
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reduced Precision DWC: an Efficient Hardening Strategy for Mixed-Precision Architectures / Fernandes dos Santos,
Fernando; Brandalero, Marcelo; Sullivan, Michael; Martins Basso, Pedro; Hubner, Michael; Carro, Luigi; Rech, Paolo. -
In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - ELETTRONICO. - (In corso di stampa).

Original

Reduced Precision DWC: an Efficient Hardening Strategy for Mixed-Precision Architectures

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2870335 since: 2021-02-10T22:33:00Z

IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020 1

Reduced Precision DWC: an Efficient Hardening
Strategy for Mixed-Precision Architectures

Fernando F. dos Santos, Marcelo Brandalero, Member, IEEE, Michael B. Sullivan, Member, IEEE, Pedro M. Basso
Michael Hübner, Senior Member, IEEE, Luigi Carro, Member, IEEE, Paolo Rech Senior Member, IEEE

Abstract—Duplication with Comparison (DWC) is an effective
software-level solution to improve the reliability of computing de-
vices. However, it introduces performance and energy consump-
tion overheads that could be unsuitable for high-performance
computing or real-time safety-critical applications.

In this work, we present Reduced-Precision Duplication with
Comparison (RP-DWC) as a means to lower the overhead of
DWC by executing the redundant copy in reduced precision.
RP-DWC is particularly suitable for modern mixed-precision
architectures, such as NVIDIA GPUs, that feature dedicated
functional units for computing with programmable accuracy. We
discuss the benefits and challenges associated with RP-DWC and
show that the intrinsic difference between the mixed-precision
copies allows for detecting most, but not all, errors. However,
as the undetected faults are the ones that fall into the difference
between precisions, they are the ones that produce a much smaller
impact on the application output and, thus, might be tolerated.

We investigate RP-DWC impact into fault detection, perfor-
mance, and energy consumption on Volta GPUs. Through fault
injection and beam experiment, using three microbenchmarks
and four real applications, we show that RP-DWC achieves an
excellent coverage (up to 86%) with minimal overheads (as low
as 0.1% time and 24% energy consumption overhead)

Index Terms—fault tolerance, mixed-precision architectures,
graphics processing units, duplication with comparison

I. INTRODUCTION

Reliability has been listed as one of the top 10 challenges
to reach exascale computing by the United States Department
Of Energy (DOE) [1], and is one of the primary constraints
for safety-critical applications [2]. The reduced transistors’
dimensions, the pursuit of low-power consumption, and the
integration of several resources in a single chip has made
modern devices extraordinarily efficient and powerful but has
also exacerbated the probability of failures, in particular due
to radiation-induced faults [3].

Parallel architectures such as Graphics Processing Units
(GPUs), that are required to accelerate High-Performance
Computing (HPC) applications and to detect objects in real-
time safety-critical domains such as in self-driven vehicles,
have been proved particularly vulnerable to transient faults [4].
Duplication With Comparison (DWC) is particularly suitable
to address the reliability threat in these highly parallel de-
vices, as it can be easily implemented in software and it

Fernando F. dos Santos, Pedro Martins Basso, Luigi Carro are with the
Universidade Federal do Rio Grande do Sul, Brazil.

Paolo Rech is with Politecnico di Torino, Italy.
Marcelo Brandalero and Michael Hübner are with the Brandenburg Uni-

versity of Technology Cottbus-Senftenberg (B-TU), Germany.
Michael Sullivan is with NVIDIA, USA.
Manuscript received August 23, 2020

has been proved very effective, detecting more than 90%
of transient faults [4]–[6]. However, on GPUs, a traditional
DWC approach imposes an average execution time or energy
consumption overhead of 2x-2.5x [4], which is unsuitable
for HPC and real-time safety-critical applications that also
have strict performance and energy consumption constraints.
Even advanced strategies, such as optimized software-directed
instruction replication, still introduce an average overhead of
1.39x [6]. Redundant multithreading reduces the overhead, but
only under the assumptions that there is no communication
between threads and that unused resources are available [5].

In this paper, we move a step forward in the performance
efficiency of DWC by presenting Reduced-Precision DWC
(RP-DWC), an improvement over the traditional DWC ap-
proach which consists in executing the replica in a lower
precision. RP-DWC builds on ideas from previous works that
have proposed to approximate the algorithm or hardware for
efficient fault tolerance [7]–[10]. However, unlike existing
solutions, RP-DWC does not require costly algorithm nor
hardware modifications. RP-DWC is easily implementable
with different granularities (correctness check at each or
various operations) by the compiler and takes advantage of
the intrinsic higher efficiency of low precision operations
execution in Commercial Off-the-Shelf (COTS) devices. RP-
DWC’s efficiency is amplified in modern mixed-precision
architectures, such as NVIDIA GPUs that feature dedicated
functional units for the different precisions (see Fig. 1). In
these devices, when executing the original high-precision
application, the redundant mixed-precision hardware typically
remains idle, and thus available to be leveraged for the parallel
execution of a duplicated instruction flow in lower precision.

As the two copies in RP-DWC naturally provide differ-
ent results, some faults will be undetectable. To evaluate
the detection capabilities and performance overhead of RP-
DWC, we perform, on Volta GPUs, beam experiments and
software fault injection on a set of microbenchmarks and four
essential applications used in HPC domains. The RP-DWC
implementation in GPUs has very promising performance and
energy consumption overheads that range, respectively, from
35% and 111% in a fine-grained implementation (correctness
check at each operation) to 0.01% and 24% in a coarse-grained
implementation (correctness check every 1,000 operations). As
our data demonstrates, RP-DWC can achieve an average error
detection of 74% (86% in the best case) under the beam and
detects on the average 70% (76% in the best case) of the
injected single bit flips. While RP-DWC detects fewer errors
than traditional DWC, we show that the undetected errors

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

Instruction Cache

Dispatch Unit

Warp Scheduler

Register File

FP64 FP32 FP32 INT INT TENSOR
CORES

FP64 FP32 FP32 INT INT

...

Fig. 1. The Volta GPU architecture features dedicated FP64 and FP32 cores.

fall inside the precision difference between the two copies,
and, as our experiments show, they introduce at most a 0.1%
variance in the application output value. These variances can
be tolerated in many HPC applications and, as we show, are
highly unlikely to induce failures in safety critical systems,
such as miss-detections in object detection frameworks.

After an overview of the radiation effects on computing
devices, some key concepts of mixed precision architectures,
and an overview of related work discussed in Section II, our
work presents the following contributions:

• We propose RP-DWC, a software fault detection strategy
in which the redundant copy is executed in reduced preci-
sion, and an implementation of RP-DWC that effectively
exploits the available low-precision GPU hardware that
would otherwise waste energy without any contribution
to algorithm execution (Section III).

• We investigate the limits of mixed-precision fault detec-
tion using RP-DWC and present a strategy to select a
fault detection interval that enables good fault coverage
without triggering false positives (Section IV).

• With the methodology described in Section V, we con-
duct comprehensive fault injection campaigns and neu-
tron beam experiments using Volta GPUs

• We discuss the impact in HPC and safety-critical appli-
cations of the faults RP-DWC cannot detect and how
RP-DWC would perform in devices without dedicated
mixed-precision hardware.

II. BACKGROUND AND RELATED WORK

In this section, we review some concepts and related work
on the reliability of computing devices, approximate comput-
ing, and mixed-precision architectures useful to design the
proposed RP-DWC technique.

A. Radiation Effects on Computing Devices

Ionizing particles such as atmospheric neutrons, protons,
and heavy ions, may perturb a transistor’s state, generating
bit-flips in memory or current spikes in logic circuits that
can potentially impact the functionality of computing devices.
Neutron-induced events typically are soft or transient faults.
They can induce the following effects on the program output:

• no effect: the fault is masked;
• an incorrect program output: the event is labeled a Silent

Data Corruption (SDC);

• a change in the program behavior that is beyond merely
the outputs, such as a crash or a device reboot: the event
is labeled a Detected Unrecoverable Error (DUE).

SDCs are particularly critical, as their silent nature makes
them extremely hard to detect and they can potentially lead
to unstable or unknown system states. Previous studies have
already evaluated the reliability of CPUs, ARM, heterogeneous
devices, FPGAs, GPUs, and Xeon Phi through radiation exper-
iments [4], [11], fault-injection [12], [13], or both [14]–[16].

Memory arrays can be efficiently protected with Error
Correcting Codes (ECC), which have already been shown
to improve the device reliability significantly [3]. When it
comes to computation, one of the most effective solutions to
detect and mitigate transient faults is duplication or, in general,
replication in software or hardware. By comparing the output
of two independent copies of a program, it is possible to detect
most of the transient faults. We discuss and compare such
approaches in detail in Section II-C.

B. Approximate Computing and Mixed-Precision

Executing an instruction in double-precision floating-point
(FP64) can take 2x longer and consume 2x the energy com-
pared to the execution in FP32 [19]. Approximate computing
exploits the applications’ inherent error-resilience to improve
the performance and energy efficiency by reducing the preci-
sion of data and operations [20]. The error resilience arises
from the absence of a perfect result (such as in heuristic com-
plex optimization problems) or from the application’s ability
to self-heal despite computational errors (e.g., simulations that
end when the difference between iteration is small) [21].

