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The length scale which, combined with the fluid’s kinematic viscosity ν, defines the local average speed
of the turbulent-nonturbulent interface has been postulated to be the smallest (Kolmogorov) length scale η
of the turbulence Corrsin and Kistler, [NACA Report No. 1244, 1955, p. 1033.]. This is indeed the case
when the turbulence dissipation rate obeys the Kolmogorov equilibrium cascade scaling, but in the
presence of the nonequilibrium turbulence dissipation scaling the average local turbulent-nonturbulent
interface speed scales as ν=λ, instead of ν=η, where λ is the Taylor length. We derive this theoretically and
confirm it experimentally in the range of distances between 20 and 50 nozzle widths of a turbulent
planar jet.
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Interfaces are essential paradigmatic phenomena in
nonequilibrium statistical physics which appear in a wide
range of physical and physicochemical contexts. The
turbulent-nonturbulent interface (TNTI) is one important
example of interfaces which encapsulates one of the
greatest challenges in statistical physics and turbulence
research: how to make sense of turbulence dynamics in the
absence of homogeneity and isotropy. The TNTI is a sharp
and convoluted fluctuating layer between potential non-
turbulent flow on one side and vortical turbulent flow on
the other. It exists at the edge of a very wide range of
turbulent flows including turbulent boundary layers, jets,
plumes, wakes, and mixing layers, and is of central
relevance to mixing of mass and momentum in many
environmental, geophysical and industrial contexts includ-
ing combustion and cloud physics [1,2].
The TNTI’s motion relative to the fluid is intimately

linked to entrainment. In fact, the rate at which fluid
without vorticity is entrained into the turbulent core of the
flow and acquires vorticity depends on the local speed of
the interface relative to the fluid and on the interface’s area
per unit volume [1,3]. These two TNTI properties, local
speed and area per unit volume (or length per unit area in a
planar cut through the flow), are therefore key to under-
standing and modeling entrainment, mass, and momentum
fluxes.
Corrsin and Kistler [4] advanced the idea that the local

speed of the TNTI scales with the characteristic velocity of
the smallest turbulence eddies, i.e., the Kolmogorov veloc-
ity ν=ηwhere ν is the fluid’s kinematic viscosity and η is the
Kolmogorov length scale. Supporting evidence was found
for this hypothesis in laboratory experiments and direct
numerical simulations of turbulent flows where the Taylor

length Reynolds number Reλ (a measure of the ratio of
inertial to viscous forces) is below 100 ([5,6]). Sreenivasan
et al. [3] obtained evidence showing that the TNTI has
fractal properties and a fractal dimension equal to 7=3, thus
suggesting the possibility of an asymptotically infinite
TNTI area per unit volume as the Reynolds number tends
to infinity. In this limit, the local speed of the TNTI tends to
0 if it scales with the Kolmogorov velocity. As a result, the
mass flux across the interface is finite and in fact sizeable
even if the local speed is very small.
A few years ago, Zhou and Vassilicos [7] showed that the

scalings of the local TNTI speed and the turbulence
dissipation are related in the case of a self-similar turbulent
axisymmetric wake in a way that is more general than
envisaged in [4]. On account of the self-similarity, the wake
width growth and the velocity deficit decay are determined
by mass, momentum, and turbulent kinetic energy balances
and the turbulence dissipation rate is an important con-
tributor to the latter balance [8,9]. Different turbulence
dissipation scalings lead to different wake width growth
rates, and as pointed out in [7], this in turn means different
local TNTI speed scalings. If the turbulence dissipation
scaling is the one implied by the Kolmogorov equilibrium
cascade, then the TNTI speed scales with the Kolmogorov
velocity (as suggested in [4]) provided that the TNTI’s
fractal dimension is the one found in [3]; but if the
turbulence dissipation obeys the nonequilibrium scaling
discovered in various turbulent flows over the past ten years
[8–14], then the local speed of the TNTI scales with the
Taylor velocity ν=λ (where λ is the Taylor length scale)
irrespective of the TNTI’s fractal dimension. The potential
relevance of the Taylor length scale to the TNTI’s inner
structure has also been pointed out in [15–17] but without
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reference to nonequilibrium turbulence cascade and
dissipation.
Evidence for the nonequilibrium dissipation scaling has

been found in axisymmetric wakes [8,9,11] and planar jets
[14] for values of Reλ ≡ ffiffiffiffiffiffi

