
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Supporting Sustainable Virtual Network Mutations with Mystique / Sacco, Alessio; Flocco, Matteo; Esposito, Flavio;
Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. -
18:3(2021), pp. 2714-2727. [10.1109/TNSM.2021.3059647]

Original

Supporting Sustainable Virtual Network Mutations with Mystique

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2021.3059647

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2870936 since: 2022-01-22T23:41:04Z

IEEE

1

Supporting Sustainable Virtual Network Mutations
with Mystique

Alessio Sacco Matteo Flocco Flavio Esposito Guido Marchetto

Abstract—The abiding attempt of automation has also perme-
ated the networks, with the ability to measure, analyze, and
control themselves in an automated manner, by reacting to
changes in the environment (e.g., demand). When provided with
these features, networks are often labeled as “self-driving” or
“autonomous”. In this regard, the provision and orchestration
of physical or virtual resources are crucial for both Quality of
Service (QoS) guarantees and cost management in the edge/cloud
computing environment. To effectively manage the lifecycle of
these resources, an auto-scaling mechanism is essential. However,
traditional threshold-based and recent Machine Learning (ML)-
based policies are often unable to address the soaring complexity
of networks due to their centralized approach. By relying on
multi-agent reinforcement learning, we propose Mystique, a
solution that learns from the load on links to establish the
minimal set of active network resources. As traffic demands ebb
and flow, our adaptive and self-driving solution can scale up and
down and also react to failures in a fully automated, flexible,
and efficient manner. Our results demonstrate that the presented
solution can reduce network energy consumption while providing
an adequate service level, outperforming other benchmark auto-
scaling approaches.

Index Terms—SDN, reinforcement learning, auto-scaling, net-
work management.

I. INTRODUCTION

As users and traffic demands grow, the need to optimize our
communication networks magnifies, denoting the evidence that
networks dictate our technological world. Recent advantages
in artificial intelligence (AI) and machine learning (ML)
are paving the path to autonomous networks: networks that
measure, analyze and control themselves autonomously [1].
Network automation has been desired in the last years, since
it is almost impossible for human operators to render real-time
network management [2]–[4].

Our focus in this paper is on network reliability and network
elasticity, i.e., the subproblem of autonomous networks that
deals with the ability to auto-scale resources up and down,
in harmony with changes in the environment, e.g., traffic de-
mand. The advantages brought by the auto-scaling techniques
are multiple. They reduce the cost of resource management, by
deactivating resources that may increase unnecessary (energy)
costs. At the same time, the network can provide redundant
facilities to reroute traffic when workload peaks to unexpected
levels.

Alessio Sacco and Guido Marchetto are with DAUIN, Politec-
nico di Torino, 10129 Turin, Italy (e-mail: alessio sacco@polito.it,
guido.marchetto@polito.it).

Matteo Flocco and Flavio Esposito are with the Department of Computer
Science, Saint Louis University, St. Louis, MO 63103 USA (e-mail: mat-
teo.flocco@slu.edu, flavio.esposito@slu.edu).

As networks are becoming more programmable and virtu-
alized, their complexity also increases, with the consequence
that exploiting the offered programmability to guarantee high
availability is a non-trivial task. Traditional threshold-based
and recent ML-based auto-scaling policies are often unable to
address the high complexity of networks and consequently to
satisfy carrier-grade requirements such as reliability and sta-
bility. Furthermore, state-of-the-art solutions hardly combine
these features altogether, such as [5] whose primary goal is the
energy efficiency, or [6], which automatically scales Virtual
Network Function instances via an ML classifier. Although
reinforcement learning is emerging as a valuable technique to
solve many networking problems, as in [7], [8], there is no
solution incorporating network information to automatically
and efficiently orchestrate network resources in a decentralized
manner.
Our contribution. In this paper, we propose Mystique, a
network management schema that, using Multi-Agent Re-
inforcement Learning (MARL), auto-scales to accommodate
the traffic demand and reacts to possible failures. On the
one hand, Mystique unburdens network nodes that are over-
congested with traffic, to preserve the high bandwidth and high
availability of the applications. On the other hand, it leverages
healing strategies [9] to repair failing nodes and links.

Each MARL agent, a process running within a network
controller, can learn an auto-scaling policy from experience,
without any a priori knowledge or human intervention. By
continuously monitoring the state of the network, the agent can
make sharp decisions on how to optimize network performance
and users’ experience, exploiting SDN to promptly change
the configuration. Moreover, the distributed nature of MARL
makes it possible to exploit a (possibly) large number of SDN
switches spread across the topology as probes. The system
automatically re-balances both existing and new flows across
nodes, while the agents communicate among them to obtain
information about the other sub-network.

At the same time, it is well-known that from the operator’s
point of view, Quality of Experience (QoE) is an important
aspect in keeping customers satisfied, and thus decreasing
churn [10]. To this end, the decisions taken by Mystique aim
to maximize overall QoE across multiple users and achieve a
desired level of QoE fairness, while reducing the energy costs
for active links and nodes.

Results validate our decentralized control plane, showing
how Mystique can promptly adapt and modify its behavior to
handle variations in workloads. Compared to other benchmark
solutions, our algorithm can jointly improve the user satisfac-
tion and more wisely utilize the network resources.

2

The remainder of the paper is organized as follows. We
present the context and the main functionalities offered by
Mystique in Section II. The model considered and the formal
problem that we attempt to solve are outlined in Section III.
We then present the general approach in Section IV and
further improvements for a feasible algorithm in Section V.
The experimental results are shown in Sections VI and VII,
and Section IX concludes the paper.

II. SYSTEM DESIGN

In this section, we first identify the softwarized infras-
tructure and the advantages of auto-scaling solutions, like
Mystique, in this scenario. Then, we present the mechanisms
underpinning the overall system with particular focus on the
offered features. In particular, we start analyzing a single
entity, and we continue highlighting the elements employed
to realize the parallelization of the model.

A. Edge Network Scenario

Although our proposed model is general enough to suit
several network deployments, in this manuscript we target
edge networks built from software-defined networking (SDN)
architectures, due to their flexibility and possible customiza-
tion. While the model is general and does not require spe-
cific functionalities offered by the underlying technology, to
achieve automatic responses to network traffic, softwarized or
virtualized networks are needed.

By edge network, we refer to a network located on the
periphery of a centralized network. It sits entirely between
the services and the endpoint devices using them, as well as
between all the edge servers themselves.

In this context, network operations can take advantage of
data-driven, machine-learning-based models to achieve more
high-level goals and a holistic view of the underlying network.
Our solution constitutes an attempt towards a fully automated
network, often referred to as self-driving network. Self-driving
networks can measure, analyze, and control themselves in
an automated manner, reacting to changes in the environ-
ment, e.g., demand, while adjusting and optimizing them-
selves as needed [1]. This idea has been around in a variety
of shapes, such as self-organized networks [11], cognitive
networking [12], knowledge-defined networks [13] and data-
driven networking [14], and lastly, self-driving networks [15].

Fig. 1 represents a common scenario that needs auto-scaling
components. At first, the traffic demand increases reaching a
non-tolerable level of congestion, and the system decides the
consequent creation of resources to satisfy the traffic demand
alongside re-routing for the interested flows. In a second
time, the exigency of additional resources vanishes gradually
as the traffic decreases, and the system reacts by removing
the unnecessary devices. This simple example illustrates the
feature and benefits of auto-scaling networks.

In this regard, recent advances in machine learning (ML),
e.g., deep learning, and networking, e.g., SDN, programmable
data planes, and edge computing, have fostered the devel-
opment of these networks. However, a desirable and still
missing feature is represented by the distributed detection

Edge Network

t=0

t=2

t=1

t=3

Fig. 1. The goal of our Mystique system is to learn via reinforcement learning
how to adapt to network demand fluctuations by creating new virtual switches
and split traffic (from t=0 to t=1), and to scale-down nodes and network
resources when demands decrease (from t=2 to t=3).

of congestion with no centralized congestion recognition and
control. Furthermore, to improve system performance, bottle-
necks need to be identified, and efforts should be invested in
alleviating these bottlenecks.

B. System Components

The main functions of Mystique are to auto-scale according
to the traffic demand and react to failures when they occur.
We developed and implemented these features in a system
depicted in Fig. 2. In this context, the controller monitors
the state of each switch in its sub-network to detect if one
of the following events occurs: the switch is overloaded
(congestion), the switch in under-utilized and can be deleted
(cost-saving), the switch fails and the connectivity can be no
longer guaranteed (failure). However, the network implements
the control plane with several distributed controllers. Each of
them controls a subset of switches and communicates with
the other controllers, via the Info exchange process, to obtain
a consistent network view. For any change in the controlled
network region, e.g., new link, the controller notifies its peers.
They also exchange the information required for computing
the QoE for connected users.

