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A Multi-Stage Adaptive Sampling Scheme for
Passivity Characterization of Large-Scale

Macromodels
Marco De Stefano Student Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE, Torben Wendt, Student

Member, IEEE, Cheng Yang, Member, IEEE, Christian Schuster, Senior Member, IEEE

Abstract—This paper proposes a hierarchical adaptive sam-
pling scheme for passivity characterization of large-scale linear
lumped macromodels. Here, large-scale is intended both in
terms of dynamic order and especially number of input/output
ports. Standard passivity characterization approaches based on
spectral properties of associated Hamiltonian matrices are either
inefficient or non-applicable for large-scale models, due to an
excessive computational cost. This paper builds on existing
adaptive sampling methods and proposes a hybrid multi-stage
algorithm that is able to detect the passivity violations with
limited computing resources. Results from extensive testing
demonstrate a major reduction in computational requirements
with respect to competing approaches.

I. INTRODUCTION

Macromodeling techniques are generally considered as key
enabling factors for the efficient simulation of complex devices
and systems. A macromodel approximates the input-output re-
sponse of a given structure through a compact set of behavioral
equations. Such equations are most commonly derived through
some fitting process [1] applied to a set of sampled responses,
usually in the frequency domain. See [2] for an overview.

The focus of this work is on macromodeling of passive
structures, which are unable to generate energy on their
own [3]–[6]. Model passivity must be therefore checked and
enforced through suitable constraints, which are usually ap-
plied through a perturbation step applied to an initially non-
passive model obtained by some unconstrained fitting [7]–[19].
Lack of model passivity can trigger instabilities in transient
analyses [20] and must be therefore avoided with care.

Macromodels are intended to be compact and reduced-order,
hence small-size. Nonetheless, the robustness of state of the
art macromodeling algorithms has enabled applications that
are aggressively driving model complexity beyond current ca-
pabilities. One typical example can be full-package modeling
for signal, power or coupled signal-power integrity analysis,
in which case the number of input/output ports can reach
hundreds or even thousands [21]. A second application is
modeling of energy-selective electromagnetic shielding struc-
tures [22] formed by conventional enclosures having openings
that are closed by regular grids of nonlinear elements [23]–
[25]. An efficient time-domain simulation calls for a macro-
model that represents in a compact way the electromagnetic
behavior of the shield. Also in this case, the number of
input/output ports can reach the order of thousands or more. A
further complication is provided by the possibly high dynamic

order (number of poles) of the macromodels, as required by
accuracy requirements over extended frequency bands.

Recent Vector Fitting (VF) [1] implementations [26], [27]
including parallel codes [28], [29] have been demonstrated to
scale very favorably with the model size. Conversely, standard
passivity enforcement schemes are more critical and less
scalable, despite the advancements that have been documented
over the last two decades [30]. The major bottleneck is the
passivity verification step, which must detect not only whether
a given initial model is passive, but should provide also
a precise localization of the passivity violations so that a
successive perturbation stage can be setup to remove them.
Complexity of this model perturbation step is less critical,
so passivity enforcement is not considered here. Passivity
characterization is far more demanding in terms of compu-
tational resources, both memory and runtime, and therefore
more problematic. To the best of authors’ knowledge, there
is no documented passivity characterization approach that can
provide reliable results in a limited runtime and with limited
memory occupation, for systems with input-output ports in the
order of hundreds and possibly exceeding one thousand.

The most prominent passivity characterization approaches
can be roughly grouped in three main classes, based respec-
tively on Linear Matrix Inequalities (LMI) [6], direct sampling,
and Hamiltonian matrix properties [16], [31]. LMIs provide
the best approach from a theoretical standpoint, but applicabil-
ity is limited to small-scale systems. Pure sampling approaches
are very fast and provide potentially good scalability, but they
are likely to miss passivity violations making the verification
not reliable. Hamiltonian matrices with their spectral proper-
ties are the usual method of choice for passivity verification,
for small and medium-scale problems. Extension to large-
scale systems has been attempted in [17], possibly through
hybridization, pre- or post-processing with adaptive sampling
methods [18]. However, the necessary Krylov subspace iter-
ations for the spectral characterization of large and sparse
Hamiltonian matrices makes the entire approach infeasible
when the number of ports exceeds about one hundred.

The above difficulties motivate the passivity verification ap-
proach that we propose in this work. We build on the adaptive
sampling scheme of [18], and we try to avoid completely the
use of Hamiltonian matrices and fully coupled LMI conditions,
which are the main ones responsible for driving computational
cost beyond what is usually affordable in design flows. The
main objective that we pursue is to construct an adaptive
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sampling scheme that is fast and at the same time reliable.
We should stress that there is no mathematical guarantee that
checking local passivity conditions on a finite number of points
will not miss a violation. Therefore, the main objective of this
work is to make the presence of undetected passivity violations
extremely unlikely. This is the reason why we propose a hybrid
scheme that combines different basic sampling methods in a
hierarchical way.