K0

p
λ=ν (K0 is the turbulent

kinetic energy on the centreline at y ¼ z ¼ 0), larger than
100. How does the local TNTI speed scale in the region of a
planar jet where self-similarity coexists with the non-
equilibrium scaling? Can the prediction made for axisym-
metric turbulent wakes by [7] also be made for turbulent
planar jets, namely that the local TNTI speed scales with
the Taylor velocity in this region, and can such a prediction
be verified experimentally? These are the main questions
we answer in this Letter.
Figure 1(a) is a schematic of the main features of our

experimental planar jet setup where h ¼ 15 mm, r ¼ 2h,
s=h ¼ 31, and the jet inlet velocity UJ is such that the
global Reynolds number Re≡UJh=ν is 20 000. More
details can be found in [14] who used the exact same
facility at the same Re. The jet width δðxÞ at streamwise
position x is based on the self-similar profile of the mean
streamise velocity huiðx; yÞ ¼ u0ðxÞf½y=δðxÞ� where the
brackets indicate a time average. Self-similarity holds for
x ≥ 18h, and statistics are homogeneous in the z direction
[14]. The nonequilibrium dissipation scaling that is present
in turbulent planar jets was confirmed in the present jet in
the range 20h ≤ x ≤ 50h where Reλ was found to increase
from 250 to 430 [14]. The region 20h ≤ x ≤ 50h is
therefore appropriate for our experiment as it combines
self-similarity, large enough values of Reλ and the non-
equilibrium scaling ε0 ∼UJhK0=δ where ε0ðxÞ is the
turbulence dissipation rate on the centerline y ¼ z ¼ 0.
The wiggly lines in Fig. 1(b) represent the intersection of

the TNTI with the y − z plane at a streamwise distance x
from inlet. The turbulent region lies between these two
lines and the area imaged by our particle image velocimetry
(PIV) is shown too.

The following relation holds for both wakes and jets [7]:

d
dx

�Z

AtðxÞ
udydz

�
¼ Lv̄n ð1Þ

where, in the case of a planar jet [see Fig. 1(b)],AtðxÞ is the
instantaneous area in the y − z plane at x between the upper
and the lower TNTI line intersections of the TNTI in a
region −Z ≤ z ≤ Z of that plane (for Z=h large enough); L
is the time-averaged length of the TNTI’s intersection with
this plane in this same region; and v̄n ≡ hR∂AtðxÞ vndli=L
where vn is the local (in space and time) propagation speed
of the TNTI relative to the fluid and the line integration is
over the line boundary of AtðxÞ in the region −Z ≤ z ≤ Z
of the y − z plane at x. It is also worth explicitly mentioning
that Eq. (1) holds for any definition of an isoline represent-
ing the TNTI.
The underlying concept in Eq. (1) is that the mean

entrainment at the TNTI is directly related to the stream-
wise variation of the mass flux. The use of this equation to
determine the characteristic TNTI speed v̄n requires knowl-
edge of L, and we know from [3] that the interfacial line
between turbulent and non turbulent regions is fractal. We
therefore write L ∼ 2ZðηI=δÞ1−D in terms of the fractal
dimension 1 ≤ D < 2 and the smallest length scale ηI on
the interface. At this point, like in [7] for wakes, we follow
Corrsin [4] and assume ηI ∼ ν=v̄n without, however,
specifying the scaling of v̄n. Using self-similarity, the
left-hand side of Eq. (1) scales as ðd=dxÞðu0δZÞ and with
our expression for L, Eq. (1) implies