Recently, to improve the efficiency of computation, approx-
imate computing has been applied to both HPC and safety-
critical domains, including object detection frameworks for
autonomous vehicles [22]. Good object detection accuracy can
be achieved by representing data in half-precision floating-
point (FP16) or even in short integer format (8 bits) [23].

The adoption of approximate computing in a growing num-
ber of applications has pushed the demand for mixed-precision
platforms. Most modern computing architectures such as FP-
GAs, GPUs, and CPUs are mixed-precision, supporting at least
two of the five binary floating-point formats defined by the
IEEE 754 (FP16, FP32, FP64, FP128, and FP256) [24]. In ad-
dition, many recent architectures support extensions featuring
non-IEEE-compliant reduced-precision floating-point formats.
Brain Float 16 (BF16) is a format with an 8bit exponent and
7bit mantissa; it is supported by extensions for the Power10
CPU, the NVIDIA A100 GPU, recent x86 CPUs (e.g. Intel
Cooper Lake), and many DL accelerators. Tensor Float 32
(TF32) is a format with an 8bit exponent and 10bit mantissa;
it is supported in the NVIDIA A100 GPU [25].

In a mixed-precision architecture, the user can select the pre-
cision of operations and data, tuning the hardware utilization
and the execution time with the applications’ needs. In some
architectures, such as Intel x86, different precision operations
are executed in the same core. Even if the hardware for
different precision is the same, lower precision operations can
still be executed much faster than higher precision operations.

DOS SANTOS et al.: REDUCED PRECISION DWC 3

TABLE I
COMPARISON OF THE MOST RELEVANT RELATED WORK ON FAULT TOLERANCE.

Approach Work Generic Additional Overhead Error Coverage Evaluation
Hardware Time Energy † = correction F.I. Beam

DWC for GPUs [4] Yes No ∼200%-250% N/A 80%-95% No Yes
Redundant Multithreading [5] Yes No1 ∼10%-200% ∼10-200% N/A No No

Instruction replication (SInRG) [6] Yes No1 ∼36% N/A ∼87% (Instr.) Yes Yes
Algorithm approximation TMR [10] No No ∼33%-309% N/A ∼30%† No Yes

HW unit and checker approximation [7]–[9], [17], [18]2 Yes Yes N/A ∼50%-140% ∼20%-40% Yes No

RP-DWC Yes No 0.01%-35% 24%-111% 55%-76% Yes Yes

Other architectures, such as NVIDIA Pascal, Volta, or Turing
GPUs, have dedicated hardware to execute operations in
double, single, and half precision [19].

Recently, the reliability of mixed-precision architectures has
been evaluated through fault injection and radiation beam
experiments [11]. Preliminary results show that, for GPUs,
the higher the precision, the higher the expected error rate.
The observed reduced reliability is mainly caused by the much
larger area of higher precision computing cores, which implies
a higher probability of being hit by a particle.

C. Related Work and Contributions to the State-of-the-Art

The main characteristics of an error detection strategy,
besides efficacy (i.e., error coverage), are the overheads it
introduces, if it is generic or valid only for an algorithm, and
if it requires additional hardware to be implemented. Table I
lists and summarizes the characteristics of the most relevant
strategies proposed, at different levels of abstractions, to detect
transient faults. These are discussed in detail next.

DWC is generic and, as demonstrated in [4]–[6], in GPUs,
it can detect more than 95% of SDCs. Unfortunately, DWC is
far from being efficient as the introduced overhead in terms
of power consumption, silicon area, or execution time can be
extremely high (at least 200% the unhardened version). As
a result, DWC is impractical for HPC and real-time systems
such as autonomous vehicles.

Recent work has proposed solutions to significantly reduce
the cost of DWC in GPUs, maintaining its generality. With
redundant multithreading, for some codes a slowdown of
less than 10% can be achieved, but, because of the cost of
communication, the overhead for other codes is still higher
than 200% [5]. Software-managed Instruction Replication for
GPUs (SInRG), on the contrary, can reach an overhead that is,
on the average, 36% of the unhardened code execution time,
covering about 87% of dynamic instructions (no absolute error
coverage is provided) [6]. The reduced overhead of efficient
DWC approaches proposed to date is guaranteed only under
the assumption that there are sufficient computing resources to
run the duplicated copy in parallel with the original one. Such
an assumption is always valid for RP-DWC, as it leverages the
available (otherwise idle) mixed-precision cores to execute the
replica (details in Section III).

1These works also propose hardware modifications that can further reduce
the overhead. Since RP-DWC is a software-only technique, we choose to
include only the software-only results for these works.

2This work only evaluates permanent fault coverage.

Previous works have attempted mixed precision solutions
to reduce the energy consumption of DWC, at algorithm or
hardware level, to fault tolerance. The work in [10] proposes
an approximate software-level Triple Modular Redundancy
(TMR) for successive approximation algorithms, using loop-
perforation to reduce the execution time of the replicated soft-
ware. The higher the approximation, the lower the overhead,
which can be as low as 33%. Unfortunately, the approach is
limited to just a single class of algorithms and is not generic.

At the hardware level, other approaches have exploited
adding approximate circuits to reduce the duplication over-
head [7]–[9], [26], [27]. Work in [7] proposes to design a
dedicated approximated hardware circuit for detecting errors
in specific operations, while in [8], [9] authors design ap-
proximated checkers to catch just errors affecting the most
significant portions of the mantissa or just the exponent.
Work in [28] proposes duplicating floating-point units using
reduced precision hardware to check for permanent errors (the
proposed RP-DWC focuses on transient errors), and takes a
mathematical approach to bound these errors. As additional
and dedicated hardware is needed for error detection, the user
has the flexibility of selecting the precision of the redundant
copy considering the trade-off between fault coverage and
overhead. Unfortunately, the additional hardware requirements
increase the implementation cost of the strategy significantly.
The work reports an area overhead of 30% - 90% and energy
overhead of 50% - 140% for the lowest and highest precision
copy, respectively. The reported permanent faults coverage
ranges between 20% and 40%. The advantage of the approach
lies in the ability to detect errors in the most significant bits.
These works serve as a solid background for the application
of approximation for error detection, in which we apply for
transient error detection using COTS hardware.

Compared to all the fault-detection approaches summarized
in Table I, RP-DWC is the only approach that is, at the
same time, generic, software-implemented (requiring no
changes to the hardware), and that leverages the existing re-
dundant mixed-precision hardware for reduced performance
and energy overheads. As such, it requires no prior knowledge
of the algorithm, no hardware modifications, and can be
automatically inserted by the compilation toolchain. Com-
pared to previous software-implemented instruction replication
[5], [6], we exploit the dedicated mixed-precision functional
units available in modern GPUs to execute the replicated
dataflow, leveraging these units that would otherwise be idle
to increase the parallelism and to reduce the execution time
of the hardened software. Compared to previous approaches

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

that propose approximate hardware for fault detection, our
approach is implemented entirely in software and targeted
towards already existing and future architectures, which will
feature mixed-precision components. A key advantage of RP-
DWC is that the extra hardware (already paid in the form
of mixed-precision processing elements) can be used both for
performance improvements (when reliability is not an issue)
as well as for approximate fault detection. Moreover, software
implementations offer additional flexibility, allowing it to be
implemented for both integer (INT64, INT32, INT16, INT8)
as well as floating-point computations (FP64, FP32, FP16 and
the new BF16 and TF32) being parameterized for different
trade-offs between error detection and overheads.

Finally, as we will show in Section VI, our evaluation
of the efficacy of approximation in detecting errors goes a
step beyond previous works on approximate replica strategies
by considering both beam experiments and fault injection,
showing also the impact of detected and undetectable transient
errors in the output correctness.

III. REDUCED PRECISION DWC

In this section, we first give an overview of the main
concepts of RP-DWC and then focus on its implementation
on current and upcoming mixed-precision GPUs. We highlight
the possible benefits RP-DWC brings, discuss its intrinsic
limitations, and implementation challenges.

A. Main Concepts

RP-DWC consists of duplicating the instruction flow for
execution in a lower precision. Using a reduced precision
replica to implement DWC has three main benefits compared
to a traditional DWC: (1) Smaller overhead. For example,
an FP32 operation imposes about half the overheads of the
equivalent FP64 operation. In the specific case of modern
GPUs addressed here, since spare mixed-precision units are
available, these overheads can be reduced even further. When
no dependence between the two replicas exists (intrinsically
true for any DWC-based strategy), and the code is not shared-
memory or register limited (i.e., if the original code does not
use all of the available registers or memory), then two replicas
can be executed in parallel. (2) Lower probability of having
the replica corrupted, as reducing precision has the effect
of reducing the code error rate [11]. We can expect half the
chance to have detections caused by errors in the replica when
using RP-DWC with respect to traditional DWC. (3) Diversity
of the copies, since the replicated operations will now execute
in a different precision and use different processing resources,
reducing the chances for a fault to have the same impact in
both copies and remain undetected.