The reinforcement learning (RL) module selects the best
action, i.e., active network resources, but interacts with other
processes to collect the information required for the decision
and to notify about the outcome. In fact, we avail multiple
processes to better separate concerns, but they cooperate to
achieve our stated goal. The main functionalities are summa-
rized thereafter.
Routing. Each agent dynamically creates and destroys virtual
switches and virtual links in response to network fault or
substantial network traffic changes. This means that, in these
events, the agent is also responsible for re-steering the traffic
and deciding what flows to move in response to these actions.

At the beginning, the route for each flow is selected by the
controller based on the shortest path algorithm. In the case of
multiple available paths between source and destination, a load
balancing strategy is applied, i.e., flows are equally distributed
among the multiple paths. In the following, we separate the
events to face during the execution with the aim of a more
clear presentation.

3

Metrics Collector

Measurements Actions

Actuator

RL Optimizer

Auto-Scaling Logic

Routing

Historical Data

Failure Reaction

Info Exchange

Fig. 2. System overview. The Software-Defined Network controller receives
as input traffic statistics and outputs new flow routes and power on/off
commands.

In the case of a link or node failure, the same resource is
re-created. For a link failure, a new edge is created connecting
the same source node and destination node. The neighbor of
the switch modifies the forwarding rules reflecting the new
port ids. For a switch failure, a new one is generated with the
same links that the faulty switch had. This implies that all the
flows previously installed on the old switch are moved to the
new one, and the neighbor nodes that were connected need to
be re-instructed with the new ports.

When a new link or switch is created, the topology is
analyzed, and the flows that can take advantage of the new
path(s) are identified. Among them, a subset of flows, i.e., in
order to select half of the identified traffic, is transferred to the
new alternative path. However, we remark that the number of
flows to move is a consequence of a load balancing strategy
that attempts to equally redistribute flows.

Finally, when a link or switch is deactivated due to energy
saving considerations, all the flows traversing the deactivated
item are considered, and a new path for each of them is set
via the shortest path strategy.
Failure Reaction. We desire to react accordingly to the degree
of the issue and take a proportional action. For this reason, the
utilization of the switch (and connected links) is handled by
the RL model, while a separate module manages the failure de-
tection and reaction. Inspired by previous work [16], [17], we
consider 5 possible faults that can take place in our scenario:
(1) communication with the controller ended, (2) timeout of
the response expired, (3) port fault, (4) flows of a particular
host have blocked unexpectedly by the switch, (5) unexpected
behavior of the switch. As the controller continuously monitors
the state of the switches, it can replace the switch in case of
(1)-(2) (three consecutive timeout expirations)-(5). Instead, in
case of (3)-(4), the link originating from the fault port is re-
created.

The mechanism of fault reaction is in addition to the fast
failover provided by new versions of OpenFlow [18]. In this
procedure, it is possible to install rules whose forwarding
behavior depends on the local state of the switch. Hence, it
allows fast failure recovery, as long as the SDN controller
is able to anticipate every possible failure and precompute
appropriate backup paths. However, OpenFlow fast failover is
just to react to link failures, and no other events are taken

into account, for example, switch failure. Even though this
is equivalent to a failure of all the adjacent links, we argue
that the controller can benefit from our model and adapt the
routing and the application logic dynamically, as the network
evolves. The fast failover is orthogonal to a reactive solution,
as our model is. For this reason, both strategies are utilized
for an improved fault reaction.
RL Optimizer. The optimizer’s role is to find the network
subset that satisfies current traffic conditions while avoiding
the waste of resources. As input, it receives the topology,
the power model of switches, and the current traffic con-
ditions. These measurements are collected by the switches
and reported periodically to the network controller, where
resides the metric collector component. The collected data
then feed the model on the agent, that outputs the best decision
for the network itself, exploiting historical data to learn the
goodness of a particular action upon the occurrence of similar
conditions. When the decision is made, the actuator receives
the output consisting of the set of active components and
performs the appropriate commands. Moreover, the actuator
also pushes the new routes into the network.

III. AUTO-SCALING SYSTEM MODEL

The ultimate goal of Mystique is to deploy the network
resources in order to balance the management costs and
goodness in application performance. In this section, we first
describe the variables used in the following to specify the
model; then, we formalize our problem. We summarize our
notation in Table I.

A. Network Model and Preliminary Definitions

We define our model in two phases: the overseeing phase,
the healing phase. In the overseeing phase, a network con-
troller monitors the system to check for failures or congestion
conditions. Specifically, it communicates with the nodes of
the network to obtain information about the load on links
attached. Given the context of an SDN topology, a network
node commonly denotes a switch. However, our model is
independent of the layer the device operates and can work
when the nodes act as either routers or switches.

When a link (and implicitly its connecting nodes) becomes
or is going to be too congested, the controller intervenes to
mitigate the congestion. In the healing phase, we determine
the quantity of new resources to create, given the intolerable
network congestion. Hence, enough nodes and links are cre-
ated, and traffic is redirected to them to ensure that the fairness
index is close to 1 in the network system.

Aside from the congestion detection, another goal of our
system is to react to the failure of a network resource (node
or link). In such a case, the response is similar, with the
creation of one or more replacements. Moreover, a re-routing
process occurs to notify the nodes of the existence of the
new resources. After the actuation, a failure and congestion
avoidance phase starts again, and the controller will continue
to monitor the system to guarantee that traffic is returned to
normal operation.

4

We formalize such phases using the following notation. Let
the network be modeled by means of a graph G = (V,E),
where V is the set of vertices (nodes of the network), and E is
the set of edges, standing for the links. Similarly to the multi-
commodity flow problem, we assume that in the system there
are k commodities K1,K2, . . . ,Kk, defined by Ki = (si, di),
where si and di are the commodity i source and destination.
The flow of commodity i has an end-to-end throughput defined
as fi. Moreover, the throughput of flow i along the link (u, v)
is fi(u, v) where each link of the network has a fixed capacity
c(u, v).

Let Lu,v be the load on the link (u, v), computed as follows:

Lu,v =

∑k
i fi(u, v)

c(u, v)
, (1)

considering that fi(u, v) = 0 when flow i does not traverse
the link (u, v).
QoE. As other user-centric services and application man-
agement [19], we focus on the quality of experience (QoE)
perceived by the end-user. It is generally accepted that the
degree or annoyance of a user of a networked service depends,
in a non-trivial and often non-linear way, on the network’s
QoS [10]. Furthermore, the QoE is service-specific and is often
different given the same network conditions, i.e., the way in
which QoS can be mapped to QoE depends on the service
offered.

For this reason, we define a general mapping function B
to compute the QoE value yi for the user i, given the QoS
parameters in the set xi:

B : xi 7→ yi = B(xi) ∈ [L;H], (2)

where L is the lower bound and H the upper bound of the
QoE value. The function B is required to map QoS parameters
into the QoE domain [L;H] and map QoS to QoE uniquely.
Thus, it does not need to be monotonic. We leave the choice
of the mapping function out of the scope of this paper, since
the QoE models are often derived by subjective user studies.
In our formalization we only require the value yi = B(xi) to
be normalized in [0; 1]. If B does not naturally return values
in the range [0; 1], this can be achieved normalizing the QoE
values y∗i = yi−L

H−L .
QoE Fairness. Recent results [20] have argued for a more
informative notion of fairness, not limited to flows as clas-
sically studied in TCP, but more holistically over a set of
metrics defining the QoE. We adopt the same definition of
QoE fairness index F as follows:

F = 1− σ

σmax
= 1− 2σ

H − L, (3)

where σ is the standard deviation of the QoE values and
quantifies the dispersion of the users’ QoE in a system. The
fairness index F is a linear transformation of the standard
deviation σ of yi to [0; 1], where F = 1 indicates perfect
fairness and hold for minimum standard deviation (σ = 0).
Conversely, F = 0 denotes the minimum fairness and is found
when the standard deviation is at its maximum. The observed
σ is normalized with the maximal standard deviation σmax
and specifies the degree of unfairness. Further, the maximum

TABLE I
TABLE OF NOTATIONS IN THE MODEL FORMALIZATION.

