are time-
consuming and requires evaluations of the soil and vegetation
conditions for the entire area of interest (AoI). Other approaches
exploit the use of remote sensing techniques and burnt area in-
dexes: satellites collects information across different bandwidths,
some of which are sensible to water and vegetation. Specifi-
cally, we consider 12 bandwidths available from Sentinel2-L2A
products. Burnt area indexes highlight burnt regions by combin-
ing specific bandwidths and eventually comparing pre-fire and
post-fire acquisitions: Normalized Burn Ratio (NBR) [17], delta
Normalized Burn Ratio (dNBR) [16] and Burned Area Index for
Sentinel2 (BAIS2) [8] are some examples. Different approaches
use such indexes to identify damaged areas and eventually assess
the severity level [21].

These methodologies showed so far suffer from a strong de-
pendence on the different weather conditions of the satellite ac-
quisitions. Moreover, the usage of indexes to estimate the damage
severity level typically requires the manual or semi-manual defi-
nition of predefined thresholds that are usually soil-dependent
and cannot be easily set. The solutions adopted in this work
solve the previously mentioned issues by only including post-
fire images and applying a supervised prediction approach on
pre-labelled severity maps. Specifically, we apply a semantic seg-
mentation model, combined with a regression one, to derive the
final result. Many different semantic segmentation architectures
have been proposed in literature [4, 6, 23], but the work in [7]
shows that U-Net [20] is a valuable choice for addressing the
wildfire damage-severity estimation task.

The state-of-the-art solution proposes a Double-Step U-Net
architecture. This double step configuration relies on the Dice
loss function to learn predicting the boundaries of wildfires, and
on the Mean Squared Error (MSE) function for estimating the
final severity level. Many other different loss functions have been
proposed in literature [11], and several works showed that a
correct choice typically makes a real difference in the results [12].

3 DOUBLE-STEP FRAMEWORK
In this section we define the Double-Step Framework (DSF), with
the aim of obtaining a configurable architecture based on the
Double-Step U-Net working principles. The proposed framework
allows a complete customization of both training loss functions
and backbone neural networks. The main building blocks of
the DSF are depicted in Figure 1 and their functionalities are
described in the following paragraphs.

Binary class backbone. This building block has the task of
assigning a binary label (i.e., burnt or unburnt) to each pixel of
the input image. Its output is a probability map with values in
the range [0, 1].

Binary threshold. The output probabilities of the Binary
class backbone are thresholded to obtain the final binary mask,
highlighting regions affected by wildfires. The value of the thresh-
old is fixed to 0.5 in all the experiments.

Regression backbone. This step aims at deriving a severity
map to specify the damage intensity in range [0, 4] for each
pixel. It takes as input the product between the binary mask and
the original input image, in order to consider the satellite image
information only for the regions that have been classified as burnt
by the Binary class backbone. Indeed, accurate binary masks are
fundamental to provide only the information related to regions
affected by wildfires. False positives (i.e., unburnt areas classified
as burnt) have shown to negatively affect the regression quality.

Binary loss. This loss function is exploited to train the Binary
class backbone, by comparing its output with ground-truth binary
masks.

Regression loss. After the completion of the training process
of the Binary class backbone, this loss function is used to train
the Regression backbone. During this training phase, the weights
of the Binary class backbone are kept constant.

The Binary class backbone, the Regression backbone, and
the two loss functions defined for the DSF can be customized
to obtain several configurations. In the following, we present
the different options available for these configurable modules,
dividing the analysis in two parts: (i) backbone architectures, and
(ii) loss functions.



Table 1: Loss function selection experiments.

Config. name Binary loss Regression loss

BCE-MSE BCE MSE
Dice-MSE Dice MSE
B+D-MSE Compound BCE, Dice MSE
B+S-MSE Compound BCE, sIoU MSE
sIoU-sIoU sIoU sIoU
sIoU-MSE sIoU MSE

3.1 Backbone architectures
The Binary class and the Regression backbones can be imple-
mented with a custom encoder-decoder neural network. We pro-
pose three different DSF configurations for these modules, by
changing the backbone architectures. Specifically, we selected the
following models: U-Net [20], U-Net++ [24], and SegU-Net [13].
When choosing one among the proposed backbone architectures,
we use the same one for both the Binary class and the Regression
backbone. In the next sections of this paper we refer to these
configurations with the names Double-Step U-Net (DS-UNet),
Double-Step U-Net++ (DS-UNet++), and Double-Step SegU-Net
(DS-SegU).

The state-of-the-art Double-Step U-Net [7] is exactly repro-
duced by our framework when choosing the DS-UNet configu-
ration. The U-Net in the Binary class backbone is set up with
a sigmoid activation function to generate the probability map,
while for the Regression backbone we do not use any activation
function, since the output values may range in [0, 4].

