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To date, the only effective means to respond to the spreading of the COVID-
19 pandemic are non-pharmaceutical interventions (NPIs), which entail pol-
icies to reduce social activity and mobility restrictions. Quantifying their
effect is difficult, but it is key to reducing their social and economic conse-
quences. Here, we introduce a meta-population model based on temporal
networks, calibrated on the COVID-19 outbreak data in Italy and applied
to evaluate the outcomes of these two types of NPIs. Our approach combines
the advantages of granular spatial modelling of meta-population models
with the ability to realistically describe social contacts via activity-driven
networks. We focus on disentangling the impact of these two different
types of NPIs: those aiming at reducing individuals’ social activity, for
instance through lockdowns, and those that enforce mobility restrictions.
We provide a valuable framework to assess the effectiveness of different
NPIs, varying with respect to their timing and severity. Results suggest
that the effects of mobility restrictions largely depend on the possibility of
implementing timely NPIs in the early phases of the outbreak, whereas
activity reduction policies should be prioritized afterwards.
1. Introduction
Following the first report of the novel coronavirus (SARS-CoV-2) in Wuhan,
China, COVID-19 has risen above 83 million cases and 1 831 703 reported
deaths as of 3 January 2021 [1]. The ongoing pandemic quickly reached
Europe during February and March 2020, forcing most of the countries to
implement unprecedented non-pharmaceutical interventions (NPIs) to fight
the spread [2–6]. Some of these interventions promote policies to reduce
human-to-human interactions, for example by enforcing social distancing, halt-
ing non-essential activities, closing schools and banishing large gatherings
[2,5,6]. Others limit human mobility by means of travel restrictions and bans
[6,7]. Owing to the considerable economic and social cost associated with the
implementation of both of these types of policies [8–10], it is crucial to assess
their effectiveness. Mathematical and computational epidemic models are key
to being able to accurately evaluate a wide range of what/if scenarios and to
predict the evolution of the pandemic for different choices of NPIs [7,11–18].

One of the fundamental aspects of the spread of infectious diseases is its
spatial diffusion and the concurrent role of human mobility patterns [19–21].
Extensive studies on mobility within the COVID-19 pandemic revealed that
population movements are among the main drivers of the spatial spreading
of the outbreak [4,22]. Network structures have emerged as a powerful frame-
work to encapsulate such mobility patterns within mathematical models of
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Figure 1. Schematics of the meta-population model, which illustrates the community structure and the role of the routing matrix W.
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epidemics, especially by means of meta-population models
[23]. This modelling paradigm is based on the definition of
a set of communities (provinces, counties or regions),
connected by a network that captures daily short-range
commuting and long-range mobility.

Different from most of the classical meta-population
models that tend to assume homogeneous mixing within
each community [23,24], we propose a network structure
that accounts for the inherent, heterogeneous and time-
varying nature of human interactions [25,26], together with
behavioural changes in response to the evolution of the pan-
demic [27,28]. To this aim, individuals interact on the basis of
a mechanism inspired by activity-driven networks (ADNs)
[29,30]. Our model includes two key aspects of social com-
munities: mobility patterns and temporal, heterogeneous
networks of contacts. Within this meta-population model,
we incorporate a variation of a susceptible–infected–removed
(SIR) epidemic process [31], which is designed to capture
several key features of COVID-19, such as the presence
of latency periods and the delay in the official reporting of
infections and deaths.