Notation Description

G Graph describing the topology
V Set of vertices (network resources)
E Set of edges
Ru Set of vertices connected to vertex u

c(u, v) Capacity of link (u, v)
si Source of flow i
di Destination of flow i

fi(u, v) Throughput of flow i over the link (u, v)
fi End-to-end throughput of flow i
φu,v Binary variable stating whether link (u, v) is powered ON
τu Binary variable stating whether switch u is powered ON

Zi(u, v) Binary variable stating whether link (u, v) is used by flow i
cl(u, v) Power cost for link (u, v)
cs(u) Power cost for switch u
Lu,v Load on the link (u, v)
B Mapping function from QoS parameters to QoE value
F QoE fairness index
C Network power consumption
r Reward function
P Metrics collection interval
I Learning step

standard deviation is σmax = 1
2 (H −L), and we can observe

that in our case where yi ∈ [0; 1], σmax = 0.5. In conclusion,
a system is absolutely QoE fair when all users receive the
same QoE value.

This definition of fairness appears to be intuitive, i.e., high
value if fair and low value if unfair, and compared to the most
frequently used metric of Jain’s fairness index [21] provides
some additional properties. First, the index F is independent
of QoE level (QoE level independence), and second, only
depends on the absolute value of the deviation from the
mean value, not whether it is positive or negative (deviation
symmetric). The Jain’s fairness index, instead, is sensitive to
the used rating scale. These features ensure our model to be
general enough and valid for multi-applications. We can also
note that, as the F index is defined, QoE fairness says nothing
about how good the system is and thus needs to be considered
together with the achieved QoE in system design.

B. Optimizing Quality of Experience, Costs, and Fairness

Based on the aforementioned network model, we now
describe the problem as an optimization problem aiming to
simultaneously reduce management costs, alleviate congestion
effects providing an adequate service, and ensure fairness
among users.

First, we formalize the power consumption of network
topology as:

C =
∑

(u,v)∈E

cl(u, v)φu,v +
∑
u∈V

cs(u)τu, (4)

where φu,v is a binary decision indicating the power status of
link (u, v), i.e., φu,v = 0 refers to power off and φu,v = 1 to
power on. The same for the power status of a switch, where
τu is a binary variable indicating if switch u is powered on.
Besides, cl(u, v) and cs(u) are the power cost for link (u, v)
and switch u respectively.

5

To optimize the power consumption, we act on these binary
variables for every link and switch, and we constrain traffic to
only active links and switches. We can now present the overall
problem as follows:

maximize
X,Y

µ
1

k

k∑
i=1

B(xi) + λF − ωCnorm (5)

s.t.
k∑
i=1

fi(u, v) ≤ c(u, v)φu,v;∀(u, v) ∈ E (6)

τu ≤
∑
r∈Ru

φu,r;∀u ∈ V (7)

φu,r ≤ τu;∀u ∈ V,∀r ∈ Ru (8)∑
r∈Ru

Zi(u, r) ≤ 2; ∀u ∈ V,∀r ∈ Ru (9)

φu,v = φv,u;∀(u, v) ∈ E, (10)

where Cnorm is the normalized cost, i.e., 0 ≤ Cnorm ≤ 1, to
make it comparable to the other variables. Line (5) specifies
the objective function, which attempts to maximize the average
QoE and the fairness index F perceived by the end-user while
reducing the total network power consumption. µ, λ, and ω
are three parameters that balance the importance of power
consumption with respect to the QoE and fairness index. By
tuning these coefficients, the model can be tailored to specific
requirements.

The constraints from (6) to (10) include some requirements
to satisfy. In particular, (6) ensures that deactivated links have
no traffic. Each flow is indeed restricted to the links powered
on, i.e., for which φu,v = 1. Therefore, for all links (u, v) used
by commodity i, fi(u, v) = 0 when φu,v = 0. The objective
of cost minimization enforces also the opposite: links with
no traffic can be turned off. This line also imposes capacity
constraints, as the total flow along each link must not exceed
the link capacity. Further, (7) and (8) set a correlation between
the link and the switch decision variable. Specifically, (7)
imposes that when all links connected to a switch are off,
the switch can be powered off. Similarly, when a switch is
powered off, all the links connected to such a switch are
also powered off, as stated by (8). Although splitting the flow
across multiple links in the topology might reduce power by
improving link utilization overall, it is known that this may
cause undesirable packet reordering effects that negatively
impact TCP performance [22]. For this reason, we prevent
flow from getting split in the above problem by enforcing (9).
This constraint ensures that the switch receives flow i from
the incoming link and forward it to only one outgoing link,
and the flow uses a total of at most two links attached to the
switch u. Finally, in (10) we define that the link power status
is bidirectional, and there is no concept of half-on Ethernet
link. Thus, the full power cost for an Ethernet link is incurred
when traffic flows in either direction.

Our optimal solution must select which resources to turn on
and off, while satisfying the traffic constraints. The presence
of binary variables makes the stated problem a mixed-integer
linear program, which is NP-complete. Given the computation

complexity, which can hardly scale to networks with a large
number of nodes, in the following we attempt to solve the
problem via a reinforcement learning approach.

IV. THE MYSTIQUE SOLUTION

The learning process at the basis of the system is built
upon the reinforcement learning concepts for a continuous
acquisition of knowledge of the network. In the following, we
define the main elements which characterize our reinforcement
learning problem. Since our MARL model can be viewed as an
extension of centralized model, in the following, we describe
the procedure as in a single agent variant in order to clearly
describe the learning process. Further variations coming from
the decentralization are explained later in Section V.

A. Reinforcement Learning Problem

Reinforcement learning is a well-known on-line technique
that approximates the conventional optimal control technique
known as dynamic programming [23]. The external world is
commonly modeled as a discrete-time, finite-state, Markov
Decision Process (MDP). The agent interacts with the external
world and performs actions, where each action is associated
with a reward. The objective of reinforcement learning is to
maximize the long-term discounted reward per action.

A discounted Markov decision process, such as an RL
problem, is defined by a tuple (S,A,P,R, λ). Here S is the
set of all states, which can be countable or uncountable, A
is the set of all actions, P : S ×A → P(S) is the Markov
transition kernel, R : S ×A → R(S) denotes the distribution
of the immediate reward, and λ ∈ (0, 1) is the discount factor.
Specifically, upon taking any action a ∈ A at any state s ∈ S,
P (·|s, a) is the probability distribution of the next state and
R(·|s, a) defines the distribution of the immediate reward.
Moreover, a policy π : S → P(S) of the MDP maps any
state s ∈ S to a probability of distribution π(·|s) over A.

In our solution, each reinforcement learning agent uses the
one-step Q-learning algorithm [24]. In this context, the learned
decision policy depends on the state-action value function Q,
which estimates long-term discounted rewards for each state-
action pair. Given a current state x and the possible available
actions ai, the agent selects each action with a softmax policy,
which consists of a softmax function [25] that converts output
to a distribution of probabilities. This means that it affects a
probability for each possible action, given by the Boltzmann
distribution:

p(ai|s) =
eQ(s,ai)/T∑

b∈actions e
Q(s,b)/T

, (11)

where T is the parameter that adjusts the randomness of
action decisions. Thus, the agent selects the action, receives
an immediate reward r, and moves to the next state s′.

At each time step, the agent updates the Q-value function
Q(s, a) by recursively discounting future utilities and weight-
ing them by a positive learning rate α:

Q(s, a)← Q(s, a) + α(r + γV (s′)−Q(s, a)), (12)

6

where γ is the discount factor and V (s′) is the Value function,
which measure how good a certain state is, in terms of
expected cumulative reward, and is given by:

V (s′) = max
b∈actions

Q(s′, b). (13)

In other words, the value function is the maximum reward
that is attainable in the state following the current one, i.e., the
reward for taking the optimal action thereafter. It is relevant to
note that Q(s, a) is updated only when a new action is taken,
and that selecting actions stochastically as in (11) ensures that
each action will be evaluated repeatedly.

As the agent explores the state space, its estimation of the
Q-value function improves progressively, and eventually, each
V (s′) approaches E

[∑
n = 11γn−1rt+n

]
, where rt denotes

the reward received at time t upon the action chosen at time t−
1. It has been shown that this Q-learning algorithm converges
to an optimal decision policy for a finite MDP [24].

The RL agent receives the inputs and selects the best action,
then updates the state of the table and proceed with this process
continuously.

B. Reinforcement Learning States

Decisions taken by the agent should consider the network
status and react properly to events that occur. Hence, the state
of our RL model is composed of the load on links, Lu,v ,
for each link in the network. This metric is employed in the
learning process to choose the best action and evaluate the
performed action.