v̄n ∼
�
δ

ν

�ð1−DÞ=D� d
dx

ðu0δÞ
�

1=D
: ð2Þ

The mass, momentum and turbulent kinetic energy
balance analysis of [14] for a self-similar planar jet showed
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FIG. 1. (a) Schematic representation of the jet flow; (b) cross section of the jet flow with indication of the imaged area 0 ≤ y ≤ 8h,
−3h ≤ y ≤ 3h. The two wiggly lines at the top and bottom represent the intersection of the TNTI with the y-z plane at position x.
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that u0∼ðx−x0Þ−a=2 and δ∼ðx−x0Þa where a ¼ ðmþ 1Þ=
ð2mþ 1Þ in terms of the turbulence dissipation exponentm
in ε0 ∼ ðUJh=

ffiffiffiffiffiffi
K0

p
δÞmðK3=2

0 =δÞ. The classical dissipation
scaling corresponds to m ¼ 0 and the nonequilibrium
dissipation scaling corresponds to m ¼ 1 [8–14]. The same
analysis leads to a different relation between the exponent a
of the wake width and the dissipation exponentm for a self-
similar axisymmetric wake [8]. The following conclusions,
which were obtained in [7] for the axisymmetric wake, are
now also reached for the planar jet: (i) for m ¼ 0, v̄n ∼ ν=η
where η≡ ðν3=ε0Þ1=4 is the Kolmogorov length scale
provided that D ¼ 4=3 (¼ 7=3 − 1, with 7=3 being the
dimension of the TNTI surface found in [3]), and (ii) for
m ¼ 1, v̄n ∼ ν=λ where λ2 ≡ 10νK0=ε0 irrespective of the
value of D.
In a region of a planar jet such as 20h ≤ x ≤ 50h where

self-similarity coexists with the nonequilibrium dissipation
scaling (i.e.,m ¼ 1), our analysis therefore predicts that the
average TNTI speed v̄n does not scale with the Kolmogorov
velocity vη ≡ ν=η but scales, instead, with the Taylor
velocity vλ ≡ ν=λ. We now proceed to verify this prediction
experimentally. To the authors’ knowledge, this represents
the first investigation of the TNTI propagation speed
scaling in a turbulent flow with a wide range of Reλ values
all much higher than 100 (for a list of previous inves-
tigations on the topic, see [1]).
The interface propagation speed can be measured by

tracking in time an isocontour of the vorticity magnitude
[16]. This, however, poses severe challenges, as it requires
sufficiently high spatial resolution to correctly sample the
interface and at the same time high temporal resolution in
order to track in time the propagation of the interface.
Another approach, requires the full vorticity vector along-
side its spatial derivatives [6], which from an experimental
point of view can be extremely challenging due to the effect
of the measurement noise. Our approach is based, like our
theory, on Eq. (1) and is aimed at the measurement of v̄n.
As such, it allows to relax the temporal resolution con-
straint and does not require spatial derivatives of vorticity.
We perform stereoscopic PIV (stereo-PIV) at four differ-

ent streamwise locations. A dual cavity or double pulsed
Nd:YAG laser (time delay set to 90 μs) illuminates cross
sections of the planar jet flow in the y-z planes x=h ¼ 20,
30, 40, 50. The two cameras (equipped with 100 mmMacro
lenses and Scheimpflug mounts) are located on either sides
of the laser, imaging an area extending for 8hx6h in the y-z
plane, starting from y ¼ 0 (Fig. 1).
Equation (1) requires the calculation of the streamwise

derivative of the term
R
AT

udydz. We perform this deriva-
tive by also acquiring stereo-PIV images at two y-z planes
displaced by �0.3h in the x direction from each measure-
ment plane. This results in 4500 images for each plane,
which ensures convergence of the relevant statistics.
The cross-correlation is operated using an iterative

procedure with a final interrogation window size of

32 × 32 pixels with 75% overlap. Both raw images and
velocity fields are interpolated using spline functions [18].
A Blackman filtering is applied to tune the spatial
resolution [19]. The resulting vector pitch is 5η at x=h ¼
20 and reduces to 2.5η at x=h ¼ 50.
Our PIV does not have sufficient resolution to calculate

turbulence dissipation but as we only need the turbulence
dissipation rate ε0 on the centreline, we use the hot wire
anemometry (HWA) measurements carried out in [14]. The
turbulence dissipation rate ε0 was obtained from its