We calibrate the model on epidemic data from the first
wave of the Italian COVID-19 outbreak [32] to examine differ-
ent scenarios that evaluate the spatial effects of NPIs. In
particular, we explore the interplay between a reduction in
social activity and mobility restrictions. At the modelling
level, the former mechanism acts upon the network of con-
tacts, while the latter modifies mobility patterns between
communities. Our findings reveal that the timing of the inter-
ventions is essential for their effective implementation. We
conclude that mobility restrictions should be applied at the
early stage of the epidemic and coupled with appropriate
policies to reduce social activity. Surprisingly, the impact of
mobility restrictions is spatially heterogeneous. For the Italian
outbreak, this results in a greater benefit for southern regions,
that is, those located far from the initial outbreak. The overall
effect of early travel restrictions in these areas led to a 12%
reduction in the total number of deaths. We also examine
different interventions across age cohorts, determining
that the application of severe restrictions only to the most
vulnerable age cohorts would not be sufficient to effectively
reduce the death toll. Different phenomena are observed
upon the relaxation of containment measures, with the contri-
bution of continued mobility restrictions being negligible.
In this phase of the fight against the epidemic, policies
limiting social activity (for instance, by enforcing the use of
face masks or social distancing) yield the main benefits in
mitigating resurgent outbreaks.
2. Methods
2.1. Model
2.1.1. Meta-population activity-driven model
We consider a population of n individuals partitioned into a set
H ¼ {1, . . . , K} of communities, located in bounded geographical
areas (administrative divisions, such as regions, provinces or
municipalities), where nh is the number of individuals in the
hth community. Communities are connected through a weighted
graph that models travel paths between them. The weight matrix
W∈ [0, 1]K×K, called the routing matrix, is a matrix with non-nega-
tive entries, zeros on the main diagonal and row sums equal to 1,
such that Whk is the fraction of members of community h that
move to community k per unit-time.

Individuals interact according to a mechanism inspired by
ADNs [29,30], which accounts for the inherent, heterogeneous
propensity of humans to interact with others. Specifically, indi-
viduals are divided into P baseline activity classes 0 < a1 <
a2 < · · · < aP≤ 1, where the baseline activity ai of individuals in
the ith class quantifies their nominal propensity to interact
with others. The latter can be interpreted as the average prob-
ability for an individual belonging to the ith class to generate
interactions in a unit time step. At each time step and for each
activity class i, a fraction ai of individuals, selected uniformly at
random, activates and generates interactions with others, regard-
less of their class. This fraction of the population is called active.
Active individuals may generate interactions within the commu-
nity where they are located, or they may travel and interact in
other communities, before returning to their community, at the
end of the time step. This aspect is modelled through a mobility
parameter b∈ [0, 1], which quantifies the baseline fraction of the
active population that commutes to other communities; the com-
muting unfolds according to the routing matrix W (figure 1). The
remaining fraction 1− b of the active population does not com-
mute and interacts locally with individuals randomly selected
within their community. We assume that the P activity classes
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Figure 2. Schematic of the epidemic progression. Individuals may be susceptible to the disease (S), exposed but yet not infectious (E), infectious (I ), non-infectious
(N ) and recovered or dead (R). The compartment N captures the delay between the end of the infectious period and the reporting of a death, and is key for
parameter identification from real-world data. All the transition rates are detailed in the main text and reported in table 1.
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are equally distributed in different communities. Specifically, we
introduce the activity distribution vector η∈ [0, 1]P, such that the
number of individuals with activity class ai in the hth community
is equal to the product nhηi. We finally introduce a parameter
m≥ 0 that captures the average number of contacts generated
by each active individual in a time unit.

Two parameters, α∈ [0, 1] and β∈ [0, 1], are introduced to
model NPIs. The former, α, models individuals’ self-isolation
owing to the awareness of the disease spreading. In the model,
this corresponds to scaling down the individual activity from
its baseline value ai to αai. The latter, β, captures the effect of
mobility restrictions, which are modelled by scaling down the
baseline mobility parameter from b to βb.