The DS-UNet++ follows the same working principles and dif-
fers only by the selected neural network. Specifically, U-Net++
enhances the structure of the standard U-Net by adding convolu-
tional layers in correspondence of the skip connections between
the encoder and the decoder.

Finally, the DS-SegU configuration exploits another variation
of the standard U-Net. In particular, with the SegU-Net network,
the skip-connections typical of the U-Net are integrated into Seg-
Net [4], which is based on pooling indices to provide information
from the encoder to the decoder.

3.2 Loss functions
This section describes the different loss functions that we propose
for training the Binary class and the Regression framework. The
complete list of configurations is specified in Table 1. The first
column of the table provides the configuration name, used in the
experiments in Section 4, while the other two columns specify
the corresponding Binary and Regression loss.

Binary loss. For the Binary loss function we consider Bi-
nary Cross Entropy (BCE), Dice, sIoU, and two compound loss
functions (i.e., B+D, B+S). In the following we provide the main
characteristics of these loss functions.

The sIoU (soft Intersection over Union) is defined as a per-pixel
AND-like operation applied between the ground-truth image and
the network estimation to get the Intersection, and a per-pixel
OR-like operation to get the Union. Differently to standard IoU,
the sIoU is computed directly on the probability map predicted
by the neural network, without discretizing the values to a binary
mask. This allows evaluating the actual distance between the
prediction and ground truth, for a more effective calculation
of gradients. The definition of the sIoU loss function can be

formalized as follows:

𝐿𝑠𝐼𝑜𝑈 = 1 − 𝐼𝑠𝑜 𝑓 𝑡/𝑈𝑠𝑜 𝑓 𝑡

where 𝐼𝑠𝑜 𝑓 𝑡 and𝑈𝑠𝑜 𝑓 𝑡 are the soft intersection and the soft union,
respectively. Compound loss functions have shown to be an
effective way for training neural networks [15].

They are typically defined as a weighted sum of standard loss
functions. In this work we inspected the effectiveness of B+D,
defined as B+D = 0.5 · 𝐵𝐶𝐸 + 0.5 · 𝐷𝑖𝑐𝑒 , and B+S, defined as
B+S = 0.5 · 𝐵𝐶𝐸 + 0.5 · 𝐿𝑠𝐼𝑜𝑈 .

Regression loss. Since the output values of the Regression
backbone can range into 5 severity levels, for the regression loss
we considered a second set of functions. Specifically, we inspected
the results obtained with the Mean Squared Error (MSE), a gen-
eralization of the sIoU to a multiclass case, and a combination of
the MSE and the F1 score.

In the case of sIoU, predictions and ground truth are com-
pared by considering separately the pixels corresponding to each
severity level. The division of the pixels based on the severity
level is made by applying rectangular functions to the matrices.
In the case of the network prediction matrix, to avoid defining
a sharp selection of the severity levels (i.e., loosing important
information for the gradient), we applied smooth rectangular
functions. After computing the intersections and the unions be-
tween ground truth and predictions, the contribution of each
severity level is finally summed up in the final sIoU function.

Let Π𝑐 be a sharp rectangular function that takes the value 1
when the input pixel belongs to class 𝑐 and 0 otherwise. Let �̃�𝑐 (𝑥)
be a smooth rectangular function, defined as �̃�𝑐 (𝑥) = 𝜎 (𝜖−|𝑥−𝑐 |),
where 𝜖 = 0.5 and 𝜎 is the sigmoid function. The sIoU loss
function, is defined as:

𝐿𝑠𝐼𝑜𝑈 ,𝑟𝑒𝑔 =

∑
𝑐 |Π𝑐 (𝑌GT) ◦ �̃�𝑐 (𝑌PR) |∑

𝑐 |Π𝑐 (𝑌GT) + �̃�𝑐 (𝑌PR) − Π𝑐 (𝑌GT) ◦ �̃�𝑐 (𝑌PR) |
,

where 𝑌GT is the ground-truth matrix, 𝑌PR are the predictions,
and the symbol ◦ represents the element-wise product between
twomatrices. Given this definition, for each class, the intersection
is represented by the product between the two matrices and the
union is given by their sum minus the intersection.

The last loss function we considered is inspired from the fact
that the second network is designed for a regression task, but
actually the final result admit a set of classes. Hence we built
a function both penalizing the distance from the ground truth
and favouring the consistency with the real classes. The two
contributions are provided by the MSE loss and the F1 score the
result obtain on the 5 classes, multiplied together following:

𝐿𝑀𝑆𝐸 ·F1 = 𝐿𝑀𝑆𝐸 · (1 − F1) .