We proceed with a few mathematical definitions to for-
malize the RP-DWC approach. For simplicity and to ease
the understanding of the implementation on modern GPUs
we consider, without loss of generality, an FP64 original
code and an FP32 redundant copy. The same definitions
and considerations apply to other precisions. Let us consider
two real numbers x and y, which can be encoded either as
FP64 (x64 and y64) or in FP32 (x32 and y32). Operating x

FP64 Domain

X64

FP64
Unit

Z64

Y64

Double-Precision
FP Inputs

FP32 Domain

X32

FP32
Unit

Z32

Y32

Single-Precision
FP Inputs

Z32'

UINT32 Domain

UINT32 Unit

ZU32 ZU32'

Comparison
Check

Cast

Cast

Cast

Re-Interpret

Re-Interpret

Operation
Result

1

2

3

4b

1Steps: Cast FP64 -> FP32

Text
2 Execute Instructions

3 Cast FP64 -> FP32
4 Evaluate Error

FP32
Unit2 4a

5 Check for Fault

5

Fig. 2. Overview of the implementation.

and y together yields value z64 (the output of the original
application) or z32 (used only for fault-detection). Even in the
absence of faults, due to the reduced precision, z64 6= z32. RP-
DWC defines a tolerable interval for the difference between
z64 and z32, named Expected Precision Loss (EPL), over
which error detection is triggered. EPL acts as a threshold for
triggering fault detection, and finding its value is among the
challenges we address in Section IV. The intrinsic difference
between z64 and z32 does not allow for the detection of all the
faults. However, as we will show in the results, most of the
faults are still detected with RP-DWC, and the undetectable
faults might be tolerated as they produce an error inside the
precision difference between FP64 and FP32 operations.

B. Overview of the Implementation

RP-DWC is a software technique to be applied at com-
piler time. To implement RP-DWC, the following procedures,
shown in Figure 2, must be applied to each existing full
precision instruction from the original program flow: cast
the input values to reduced precision, execute the replicated
instructions, cast the high-precision output to low-precision,
and compare the mixed-precision results. We target modern
GPU architectures to show RP-DWC implementation and how
we leverage the mixed-precision hardware to further amortize
DWC costs. Section VI-E discusses how RP-DWC would
perform in the absence of dedicated mixed-precision cores.

Step 1. Casting the inputs to Reduced Precision. The
64 bits input data (x64 and y64) needs to be reduced to 32
bits (x32 and y32) to feed the reduced-precision replica. There
are various ways to perform the cast operation. For instance,
NVIDIA features four different casts (round up, round zero,
round to nearest, round towards zero) [19]. The cast operation
does not significantly impact the Expected Precision Loss, as
in the experiment we performed the differences between the
casts were, on average, orders of magnitude smaller than 1%.
We select the default round to nearest cast. The value is taken
from the input registers of the FP64 copy, and the casted value
is stored in registers that are serving as input of the FP32
copy. While RP-DWC does not increase the pressure on caches
or main memory, it increases the pressure on the register
file, possibly increasing the overhead if there are insufficient

DOS SANTOS et al.: REDUCED PRECISION DWC 5

registers to hold the values for both the FP64 and FP32 copies.
This property is intrinsic of any software DWC for GPUs, but,
as the FP32 copy requires only half the registers compared
to the FP64 copy (each FP64 register occupies two FP32
registers), RP-DWC is less likely to reach register saturation
than a traditional DWC (details in Section VI). Additionally,
as in any DWC, if the fault affects the data before replication,
then both copies will receive an erroneous input, preventing
detection. On GPUs that include ECC in the main memory
structures we can assume that the probability of having such
a corruption in the input data is very low.

Step 2. Executing the original and reduced-precision
instructions. The two copies are executed, either sequentially
or in parallel in case dedicated mixed-precision hardware is
available. RP-DWC for GPUs duplicates the instructions inside
a thread rather than duplicating threads, warps, blocks, or
kernels. By keeping the duplicated instructions inside the same
thread of the original copy, we ensure that those are executed
in the same core using the idle mixed-precision hardware,
avoiding dependencies, duplicated caches, and synchronization
issues. Since it is only necessary to duplicate the instructions,
then add a comparison at the end of the thread or after
an instruction code block, the duplication process can be
automated at the compiling stage.

Step 3. Casting the high-precision result to reduced
precision. Once both instructions complete their execution,
z64 is cast down to FP32 to prepare the comparison. We cast
z64 to FP32 as we just need to detect an error, and we will
not have a more accurate error detection by performing the
comparison in FP64.

Step 4. Performing the error detection. Dissimilarly to a
traditional DWC, as the two copies z64 and z32 are naturally
different, in RP-DWC, a simple a bit-wise comparison does
not suffice to detect faults. We need to decide if the difference
between the two copies is within the Expected Precision Loss
(EPL), which, for now, we consider as given (Section IV-A
will present an approach to determine EPL). The two outputs
can be compared using the relative difference δr = z32

z64
(with

z64 casted to FP32, in Step 4a). The operation performed
in RP-DWC (a division) is much more complex than in
a traditional DWC (a comparison). The absolute difference
would reduce the error detection overhead, but the result would
depend on the exponent (subtracting similar numbers with a
high exponent provides a huge absolute difference).

In the specific case of NVIDIA GPUs, there are twice as
many FP32 cores as FP64 cores (see Fig.1 [19]). As RP-DWC
uses one FP32 core per each FP64 operation in the original
copy, there are surely enough FP32 cores available to perform
the division in parallel with the next FP64-FP32 execution
(Step 4a in Figure 2). NVIDIA also features a fast division
operation (fdividef) that approximates the division results and
takes half the time of a normal division. The use of fdividef
rather than a normal division to detect faults is suggested as
the relative difference between the results is negligible.

An alternative comparison is the use of unsigned integers.
To compare z64 (now cast to FP32) and z32, we can consider
their representation as an unsigned integer (UINT32) and
subtract them, which produces the difference δUINT (see step

4b in the figure). Re-interpreting the FP32 values as UINT is
not a cast operation since it requires no modification in the rep-
resentation, and does not significantly increase the overhead.
By subtracting the two 32 bits representations interpreted as
UINT gives a fast (and accurate) evaluation of the magnitude
of the difference between the two numbers, which is exactly
what is needed to detect errors. The higher the result of the
subtraction, the more significant is the difference between the
two representations. If the two representations differ only for
some bits in the least significant digit of the mantissa, for
instance, their values as UINT are very close. On the contrary,
if the two floating-point values have different exponent or
sign bit, their values as UINT are very different. As for δr
calculation, the UINT subtraction (Step 4b in Figure 2) can
also be performed in parallel with the next FP64-FP32 as
GPUs have dedicated integer cores (see Fig.1).

The use of δUINT and δr can be chosen by the user. From
our experience, reported in Section VI, δUINT is faster, but
might detect fewer errors than δr if the exponent is very low.

Step 5. Comparing and taking action on the result. Once
z64 and z32 are compared, the difference between z64 and z32
can be either (1) within or (2) outside the EPL.

In case (1), we assume that the instruction execution is
successful or, if a fault happened, it produced an undetectable
error. The execution can then proceed, after casting the next
FP64 input to FP32. It is necessary always to feed the
FP32 copy with the FP64 values to reduce the divergence of
reduced-precision executions. In case (2), an error flag is raised
to inform the application that an error has been detected.

As in any other duplication strategy, the comparison oper-
ation could be a single point of failure, i.e., a fault in this
operation can lead to undetectable errors. Nevertheless, as we
experimentally show in Section VI, this does not undermine
the error coverage of RP-DWC as the comparison operation
is less likely to be corrupted than the duplicated operation.
With the granularity discussed in Section III-C we reduce the
probability of a fault in the comparison operation even further.

Depending on the system implementation, once the error
flag is detected, the execution can be terminated or rolled-back
to the previous check. The roll-backed execution should be
performed in FP64 by both copies to guarantee, for instance,
that the detected error does not come from a round-off error.
The approach to setting EPL discussed in Section IV-A reduces
the rate of false-positives for any input the code may receive.
However, one can decide to restrict the threshold if inputs
are very well structured (for example, in image processing
applications, the pixels’ colors are well limited, and in physical
simulations, the possible values are known). If an unexpected
input is received, a false-positive can trigger error detection
and re-execution will not solve the problem. Additionally, roll-
back also can deal with the unlikely catastrophic cancelations,
as detailed in Section IV-B. While executing both copies in
FP64 might seem to undermine the efficiency of RP-DWC,
that only happens when an error (or an unlikely false-positive)
is detected, and in these few cases, the overhead would be
identical to that of a traditional DWC.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

C. Granularity of the Approach

DWC can be implemented with different granularities, i.e.,
performing the correctness check at each instruction or after a
block of instructions. In a coarse-grained RP-DWC a sequence
of FP64 instructions is duplicated with a sequence of FP32
instructions. The replicated sequence receives the FP64 input
cast to FP32. The two sequences are then executed in parallel
without interacting until reaching the correctness check.

To detect errors as early as possible, the correctness should
be checked at each instruction. However, this requires a cast
and a comparison operation at each operation, increasing the
introduced overhead (which, as shown in Section VI, is still
lower than a traditional DWC) and the probability for the error
to occur in the comparison itself.

