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5.2  Capacitance-to-Digital Converter for Operation Under
Uncertain Harvested Voltage down to 0.3V with No
Trimming, Reference and Voltage Regulation

Orazio Aiello', Paolo Crovetti2, Massimo Alioto!

National University of Singapore, Singapore, Singapore, 2Politecnico di Torino,
Torino, Italy

In low-cost battery-less systems, capacitive sensing via capacitance-to-digital conversion
(CDC) needs to operate with minimal or no support from additional circuitry such as
voltage regulation, voltage/current references or digital post-processing as shown in Fig.
5.2.1 (e.g., for linearization). At the same time, direct harvesting demands operation down
to very low voltages and power, to consistently fit the power available from the
environment even when scarce (e.g., down to ~nW/mm? in light harvesters under realistic
conditions). To enable continuous monitoring at power lower than the pW-range of state-
of-the-art ~12-bit CDCs [1-3], 7-to-8-bit architectures with power down to sub-nW have
been demonstrated for sensor nodes [4], although their supply voltage requirement
(=0.6V) is not suitable for direct harvesting, similar to [5]. CDCs for continuous monitoring
at lower resolution (~7 bit) with sub-nW operation at 0.6V have been also demonstrated
[6], although their power is burdened by the additional contribution of digital post-
processing (~nWs) and others. A fully digital CDC has been introduced in [7] in the form
of capacitance-to-voltage conversion via capacitor linear discharge due to a ring oscillator
and final voltage-to-digital conversion, which requires two supply voltages of 0.45V and
1V. Operation at minimal power also comes with measurement times in the sub-second
or second scale [6,8] in addition to the reduced resolution, which are still in the range
required by continuous monitoring in several applications [6,8] (e.g., temperature,
humidity, proximity, fluid level monitoring).

In this work, a capacitance-to-digital converter for low-cost systems that can be powered
directly by a harvester is presented. The digital architecture based on swappable
oscillators removes the need for any system infrastructure in terms of voltage regulation,
references and digital post-processing, and enables operation down to 0.3V. nW-power
operation is obtained by introducing swapped-voltage biasing in dual-mode logic gates
[9]. The CDC is equipped with a load-agnostic self-calibration that reduces system cost by
removing the need for accurate test load or clock, avoiding any additional testing time,
while being executable any time (i.e., at boot and run time) without disconnecting the
available load. Operation under a 1mm? solar cell at indoor lighting level is demonstrated.
The proposed CDC (Fig. 5.2.1) is based on two nominally identical (see calibration below)
relaxation oscillators OSC1 and OSC2 with swappable loads Cx and Crer, which are
respectively the unknown capacitance to be measured and the reference capacitance.
Direct (swapped) connection in Fig. 5.2.2 loads OSC1 with Cx (Crer) and OSC2 with Crer
(Cx), and their oscillations are respectively counted by a down- and an up-counter. Under
direct connection, the down-counter defines the measurement time window tweasure of M
periods of TxocCx, which is statically adjustable via the pre-loaded start count and ends
when down-count reaches 00...0. During this window, the number n of rising edges of
0SC2 with period TrercCrer is counted by the up-counter so that
C=(Tx/Trer)-Crer=(n/M)-Crer, within an error of Crer/M due to the time quantization of
n-Trer within the exact window M-Tx (error of up to 1 cycle, Fig. 5.2.3). For a given Cy,
higher M leads to a higher n and hence improves the resolution (ultimately limited by
oscillator jitter) at the expense of longer fveasure over the range of Cx. Under swapped
connection, both loads, periods and counts are swapped, and Cx hence results to (Trer
/Tx)-Crer=(M/n)-Crer. To minimize the necessary down-counter counts M for a given
resolution (i.e., n), the direct (swapped) connection is always preferred for Cx>Crer
(Crer=Cx) since this makes n>M in any case, as allowed by the swappable oscillators.
From the resulting measurement flowchart in Fig. 5.2.2, a measurement is first performed
with direct connection assuming Cx>Crer and checking if this is true (i.e., n>M), otherwise
the measurement is repeated after swapping. For the targeted nW-power applications,
both the control logic and the oscillators are implemented in dual-mode logic [9] to 1)
reduce supply sensitivity over standard CMOS, and 2) reduce leakage by ~4x by
swapping the original header/footer biasing, while avoiding its very slow operation at
minimum-power operation (Fig. 5.2.2).