2.1.2. Disease progression
The disease progression is modelled according to an extension of
the classical SIR model (figure 2), which encapsulates a latency
period between contagion and infectiousness, a limited duration
of the infectious period, coinciding with the peak of the viral
load, and a delay for deaths reporting [2]. Specifically, we
adopt a susceptible–exposed–infectious–non-infectious–removed
(SEINR) compartmental model (figure 2). After contagion,
infected individuals become initially exposed (E) before spon-
taneously moving into the infectious (I) compartment with rate
ν. Once the infectious period terminates (with rate μ), individuals
transition to the non-infectious compartment (N), before recover-
ing (or dying) with rate γ, which is represented by the R
compartment. The compartment N captures the delay between
the end of the infectious period and the reporting of a death. The
number of deaths is the most reliable parameter for calibration,
given the uncertainty in reporting active infectious cases. The par-
ameters have immediate interpretation: 1/ν is the average latency
period of the disease (time from contagion to infectiousness), 1/μ
is the average period of communicability (inwhich individuals are
infectious) and 1/γ captures the delay before reported deaths.
Hence, 1/μ + 1/γ is the average time from infectiousness to the
reported death. We comment that other important features of
COVID-19 may be easily incorporated by considering further
compartments into the model, similar to [33]. In this vein, one
may include, for instance, a differentiation between symptomatic
and asymptomatic infectious individuals, which might help
implement timely feedback control interventions.

The contagion mechanism involves an interaction. We intro-
duce a parameter λ∈ [0, 1], which captures the fraction of
susceptible individuals who become exposed after an interaction
with an infectious individual. The contagion depends not only
on λ; it depends also on individual properties (their activity)
and on the network structure, as well as on the prevalence of
infectious individuals. We denote by Ph

i (t) the contagion function,
that is, the fraction of susceptible individuals with activity ai who
belong to community h and who become infected at time t,
whose expression is detailed in the following.

2.1.3. Dynamics
We consider the generic activity class i and community h [ H.
Let Shi , Eh

i , Ihi and Nh
i be macroscopic variables counting the

number of susceptible, exposed, infectious and non-infectious
individuals of class i in community h, respectively. Clearly,
nhhi � Shi � Eh

i � Ihi �Nh
i is the number of removed individuals
in class i and community h. In the thermodynamic limit of
large populations [23,34,35], n→∞, we describe the epidemic
spreading in terms of the macroscopic variables by writing the
following system of mean-field recurrence equations:

Shi (tþ 1) ¼ (1�Ph
i (t))S

h
i (t),

Eh
i (tþ 1) ¼ Ph

i S
h
i (t)þ (1� n)Eh

i (t),

Ihi (tþ 1) ¼ nEh
i (t)þ (1� m)Ihi (t),

Nh
i (tþ 1) ¼ mIhi (t)þ (1� g)Nh

i (t):

9>>>>>>=
>>>>>>;

(2:1)

We now detail the contagion mechanism and derive an expli-
cit expression for Ph

i (t). To simplify the notation, we omit time t,
that is, Ph

i is used to denote Ph
i (t). In the thermodynamic limit of

large populations n→∞ and assuming that the epidemic preva-
lence is small (so that we can neglect the probability of having
multiple interactions with infectious individuals at the same
time), the quantity Ph

i can be written as the sum of four different
terms. The first summand accounts for the contagions caused by
the fraction αai(1− βb) of active individuals from Shi who remain
in the hth community and who interact therein with infectious
individuals; the second summand accounts for the infections
caused by the fraction (1− αβaib) of Shi who remain in community
h and who come into contact therein with active infected individ-
uals; the third and the fourth summands account for the
contagions of the fraction αβaib of Shi who are active and who
move to other communities, interacting with infected individuals
or receiving interactions from active infectious individuals in the
community they move to, respectively. These four terms yield

Ph
i ¼ maai(1� bb)lPh þm(1� abaib)lQh

þmabaib
X
k[H

WhklPk þmabaib
X
k[H

WhklQk, (2:2)

where

Ph ¼ 1
~nh

 XP
j¼1

(1� aba jb)Ihj þ
X
k[H

Wkh

XP
j¼1

aba jbIkj

!
(2:3a)

and

Qh ¼ 1
~nh

 XP
j¼1

(1� bb)aa jIkj þ
X
k[H

Wkh

XP
j¼1

aba jbIkj

!
(2:3b)

are the fractions of infectious and active infectious individuals
who are present in community h, respectively. The quantity