C. Actions

The RL algorithm defines the mapping between the inputs
of the reaction logic, i.e., the network state, and the actions
to be performed to address the issues coming from the
ongoing traffic. The action selection is the key to the proposed
algorithm to be effective. As in the other RL approaches, the
control decisions are learned from experience, eliminating the
burden of a more rigorous model. In line with the optimization
problem defined, the RL agent computes a scaling action
au,vt ∈ A = {1, 0}, for the link (u, v) ∈ E at time step t.
As mentioned above, au,vt = 1 represents the link in the state
on, and au,vt = 0 represents the link in the state off. When
the decision for the link differs from the current link state, the
controller sends specific commands to change the state and
actuate the output of the RL process.

In conformity with the cost optimization and the consider-
ations previously explained (Section III-B), when all the links
of a switch are down, the switch can be turned down as well.
For this reason, in spite of the fact that the actions only refer
to links, they also impact the switch state.

D. Reward

In accordance with the reinforcement learning approach,
the agent finds the best resource allocation that maximizes
the network-aware reward. In fact, the reward of the RL
formulation specifies the appropriateness of the action taken
in a particular state. The utility function instead specifies the

objective of our algorithm by looking at the environment
response. The aim is to find the decision policy of resource
allocation with the maximum utility function for the network
agent. Since the utility function is the real objective that we
try to optimize, we directly use it as a reward for the learning
process. Thus, we define a reward function, r, similar to the
optimization function of the aforementioned formal problem:

r = µ
1

k

k∑
i=1

B(xi) + λF − ωCnorm, (14)

where µ, λ and ω are coefficients that control the importance
of the average B(x), which defines the QoE and the customer
satisfaction, F , for the fairness of the QoE, and Cnorm, that
assess the network cost management. The function aims to
minimize the over-provisioned resources while also minimiz-
ing the switches load in order to improve QoS parameters.

E. Challenges in implementing the model

The presented model has two main challenges to solve: (i)
when the number of nodes and links rises conspicuously, the
state space may become intractable by the framework, (ii) in
these circumstances, not only the state space is difficult to
handle, but also the action space. In fact, the decision of which
switches and links to turn on/off depends on the network size.

To address these limitations that can arise for large topology,
we apply three strategies:

(i) Firstly, the policies are stored in a tabular form and are
approximated by means of function approximators [26]. A
function approximator is composed of a manageable number
of parameters, often referred to as policy parameters, θ. As a
consequence, we represent the policy as πθ(s, a). To represent
the policy, many forms of function approximators can be used,
for instance, linear combinations of state and action space
features. Recently, deep neural networks (DNNs) [27] have
been used with success as function approximators in large-
scale RL tasks [28]. One of the advantages of DNNs adoption
is that no hand-crafted features are needed. Inspired by these
successes, we make use of a neural network to represent the
policy in our RL formulation.

(ii) Secondly, the switches and links to activate/deactivate
are limited to a smaller subset, in order to reduce the action set.
Specifically, we define V a ⊆ V , as the set of nodes that can be
activated or deactivated. It is conventional in many networks,
indeed, that some nodes are essential for the network func-
tionalities and must always stay alive, e.g., switches attached
to end-hosts. Hence, without loss of generality, V a includes
nodes that are helpful yet nonessential. The dimensionality
of V a largely depends on the topology and the degree of
redundancy of the network. Furthermore, since our actions are
per link, the model only considers the links connected to nodes
in V a. It is relevant to note that only the action set is limited,
whereas the state space still includes all the links.

(iii) Lastly, the state space can be further reduced via mul-
tiple controllers managing a different subset of the network.
In such a case, the controllers exchange information about the
underlying topology, in order to have a global view of the
network. However, the information about the managed links

7

is not exchanged. This approach allows to scale over large
topologies and shorten the training time, since each controller
has a model with a reduced scale. We define this strategy
as multi-agent Mystique, and in the following, we detail its
properties and study its effectiveness.

V. ACHIEVING A PRACTICABLE FRAMEWORK

As mentioned earlier, we address the complexity coming
from large action and state spaces by approximating the Q-
table via neural networks, reducing the total available actions,
and distributing the information across more agents. In the
following, we detail the techniques used and specify the impact
on the RL problem. Finally, we outline the overall algorithm
at the basis of Mystique.

A. Deep Q-Learning

In order to deal with the large state and action spaces,
deep Q-learning uses neural networks, parameterized by θ, to
approximate the Q-function. Hence, the Q-values are denoted
as Q(s, a; θ), and the neural network is referred to as Q-
network. In our system, the Q-learning process consists of two
parts: (i) the Q-value approximation for the action selection,
(ii) the Q-network update, where the loss between predicted
Q-values and target Q-values is used to update the Q-network
parameters θ, according to the gradient method:

θ ← θ + α (targetQ −Q(s, a; θ))∇θQ(s, a; θ). (15)

The “targetQ” is a target value calculated as follows:

targetQ = r + λ max
b∈actions

Q(s′, b; θ). (16)

Moreover, to prevent the Q-function from diverging due to
dynamical changes in the target [29], a separate network is
introduced, the target network. It is a copy of the Q-function
and is used to calculate the target value. This approach is
usually denoted as Deep Q Network (DQN), and in our
experiments, we examined its performance using a periodic
update, i.e., every I seconds, of the target network with the
current Q-function.

The use of the target network hinders fast learning due to
this delay, but we utilize the proposed Experience Replay
(ER) [30] to increase the reuse of data. ER is a heuristic
that temporarily stores to memory a record of state transitions
during a certain number of steps and randomly selects a data
point from memory for learning. By doing so, the correla-
tions between samples are reduced, and sample efficiency is
increased.

B. Categorize Network Nodes

Due to the network setup and design, some nodes are very
unlikely to be deactivated, as no other paths are available or the
cost to create an alternative path is too high. For this reason,
these nodes should not be considered throughout the reasoning
of which links to preserve or dismiss. Thus, we define a new
set V a ⊆ V , which includes only the nodes of interest, and
the decisions are limited to this new set. In such a way, we

are able to drastically reduce the action set and speed up the
learning process.

We define also a new edge set, Ea ⊆ E, which contains
the links connecting the nodes in V a. The action set therefore
results being au,vt ∈ A = {1, 0}, for the link (u, v) ∈ Ea at
time step t.

Notwithstanding that the action is limited, the decisions
take into account the entire set E, to optimize the process
by considering the overall situation.

C. Multi-Agent Reinforcement Learning Framework
To scale-up and distribute the burden among separate agents,

we leverage multiple controllers, where each of them is
responsible for a sub-network. Along with improvements in
terms of scalability, distributing the burdens among more
agents brings resiliency to the event of failure of one controller.
When one agent fails, the switches under its control are tem-
porarily migrated under the supervision of a near controller. As
such, our solutions can handle both failures at the data-plane
(switches) and at the control-plane (controllers).

More formally, in a multi-agent setting, each agent main-
tains an individual policy πi for the specific state space Si
and action space Ai. The state space is, thus, limited to the
sub-network managed, and includes a diverse set of switches
and links. In the same way, the action set reflects the diverse
set and is restricted to only the managed links.

Despite the difference in the RL model, the agents interact
among them to obtain information about the global topology,
as the routing decisions should consider a global view. A
model is trained for each node, but they communicates possi-
ble metrics needed to compute the user QoE.

D. Mystique Overall Algorithm
In the light of all these elements, we propose a decentralized

RL-based procedure to address the congestion problem in the
network.

In Algorithm 1 we summarize the main steps underpinning
our self-learning process aboard of each controller. For one
thing, we initialize the Q-values table, Q(s, a) and other hyper-
parameters. Next the continuous learning procedure starts
(line 5). With a period P , the controller gets information about
the congestion of the links, represented by the value Lu,v .
Hence, the agent observes the current state, s, and verifies
the absence of failures. In case of link or node failure the
proper reaction is enacted. Either way, an action a is chosen
for that state based on one of the action selection policies
explained previously. Taking the action may involve creation
or removal of links or nodes. In these circumstances, re-routing
must take place, and the controller instructs the switches with
the new flow rules to engineer the traffic. Once the adjustment
is completed, the agent observes the reward, r, as well as the
new state, s′, and updates Q-value for the state s using r and
the maximum reward possible for s′. The updating is done
according to the formula and parameters described in (12).
Afterwards, it is checked if I seconds are elapsed since last
update, if so the Q network is copied to the target network TN .
Finally, the agent set the state to the new state, and repeats
the process until a terminal state is reached.