To evaluate the trade-off between the introduced overhead
and the achieved error detection, we have implemented the
correctness check with various granularity: at each instruction,
at the end of the computation, and after some or several
instructions (10, 100, 1,000). We do not consider longer
sequences as basic blocks in GPUs have, on the average,
between 20 to 100 instructions [29]. It is worth noting that,
independently on the chosen granularity, a correctness check
should be performed before any data-driven condition state-
ment. A small divergence between FP64 and FP32, eventually
caused by intrinsic differences, in fact, could force the two
copies to take different paths.

A longer block of instructions can potentially increase the
intrinsic difference of the two copies and, thus, the EPL.
A bigger EPL, in principle, implies a higher number of
undetectable errors. However, as the error propagates in the
sequence of instruction, it may increase in magnitude, thus
becoming detectable even with a bigger EPL.

IV. ERROR DETECTION LIMITATION

In this section, we present the challenges and a heuristic
for choosing the EPL interval (Section IV-A) and the possible
error detection limitations of RP-DWC (Section IV-B).

A. Estimating the Expected Precision Loss

One of the challenges for RP-DWC is to estimate the
Expected Precision Loss (EPL) between two operations carried
out in different precisions in order to be able to distinguish
between an error (due to a fault) and an intrinsic loss of
precision (due to reduced precision computation). The exact
EPL depends on the inputs and the operation; for instance,
if the exact input to two mixed-precision FP64/FP32 ADD
operation is known, then the exact EPL (which we shall
also refer to as the ideal EPL) is a number obtained by
running the fault-free FP64/FP32 operations and comparing
the outputs. If the input or the operation changes, however,
the EPL will also change. In other words, the ideal EPL
is different for each instance of operation while running an
application, and is impractical to be used in real applications,
since doing so would require computing a fault-free version
of each FP64/FP32 operation with each new input at run time.

A viable alternative is to use a sub-optimal EPL, which we
define no longer as an exact number for each different input

0%

25%

50%

75%

100%

1e−09 1e−08 1e−07 1e−06 1e−05 1e−04 1e−03 1e−02 1e−01 1e+00

δ value for EPL = (1−δ,1+δ)

D
et

ec
tio

n
an

d
Fa

ls
e

P
os

iti
ve

 R
at

es Outcome

Detection

False Positive

Fig. 3. Effect of the EPL interval onto the fault detection for ADD and MUL
(the two curves overlap).

and operation, but as an interval over which the outputs may
diverge (given a few assumptions about the inputs) for each
different operation. Since RP-DWC uses the EPL as a compar-
ison instrument to flag faulty executions (when the difference
between z64 and z32 falls outside of the EPL interval), it is
critical to achieve a reasonable estimation of this interval. If
the EPL is set to an interval that is too narrow, then some
intrinsic differences between mixed-precision computations
will be detected as errors, and a high rate of false positives
will emerge. If, on the other hand, the EPL is set to an interval
that is too wide, then a few errors may remain undetected, and
a high rate of false negatives will emerge.

To exemplify this discussion, we execute 10M independent
FP64 ADD operations and 10M independent MUL operations
with random inputs in the range (0, 1). Each one of the 10M
ADD or MUL has its own ideal EPL, all being in the order
of 1× 10−7. We then define sub-optimal EPL intervals in the
form I = (1 − δ, 1 + δ) for the relative error between the
same operation executed in FP64 and FP32. We then injected
faults and evaluated how well do each of those sub-optimal
EPL intervals work for fault detection. The results, presented
in Fig 3, show that underestimating the size of the interval
increases the error detection but quickly leads to a rise in
the number of false positives due to the intrinsic difference
between FP64 and FP32 mistakenly being flagged as an error.
For δ ≈ 1 × 10−7, no more false positives occur, and about
75% of the errors in a single operation1 can be detected (100%
error detection is intrinsically impossible for RP-DWC, given
the intrinsic floating point size mismatch). On the other hand,
overestimating the detection interval leads only to a slow
degradation in the detection rate.

For GPUs, we use one single sub-optimal EPL for all
threads or for each block of threads (in cases where the code
computation changes a lot from block to block, as in the
case of particle simulations as LavaMD). To estimate the EPL
we execute, off-line, the code with a set of inputs (that can
be bound or not, random or not, depending on the structure
and knowledge of the inputs) and choose as EPL the interval
spanning the lowest and highest observed difference (δr or
δUINT) measured for a code in the absence of faults. The
use of a sub-optimal EPL for each different thread, as we
show in Section VI, still allows a significant fault coverage.

1In this particular experiment, this curve showed the same behavior for the
ADD and MUL operations.

DOS SANTOS et al.: REDUCED PRECISION DWC 7

64

10 op (𝛿=6)

1 op (𝛿=1)

AD
D

detectable Undetectable
(divergence)

s exp mantissa

Undetectable
(intrinsic)

10 op (𝛿=2)
100 op (𝛿=25)

1,000 op (𝛿=251)

100 op (𝛿=50)
1,000 op (𝛿=484)

M
U

L

10 op (𝛿=14)
100 op (𝛿=102)

1,000 op (𝛿=970)
1 op (𝛿=2)

1 op (𝛿=2)

52 29 0

FM
A

Fig. 4. Detectable and undetectable errors in the 64 bits of the original copy
output based on EPL, which is reported as UINT value.

This process can be automated and integrated into the compile
flow by testing the code for different ranges of input, and
determining the EPL for each different range, which is later
on applied at run time based on the real observed input range.

B. Detectable and Undetectable Errors

1) Undetectable Intrinsic Differences: There are two rea-
sons why z64 and z32 will be different: representation preci-
sion and computational divergence. As the comparison is made
in FP32 (with 23 mantissa, 8 exponent and 1 sign bits) while
the result of the computation is in FP64 (with 52 mantissa, 11
exponent and 1 sign bits), faults in the 29 least significant bits
of the FP64 mantissa will be intrinsically undetectable due to
difference in representation precision.

In addition to that, we also need to consider the possible
computational divergence. Based on approximate computing
experience, the EPL can still be bound, thus allowing good
fault detection. According to Goldberg [30], in the worst case
of the execution of a single fault-free operation, δr < 2 but,
if a guard bit is used (or is intrinsically present), δr < 2ε,
where ε is the machine epsilon, usually taken to be the largest
relative roundoff error in that precision. The only known
case that can exacerbate δr (and potentially jeopardize RP-
DWC detection) is the catastrophic cancelation that occurs
when two numbers are multiplied and then subtracted to a
number with the same order of magnitude. In that case, the
(small) δr of multiplication is expanded and becomes a (big)
cancelation during subtraction. Catastrophic cancelations are
rare and can be easily solved, at compiler time, by re-ordering
operations [30]. In any case, as described in Section III-B, in
Step 5 of RP-DWC includes a roll-back mechanism (FP64 -
FP64 execution after an error detection) that prevents faults
from remaining continuously generating false positives even
in the case of catastrophic cancellation.

As an example to evaluate the dependence of EPL on
the executed operation, granularity (length of operations se-
quence), and input values, we consider some instructions
(ADD, MUL, FMA) and execute them in FP64 and FP32 with
input restricted to various fixed ranges (0-10, 10-100, 100-
1000, . . .). Then, we relax the restriction on the input and use
a wide range of values. We have run each configuration using
more than 10M random values in the specified input ranges,

without injecting faults, to measure the EPL. For a sequence
of 10, 100, or 1,000 MUL, we do not consider those input
ranges that overflow when running in FP32 (in the event of
overflow RP-DWC would trigger the FP64-FP64 execution).
EPL will be used in the error detection operation (using δr or
UINT, as described in Step 4 of Section III-B).

To help to visualize the impact of the undetectable errors in
the FP64 representation, in Figure 4, we consider the UINT
difference δUINT (δr will have similar results but harder
to visualize) for the selected configurations. We distinguish
those bits of z64 that, even if corrupted, will not trigger error
detection (in red or red dashed lines) from the bits that will be
identified as corrupted in the event of an error (in green). The
intrinsic precision difference bits (from bit 28 to 0) are marked
as dashed red lines in Figure 4. Those are the precision bits
of z64 that are not representable in z32. The undetectable bits
because of result divergence are marked in red. If EPL is set
to 0 ≤ δUINT ≤ 25, for instance, we conservatively plot in
red 5 additional bits (conservatively, 25 = 32. Using only 4
additional bits might led to false positive) of z64 mantissa (bits
from 33 to 29). The correspondent δr we measured ranges
from 10−6 to 10−4, depending on the granularity. A higher
EPL will increase the number of digits that will not trigger
error detection, moving the undetectable bits limit to the left
side (most significant bits).

As shown in Figure 4, when only 1 operation is performed,
EPL has the lowest values (2 in the worst case of MUL).
When a longer sequence of operations is executed before error
detection EPL increases, reaching 8 for ADD, 9 for FMA, and
10 for MUL. As shown in Figure 4, most of the 64 bits of the
results, if corrupted, will not trigger error detection. However,
errors in those bits that are more significant from computation
are detectable. Additionally, an error during computation is
likely to affect more than one bit of the output and will not be
detected if all the corrupted bits are in the undetectable zone.