~nh ¼ (1� abhaib)nh þ abhaib
X
k[H

Wkhnk (2:4)

is the number of individuals who are located in community h,
where hai :¼PP

i¼1 hiai is the average activity of the population.
2.2. Model calibration
We calibrate the model to reproduce the COVID-19 outbreak in
Italy, setting provinces as communities, using epidemiological
parameters from the medical literature [36–38], mobility data
from the Italian National Institute of Statistics (ISTAT) [39] and
data from officially reported deaths [32]. Based on available
empirical data on social contacts per age group [40], we partition
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Figure 3. Heat map representing the routing matrix W between provinces
estimated from [39]. The colour code represents the fraction of active
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macro-regions, as detailed and illustrated in the electronic supplementary
material, §S1 and figure S1.

Table 1. Model parameters; parameters indicated with a tick (✓) are
identified by fitting real-world data of reported deaths from [32]. From the
table, we derive the following parameters: n ¼ 0:156 d�1, m ¼ 0:2 d�1

and g ¼ 0:105 d�1.

meaning value(s) reference

1/ν latency period 6.4 days [2,43]

1/μ infectiousness period 5 days [2,44]

1/γ time from infectiousness

to reported death

9.52 days [2,44,45]

λ per-contact infection

probability

0.042 ✓

η class distribution [0.768, 0.232] [39,40]

a baseline activity [0.149, 0.545] d−1 [40]

b mobility parameter 0.09 [39]

αlow activity reduction 0.176 ✓

m average number of

contacts

19.77 [40]

βlow mobility reduction 0 ✓
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the population into two activity classes. The population below 65
years old forms the high-activity class, and the population above 65
years old constitutes the low-activity class. Different mortality rates
are associated with the two classes to estimate the number of
deaths, based on serology-informed data [41]. Practically, the
high-activity class may encompass the low-risk/high-mobility
portion of the population, and the low-activity classmay comprise
the high-risk/low-mobility portion of the population. The details
of the model calibration are given below.

2.2.1. Calibration of the meta-population model
The Italian territory is divided into K = 107 provinces, which are
selected as the metapopulation model communities, extracting
the corresponding population nh from the census data [39]. Pro-
vinces are administrative units that offer most of the essential
services to the population (supermarkets, hospitals, schools,
public offices, restaurants, etc.). Hence, our choice of spatial gran-
ularity allows one to distinguish and disentangle the effects of the
two categories of NPIs considered in this paper, whereby activity
reduction refers to the execution of everyday-life activities within
a province, and mobility restrictions prevent travel between
provinces. Provinces are grouped into 20 regions, gathered in
five macro-regions: north-west, north-east, centre, south and islands
(electronic supplementary material, section S1 and figure S1).

We partition the population into P = 2 activity classes, based
on age-stratified data on social contacts [40], aggregating age
groups that form a high or low number of contacts, respectively.
Specifically, the former contains people below 65 years old, while
the latter contains people above 65 years old. According to the
same study, we set m = 19.77. The baseline activity classes a1
and a2 are determined by matching the average number of con-
tacts of the individuals in the classes. The fraction ηi of
population in each class is determined from the Italian age distri-
bution [39]. Simulations are presented in the electronic
supplementary material, figure S8 to show the robustness of
our results for different levels of class partitioning.

We consider two types of mobility: the commuting pattern
between provinces and long-rangemobility. The former is directly
obtained from the 2011 census data in the ISTAT database [39],
which has been validated and adopted to model mobility in
recent works on COVID-19 [13]. Comprehensive data on long-
range mobility are not available. We estimate them as follows.
For each province, we consider the number of nights spent in
accommodation facilities over the period from February to May
2011, which represents the destinations of travellers [39]. Origins
are estimated based on the flows between macro-regions [39].
Assuming uniformity within each macro-region, we set the ori-
gins proportional to the population of each province. Finally, W
is obtained by combining the two origin–destination matrices
(figure 3). The mobility parameter b is estimated as the fraction
of the population who move outside their province, using data
from [39].