8

Algorithm 1 Resource optimization using RL
1: Let P be metrics collection interval, and I the learning

step
2: Let Q be the network approximating the Q-values
3: Let TN be the target network
4: Initialize Q(s, a) = 0, T1 = 0, T2 = 0
5: for each episode do
6: if t− T1 > P then
7: Collect the state s at time t
8: Verify the presence of failures, and in case react
9: Choose a using policy derived from Q

10: Take action a by activating/deactivating selected
resources

11: Adjust routing accordingly
12: Observe r, s′ and update the Q network
13: if t− T2 > I then
14: TN ← Q
15: T2 ← t

16: T1 ← t
17: Notify updates to other controllers

VI. EXPERIMENTAL SETTINGS

In this section, we first describe the testbed configuration
and the settings common throughout our experimental cam-
paign. Further, we identify a representative network scenario
for the evaluation and the algorithms to compare Mystique
against.

A. Implementation

To demonstrate the practicality of our approach, we have
implemented the proposed scheme in an emulated scenario.
Mystique needs to receive the current utilization and to operate
on the flow paths decisions. These network capabilities can
be achieved via NetFlow [31] and SNMP for the traffic data,
while source routing and policy-based routing allow the path
control. The network switches can be implemented via differ-
ent technologies, such as Quagga, FRRouting, OVS, Bind, P4.
However, due to the ease of use of SDN in prototyping, we
use OVS switches [32] featuring OpenFlow, combined with an
SDN-controller to obtain the above requisites. OpenFlow, pro-
viding a flow table abstraction, is used to push the computed
set of application-level routes to each switch. Besides the flow
installation component, it provides the flow-specific counters
that can be accessed by external entities via open API, and
enables the port power control.

Every switch communicates with an SDN controller, which
is implemented with Ryu [33]. Ryu is a component-based
software-defined networking framework that provides network
visibility and control atop a network of OpenFlow switches. In
particular, the Ryu controller communicates with the switches
to collect the metrics, and pushes the adjusted flow routes.
The controller behavior can be customized via the REST APIs
that the controller is equipped with. Finally, in the centralized
version, the number of Ryu controllers is limited to one,
whereas in the distributed version, the number can increase
to guarantee fault tolerance of the controller agent.

B. Experimental Setup

We deployed several environments to assess the perfor-
mance of Mystique. However, herein we summarize some
common settings and remarks valid throughout the performed
experiments. For the sake of simplicity, we limited the QoS
parameters xi of user i to the end-to-end throughput, and the
mapping function B is an identity function. By doing so, we
limit our focus to metrics that can be collected smoothly, and
we leave the study of a system based on more indicators (to
be summarized for example using a neural network) as future
work.
Evaluation settings. The topology and the switches are em-
ulated over Mininet [34]. Mininet is a network emulator that
creates a realistic virtual network, running real kernel, switch
and application code, on a single machine. This networking
tool makes use of namespaces, a feature of the Linux kernel
that partitions kernel resources. In current setup, switches
and ports are not powered off, but are only deactivated,
since the switches are virtual switches. Nonetheless, in a real
deployment, it is possible to exploit existing mechanisms to
control the power, such as SNMP, command line interface, or
recent mechanisms of power control over OpenFlow.
Traffic workload. The energy, performance, and robustness
of the system heavily depend on the traffic pattern. In the fol-
lowing, we explore how a variety of communication patterns
affect system behavior. Specifically, we evaluate a uniform
demand, where every host sends one flow to another host
of the network. We use two more types of traffic patterns to
evaluate performance, moderate increase and sharp increase.
During the former, the hosts linearly increase the traffic sent
to double it within 20 seconds. In the latter, instead, traffic is
doubled in 5 seconds. Finally, due to the lack of public traces
specific for this problem, we generate traffic synthetically,
where each sender-receiver pair runs TCP iperf3 for 100
seconds, alternating between different rates.
Hyper-parameter settings. We developed the agent’s neural
network with Keras [35], a high-level neural networks API
written in Python. The neural network is composed of the input
layer with three hidden layers with respectively 256, 128 and
64 neurons. The input layer number of neurons corresponds
to the number of links in the managed network, whereas the
number of output layer neurons is the amount of links of action
set, Ea. Such a neural network runs over Tensorflow [36],
an end-to-end open-source platform for machine learning. For
hyper-parameter setting, we set the discount factor λ = 0.99
and the learning rate α = 0.9. The batch size is 256 to enable
a high learning rate. If not otherwise specified, cost saving,
application performance, and fairness are equally important,
i.e., µ = λ = ω = 0.3. We set the default interval for
collecting statistics P = 0.5 s, and the action decision
interval to I = 1 s. Nonetheless, in what follows, we also
evaluate the consequence of alternative intervals over the
system performance.
Network use case. The network topology considered through-
out experiments should offer sufficient path redundancy,
enough hosts to deploy the desired traffic patterns, and be
reasonably suitable for an edge network. Taking all these

9

Virtual Switch

Virtual Host

Fig. 3. A sample of emulated network topology used during the experiment
campaign. The design reflects the desire of allowing a variety of test conditions
and a multitude of available paths.

considerations in mind, we converged on a network use case
shown in Fig. 3. This topology is the default environment
utilized, but also other settings with different link densities are
considered. OVS switches are utilized for the measurement of
the throughput per each ongoing flow, in turn, mapped to a
single QoE value, following considerations of Section VI-B.
Benchmark algorithms. To validate our solution we compare
against three state-of-the-art solutions adequately adapted to
our use case: an ML classifier-based method to perform auto-
scaling, [6], SRSA [8], and ElasticTree [5]. In [6], an ML-
based method converts the auto-scaling decision to an ML
classification problem, so that it can learn from the insights
and temporal patterns hidden inside measured data from the
network. As shown in their study, Random Forest (RF) is the
algorithm performing better; thus, we apply this method, and,
for simplicity, we refer to this solution as Auto-RF. Conversely,
SRSA is a reinforcement learning approach to auto-scaling
VMs in a telco cloud platform [8]. Even though our solution
shares the RL formalization, substantial differences involve
the model, the objective (and reward), the use case, actions
associated, and a single agent vs. multi-agent version. Finally,
ElasticTree attempts to solve a power optimization problem
and compares multiple solutions strategies. A greedy bin-
packing heuristic has been advocated as an adequate solution,
and for this reason, we employ the version of ElasticTree
using such a heuristic. However, it is relevant to note that our
difference with the state-of-the art not only resides in a multi-
agents configuration, but also in an optimized algorithm which
can handle more complexity for more conscious decisions, as
seen in Section VII.

VII. PERFORMANCE EVALUATION

In the following, we compare the goodness of our data-
based approach with respect to model-based solutions, usually
solved via heuristics, and other data-based techniques. After
a brief explanation of the considered metrics, we measure the
impact of a MARL approach over network performance. Then,
we extensively compare Mystique versus related solutions in
several network conditions. Lastly, we also run sensitivity
experiments by varying some algorithm parameters.

A. Evaluation Metrics

In this section, we make use of metrics and quantity defined
in Section III and IV, such as the QoE fairness and reward
function.

Besides them, one of the primary metrics we inspect is the
percentage of power savings, computed as:

% power savings = 100−% original power =

100− power consumed by solution× 100

power consumed in original network
, (17)

which gives an accurate idea of the overall power saved by
turning off switches and links. The original power, indeed,
represents the consumption for the always-on baseline.

Clearly, the savings depend heavily on the network utiliza-
tion, u, defined as the average of the load on the link, Lu,v ,
over all links weighted by their capacity. In practice, this is
the sum of the link flows over the entire network divided by
the sum of link capacities, formally:

u =

∑
(u,v)∈E

∑k
i fi(u, v)∑

(u,v)∈E c(u, v)
. (18)

B. Centralized versus Multi-Agent Reinforcement Learning

Firstly, we compare the performance of our distributed
solution based on multiple agents with a centralized version
build upon the same model (Section V). For the sake of
completeness, to understand the advantages of self-learning
capabilities, we also compare them against always-on and
minimal orchestration baseline algorithms. In the former set-
ting, all the switches and links are maintained during the
experiment. This policy ensures the best applicative perfor-
mance but high energy consumption. On the other hand, in a
minimal orchestration, no redundancy is exploited, and only
the minimal subset to let the network works is kept. This
configuration leads to a minimum in management cost, but
a degradation in the performance.