2) Limited Coverage of RP-DWC (FP Only): The funda-
mental idea of Reduced-Precision DWC makes it applicable
only to instructions that perform floating-point numeric com-
putations and when both inputs have a range of representation
inside of that of the lower precision copy.

These two conditions only apparently undermine RP-DWC
applicability. In fact, on the average, at least 50% of instruc-
tions of Rodinia benchmarks suite are floating point. Addi-
tionally, object-detection frameworks (YOLOv3 and YOLO-t)
and particles simulations have more than 80% of floating-point
instructions that the RP-DWC strategy can efficiently protect.

Previous work [31] has shown that most HPC applications
use FP64 to have higher precision, not to increase the rep-
resentation range of values, ensuring RP-DWC applicability.
The rare event of having input out of FP32 range can be easily
detected while performing the cast (as shown in Section III-B),
forcing the use of traditional DWC for that specific operation.

V. EVALUATION METHODOLOGY

In this section, we detail the architecture, benchmarks, and
experimental procedure used to evaluate RP-DWC detection
capabilities, performance and energy efficiency.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

Fig. 5. Part of the experimental setup at ChipIR. The white blocks are boron
plastic used to protect the motherboards from scattering neutrons.

A. Architectures and Benchmarks

The GPUs used for fault injection and beam experiments
are NVIDIA Titan V, which implements the Volta microarchi-
tecture. Volta GPUs feature dedicated hardware acceleration
for three IEEE754 float point precisions: double, single, and
half (i.e., FP64, FP32, and FP16, respectively). A thread can
use a single-precision core to execute the same instruction in
two half-precision operands in parallel [19]. In addition to that,
we also experimented with the embedded Jetson Xavier as it
includes dedicated hardware modules to measure the energy
consumption (disabled by NVIDIA in the other Volta GPUs).
The main difference between Xavier and Titan V is the number
of available CUDA cores (512 vs. 5,120, respectively). We
anticipate that as the structure of both GPUs is extremely
regular, and the code that is run being the same, the observed
relative overheads are very similar. No significant difference in
the observed detection rates was found despite the difference
in computational power.

For our evaluation, we design three Microbenchmarks
(MUL, ADD, and FMA), which are a set of synthetic applica-
tions designed to stress specific components of the GPU archi-
tecture. Each Microbenchmark is composed of 20,480 threads
(256x80, theoretical occupancy for an SM block scheduler
x number of SMs), each performing a million dependent or
independent arithmetic operations (multiplications, additions,
or fused multiply-add). We have applied RP-DWC to these
microbenchmarks at different granularities, i.e., performing the
comparison every 1, 10, 100 or 1000 instructions as discussed
in Section III-C). Additionally, we apply RP-DWC to four re-
alistic codes: GEMM (8k×8k), which is a cornerstone code for
several applications (including convolutions) and performance
evaluation tools, LavaMD (192 blocks), which simulates parti-
cle interactions in a large 3D space [32], Fast Wash Transform
(FTW), that performs an orthogonal, symmetric, involutive,
linear operation on 16M values, and BlackScholes, that uses
partial differential equations on three arrays of 100k values,
for predicting the dynamics of a financial market [33].

We use microbenchmarks to have a more controlled case-
study to evaluate the impact of fine vs. coarse-grain RP-DWC
and how detected and undetectable errors propagate through
the code. Realistic applications are used to show a pragmatic
evaluation of RP-DWC.

B. Fault-Injection and Neutron-Beam Experiments

We inject single bit faults using CAROL-FI [14], an open-
source fault injector created with GDB (GNU Project De-
bugger) and Python. Among the available fault injectors,
such as SASSIFI, FTAPE, Ferrari, and BIFIT [12], [13], we
choose CAROL-FI because it supports novel NVIDIA CUDA
platforms and is much faster than other GDB-based fault
injectors [14]. CAROL-FI adds, on average 5× overhead on
application execution time. To evaluate the fault detection ca-
pabilities, our results are reported in terms of the Architectural
Vulnerability Factor (AVF), which is the probability for a fault
in a resource to affect the output [34]. We inject more than
2,000 faults for each configuration (sufficient to saturate the
AVF and provide 95% confidence interval [13]), that is, more
than 420,000 faults were injected.

Additionally, to evaluate the error detection capabilities of
RP-DWC in real scenarios, we expose the Titan V executing
the microbenchmarks to the accelerated neutron beam pro-
duced at the LANSCE facility in Los Alamos, NM, and at
the ChipIR facility in Didcot, UK. Figure 5 shows part of the
experimental setup mounted at ChipIR. Both these facilities
provide a neutron spectrum of energy compatible with the
terrestrial one, although accelerated [35], allowing to predict
the error rates on a realistic application expressed in Failure In
Time (FIT). The neutron flux available at LANSCE or ChipIR
was between 1× 105n/(cm2 × s) or 2.5× 106n/(cm2 × s),
about 6 to 8 orders of magnitude higher than the atmospheric
neutron flux at sea level (13n/(cm2 × h) [36]). Each con-
figuration was tested for more than 100 hours of beam time.
If scaled to the natural environment, this covers at least ×108
hours of normal operations, which are about 11,000 years.

During fault injection and beam experiments, we let the
execution complete even when an error is detected. This is
necessary to observe the impact the detected error would have
on the output and compare it with undetected errors.

VI. EXPERIMENTAL EVALUATION

As described in Section IV-A, we choose as Expected
Precision Loss (EPL) the lowest value that does not allow
any false-positive detection executing the codes with random
input without injecting faults. To evaluate the benefits and
drawbacks of using RP-DWC on GPUs we compare its error
coverage and overhead with traditional DWC (implemented
duplicating all the instructions inside a thread and performing
the correctness check just at the end, i.e. the coarser granu-
larity, that guarantees the lowest overhead) and with state-of-
the-art duplication strategies [5], [6].

We also measure the impact the detected and undetected
errors would have in the application output, showing that the
errors that RP-DWC cannot detect have a much lower impact
on the output correctness than the ones it detects.

A. Fault-Injection Experiments

1) Architectural Vulneratibility Factor (AVF): We first ana-
lyze the AVF, i.e., the probability for an injected fault (random
single bit flip) to propagate and generate a DUE (crash/hang)
or a (detected or undetected) SDC. We present results using

DOS SANTOS et al.: REDUCED PRECISION DWC 9

1 10 100 1K 1 10 100 1K 1 10 100 1K

ADD MUL FMA

0%

20%

40%

60%

80%

100%
A

rc
h

it
e

ct
u

ra
l V

u
ln

er
ab

ili
ty

 F
ac

to
r

SDC Detected DUE Masked

Fig. 6. AVF results for the microbenchmarks.

δUINT to compare the two copies. The use of δr would
not affect the reported data significantly, having an impact
on overhead lower than 5% in the fine-grain RP-DWC and
negligible in the coarse-grain RP-DWC.

We plot, in Figure 6, the percentage of injected faults that
are masked, that became an SDC that is detected or undetected,
or that produce a DUE. We plot data obtained for the mi-
crobenchmarks with different RP-DWC granularities, that is,
performing the correctness check at each instruction, every 10,
100, or 1,000 instructions. Figure 6 demonstrates that most of
the injected faults are either masked or detected. Additionally,
the AVF for DUE is very small compared to the AVF for SDC.
This is because DUEs are mainly produced by errors in control
logic or interfaces [15], [16], while our injections target mostly
the datapath. Figure 6 also shows that there is no significant
difference in the AVF between operations and configurations
(fine or coarse grain RP-DWC). Having similar AVF attests
that the configurations and operations have a similar probabil-
ity for a fault to propagate or to be masked. Fault injection
does not include any information about the probability for
a fault to happen during the different computations. In other
words, we cannot evaluate from Figure 6 alone if the additional
instructions required to implement duplication have an effect
on the code error rate. Beam experiment data, presented in the
next subsection, will also consider this aspect.

Table II provides additional details on the efficiency and
efficacy of RP-DWC by listing the percentage of errors that
are detected and the imposed overheads (execution time, power
and energy consumption). We also include the detection rate
and the overheads of a traditional DWC to ease the compar-
ison with RP-DWC. Please recall that, while for RP-DWC
microbenchmarks, we show data for different granularities, for
the traditional DWC and for the realistic codes (GEMM and
LavaMD) we show only the result for the duplication of the
entire code, which is the best case scenario for the overheads.

2) Error Detection: As shown in Table II, the percentage
of detected errors for RP-DWC ranges from 57% for 1,000
op FMA to 76% for 10 op MUL. While increasing the
granularity increases the threshold (details in Section IV),
there seems to be no correlation between the detection rate
and the granularity. As discussed in Section III-C, there are
two reasons for that: (1) Fine-grain RP-DWC requires a check
at every executed instruction, increasing the probability of
having an (undetectable) check operation corruption. (2) An

TABLE II
ERROR DETECTION AND OVERHEAD (FAULT INJECTION).