The CDC is inherently insensitive to global process, voltage and temperature (PVT)
variations, as they equally affect the capacitance-to-period conversion gain T,/Cx and
Trer/Crer of OSC1 and OSC2, thus keeping Tx/Trer unaltered. The oscillator mismatch is
compensated with the on-chip load-agnostic self-calibration in Fig. 5.2.3. Under a given
and unknown Cx, the up-counter count ni=Trer1/Tx1 is first evaluated under direct
connection, and then again in double-swapped connection (i.e., with swapped load and
swapped counters via multiplexers) to evaluate n=Trer2/Tx2. In case of mismatch, ni
becomes smaller (larger) than nz if OSC1 turns out to be faster (slower) than OSC2. In
this case, a calibration capacitance Ccac is added in parallel to the load capacitance of
0SC1 (0SC2) to bring its frequency closer to the other oscillator, and hence reduces the

mismatch error. The measurements of ns and n. are then repeated, and the
compensation capacitance is tuned depending on the result of the comparison by a
successive approximation register (SAR) logic on 4 bits with 10fF resolution. The
calibration can be occasionally repeated to reduce the minor impact (Fig. 5.2.4) of
temperature variations.

The 0.18um CDC test chip (Fig. 5.2.7) occupies 0.2mm? area and operates at 0.3V-to-
1.8V power supply, where the minimum allowed voltage is enabled by the inherently
robust operation of dual-mode logic below 0.3V [9]. At Vpbp=0.3V and M=32 (good
compromise between tweasure and accuracy, see above), the capacitance range handled
by the CDC is 0 to 30pF and its nominal resolution is Ciss=125fF. The testing results are
based on a minimum capacitance of 2pF due to the parasitics in parallel to Cx. The
characterization in Fig. 5.2.4 reveals a noise-limited resolution Cnoiserms of 45.7fF
(0.36LSB), as estimated on 100 measurements. The maximum (RMS) INL after self-
calibration is 125fF (49fF), corresponding to 1LSB (0.39LSB) at nominal Ciss=125fF. This
is a 1.4x improvement over the CDC before self-calibration, whose maximum (RMS) INL
is 177fF (64fF), corresponding to 1.4LSB (0.51LSB). Considering both noise and
nonlinearity, the absolute capacity resolution is therefore equivalent to 67fF after self-
calibration (78.5fF before self-calibration), yielding an SNDR of 44dB corresponding to an
ENOB of 7.0 bits. From post-calibration measurements on five dice, the maximum (RMS)
INL value ranges from 0.51 LSB to 0.66 LSB (0.25 to 0.39 LSB), ENOB ranges from 6.94
bits to 7.24 bits, and SNDR ranges from 43.54dB to 45.16dB. In Fig. 5.2.4, temperature
variations in the -25°C to 75°C range and supply voltage variations from 0.3V to 1.8V
induce an error that is always below 1LSB, and is further reduced by nearly 0.5LSB after
self-calibration. When sweeping Voo from 0.3V to 0.5V, the maximum (RMS) post-
calibration INL is in the 0.51 to 0.62 LSB range (0.39 to 0.45 LSB), the ENOB is in the 6.8
to 7 LSB range, and SNDR ranges from 40.4 LSB to 43.5 LSB.

From Fig. 5.2.5, the power under different supply voltages expectedly increases at larger
voltages with a much more graceful (i.e., flatter) trend compared to a commercial solar
cell, thus assuring sustained operation across any environmental conditions. At indoor
light conditions (Fig. 5.2.5), the harvested voltage varies from 0.3V to 0.6V and the power
moderately increases from 1.37 to 6nW. The measurement time and energy per
conversion are expectedly proportional to Cxand the counter preset (Fig. 5.2.5). At M=32
and at the maximum capacitance of 30pF, power is 1.37nW and the worst-case
measurement time is 1.04s, leading to an energy per conversion of 1.42nJ.

A comparison of this work with state-of-the-art converters is shown in Fig. 5.2.6.
Compared to prior art, the proposed CDC is uniquely able to consistently provide 7-bit
conversion over the wide voltage range from 0.3V to 1.8V, whose lower end is 2-to-5.3x
lower than prior art [1-8]. Such capability avoids the conventional need for a voltage
regulator, and enables its usage in directly harvested systems for low-cost applications.
Exhibiting the third lowest power, the proposed CDC uniquely achieves true nW-range
power through the avoidance of any additional reference (as compared to [1,3,5]) and
digital post-processing for output correction (as compared to [6]). Low testing cost is
enabled by the suppression of testing-time calibration, compared to [1,3-6]. Sustained
operation with a 1mm? solar cell is achieved under any practical lighting condition.
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Figure 5.2.1: Capacitive sensing in low-cost systems requires CDC
architectures that do not require additional support circuitry (top-right). Battery-
less operation with direct harvesting reduces cost and demands operation at
very low voltages and power (center), as enabled by the proposed CDC
(bottom).
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Figure 5.2.3: Self-calibration suppresses mismatch between the oscillators,
matching their mutual count at direct and swapped connection of load Cx and
reference capacitor Crer (top-left). The mismatch frequency test guides SAR-like
tuning (right) of calibration capacitors Cca.1 and Ccacz (top-left), as exemplified
on bottom-left.
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Figure 5.2.2: Detailed schematic of the CDC with swappable oscillators (top-
left), dual-mode logic gate with swapped biasing (top-right), and proposed CDC
operation in direct and swapped mode (bottom-right).
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Figure 5.2.6: Comparison table and summary of the state of the art.
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