NPIs are implemented as follows. At t = t0, we set α = β = 1.
Then, based on empirical data [42], we consider a linear decrease
over 15 days to reach a value αlow. Such a decrease begins on 5
March (the day of the enforcement of the first social distancing
measures) and ends on 20 March (when a severe lockdown is
enacted). Similarly, β is reduced to βlow. As suggested in [42],
mobility restrictions have not been implemented uniformly
county wide: changes were enforced on 1 March for macro-
regions north-west, north-east and centre, and on 7 March for
south and islands. The values of αlow and βlow are identified from
epidemic data.

2.2.2. Calibration of the epidemic parameters
Epidemic parameters are taken from the literature on COVID-19.
Specifically, the latency period 1/ν and the infectious period 1/μ
are taken from [2], based on clinical estimations from [43,44],
respectively; γ is the inverse of the difference between the aver-
age time from infectiousness to the reported death [45] and
1/μ. The infection probability λ depends on the model of social
interactions. Hence, we identify it from real-world data. Table 1
reports the parameters used in our simulations.
2.2.3. Parameter identification
We calibrated our model by fitting the temporal evolution of
the reported deaths, during the COVID-19 outbreak in Italy.
Data at the regional level were retrieved from the official Italian
Dipartimento della Protezione Civile [32] database. This data-
base starts on 24 February, and we had extended it backwards
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in time for 20 days (until 4 February). We filled with zero deaths
the section of the database from 4 February to 20 February, and
we manually corrected the database to include seven deaths
that were not reported therein in the period from 20 to 23 Febru-
ary (electronic supplementary material, section S2). To calibrate
the model, we focused on the period from 4 February (denoted
as t0) to 18 May (denoted as tend); namely, until the first relaxation
of NPIs. To enhance the reliability of the data, we applied a
weekly moving average.

Using the SEINR epidemic progression model, we computed
the deaths in province h for activity class i as a fraction of the
removed individuals Rh

i (t), according to the class fatality ratio
f1 ¼ 0:045% and f2 ¼ 5:6%. The latter was inferred from a serol-
ogy-informed estimate performed on age-stratified data from
Geneva, Switzerland [41], scaled on the Italian age distribution
using census data [39]. Since we had no access to reliable infor-
mation about the initial number of exposed Eh

i (t0) or infected
Ihi (t0) individuals, such initial conditions needed to be identified.
For each province h and activity class i, we initialized the number
of exposed and infected as a fraction k1 and k2 of the total
reported cases at the end of the observation time (24 June)
Ch(tend) from the official database [32],

Eh
i (t0) ¼ k1hiC

h(tend) and Ihi (t0) ¼ k2hiC
h(tend), (2:5)

where k1 and k2 were identified together with the other parameters.
The parameter identification was formulated as a minimiz-

ation problem, solved by means of a dual-annealing procedure
[46]. Specifically, we defined the cost function c as the weighted
sum of the squared error between the number of deaths
predicted by the model and the regional real data, normalized
with respect to the maximum number of deaths in the region.
To this aim, we defined the set of regions R and the partition
of provinces into regions as the function p :H ! R, such
that π(h) = r if and only if province h was located in region r.
For each r [ R, we introduced

cr ¼
Xtend
t¼t0

Dr
MA(t)
�Dr
MA

�
P

h:p(h)¼r fR
h(t)

�Dr
MA

 !2

, (2:6)

and the cost function as the sum of cr weighted with the total
number of deaths in the region r is

c ¼
X
r[R

cr
Xtend
t¼t0

Dr(t)

 !
: (2:7)

Here, Dr(t) indicates the reported deaths in region r, Dr
MA(t) is the

weekly moving average and �Dr
MA ¼ maxt Dr

MA(t) is its maximum
value. Using the fatality ratio, the model predicts f Rh(t) deaths in
province h at time t. Figure 4 shows the real and simulated time
series with the identified parameters.
3. Results
3.1. Implementation of NPIs
Here, we elucidate the role of NPIs in halting the spread of
COVID-19. We aim at disentangling the contribution of the
two most common kinds of interventions: reduction of
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individuals’ activity, through lockdown or social distancing,
and enforcement of mobility restrictions. We take as a refer-
ence the NPIs implemented in Italy (detailed in the
electronic supplementary material, §S2) and identify the
NPI-related parameters from available data. The enforcement
of lockdown and social distancing policies, gradually enacted
during a time window of two weeks (from 5 to 20 March), are
modelled through a linear decrease of the α parameter from 1
to αlow = 0.176. The effect of the nearly complete mobility
restrictions between provinces can be seen from 1 March in
the northern macro-regions and from 7 March in the southern
ones [42]. We model these restrictions by setting the mobility
parameter to βlow = 0 on the corresponding dates.