isotropic surrogate 15νð∂u0=∂xÞ2 (u0 ≡ u − hui is the
fluctuating streamwise velocity). Direct numerical simu-
lations ([20]) have shown that the difference between ε0
and its isotropic surrogate is negligible, particularly on the
centreline.
The interface detection from PIV data is often performed

by looking at threshold values of the vorticity magnitude or
the magnitude of the spanwise vorticity component ωz.
However, the present stereo-PIV data do not provide access
to the spanwise vorticity component. Following the
approach reported in [21], we look at instantaneous
turbulent kinetic energy

k̃ ¼ 1

9U2
J

X1

m;n¼−1
ðum;n − huiÞ2 þ ðvm;nÞ2 þ ðwm;nÞ2; ð3Þ

which is a normalized (byU2
J) average over a 3 × 3window

(m ¼ −1, 0, 1 and n ¼ −1, 0, 1) and where the time
average hui is calculated at the centre of this 3 × 3 window.
The detection of the interface in terms of k̃ is carried out by
trying incremental threshold values kthr. For each of these
values, the resulting contour image is discretized in binary
levels 0 or 1.
A contour algorithm based on this binary representation

is then used to generate contour lines demarcating between
regions with level 0 and regions with level 1. These two
regions can be separated by more than one continuous line,
as patches of one level are often embedded within patches
of the other level as illustrated in Fig. 2. We pick as
candidate for the TNTI the longest among all the continu-
ous lines on the image.
Watanabe et al. [22] demonstrated that isolines based on

turbulent kinetic energy thresholds are not faithful repre-
sentations of the TNTI. They are smoother than vorticity
magnitude isolines and less sharply packed together in
space for different threshold values. They are therefore not
suitable for local measurements of vn, but can nevertheless
be useful for measurements of v̄n on the basis of Eq. (1),
which is valid for any choice of isoline, particularly in the
presence of nonequilibrium turbulence dissipation when D
does not influence the scaling of v̄n. There is in fact no
other alternative at the present high Reynolds numbers
where the necessary resolution to accurately capture
velocity and vorticity derivatives cannot be achieved.
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The next step is to chose the value of kthr which might best
represent the average position of the TNTI.
Chauhan et al. [21] chose values of kthr leading to a

normal distribution of the intermittency function. As the
fractal nature of the TNTI is important in our theoretical
framework we opt to choose that value of kthr which returns
the best-defined fractal dimension D. We therefore apply a
box-counting algorithm to the longest continuous line for a
given kthr and calculate the average numberNðrÞ of squares
of size r needed to cover this curve. This average is
calculated over all 1500 instantaneous realizations at the
given x=h.
The fractal dimension D exists and is well defined if

N ∼ r−D over a significant range of scales r. We therefore
plot −f½d lnðNÞ�=½d lnðrÞ�g versus lnðr=hÞ at all x=h ¼ 20,
30, 40, 50 for a wide range of kthr as in Fig. 3(a). This figure
shows that, at x=h ¼ 50, the isoline with the best-defined

constant D ¼ −f½d lnðNÞ�=½d lnðrÞ�g over a significant
range of scales is the one corresponding to kthr ¼ 0.04.
Similar plots at x=h ¼ 20, 30, 40 show that the isolines
with the best-defined D are the ones corresponding to
kthr ¼ 0.04 for x=h ¼ 40, 50 and kthr ¼ 0.035 for
x=h ¼ 20, 30. This finalises our choices of kthr.
In Fig. 3(b) we plot −f½d lnðNÞ�=½d lnðrÞ�g versus

lnðr=hÞ for our chosen isolines at each x=h ¼ 20, 30,
40, 50. The fractal dimension turns out to be D ≈ 1.2 over
the approximate range λ ≤ r ≤ 0.2δ for all x=h ¼ 20, 30,
40, 50. It should not be surprising thatD < 4=3 because, as
shown in [22], turbulent kinetic energy isolines are not as
irregular as vorticity magnitude isolines and their fractal
dimension can therefore be expected to be smaller.
Using the isolines that we selected to represent the TNTI

on the basis of their length as continuous lines and of their
fractal dimension, we calculate L and the integral on the