Overhead
Benchmark Granularity Time Power Energy Detection

1 op 34,9% 51,2% 104,0% 67.1%
ADD 10 op 3,9% 35,7% 41,0% 70.1%

(RP-DWC) 100 op 0,3% 27,6% 28,0% 68.6%
1,000 op 0,1% 23,9% 24,0% 59.8%

1 op 35,3% 52,3% 106,0% 74.5%
MUL 10 op 3,6% 36,1% 41,0% 76.5%

(RP-DWC) 100 op 0,3% 32,6% 33,0% 59.3%
1,000 op 0,1% 31,9% 32,0% 70,0%

1 op 35,3% 55,9% 111,0% 55.4%
FMA 10 op 3,6% 38,0% 43,0% 58.3%

(RP-DWC) 100 op 0,3% 34,6% 35,0% 68.3%
1,000 op 0,1% 32,9% 33,0% 57.2%

GEMM (RP-DWC) 13,0% 43,4% 62,0% 63.4%
LavaMD (RP-DWC) 18,1% 32,1% 56,0% 83.4%

BlackScholes (RP-DWC) 5,8% 7,5% 13,8% 66.2%
FWT (RP-DWC) 37,4% 9,2% 50,1% 75.6%

ADD (trad. DWC) 94,2% 8,7% 111,0% >95%
MUL (trad. DWC) 94,4% 15,2% 124,0% >95%
FMA (trad. DWC) 99,1% 12,5% 124,0% >95%

GEMM (trad. DWC) 70,3% 22,1% 108,0% >95%
LavaMD (trad. DWC) 83,6% 12,7% 107,0% >95%

BlackScholes (trad. DWC) 50,5% 17,5% 76,7% >95%
FWT (trad. DWC) 94,6% 6,2% 106,6% >95%

undetectable error in the first operations of a block in a coarse-
grain RP-DWC can increase in magnitude as it propagates,
eventually becoming detectable when the correctness check is
performed. The longer the block of instruction, the higher the
probability for the undetectable errors to become detectable.
That implies a tradeoff is present between the performance
overhead and the time to detection, but not between the
performance and the detection rate.

The lower detection rate compared to traditional DWC (over
95% from Table II) or state-of-the-art DWC from previous
work (80%-95% as listed in Table I) is not surprising, since,
as shown in Section IV-B, any faults hitting or propagating to
the less-significant bits of an FP64 number are not detectable.
Even though this limitation of RP-DWC provides an upper
bound of erroneous bits coverage it can achieve, these wrong
least significant bits are exactly the ones that will provide
a smaller impact to the application output, as we show in
Section VI-C. RP-DWC has a higher detection capability than
previous work that approximates the algorithm or proposes
approximated hardware for error detection ([8], [10], [28]),
which is, as listed in Table I, 55%-76% for RP-DWC and 20%-
40% for previous work. This data attests that approximating
the algorithm might not be as effective as approximating the
hardware. The higher error detection of RP-DWC compared to
the use of dedicated approximated hardware could be caused
by the higher approximation chosen in [7], [8] and by more
reliable hardware designed by NVIDIA.

3) Overhead: Data in Table II shows that the execution
time overhead of RP-DWC (35% in the worst case of a
fine-grain RP-DWC) is much lower than traditional DWC
(70%-90%) and of recent efficient DWC (39% in [6]). Our
implementation of traditional DWC has a lower overhead
compared to some previous studies that showed an overhead
of 2x [4], as we duplicate operations inside a thread rather

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

Fig. 7. Normalized beam experimental data for the unhardened, the traditional DWC, and RP-DWC versions of the microbenchmarks. Dashed lines are used
just to highlight the RP-DWC versions.

than threads or blocks of threads. If FP64 cores are available,
the GPU could then be able to schedule some of the two FP64
copies in parallel. As expected, as we reduce the granularity
of the correctness check, the overhead is reduced. When we
increase the granularity, as the comparison operations are
less frequent, the overhead is reduced accordingly, eventually
becoming nearly-zero.

The Instructions Per Cycle (IPC) and the number of ex-
ecuted instructions of the RP-DWC version are approx. 2x
the unhardened versions, for all configurations. On the con-
trary, for the traditional DWC versions, while the number of
executed instructions is slightly higher than 2x, the IPC is
very similar to the unhardened version (lower than 1.2x). This
also proves that the available resources now contribute, with
a nearly zero overhead, to the reliability improvement.

To further investigate the overhead differences between RP-
DWC and traditional DWC, we consider the pressure on
the register file. The higher register file usage is found for
GEMM traditional DWC, for which 41 registers per thread
are instantiated. As the register limit on NVIDIA Volta is 256
per thread, none of the configurations we tested saturates the
register file. The higher overhead for traditional DWC, then,
comes from the saturation of computing units.

Table II shows that the energy overhead of RP-DWC is
significantly reduced when the correctness checks are less
frequent, reaching a value that can be as low as 24% to 32%
BlackScholes reaches an even lower energy overhead (13.8%).
However, such a low overhead is not solely justified by RP-
DWC, but also by the simplicity of the code (few global
memory access, no shared memory utilization, and executes
only simple operations) [33]. For the same reasons, the energy
overhead of the traditional DWC is lower than for the other
codes. The energy consumption overhead of RP-DWC is
comparable to the traditional DWC only for the fine-grain
implementation (1 check every operation for RP-DWC vs.
one check at the end of the application for traditional DWC).
The energy consumption overhead of a fine grain RP-DWC is,
then, higher than 100%. This is justified because we are ac-
tually executing 3x the instructions of the unhardened version

(FP64 and FP32 copies plus the error detection operation).
Traditional DWC has, even with the check only at the end
of the computation, a higher energy consumption overhead,
which ranges from 111% to 124%. This favorable energy
consumption result of RP-DWC is achieved by leveraging the
FP32 cores to execute the redundant copy in parallel.

Finally, for RP-DWC the energy consumption overhead is
always higher than the time overhead as the error detection
operation (UINT or δr) can be done in parallel with floating-
point operations in GPUs, reducing the time but not the energy
overhead of activating the idle cores for error detection. To
justify that, Table II also provides numbers on the power con-
sumption of each application and duplication approach. These
results suggest that, when activated for the RP-DWC, the FP32
cores can contribute to 15-20% of the total power consumption
depending on the ratio of static/leakage to dynamic power
(a parameter that can be tuned in the manufacturing process
according to the target domain). Since this power overhead is
still substantially lower than the ∼2x speedup achieved from
using RP-DWC instead of DWC, the energy consumption of
RP-DWC is also lower. It should be noted that the FP32 cores
are not power gated when only FP64 is being used (i.e, in the
case of traditional DWC) because fine-grained power gating at
the level of individual FP32 units typically requires complex
circuit-level support to be realized and is not available in
COTS devices such as the one we evaluate. However, even if
the static power consumption is set to 30% of the total power
(a high estimate, even for current process nodes), power-gating
FP32 cores when executing FP64 applications would only
reduce power consumption by an estimated 12%, a reduction
still much lower than performance improvements of RP-DWC
compared to DWC.

B. Neutron Beam Experiments

To have an even more realistic evaluation of the effective-
ness of RP-DWC and a direct comparison with traditional
DWC, we expose the GPUs to accelerated neutron beams.
Dissimilarly to fault injection, during beam experiments, all

DOS SANTOS et al.: REDUCED PRECISION DWC 11

the GPU resources are irradiated and could be corrupted, and
the fault model is as close as possible to the real one.

In Figure 7, we report the beam experiment results for the
microbenchmark in the unhardened version (no duplication),
protected with a traditional DWC, and with RP-DWC, in
three different granularities (checking after 1, 100, or 1,000
operations). The detection rates of DWC and RP-DWC are
made explicit in the Figure to ease comparing the effectiveness
of the two techniques. The reported values are affected by a
15% experimental error due to statistic, and neutrons count
uncertainty. FIT rates are normalized to the lowest measured
value (DUE rate of DWC-1 for ADD) not to reveal business-
sensitive data but still to allow a direct comparison between
configurations. The dashed lines are used just to differentiate
the RP-DWC results from the traditional DWC ones.

From Figure 7, we notice that the SDC FIT rate for
the unhardened version is lower than the FIT rate of the
protected versions (considering the combination of detected
and undetected SDCs). This is expected, as the check operation
introduces a computation and memory overhead that have
the side effect of increasing the protected versions error
rate. The increased FIT rate is higher when the check is
performed at each instruction, as more instructions are being
executed. RP-DWC has a higher increase in the SDC rate
for all configurations but FMA. This is because the cast
and error detection operations (detailed in Section III-B) are
computationally more costly than ADD and MUL, but not
of FMA. Nevertheless, both traditional and RP-DWC detects
most of the SDCs, resulting in a much lower undetected SDC
rate than the unhardened versions.

As observed with fault injection, and for the same reason,
the detection rate of the traditional DWC is always higher
than the RP-DWC. On average, under the beam, the detection
rate of RP-DWC is 9% lower than DWC. The fact that the
detection rates of RP-DWC are higher than those reported in
Table II should not surprise. As mentioned in Section V, data
in Table II is obtained injecting only single bit flips, which
are the harder to detect with RP-DWC. In fact, when even
one corrupted bit is outside of EPL, RP-DWC triggers the
detection. The higher the number of bits flipped, the higher
the probability of detection. As already studied in previous
work [4], [37], radiation may induce complex fault models
in GPUs (multiple bit flips, the corruption of several threads,
and so on) that are easier to detect with RP-DWC. Detection
rates in Table II are then a conservative estimation of RP-
DWC detection capabilities. Nevertheless, radiation during
beam experiment can also corrupt data before it is assigned to
the two copies and, thus, resulting in undetected errors. The
presence of ECC would remove this possibility (the tested
Titan V does not have ECC), possibly improving further the
detection rates of both DWC and RP-DWC.