We start by investigating the effect ofmobility restrictions in
combination with activity reduction policies (figure 5a).
We simulate the mobility restrictions as being applied on 4
February, that is, almost one month earlier than the actual
date. We compare the number of deaths over the time
window that ranges from 4 February to the date of the
first relaxation of NPIs in Italy (18 May). We observe that
the effect of mobility restrictions becomes significant for
intermediate levels of activity reduction policies (that is, 0.3 <
α < 0.7). On the other hand, a negligible effect ofmobility restric-
tions is registered for milder levels of activity reduction policies
(α > 0.7) and for extremely severe activity reductions (α < 0.3).
The latter, counterintuitive, finding is due to a balance between
the increased numberof deaths in somenorthernmacro-regions
(close to the initial outbreak) and thedecrease indeaths inothers
(electronic supplementary material, figure S5).

To detail this mechanism, we examine the number of
deaths in each macro-region, using different levels of mobility
restrictions and setting the activity reduction to the lockdown
level, αlow = 0.176 (figure 5b). Our results suggest that the
impact of mobility restrictions is strongly dependent on
their geographical location, and it vanishes if it is not
implemented in a timely way. Notably, we find that the
timely implementation of severe mobility restrictions would
have reduced the number of deaths by more than 12% in the
islands macro-region (that is, far from where the outbreak
was initially located) over the duration of severe NPIs. Such
an advantage becomes smaller and smaller as the considered
macro-regions are closer to the initial location of the outbreak.
Paradoxically, mobility restrictions even become slightly detri-
mental if applied in the north-west macro-region, where the
outbreak started. This is due to the commute of infected indi-
viduals from the most affected provinces to the rest of the
provinces and of susceptible individuals from less impacted
provinces to the rest of the country. For comparison, we also
report the death count for the implementation of the same
restrictions on 1 March, which corresponds to the actual date
of their implementation. We observe that the timing of NPIs
is essential; an earlier application of travel restrictions by one
month would have saved twice as many lives. Similar results
are obtained for the peak of the epidemic incidence (electronic
supplementary material, figures S6 and S7).

The large geographical variability in the number of deaths
is confirmed in figure 6a–f , which shows the total number of
deaths for two representative provinces under different
timing and intensity of implementation of NPIs.While the pro-
vince of Bergamo (in the north-west macro-region), which had
one of the earliest and biggest outbreaks, seems unrelieved
by mobility restrictions, the province of Sud Sardegna (in the
islands macro-region), an area much less affected by the pan-
demic than the former, would have largely benefited by such
an intervention. To investigate this further, we factor out the
role of the two types of NPIs by performing a non-negative
matrix factorization [47] on the outcome of our simulations at
the province level (details in the electronic supplementary
material, §§S3 and S4). Specifically, we focus on values of α ran-
ging over a +50% interval with respect to the value of the
lowest activity coefficient αlow = 0.176, identified from real-
world data during the lockdown, and we simulate the early
application of mobility restrictions with different intensity
levels and timing. Our analysis leads to the characterization
of two sets of Italian provinces. The first (in green in figure
6g) comprises provinces where timely implemented mobility
restrictions are effective in reducing epidemic prevalence (for
example, Sud Sardegna). The second set (in brown in figure
6g) contains provinces for which mobility restrictions have
instead a negligible impact. Predictably, most of the provinces
in the north-west (where the outbreak started) are unaffected by
mobility restrictions, while the majority of provinces in the
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south and islands would have benefited from an earlier
implementation of such restrictions.