4 EXPERIMENTAL RESULTS
In this section we provide the evaluation of the proposed Double-
Step Framework, by inspecting the results with all the configura-
tions described in Section 3. We also show a detailed comparison
with other standard encoder-decoder architectures.

The next subsections are organized as follows. Section 4.1
describes the analyzed dataset, Section 4.2 outlines the experi-
mental setting, while Section 4.3 provides the results to assess the
modules of the DSF. Finally, Section 4.4 compares our framework
with other single-step architectures.

4.1 Dataset analysis
The experimental setting adopted in this paper follows the same
dataset preparation as in [7]. Specifically, the satellite images are



Figure 2: Distribution of the 5 severity levels for each fold.

Table 2: IoU of burnt class for the Binary classification backbone.

Model BCE Dice ([7]) B+D B+S sIoU

DS-UNet 0.80 0.58 0.58 0.38 0.39
DS-UNet++ 0.79 0.47 0.50 0.37 0.30
DS-SegU 0.63 0.24 0.19 0.15 0.14

extracted from the Copernicus Emergency Management Service
dataset (Copernicus EMS) [1], focusing on the samples acquired
by Sentinel2 (L2A products). The satellite acquisitions represent
terrain areas with matrices of variable size (approximately 5000×
5000) and 12 channels (for the different acquisition bandwidths).
Each sample is manually annotated with pixel-wise ground-truth
severity levels corresponding to the damage intensity caused by
the wildfire. The number of severity levels is 5 (i.e., from 0 for no
damage, to 4 for completely destroyed).

The images are provided to the neural networks under anal-
ysis by tiling them into squares with size 480 × 480. Indeed,
their original size is too large for being consumed by these deep
learning models. After excluding the samples without burnt re-
gions, the dataset contains a total of 135 tiles. These data are
then distributed into 7 different folds based on the geographical
proximity of the analyzed regions (i.e., close regions typically
share the same morphology).

The percentage of pixels of the 5 severity levels in the 7 dataset
folds is provided in Figure 2. The plot shows that the class 0
(i.e., no damage) is predominant over all the others. Moreover,
different folds present significantly different distributions of the
severity levels, which confirms the difficulty of the prediction
task.

4.2 Experimental setting
Motivated by the small dataset size and the unbalanced classes,
data augmentation techniques have been performed to change
the variability of the training data at each epoch, applying random
rotations, horizontal/vertical flips, and random shears.

After applying data augmentation, we run a cross-validation
for each model under analysis. At each iteration, five folds out
of seven are used for training, 1 for validation (i.e., to enable
early stopping), and 1 for testing. The early stopping process is

configured with patience 5 and a tolerance of 0.01 on the loss
function.

To enhance the reliability of the results, cross-validation is run
5 times for each model configuration. All the evaluation metrics
are computed separately for each run and each cross-validation
iteration, then averaged to obtain the final scores.

The output of the analyzed neural networks is evaluated in a
(i) regression fashion, and a (ii) classification fashion. The first
case exploits the Root Mean Squared Error (RMSE) to verify
the quality of the predictions. Due to dataset imbalancing, the
RMSE is computed separately for each severity level for a proper
evaluation. Specifically, given a severity level, we compute the
RMSE between all the ground-truth pixels with that value and
the neural network predictions.

Since severity levels in the ground-truth annotations are pro-
vided in the form of discrete numbers, we also applied a clas-
sification metric for the evaluation. Specifically, we computed
the Intersection over Union (IoU) between ground truth and the
predictions discretized to integer values. Similarly to the RMSE
evaluation, the IoU is computed separately for each severity level.

4.3 Loss function selection
We begin the assessment of the Double-Step Framework by fo-
cusing on the Binary classification backbone. To this aim, Table 2
evaluates the Binary classification backbone by providing the
IoU of the burnt class. This phase inspects the ability of the
network in distinguishing between burnt and undamaged ar-
eas, regardless of the severity levels. The results clearly show
that the BCE loss function brings an important advantage with
respect to the others, reaching 0.80 IoU for the DS-UNet and
0.79 for the DS-UNet++. The Dice loss function, exploited in the
original Double-Step U-Net, compares to BCE with moderately
lower results for the DS-UNet and the DS-UNet++ (0.58 and 0.47
respectively) and a very low score (i.e., 0.24) for the DS-SegU.



Table 3: Results on burnt-areas only, with different loss functions.