The use of RP-DWC, then, results in a slightly lower error
detection but makes both overheads much smaller than a
traditional DWC and also of state-of-the-art DWC for GPUs as
reported in [5], [6]. As shown in the next subsection, the errors
RP-DWC does not detect have a minimal impact on the output
correctness and could potentially be tolerated, mitigating the
impact of the observed lower detection.

C. Detected vs Undetected Errors

As discussed in Section III-B, in a real application of RP-
DWC, once an error is detected, the computation would either
be terminated or the roll-back mechanism would be triggered.
In our experiments, we allow the execution to complete even
if an error is detected in order to compare the impact of
detected and undetected errors in the output correctness. To
measure the impact of these errors, we use the concept of
Tolerated Relative Error (TRE) as introduced in [11]. A TRE
of 0% implies no tolerance in the output correctness, i.e., the
computed output must match the expected output. In other
words, any mismatch between the computed output and the
expected value is considered a critical error. Increasing the
TRE relaxes the correctness constraint accepting (corrupted)
values in a given range as tolerable (corrected). As an example,
if we consider a TRE of 10%, any output value between
90% and 110% of the expected value will be considered as
correct or, at least, tolerable. If the output is composed of
multiple elements, as in the case of out tests, all elements must
have a tolerable value for the execution not to be considered
corrupted.

In Figures 8 and 9, we show how the detected and unde-
tected errors affect the code output. Only fault-injection data is
reported, beam experiment results are similar and not shown.
We plot, in the y-axis, how much the SDC AVF rate would
be reduced as a function of TRE (that varies from 0% to 1%
in the x-axis). When TRE is 0% the AVF will be exactly
the experimental one (100%). As we increase the TRE, some
corrupted executions eventually become tolerable and, then,
the AVF will be reduced accordingly. The fact that a small
TRE is sufficient to significantly reduce the AVF indicates that
most of the errors have a small impact on the output value.

Data in Figures 8 and 9 demonstrates that, for all codes, the
critical error rate reduction is much faster for the undetected
faults (dashed lines in Figures 8 and 9). This indicates that
undetected faults have a much lower impact on the output
correctness than the impact the detected errors would have.
Even with a TRE as small as 0.1% all the undetected errors
would be tolerated for all the microbenchmarks (but MUL with
100 ops) while at least 60% of the detected errors would still
be considered critical. This means that the errors RP-DWC is
unable to detect have an impact on the output value that is
lower than 0.1%. For MUL, as said, we need to use a smaller
input to avoid overflow in the FP32 replica. A small error
might then induce a higher TRE. However, with a TRE of
less than 5% (not shown), all the undetected errors for MUL
would be considered tolerable. For GEMM and LavaMD,
shown in Figure 9, the trend is maintained, but the impact of
undetected faults is slightly higher (∼90% of the undetected
errors modify the output of less than 1%). This is because
GEMM and LavaMD include several instructions of different
nature (i.e., ADD, MUL, FMA, and other instructions). It
is worth noting that in a traditional DWC (not shown) the
detected and undetected error effects in the application output
overlap as the detection is independent of the relative value of
the error.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

Fig. 8. Impact of detected and undetected errors in the output correctness for the microbenchmarks.

Fig. 9. Impact of detected and undetected errors in the output correctness for
GEMM, LavaMD, FWT, and BlackScholes.

D. Impact of Undetected Errors in HPC and Safety-Critical
Applications

While both the detected and undetected errors are to be con-
sidered different from the expected FP64 result, data reported
in Figures 8 and 9 shows that our technique detects those errors
that are more likely to generate a significant deviation from
the application output. Previous works have demonstrated that
small fluctuations in the output value (up to 4%) have a low
or negligible impact and can, potentially, be even tolerated
for several HPC applications such as particles or physical
simulation, weather forecast, heat distribution, wave propa-
gation, earthquakes prediction, etc... [22]. The realistic codes
we tested (GEMM, LavaMD, FWT) are among these HPC
applications. As shown in Table II and Figure 7, RP-DWC,
while being more efficient, has a lower error detection rate than
traditional DWC (of ∼15% for fault injection and ∼9% for
beam experiments). Nevertheless, as shown in Figures 8 and 9,
even considering a fluctuation in the output value (i.e., a TRE)
of 1%, more than 90% of the undetected errors with RP-DWC

are considered tolerable (99% for the micro-benchmarks). As
a result, almost all the RP-DWC undetectable errors, according
to [22], can be tolerated in several HPC applications.

Even for some safety-critical applications, such as Convo-
lutional Neural Networks (CNNs) for objects detection, small
variations in the output values are unlikely to induce critical
faults [38], [39]. A fault is critical for a CNN when it induces
a misdetection. On the other hand, a fault that only slightly
modifies the CNN output but does not impact detection will
not cause vehicle misbehaviors and, thus, can be considered
tolerable We run an additional fault injection campaign to
evaluate the percentage of detected vs undetected errors that
are critical for CNNs. We will focus on RP-DWC for GEMM,
as more than 70% of operation in a CNN are related to
matrix multiplications and, as shown in [38], most of CNN
errors are caused by GEMM corruptions. To understand if the
undetected errors would cause critical errors for a CNN, we
perform a fault injection campaign on YOLOv3 processing
frames from VOC2012 dataset [40]. We modify the output
of a random matrix in a random layer of YOLOv3. We first
inject a relative error of 1% as, according to Figure 9, the
vast majority (∼90%) of GEMM errors RP-DWC is unable to
detect have a TRE lower than 1%. To consider the worst-case
scenario for RP-DWC, we corrupt all the elements or a row of
elements of the matrix. None of the 1,000 injections induced
misdetections in YOLOv3. This result confirms that the faults
RP-DWC is unable to detect have a negligible impact even in
CNNs, which is not sufficient to cause misdetections. Then,
we inject with a relative error in the range 1% to 100% and
about 12% of these errors (i.e., the ones RP-DWC is highly
likely to detect) induced misdetections.

We can derive that, while RP-DWC has a lower detection
rate than a traditional DWC, only ∼10% of the errors RP-
DWC is unable to detect (i.e., the ones with a TRE higher
than 1%) can potentially be critical for HPC or safety-critical
applications. If we consider that the other ∼90% of unde-
tectable errors are actually tolerable errors, then the detection
rate of RP-DWC increases from the 55%-83% (see Table II)
to 95%-98%, which is comparable with the traditional DWC.
The decision of considering or not the tolerable errors, as well

DOS SANTOS et al.: REDUCED PRECISION DWC 13

as the tolerance threshold, depends on the application. In any
case, RP-DWC shows a better cost-benefit trade-off (overhead-
detection) than traditional DWC, and could be particularly
useful for HPC applications.

E. Projections for Different Architectures

The proposed RP-DWC evaluation is based on NVIDIA
GPUs with redundant mixed-precision hardware, which ex-
acerbates the overhead reduction brought by a lower precision
redundant copy. Nevertheless, the same implementation and
discussion about RP-DWC we provide can also be applied to
parallel or sequential devices in which the same hardware is
shared among different precisions (as is the case for Intel x86
architecture). In these architectures, the redundant copy will
be executed sequentially rather than in parallel with the origi-
nal code, increasing the overhead of duplication (traditional or
RP). RP-DWC, however, will still guarantee a lower overhead
compared to a traditional DWC. The overhead reduction
will be directly proportional to the efficiency of executing
the reduced precision operation compared to full precision.
Previous work showed that, even in the absence of dedicated
hardware, the execution of an FP32 instruction requires half
the time and energy of an FP64 instruction [19]. We can then
expect that duplicating an FP64 code with an FP32 replica
will impose, on the average, about half the overhead of a
traditional DWC. There is no reason to think that the difference
in detection between DWC and RP-DWC that we observe for
GPUs wouldn’t also hold for other architectures, including the
fact that the undetected faults are also the ones that lead to
small magnitude errors.2 A transient fault, in fact, will affect
only the copy executing while the fault is active. When the
next copy runs in the previously corrupted hardware, it will
use new data (the copies are independent) overriding the fault.

VII. CONCLUSIONS

In this paper, we have presented Reduced-Precision DWC,
a strategy to detect errors duplicating the original instructions
with reduced-precision instructions. The technique is particu-
larly promising for (but not limited to) mixed-precision archi-
tectures, as novel GPUs that have dedicated hardware cores
for the execution of different precision operations. RP-DWC,
then, uses available hardware, that would other otherwise be
idle, to improve the reliability of codes with reduced overhead.

Among the limitations of RP-DWC, the most challenging
one is the reduced error detection capability that comes from
the different intrinsic results of different precision executions.
However, we have shown that a significant amount of errors
can still be detected and, more importantly, the undetected
errors are the ones that have a smaller impact on the output
correctness. As a result, undetected errors may still be tolerated
by various applications.