Figure 4 compares the reward function defined in (14),
for the four algorithms: always-on and minimal orchestration
as baseline algorithms, and the centralized and decentralized
version of the RL process, i.e., MARL. In the centralized, a
single controller handles the switches of the network, while
for the decentralized setting, three controllers are in charge of
managing the network and instruct the switches. Evaluating
their strengths and weakness implies appraising the behavior
for different traffic demands. For this reason, we analyze the
reward function across four traffic patterns: uniform, moderate
increase, a sharp increase, and synthetic generation for a more
realistic use case. We can observe how the distribution of
the concerns across multiple agents, as in the decentralized
version, produces higher rewards in almost every context. The
only exception resides in the sharp increase of the traffic
demand, given the limited knowledge of the network status.

Besides this preliminary analysis, for a more extensive com-
parison, we also consider the differences between centralized
and decentralized (MARL) models for increasing network
utilization. We report in Fig. 5 the (a) energy efficiency, (b)

10

Alays On Minimal Centralized MARL
Orchestration Strategy

0.0

0.2

0.4

R
ew

ar
d

(a) Uniform Traffic Pattern

Alays On Minimal Centralized MARL
Orchestration Strategy

0.0

0.1

0.2

0.3

0.4

R
ew

ar
d

(b) Moderate Traffic Pattern

Alays On Minimal Centralized MARL
Orchestration Strategy

0.0

0.1

0.2

0.3

0.4

R
ew

ar
d

(c) Sharp Traffic Pattern

Alays On Minimal Centralized MARL
Orchestration Strategy

0.0

0.1

0.2

0.3

0.4

0.5

R
ew

ar
d

(d) Synthetic Traffic Pattern

Fig. 4. Reward function for different traffic patterns: (a) uniform, (b) moderate increase, (c) sharp increase, (d) synthetic generation. Four available strategies
are compared, highlighting differences between centralized versus decentralized (MARL) model.

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

0

20

40

60

80

100

%
Po

w
er

Sa
vi

ng
s

Centralized
MARL

(a)

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

200

300

400

500

A
vg

.T
hr

ou
gh

pu
t[

M
bp

s] Centralized
MARL

(b)

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ir

ne
ss

In
de

x,
F

Centralized
MARL

(c)

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Centralized
MARL

(d)

Fig. 5. Centralized versus decentralized (MARL) approach for diverse network utilizations. The comparison entails (a) energy saved with respect to the
original setting, (b) mean application throughput achieved, (c) fairness index for the flows, (d) system reward.

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

0

20

40

60

80

100

%
Po

w
er

Sa
vi

ng
s

SRSA
Mystique
ElasticTree
Auto-RF

(a)

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

200

300

400

500

A
vg

.T
hr

ou
gh

pu
t[

M
bp

s] SRSA
Mystique
ElasticTree
Auto-RF

(b)

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ir

ne
ss

In
de

x,
F

SRSA
Mystique
ElasticTree
Auto-RF

(c)

0.2 0.4 0.6 0.8 1.0
Network Utilization, u

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

SRSA
Mystique
ElasticTree
Auto-RF

(d)

Fig. 6. Performance comparison with other benchmark algorithms in terms of (a) energy saved with respect to original setting, (b) mean application throughput
achieved, (c) fairness index for the flows, (d) system reward.

application throughput, (c) QoE fairness, and (d) reward as
computed by the RL agent, for the two alternative approaches.
We utilize synthetic traffic generation to mimic a more real
workload. When u is close to 100%, then all links and switches
must stay active, preventing the savage of power (Fig. 5a).
With lower utilization, traffic can be concentrated over a
reduced number of links, and the unused ones can be switched
off.

The QoE parameter considered is the average end-to-end
throughput (the mean between the users). While in the cen-
tralized version this value can be easily accessed by the con-
troller, with more agents it is required to exchange topology
and application-level information. However, this overhead is
minimal in the process. In fact, we can observe in Fig. 5b
how the MARL setting regularly enables higher throughput
compared to the centralized one. The same result holds when
considering the QoE fairness index F in Fig. 5c. Since one of
the parameters to optimize is fairness among users, this value
is consistently high and drops down only for intensive network
utilization. All these considerations are then reflected in the
reward behavior shown in Fig. 5d, in which we can recognize
that, especially for a medium utilization, the benefits of MARL

are significant.
In light of all these results, we can remark that the multi-

agents setting does not degrade the performance, quashing
the possible decentralization limits. Because of an enhanced
procedure in the action-reaction logic, our MARL model, on
the contrary, improves performance in more contexts. This
further motivates our distributed Mystique solution described
in Section V-C.

C. State-of-the-art Comparison

After a first assessment of Mystique performance, we evalu-
ate our solution against the benchmark algorithms stated above
(Section VI-B). In a similar way to the previous evaluation,
we report in Fig. 6 the (a) energy efficiency, (b) application
throughput, (c) QoE fairness, and (d) reward function, for
the considered methods. By considering the plots, we can
notice how our system outperforms the related algorithms in
all the examined metrics. In particular, fairness is distinctly
one of the most improved quantities in Mystique, as one
of the desiderata. Furthermore, none of the other algorithms
can efficiently optimize more metrics simultaneously, but they
can successfully improve only some of them. Conversely,

11

0 100 200 300 400 500
Traffic Overload [Mbps/hosts]

0

10

20

30

L
os

s
R

at
e,

%

SRSA
Mystique
ElasticTree
Auto-RF

(a)

25 50 75 100 125 150
Number of available links

0.0

0.2

0.4

0.6

R
ew

ar
d

SRSA
Mystique
ElasticTree
Auto-RF

(b)

0 2 4 6 8 10
Number of link failures

0.0

0.2

0.4

R
ew

ar
d

SRSA
Mystique
ElasticTree
Auto-RF

(c)

Fig. 7. (a) Drops vs. traffic overload for a variety of methods. (b) Algorithms performance among different topologies with increasing connectivity for
benchmark algorithms. (c) Obtained reward for redundant but failing topologies. Our solution outperforms other algorithms, especially for an increased
number of link failures.

0 50 100 150 200
Episode

−10

−5

0

R
ew

ar
d

MARL
Centralized

0 80 170 260 350
Minutes

Fig. 8. Training curves for the centralized and decentralized version of the
solution.

Mystique stably outperforms other solutions, demonstrating
its ability to optimize management costs and QoS parameters
altogether in multiple network scenarios.
Congestion Mitigation. We also compare alternative proce-
dures responding to increasing traffic demand. Fig. 7a shows
packet drops as a function of traffic overload, which refers to
the amount each host sends and receives in each flow. During
the trial, all hosts send 4 flows to 4 randomly chosen hosts,
where the bandwidth of the flow is the traffic overload quantity.
All tests complete in 60 seconds. Although the number of lost
packets is not used as a metric nor in the objective function, we
can observe that Mystique can reduce the percentage of losses,
due to its utility function, which comprises congestion-related
indexes.
Network diversity adaptation. In order to generalize our
findings, we deployed a more random topology in which links
among switches and hosts are randomly generated when the
number of nodes increases (reaching the feasible limits on
Mininet). Specifically, the number of links between the nodes
is a parameter in the generation phase, and it affects the density
of the network. The number of hosts matches the number of
switches, and each of them generates traffic synthetically. We
change the number of available links to evaluate the system
performance and how it scales over more dense networks. We
train the models over the new networks and assess the reward
function changes in these circumstances.

Results are depicted in Fig. 7b and show how our solu-
tion is portable over unknown topology compared to other
methodologies. As the density of the network increases, the
quality of related methods decreases. In contrast, Mystique

delivers regular performance even for complex topologies
outperforming the other approaches. We can thus conclude
that our model can adapt to diverse conditions and reasonably
accomplish its mission in a multitude of scenarios.
Failure reaction. Aside from the auto-scaling mechanisms to
address the network congestion, Mystique makes use of self-
healing techniques to appropriately react to network failures.
In the following, we evaluate the ability of our system to
jointly tackle the overwhelming traffic demand and the failure
scenario. Thus, in addition to synthetic traffic generated, we
fail links uniformly at random, in numbers also increasing.
Fig. 7c reports the average reward obtained for the tested
algorithms over a topology based on the scenario in Fig. 3, in
which the single points of failure are conveniently redundant.
In this new scenario, even if some nodes might be discon-
nected, other paths to the destination remain. From the graph,
we can observe how Mystique notably improves the system
robustness and can also handle very frequent failures. These
results validate our approach of an autonomous network with
both the capability of auto-scaling and fault tolerance.
Convergence time. Another key aspect to consider is the time
required for the RL model to converge to a stable reward.
In Fig. 8 we compare the training time for the centralized
and MARL settings of the solution. Results are obtained on
a host machine running Ubuntu, Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz, with NVIDIA GeForce 920MX with CUDA
5.0. We can observe how the centralized algorithm converges
more rapidly to a stable reward value. However, this value is
lower than the reward obtained via MARL. In fact, in this
setting, the model requires a longer time to converge, but it
can outperform the competitor. Moreover, the time required
to converge is in line and significantly shorter if compared to
other DQN models [37], [38].