Metric Model BCE-MSE Dice-MSE [7] B+D-MSE B+S-MSE BCE-MSE·F1 sIoU-sIoU sIoU-MSE

avg RMSE
DS-UNet 1.08 1.15 1.13 1.27 1.12 1.64 1.31
DS-UNet++ 1.10 1.28 1.19 1.35 1.14 2.31 1.28
DS-SegU 1.45 1.60 1.73 1.79 1.38 2.50 1.79

avg IoU
DS-UNet 0.16 0.13 0.14 0.14 0.13 0.10 0.12
DS-UNet++ 0.16 0.11 0.13 0.13 0.14 0.15 0.11
DS-SegU 0.12 0.14 0.14 0.15 0.14 0.14 0.13

Table 4: Architecture selection results (RMSE).

Severity DS-UNet
BCE-MSE

DS-UNet++
BCE-MSE

DS-SegU
BCE-MSE·F1

Unet++
MSE

PSPNet
MSE

SegU-Net
MSE

0 0.30 0.33 0.23 1.04 1.14 0.39
1 1.09 1.00 0.79 1.16 1.37 0.91
2 1.04 0.95 1.09 0.93 1.21 1.11
3 0.96 0.97 1.33 0.91 1.09 1.44
4 1.25 1.50 2.33 1.35 1.38 2.14

avg (1-4) 1.08 1.10 1.38 1.09 1.26 1.40

Table 5: Architecture selection results (IoU).

Severity DS-UNet
BCE-MSE

DS-UNet++
BCE-MSE

DS-SegU
B+S-MSE

Unet++
MSE

PSPNet
MSE

SegU-Net
MSE

0 0.95 0.94 0.68 0.00 0.00 0.82
1 0.11 0.13 0.08 0.01 0.01 0.09
2 0.22 0.21 0.07 0.19 0.11 0.14
3 0.03 0.07 0.28 0.01 0.01 0.08
4 0.28 0.21 0.14 0.14 0.16 0.06

avg (1-4) 0,16 0,16 0,15 0,09 0,07 0,09

Motivated by these results, we inspect the ability of the Double-
Step Framework in distinguishing the different severity levels
for burnt regions. To this aim, we computed the RMSE and the
IoU, averaged for the levels in range [1, 4]. Level 0 is excluded
by the average, since it represents the majority class, describing
unburnt regions. Table 3 provides the results for all the config-
urations proposed in Section 3. Both the loss functions and the
Binary/Regression backbones are evaluated at this step.

The results clearly show that the BCE-MSE loss function con-
figuration is able to achieve the best results according to RMSE.
The only difference is for the DS-SegU, which reach better result
with the BCE-MSE·F1 loss function. For what concerns IoU, the
BCE-MSE confirms its first place for the DS-UNet andDS-UNet++,
while the loss functions including the sIoU for the Binary classi-
fication backbone, namely the combo loss B+S-MSE, achieve a
better score for the DS-SegU. Among the three proposed DSF ar-
chitectures, the DS-UNet with BCE-MSE presents the best result
in terms of avg RMSE, while the DS-UNet and DS-UNet++ with
BCE-MSE achieve the best IoU.

4.4 Architecture comparison
We complete our experimental results by comparing the predic-
tion quality of the Double-Step Framework with other single-
step neural networks. In the following, for the DS-UNet, the
DS-UNet++, and the DS-SegU, we only show the results with the

best overall loss function configurations for each network. The
other neural networks analyzed in this section are the Unet++,
PSPNet, and SegU-Net. All of them are trained by means of the
MSE loss function. PSPNet is considered as example of a more
complex neural network with respect to the other ones. Indeed,
this model exploits multiple pyramidal pooling filters to capture
features at different resolutions. In our case we used a PSP layer
including pooling kernels with size 1, 2, 3, 6 and the ResNet18 [10]
as backbone. We did not use deeper ResNet models due to possi-
ble underfitting issues (caused by the small size of the analyzed
dataset).

Table 4 and 5 show the complete set of results, analyzed with
RMSE and IoU respectively. The first five lines of the two tables
present the scores separately for the severity levels. The final
line provides the average score excluding level 0 (i.e., undamaged
regions).

According to the average RMSE (Table 4), the best model is the
DS-UNet, with value 1.08. Despite this result, it only reach the
best score for level 4 regions with respect to other models. Look-
ing at average IoU scores (Table 5), the DS-UNet obtains again
the best result, together with the DS-UNet++ when considering
the average score.

For the majority class (i.e., level 0), SegNet achieves a very low
RMSE (0.01). However, this model makes important errors on all



the other severity levels, probably because the model is incline
to predict class 0 most of the times.

5 CONCLUSIONS AND FUTUREWORKS
The objective of this paper was to define a complete experimental
setting to compare different architectures for wildfire severity
prediction. We defined a Double-Step Framework, with customiz-
able loss-functions and network backbones. Different backbones
and loss functions have been evaluated according to RMSE and
IoU, showing that the Double-Step Framework tends to give more
accurate results with respect to single-step neural networks.
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