VIII. ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 886202

2Assuming very similar EPL.

and from The Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brazil (CAPES) - Finance Code
001. Neutron beam time was provided by ChipIR (DOI:
10.5286/ISIS.E.RB2000161) thanks to C. Cazzaniga and C.
Frost and by LANSCE thanks to Steve Wender and Gus Sinnis.
Authors would also like to thank Rubens Luiz Rech Junior for
his precious help.

REFERENCES

[1] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[2] J. Dongarra, H. Meuer, and E. Strohmaier, “ISO26262 Standard,” 2015.
[3] R. Baumann, “Radiation-induced soft errors in advanced semiconductor

technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, pp. 305–316, Sept 2005.

[4] D. A. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Transactions on Computers, vol. 65, pp. 791–804, March
2016.

[5] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron,
“Real-world design and evaluation of compiler-managed GPU redundant
multithreading,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pp. 73–84, June 2014.

[6] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W.
Keckler, “Optimizing software-directed instruction replication for GPU
error detection,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC ’18,
(Piscataway, NJ, USA), pp. 67:1–67:12, IEEE Press, 2018.

[7] K. Seetharam, L. C. T. Keh, R. Nathan, and D. J. Sorin, “Applying
reduced precision arithmetic to detect errors in floating point multipli-
cation,” in 2013 IEEE 19th Pacific Rim International Symposium on
Dependable Computing, pp. 232–235, Dec 2013.

[8] M. Maniatakos, Y. Makris, P. Kudva, and B. Fleischer, “Exponent
monitoring for low-cost concurrent error detection in FPU control logic,”
in 29th VLSI Test Symposium, pp. 235–240, May 2011.

[9] M. B. Sullivan, Low-cost duplication for separable error detection in
computer arithmetic. PhD thesis, The University of Texas at Austin,
2015.

[10] G. Rodrigues, J. Fonseca, F. Kastensmidt, V. Pouget, A. Bosio, and
S. Hamdioui, “Approximate TMR based on successive approximation
and loop perforation in microprocessors,” Microelectronics Reliability,
vol. 100-101, p. 113385, 2019.

[11] F. Fernandes dos Santos, C. Lunardi, D. Oliveira, F. Libano, and P. Rech,
“Reliability evaluation of mixed-precision architectures,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 238–249, Feb 2019.

[12] B. Fang et al., “GPU-Qin: A methodology for evaluating the error
resilience of GPGPU applications,” in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE Int. Symposium on, pp. 221–230,
March 2014.

[13] S. K. S. Hari et al., “SASSIFI: An architecture-level fault injection
tool for GPU application resilience evaluation,” Int. Symposium on
Performance Analysis of Systems and Software, Oct 2017.

[14] D. Oliveira et al., “Experimental and analytical study of xeon phi
reliability,” in Proceedings of the Int. Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’17, (New York, NY,
USA), pp. 28:1–28:12, ACM, 2017.

[15] V. Fratin et al., “Code-dependent and architecture-dependent reliability
behaviors,” in 2018 48th Annual IEEE/IFIP Int. Conference on Depend-
able Systems and Networks (DSN), pp. 13–26, June 2018.

[16] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on ARM CPUs:
Microarchitectural fault injection vs. neutron beam experiments,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 26–38, June 2019.

[17] M. Traiola, A. Savino, M. Barbareschi, S. D. Carlo, and A. Bosio,
“Predicting the impact of functional approximation: from component-
to application-level,” in IOLTS, pp. 61–64, July 2018.

[18] P. Kudva, B. M. Fleischer, Y. Makris, and M. Maniatakos, “Low-cost
concurrent error detection for floating-point unit (FPU) controllers,”
IEEE Transactions on Computers, vol. 62, pp. 1376–1388, jul 2013.

[19] NVIDIA, “NVIDIA Tesla V100 GPU architecture - whitepaper,” Tech.
Rep. 1.1, NVIDIA, aug 2017.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2020

[20] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[21] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-
thinking parallel software and hardware,” in Design Automation Con-
ference, pp. 865–870, IEEE, 2010.

[22] J. de la Puente et al., “Mimetic seismic wave modeling including
topography on deformed staggered grids,” GEOPHYSICS, vol. 79, no. 3,
pp. T125–T141, 2014.

[23] S. Gupta et al., “Deep learning with limited numerical precision,” in
Proceedings of the 32Nd Int. Conference on Machine Learning - Volume
37, ICML’15, pp. 1737–1746, JMLR.org, 2015.

[24] IEEE, “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008,
pp. 1–70, Aug 2008.

[25] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy,
“NVIDIA Ampere Architecture In-Depth.” NVIDIA Developer Blog,
2020.

[26] Byonghyo Shim, S. R. Sridhara, and N. R. Shanbhag, “Reliable low-
power digital signal processing via reduced precision redundancy,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 5, pp. 497–510, 2004.

[27] M. Biasielli, L. Cassano, and A. Miele, “An approximation-based fault
detection scheme for image processing applications,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1331–
1334, 2020.

[28] Y. Zhang, R. Nathan, and D. J. Sorin, “Reduced precision checking to
detect errors in floating point arithmetic,” CoRR, vol. abs/1510.01145,
2015.

[29] G. Chakrabarti, V. Grover, B. Aarts, X. Kong, M. Kudlur, Y. Lin,
J. Marathe, M. Murphy, and J.-Z. Wang, “CUDA: Compiling and
optimizing for a GPU platform,” Procedia Computer Science, vol. 9,
pp. 1910–1919, 12 2012.

[30] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surv., vol. 23, pp. 5–48, Mar.
1991.

[31] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Don-
garra, “Exploiting the performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy (revisiting iterative refinement for linear
systems),” in SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, pp. 50–50, Nov 2006.

[32] S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proceedings of the IEEE Int. Symposium on Workload
Characterization (IISWC), pp. 44–54, 2009.

[33] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate comput-
ing,” IEEE Design Test, vol. 34, no. 2, pp. 60–68, 2017.

[34] S. S. Mukherjee et al., “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance Micropro-
cessor,” in Proceedings of the 36th Annual IEEE/ACM Int. Symposium
on Microarchitecture, (Washington, DC, USA), pp. 29–, IEEE Computer
Society, 2003.

[35] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning
of a fast neutron beamline for chip irradiation,” Journal of Physics:
Conference Series, vol. 1021, p. 012037, may 2018.

[36] JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” Tech. Rep.
JESD89A, JEDEC Standard, 2006.

[37] P. Rech et al., “Impact of GPUs Parallelism Management on Safety-
Critical and HPC Applications Reliability,” in IEEE Int. Conference on
Dependable Systems and Networks (DSN 2014), (Atlanta, USA), 2014.

[38] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on GPUs,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[39] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’17, (New York, NY, USA), Association for
Computing Machinery, 2017.

[40] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

Fernando Fernandes dos Santos received his MSc
degree from Universidade Federal do Rio Grande
do Sul (UFRGS) in 2017 and his BSc from Univer-
sidade Estadual do Oeste do Paraná (UNIOESTE)
in 2014. Currently, he is a Ph.D. student at UFRGS
working on fault tolerance in HPC and safety-critical
applications

Marcelo Brandalero received his Dr. Degree in
Computer Science from Universidade Federal do Rio
Grande do Sul (UFRGS) in Porto Alegre, Brazil
in 2019, and is currently Senior Research Scien-
tist in the Brandenburg University of Technology
Cottbus-Senftenberg, in Germany. His research in-
terests cover computer architecture with emphasis
on reconfigurable architectures.

Michael B. Sullivan is a senior research scientist in
the architecture research group at NVIDIA. His main
research is the design of efficient, dependable, and
secure large-scale computer systems. He received
Ph.D and M.S. degrees in computer architecture
from the University of Texas at Austin.

Pedro Martins Basso is currently a double de-
gree Computer Engineering student at Universidade
Federal do Rio Grande do Sul (UFRGS), Brazil
and École Polytech Montpellier, France. He is cur-
rently working on radiation-induced effects in HPC
systems and safety-critical applications, mainly on
GPUs.

Michael Huebner is a Full Professor at the Bran-
denburg University of Technology, Cottbus, Ger-
many, and the Chair of Computer Engineering
Group. He received his habil. and Dr.-Ing. Degrees
from the Karlsruhe Institute of Technology (KIT) in
2011 and 2007, respectively. His research interests
are in reconfigurable computing with application in
automotive systems.

Luigi Carro received the Electrical Engineering
and the MSc degrees from Universidade Federal
do Rio Grande do Sul (UFRGS), Brazil, in 1985
and 1989, respectively. In 1996 he received the Dr.
degree in Computer Science at UFRGS, Brazil. He is
presently a full professor at the Informatics Institute
of UFRGS, in charge of Computer Architecture and
Organization.

Paolo Rech received his master and Ph.D. degrees
from Padova University, Padova, Italy, in 2006 and
2009, respectively. He is an associate professor at
UFRGS in Brazil and a Marie Curie Fellow at Po-
litecnico di Torino, Italy. His main research interests
include the reliability of radiation-induced effects
in large-scale HPC, autonomous vehicles and space
exploration.