D. Sensitivity analysis

Finally, we conduct an analysis of the reward function
by varying the parameters of Algorithm 1. Other hyper-
parameters of DQN, i.e., batch size and the neural network
structure, are selected via grid searching in a standard proce-
dure when dealing with neural networks. Thus, their selection
is not detailed in the manuscript. Instead, the target network
update interval I is an obvious place where instability could
arise and requires more effort to be set, because it is tightly
coupled with the frequency in decisions P . For this reason,

12

0.1 0.2 0.4 0.5 0.7 1 2
Update interval, P

0.0

0.2

0.4

0.6
R

ew
ar

d

MARL
Centralized

(a) I = 1.5× P

0.1 0.2 0.4 0.5 0.7 1 2
Update interval, P

0.0

0.2

0.4

0.6

R
ew

ar
d

MARL
Centralized

(b) I = 2× P

0.1 0.2 0.4 0.5 0.7 1 2
Update interval, P

0.0

0.2

0.4

0.6

R
ew

ar
d

MARL
Centralized

(c) I = 2.25× P

Fig. 9. Reward function for diverse combinations of update interval P and decision interval I . The best trade-off, i.e., maximum reward, arises for MARL
in graph (b) with P = 0.5s. A similar behavior occurs for the centralized version, with the slightly different of at maximum in graph (b) forP = 0.4s.

we report the study of the effects of the frequency in updating
the metrics collection for different target net update intervals.
Fig. 9 illustrates the reward obtained for different intervals P
in three alternative strategies for setting I , respectively when
I is (a) 1.5, (b) 2, (c) 2.25 times the value of P , and both
centralized and MARL settings are evaluated.

Our aim is to find the best interval that relaxes the overhead
in requesting the metrics while being reactive to network
changes and operating wise decisions. At first glance, we can
observe that an interval P close to 0.4 and 0.5 s is the optimal
trade-off in our MARL system, providing the highest reward
across the three settings. Likewise for I , delaying the update
of the target network may conduct in losing the accuracy. On
the contrary, if it is updated too frequently, then the benefit of
using the target network (which is to boost the training rate
and lower training time) starts reducing, and the training will
likely require a more considerable amount of time. The results
suggest that when the target network is updated at a half rate of
refresh information rate, i.e., I = 2× P , the reward achieved
is at its maximum. Conversely, both higher and lower rates
seem to worsen performance. These considerations led us to
set the combination P = 0.5s and I = 1s as the default for
the MARL model.

We can also observe differences in the two settings of
centralized and decentralized versions. The reward evolution
for the centralized approach resembles the MARL, with a
maximum reward slightly moved towards the combination
P = 0.4s - I = 0.8s.

VIII. RELATED WORK

Managing network or application resources elasticity im-
plies a first mapping performance requirements to the un-
derlying available resources. Such a process of adapting
resources to the on-demand requirements of an application,
called scaling, can be very challenging. Resource under-
provisioning will inevitably hurt performance and generates
QoS violations, while resource over-provisioning can result
in idle instances, thereby incurring unnecessary costs. Auto-
scaling techniques, i.e., resource allocation strategies that
automatically scale resources according to demand, are more
than a need and can be differentiated into two classes: reactive
and proactive. While the former class refers to algorithms
reacting to system changes, but not anticipating them, the latter
stands for strategies that predict and anticipate the future needs
and consequently acquire or release resources in advance, to

have them ready when they are needed. In the literature, auto-
scaling solutions have been extensively discussed from several
points of view, especially for cloud computing [39]–[41].
Reactive and proactive techniques. Threshold-based policy
is a common example belonging to the reactive category,
whereas time-series analysis, reinforcement learning, queuing
theory, and control theory can be examples of proactive
approaches. Queuing theory, given its ability of estimating
performance metrics such as the queue length or the average
waiting time for requests, has been largely applied to model
applications, e.g., general Internet or cloud infrastructure ap-
plications [7], [42], [43]. For example, [42] solves an optimiza-
tion problem by distributing servers among different applica-
tions, while maximizing the revenue. The authors characterize
the arrival process of requests to an application using a real
trace of an e-commerce system, where the arrival process is
adequately described by a Poisson process.

Control theory has been applied to automate the manage-
ment of web server systems, data centers/server clusters, stor-
age systems, cloud computing platforms, and other systems,
showing interesting results across this variety of systems.
Many papers have discussed adaptive control techniques, by
adjusting the controller tuning parameters online [44]–[47].
For instance, [46] combines two proactive adaptive controllers
for scaling down with dynamic gain parameters based on the
input workload, and a reactive approach for scaling up.

Time-series are massively used in finance and economic
domains to represent the change of a measurement over time.
Recently, this technique has also gained attention in engineer-
ing and workload or resource usage prediction problems [48].
At the very basic, a time-series is a sequence of data points,
e.g., number of requests that reaches an application, measured
at successive time instants spaced at uniform time intervals,
e.g., one-minute intervals. The time-series analysis is able to
find repeating patterns in the input workload and to forecast
future values. The auto-regression method has been largely
used [49]–[53] and time-series forecasting can be combined
with reactive techniques [54]. For example, [52] proposed a
hybrid scaling technique that, based on CPU usage, utilizes
reactive rules for scaling up and a regression-based approach
for scaling down.

Lastly, reinforcement learning (RL) approaches for dynamic
resource allocation problems were successfully applied in the
literature. RL can well fit auto-scaling problems by online
capturing the performance model of a target application and

13

its policy without any a priori knowledge. However, these
methods have mainly focused on allocating tasks, services,
and Virtual Machines (VMs), especially to face the greater
or smaller demand, where [7], [55], [56] are examples of a
profitable usage of RL. As such, little work has been proposed
to address the problem of network resources.
Dynamic Resource Creation of Network Agents. Recent
studies have explored scaling softwerized or virtualized net-
work functions in telco and cloud networks. Among them, [6]
proposes a proactive ML-based approach to perform auto-
scaling of VNFs in response to dynamic traffic changes.
The classifier learns from historic auto-scaling decisions and
measured network loads, and outputs the number of VNF
instances required to serve future traffic without violating
Quality of Service (QoS) requirements and deploying unnec-
essary VNF instances. [5] describes ElasticTree, a network-
wide energy optimizer that continuously monitors data center
traffic conditions and chooses the set of network elements
that must stay active to meet performance and fault tolerance
goal. To decide which subset of links and switches to use, a
fast heuristic is used. The primary goal of ElasticTree is the
savage of energy in data centers containing thousands of nodes.
Although we share the general approach with these solutions,
we propose a self-learning model that embraces more the QoS
aspects.

A reinforcement learning approach is described in [8],
where the authors present SRSA, a resource-efficient approach
to auto-scale telco-cloud. The decision of allocating or de-
allocating VMs is performed to guarantee the QoS and to
reduce the cloud cost. Our solution is also built upon an RL
framework, but differs in the modeling aspects and enables us
to scale to more complex networks by learning in a distributed
fashion.

IX. CONCLUSION

This paper presents Mystique, a system that allows scaling
network resources up and down to track network utilization.
The network controller can dynamically activate or deactivate
links and nodes in an “as needed” fashion with the aim of
minimizing the energy consumption and improving QoE and
fairness among users. Furthermore, the system can promptly
react to network failures as these happen. In this context, the
paper highlights the benefits of splitting the decision logic
across multiple controllers, for a distributed and fault tolerant
architecture. We show how this approach can improve the
management when the quantity of information needed for the
model becomes large and can lead to more accurate actions.

ACKNOWLEDGEMENT

This work has been partially supported by NSF under Award
Numbers CNS1647084, CNS1836906, and CNS1908574.

REFERENCES

[1] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” arXiv preprint arXiv:1710.11583, 2017.

[2] A. Sacco, F. Esposito, and G. Marchetto, “A federated learning approach
to routing in challenged sdn-enabled edge networks,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2020, pp. 150–
154.