Surprisingly, some important exceptions are identified.
For instance, the provinces of Varese and Monza (close to the
Milan metropolitan area) would have benefited from timely
mobility restrictions. We believe that this is due to the initially
small number of cases in those two provinces, and to the large
number of daily commuters from those provinces to theMilan
province and other neighbouring locations, where the Italian
outbreak started. Hence, the same dynamics between north
and south Italy is documented again over a much smaller
spatial scale, between northern provinces with a larger initial
difference in epidemic prevalence. Similar results are observed
for other intervention scenarios (electronic supplementary
material, figure S2).

Finally, we discuss the possibility of implementing tar-
geted activity reductions that act independently on the two
activity classes. This allows us to study the effectiveness of
differential intervention policies that could aim at strongly
reducing social activity for age cohorts that are more at risk
of developing severe illness, while implementing mild
restrictions for younger people. Instead of a single parameter
α, we thus introduce two parameters α1 and α2 that
measure the activity reduction for the high- and the low-
activity classes, respectively. The heat map in figure 7 illus-
trates the effect of different combinations of α1 and α2 on
the total number of deaths; the level curves help us to under-
stand the trade-off in targeting the two classes. We observe
that the total number of deaths is mostly determined by the
parameter α1, that is, the activity reduction for the high-
activity class. Hence, our results suggest that implementing
targeted stay-at-home policies in which severe activity
reductions are only enforced on the age cohorts that are
more at risk (in our scenario, people over 65 years old) is
not sufficient to reduce the overall death toll.

3.2. Relaxation of NPIs towards reopening strategies
The proposed meta-population model enables the analysis of
reopening strategies to relax restrictions while avoiding
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resurgent outbreaks. This has recently emerged as a key issue
in the control of COVID-19 outbreaks in the medium- to long-
term period [48]. We run our calibrated model to simulate the
epidemic until the date of intervention relaxation. Then, we
vary the values of parameters α and β to account for the relax-
ation of the containment measures. Similar to the previous
analysis, we consider a set of different options for the par-
ameters after intervention relaxation and different times for
starting the reopening strategies. Specifically, we model the
relaxation of the reduction of social activity by varying the
parameter α from αlow, identified during the lockdown, to a
value of α = 0.6. Likewise, we describe the uplifting of mobility
restrictions by varying the parameter β from 0 (no mobility
allowed) to 1 (nominal mobility reinstated).

Our results suggest that the effect of maintaining mobility
restrictions after the relaxation of NPIs is negligible and domi-
nated by the activity reduction (figure 8).We evaluate the total
number of deaths in a time window of 60 days after the relax-
ation date (18 May). Both at the province level, for which we
show the examples of Sud Sargegna (figure 8a) and Bergamo
(figure 8b), and at the aggregated country level (figure 8c),
the contribution of mobility restrictions is little or absent.
These results are confirmed by other scenarios with different
relaxation dates (electronic supplementary material, §§S5
and S6 and figures S3 and S4). Overall, this evidence indicates
that activity reduction in the relaxation of NPIs should be
thoughtfully calibrated, trading the risk of resurgent out-
breaks against the social and economic costs associated with
such policies. On the other hand, further enforcement of mobi-
lity restrictions within the country after the end of
the epidemic wave does not seem to be beneficial in the
relaxation phase.
4. Discussion
Motivated by the evidence of the key role of NPIs in the
ongoing COVID-19 outbreak [2–6], we made an effort to pro-
pose a parsimonious mathematical framework to study NPIs
and elucidate their impact on epidemic spreading. Specifically,
we combined a meta-population model, capturing the spatial
distribution of the population and its mobility patterns [23,24],
with an ADN-based structure, which reflects real-world fea-
tures of social activity, such as heterogeneity [29,30] and
behavioural traits [27,28]. We explicitly incorporated two
types of NPIs: actions aiming at reducing individuals’ activity
(social distancing, forbidding gatherings and, in general, any
measure that curtails the number of contacts favouring the
spread of the infection) and policies to restrict individuals’
mobility (for instance, through travel bans). Through the
lens of our modelling framework, we disentangled the effect
of these two types of policies depending on the time of their
implementation. We calibrated the model with data on the
ongoing COVID-19 outbreak in Italy [32].