-2 0 2

0

1

2

3

4

5

6
0.03

0.035

0.04

0.045

0.05

(a)

-2 0 2

0

1

2

3

4

5

6

(b)

FIG. 2. (a) Contour representation of an instantaneous realization of the flow color coded according to k̃ values. (b) Edge detection
using a value of kthr ¼ 0.04. Data are measured at x=h ¼ 40.
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FIG. 3. (a) Plot of −f½d lnðNÞ�=½d lnðrÞ�g versus lnðr=hÞ where NðrÞ is the time-averaged number of squares of size r needed to cover
the k̃ ¼ kthr isoline at x=h ¼ 50; data are plotted for different values of the threshold kthr. (b) Same plot but at kthr ¼ 0.035 for x=h ¼ 20,
30 and kthr ¼ 0.04 for x=h ¼ 40, 50. The vertical dashed lines are representative of the Taylor microscale λ and of 0.2δ (in terms of the
jet width δ) at x=h ¼ 20 and x=h ¼ 50.
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left side of Eq. (1), and we use Eq. (1) to obtain the average
TNTI speed v̄n at positions x=h ¼ 20, 30, 40, 50. The
results are plotted in Fig. 4: they show that v̄n scales with
the Taylor velocity vλ and not with the Kolmogorov
velocity vη.
We can also use D ¼ 1.2 to indirectly check the Corrsin

scaling ηI ¼ ν=v̄n through the relation L ∼ 2ZðηI=δÞ1−D.
We therefore calculate the ratio of L to 2ZðηI=δÞ1−D with
ηI ¼ ν=v̄n where Z ¼ 3h, given the size of our PIV imaged
area (see Fig. 1), and where δðxÞ is taken from the HWA
measurements of [14] for the exact same flow at the exact
same positions x=h ¼ 20, 30, 40, 50. This length ratio is
plotted in Fig. 5 and whilst it is close to constant, it exhibits
a small rise from x=h ¼ 20 to x=h ¼ 50. Increasing the
range over which one might consider the dimensionD to be
well defined, from λ ≤ r ≤ 0.2δ to λ ≤ r ≤ 0.4δ, leads to
D ≈ 1.25 rather than D ≈ 1.2. With this value of D, the
ratio of L to 2ZðηI=δÞ1−D becomes much closer to a
constant (to within 1.5% of mean value without upward
or downward trend) as shown in Fig. 5, thereby supporting
Corrsin scaling of the smallest length scale on the interface

by slightly increasing the fractal range of scales and, as a
result, very slightly increasing the fractal dimension D
without changing v̄n (which is still given by Fig. 4).
Conclusions.—In a relatively high Reynolds number

region of a turbulent planar jet characterised by the non-
equilibrium turbulence dissipation scaling, the average
local TNTI speed v̄n scales with the Taylor velocity vλ ¼
ν=λ rather than the Kolmogorov velocity vη ¼ ν=η. We
have reached this conclusion from basic theory, and from
stereo-PIV measurements in the range of streamwise
distances between 20 and 50h where the nonequilibrium
turbulence dissipation scaling holds [14].
The present investigation allows for the measurement of

the average local TNTI speed on the basis of an averaged
approach, which does not rely on high-resolution local
propagation velocity measurements at the interface. This
has enabled our investigation to reach Reynolds numbers
higher than in previous TNTI studies and high enough for
the nonequilibrium turbulence dissipation rate scaling to be
present within the flow.
The Taylor length λ is an intermediate length which, like

η, depends on viscosity but, unlike η, also depends on the
turbulent kinetic energy of the turbulence. Most of this
energy is in the largest turbulence eddies and potentially in
large-scale coherent structures if we are not too far from
inlet. In [12,23] it was postulated that the nonequilibrium
turbulence dissipation scaling owes its presence to coherent
structures. Coherent structures can also be responsible for
engulfment [1] and it may be that v̄n scales with ν=λ when
engulfment is an important entrainment mechanism and
that v̄n scales with ν=η when the dominating entrainment
mechanism is nibbling [1].
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