[3] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture
for adaptive task planning in support of iot-based machine learning
applications for disaster scenarios,” Computer Communications, vol.
160, pp. 769–778, 2020.

[4] A. Sacco, F. Esposito, and G. Marchetto, A Distributed Reinforcement
Learning Approach for Energy and Congestion-Aware Edge Networks.
Association for Computing Machinery, 2020, p. 546547.

[5] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks.” in Nsdi, vol. 10, 2010, pp. 249–264.

[6] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling vnfs using machine learning to improve qos and reduce
cost,” in 2018 IEEE International Conference on Communications
(ICC). IEEE, 2018, pp. 1–6.

[7] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, 2016, pp. 50–56.

[8] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in 2015 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–6.

[9] E. Ayanoglu, Chih-Lin I, R. D. Gitlin, and J. E. Mazo, “Diversity coding
for transparent self-healing and fault-tolerant communication networks,”
IEEE Transactions on Communications, vol. 41, no. 11, pp. 1677–1686,
Nov 1993.

[10] P. Le Callet, S. Möller, A. Perkis et al., “Qualinet white paper on
definitions of quality of experience,” European network on quality of
experience in multimedia systems and services (COST Action IC 1003),
vol. 3, no. 2012, 2012.

[11] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self
organisation in future cellular networks,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 1, pp. 336–361, 2012.

[12] R. W. Thomas, D. H. Friend, L. A. Dasilva, and A. B. Mackenzie,
“Cognitive networks: adaptation and learning to achieve end-to-end
performance objectives,” IEEE Communications magazine, vol. 44,
no. 12, pp. 51–57, 2006.

[13] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett
et al., “Knowledge-defined networking,” ACM SIGCOMM Computer
Communication Review, vol. 47, no. 3, pp. 2–10, 2017.

[14] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Unleashing the potential of
data-driven networking,” in International Conference on Communication
Systems and Networks. Springer, 2017, pp. 110–126.

[15] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and
S. Schmid, “Empowering self-driving networks,” in Proceedings of the
afternoon workshop on self-driving networks, 2018, pp. 8–14.

[16] B. Chandrasekaran and T. Benson, “Tolerating sdn application failures
with legosdn,” in Proceedings of the 13th ACM workshop on hot topics
in networks (HotNets ’14), 2014, pp. 1–7.

[17] A. Sacco, G. Marchetto, R. Sisto, and F. Valenza, “Work-in-progress: A
formal approach to verify fault tolerance in industrial network systems,”
in 16th IEEE International Conference on Factory Communication
Systems (WFCS). IEEE, 2020, pp. 1–4.

[18] Openflow switch specification 1.3.1. Accessed: 2020-
10-2. [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2013/04/openflow-spec-v1.3.1.pdf

[19] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck, “Qoe-
driven rate adaptation heuristic for fair adaptive video streaming,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 12, no. 2, pp. 1–24, 2015.

[20] T. Hoßfeld, L. Skorin-Kapov, P. E. Heegaard, and M. Varela, “Definition
of qoe fairness in shared systems,” IEEE Communications Letters,
vol. 21, no. 1, pp. 184–187, 2016.

[21] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure
of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

[22] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, pp. 51–62, 2007.

[23] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[24] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[25] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,” in
Neurocomputing. Springer, 1990, pp. 227–236.

14

[26] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an
overview,” in Proceedings of 1995 34th IEEE Conference on Decision
and Control, vol. 1. IEEE, 1995, pp. 560–564.

[27] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network design.
PWS Publishing Co., 1997.

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[29] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[30] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Tech.
Rep., 1993.

[31] Cisco ios netflow. Accessed: 2020-10-2. [Online]. Available:
http://www.cisco.com/web/go/netflow

[32] Open vswitch: An open virtual switch. Accessed: 2020-10-2. [Online].
Available: http://www.openvswitch.org/

[33] Ryu controller. Accessed: 2020-10-2. [Online]. Available: https://ryu-
sdn.org/

[34] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM). Ieee, 2014, pp. 1–6.

[35] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,
2017.

[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[37] K. Yao, L. Zhang, T. Luo, and Y. Wu, “Deep reinforcement learning
for extractive document summarization,” Neurocomputing, vol. 284, pp.
52–62, 2018.

[38] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement
learning for real-time optimization in nb-iot networks,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 6, pp. 1424–1440,
2019.

[39] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity
in cloud computing: state of the art and research challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2017.

[40] A. N. Toosi, J. Son, Q. Chi, and R. Buyya, “Elasticsfc: Auto-scaling
techniques for elastic service function chaining in network functions
virtualization-based clouds,” Journal of Systems and Software, vol. 152,
pp. 108–119, 2019.

[41] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of grid computing, vol. 12, no. 4, pp. 559–592, 2014.

[42] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers in the
application tier for e-commerce systems,” ACM Transactions on Internet
Technology (TOIT), vol. 7, no. 1, pp. 7–es, 2007.

[43] T. Phung-Duc, Y. Ren, J.-C. Chen, and Z.-W. Yu, “Design and analysis
of deadline and budget constrained autoscaling (dbca) algorithm for
5g mobile networks,” in 2016 IEEE international conference on cloud
computing technology and science (CloudCom). IEEE, 2016, pp. 94–
101.

[44] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A multi-model
framework to implement self-managing control systems for qos manage-
ment,” in Proceedings of the 6th international symposium on software
engineering for adaptive and self-managing systems, 2011, pp. 218–227.

[45] P. Bodı́k, R. Griffith, C. A. Sutton, A. Fox, M. I. Jordan, and D. A. Pat-
terson, “Statistical machine learning makes automatic control practical
for internet datacenters.” HotCloud, vol. 9, pp. 12–12, 2009.

[46] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in 2012 IEEE Network Operations
and Management Symposium. IEEE, 2012, pp. 204–212.

[47] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant, “Automated control of multiple virtualized resources,”
in Proceedings of the 4th ACM European conference on Computer
systems, 2009, pp. 13–26.

[48] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[49] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services.” in NSDI, vol. 8, 2008, pp. 337–350.

[50] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling
for cloud systems,” in 2010 International Conference on Network and
Service Management. Ieee, 2010, pp. 9–16.

[51] A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for task
migration in challenged edge networks with ritmo,” in 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet). IEEE,
2020, pp. 1–7.

[52] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[53] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation
for shared data centers using online measurements,” in International
Workshop on Quality of Service. Springer, 2003, pp. 381–398.

[54] S. Khatua, A. Ghosh, and N. Mukherjee, “Optimizing the utilization
of virtual resources in cloud environment,” in 2010 IEEE International
Conference on Virtual Environments, Human-Computer Interfaces and
Measurement Systems. IEEE, 2010, pp. 82–87.

[55] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid
reinforcement learning approach to autonomic resource allocation,” in
2006 IEEE International Conference on Autonomic Computing. IEEE,
2006, pp. 65–73.

[56] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic resource
allocation in clouds: towards a fully automated workflow,” in ICAS 2011,
The Seventh International Conference on Autonomic and Autonomous
Systems, 2011, pp. 67–74.

Alessio Sacco received the M.Sc. degree in Com-
puter Engineering from the Politecnico di Torino,
where he is currently pursuing the Ph.D. degree
in Computer Engineering. His research interests in-
clude architecture and protocols for network man-
agement; implementation and design of cloud com-
puting applications; algorithms and protocols for
service-based architecture, such as Software Defined
Networks (SDN), used in conjunction with Machine
Learning algorithms.

Matteo Flocco received the M.Sc. degree in Com-
puter Science from Saint Louis University, where
he worked as a research assistant in the networking
group with Dr. Flavio Esposito. His research inter-
ests mainly involve computer networks, with a par-
ticular focus on Software-Defined Networking and
congestion control algorithms, and machine learning
applied to network management. Currently, he works
as a Full Stack Developer for Blue Reply where he
develops logistics softwares for large companies.

Flavio Esposito is an Assistant Professor with the
Department of Computer Science at Saint Louis
University (SLU). He also has an affiliation with the
Parks College of Engineering at SLU. He received
an M.Sc. degree in Telecommunication Engineering
from the University of Florence, Italy, and a Ph.D. in
computer science from Boston University in 2013.
Flavio worked in the industry for a few years,
and his main research interests include network
management, network virtualization, and distributed
systems. Flavio is the recipient of several awards,

including four National Science Foundation awards and two best paper awards,
one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