We leveraged themodel to explore awide range of what/if
scenarios on the spatio-temporal dynamics of COVID-19
spreading for different combinations of NPIs. Our analysis
allows us to draw interesting conclusions on when and how
to apply NPIs to make the fight against the spread more effec-
tive. While the level of activity reduction is unequivocally a
decisive factor, the impact of mobility restrictions has a more
nuanced impact. First, we observed that mobility restrictions
produce benefits only if applied at the early stage of the out-
break, and only if paired with appropriate activity reduction
policies. Moreover, we discovered that the effect of mobility
restrictions is strongly dependent on space. In fact, through a
non-negative matrix factorization technique, we identified
two sets of provinces that are differently affected by mobility
restrictions. The first set, mostly consisting of provinces in
the north (where the outbreak initially started), has little or
no benefit from mobility restrictions. The provinces in the
second set, instead, would have benefited from early
implementation of mobility restrictions. Surprisingly, this set
includes some of the provinces in the north (most affected
area). Then, we discussed the possible implementation of tar-
geted NPIs, with severe restrictions only for age cohorts that
are more at risk of developing severe illness. Our modelling
framework brought to light concerning limitations in the
implementation of these targeted interventions: although
economic reasons may prompt these interventions, their
public health value could be limited. Finally, while mobility
restrictions are useful in the early stage of the outbreak, their
late implementation is ineffective. A different scenario is
observed for the relaxation of NPIs, where the level of activity
reduction should be carefully and gradually relaxed.

Our study outlines several avenues of future research,
which can be pursued by leveraging the generality of the
heterogeneous meta-population framework proposed in
this study. During the first wave of COVID-19 in Italy, NPIs
were homogeneously implemented nationwide through
Decrees of the Prime Minister. Hence, we have used uniform
parameters among the provinces. However, from November
2020, local NPIs have been enacted. The proposed model
could benefit from the study of heterogeneous
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implementation (and relaxation) of NPIs between provinces
and even the implementation of targeted mobility restrictions
between specific provinces (through the modification of the
routing matrix W), whose analysis is envisaged for future
research. The outcome of such an analysis can inform policy-
makers on targeted interventions that may reduce social and
economic costs while effectively halting the epidemic. Also,
other targeted intervention policies, such as those aiming at
reducing the activity of all high-risk individuals, regardless
of their age, may be explored. Our model could also be
used to assess strategies leading to safe reopening of schools.
These studies may be conducted at the whole country level or
at a local level. Country-wise interventions could be engin-
eered by using further activity classes that capture, for
instance, students and teachers. In this vein, a contact
matrix among activity classes could help capture inhomo-
geneous interaction patterns between and within activity
classes, similar to [40]. Local targeted interventions, instead,
may be pursued via our meta-population structure, where
communities are used to model specific locations, such as
schools and neighbourhoods. The introduction of a commu-
nity that represents the rest of the world would enable the
study of the impact of closures of national borders.

Whilewe considered a simple model for the progression of
the epidemic, additional compartments and transitions may
be added to capture hospitalization or testing [33] and used
to analyse different what/if scenarios and design feedback
control interventions, informed by the number of reported
cases or hospitalizations [18]. A limitation of our modelling
framework lies in its deterministic formulation, which pre-
vents it from capturing phenomena such as local disease
eradication. This may be crucial to study the pandemic at
longer time scales, encompassing future vaccination cam-
paigns. A stochastic formulation of the meta-population
activity-driven model may be proposed and used as a viable
tool to shed light onto these important phenomena and under-
stand their impact on the spreading process. Finally, the
simplicity of our mathematical framework may be conducive
to a rigorous analytical treatment, involving, for example,
the computation of the epidemic threshold, towards providing
further insight into the effect of NPIs on the spread of the
epidemic.
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