The proposed algorithm performs an initial coarse pole-
based sampling similar to [18], intended to locate fast
variations. Differently from [18], the proposed scheme detects
passivity violation sub-bands avoiding both eigenvector track-
ing, which causes unnecessary overhead, and especially any
Hamiltonian eigenvalue search through a dedicated multi-shift
Arnoldi process. These two improvements provide much better
scalability with model size, as demonstrated by the examples.
The results of the above coarse sampling are then used to
produce an adaptive frequency warping and subdivision on a
possible large number of subbands, which are then subjected to
hierarchical refinement. The basic scheme of [32] is enriched
with a set of passivity-driven strategies to tune the algorithm
behavior to the goal of passivity verification.

The proposed scheme was tested against a large number of
regression test cases, with a number of ports ranging from
P = 1 to P = 640 and a dynamic order (number of states)
ranging from N = 10 to more than 25 × 103. The re-
sults show that standard Hamiltonian-based approaches remain
competitive and should be preferred for small-scale systems.
Conversely, the proposed approach outperforms Hamiltonian
tests for medium and large-scale systems, with speedup in
runtime reaching and exceeding 200× for the largest cases.

This paper is organized as follows. Section II provides some
background information and sets notation. Section III states
the main problem by providing an illustrative example that
highlights the main difficulties to be addressed. Section IV
introduces the adaptive frequency warping scheme that forms
the initial step of the proposed sampling scheme. Section V
introduces the multi-scale search to be applied as a second-
stage adaptive refinement. Numerical results are presented in
Section VI and conclusions are drawn in Section VII.

II. BACKGROUND AND NOTATION

Throughout this work, we consider a lumped Linear Time
Invariant (LTI) model, which is known either through a pole-
residue expansion or a state-space realization

H(s) =

n̄∑
n=1

Rn

s− pn
+ R0 = C(sI−A)−1B + D (1)

where s is the Laplace variable and the transfer matrix H(s) ∈
CP×P with P number of input-output ports. The dynamic
order of the model is denoted as N , which is the size of the
state-space matrix A. In case the residue matrices Rn are
full-rank, we have N = n̄P , see [2], [33], [34] for details. In
general, N � P . We assume that the bandwidth where the
model is assumed and intended to be accurate is [0, ωmax],
and that all model parameters (poles-residues or state-space
matrices) are available from some initial fitting/approximation

stage. We assume that all state-space matrices are real-valued
and that the model poles pn (equivalently, the eigenvalues of
A) are strictly stable. This condition is easily enforced by
widespread fitting schemes such as VF [1].

A. Passivity verification

We will consider only models (1) in scattering repre-
sentation, so that H(s) approximates the scattering matrix
of the modeled system. This is not a limitation, since the
proposed approach can be extended to other representations
(impedance, admittance, or hybrid) with simple modifications.
See [2] for a complete theoretical framework applicable to
all representations. We review below the three main available
approaches for passivity verification.

1) Sampling local passivity conditions: For scattering mod-
els (1) with real-valued realization and strictly stable poles the
passivity conditions can be stated as the unique constraint

σmax{H(jω)} ≤ γ = 1 ∀ω ∈ R. (2)

This condition expresses that the maximum singular value of
the scattering matrix must not exceed the threshold γ = 1
at any real frequency. Under the working assumptions, (2) is
a sufficient condition for H(s) to be Bounded Real, hence
passive [3], [5], [6].

Sampling approaches test (2) over a finite number of fre-
quency points {ωk, k = 1, . . . ,K}. Determination of σmax

at a single frequency requires O(P 3) operations, hence the
overall complexity for K samples amounts to O(KP 3). Since
each individual frequency ωk can be processed independently,
there is no significant memory cost, even for large P . The main
advantage of this sampling-based check is the availability of
all local maxima of σmax, obtained as a trivial post-processing.
These maxima are essential to setup passivity enforcement
through constrained perturbation. The main disadvantage of
checking (2) over K finite points is the possibility to miss
local maxima exceeding γ = 1 by a small amount or over a
small frequency extent, due to the limited number of points
that can be processed.

We remark that the (scalar) function of frequency

ϕ(ω) = σmax{H(jω)} (3)

henceforth denoted as passivity metric is generally smooth and
differentiable, with the possible exception of a finite number of
points where two singular values cross. In the latter case, ϕ(ω)
is guaranteed to be continuous since all singularties (poles) of
H(s) fall outside the imaginary axis.

2) Linear Matrix Inequalities: LMI conditions provide a
fully algebraic test that does not require sampling. We recall
that the scattering system (1) is passive (dissipative) if and
only if ∃P = PT > 0 such that(

ATP + PA + CTC PB + CTD
BTP + DTC −(I−DTD)

)
≤ 0 . (4)

This condition, known as Bounded Real Lemma (BRL) or
Kalman-Yakubovich-Popov (KYP) Lemma [6], [35], has the
major disadvantage of requiring the determination of the
N × N matrix P related to the internal energy storage.
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The computational cost for checking the feasibility of (4) is
O(N6), which can be reduced to O(N4) with specialized
formulations [36]. This cost becomes exceedingly high for
large-scale systems. One additional disadvantage of (4) is that
this is a pass/fail test which does not provide localization of
passivity violations that can be used in a successive enforce-
ment. Passivity enforcement schemes exist that use directly (4)
as constraint [7], [37], but these inherit the poor scalability
with large P and N , see [19].

3) Hamiltonian matrices: Spectral properties of Hamilto-
nian matrices provide the standard approach for checking pas-
sivity of small and medium-scale models. Under the working
assumptions, the model is (strictly) passive if and only if the
Hamiltonian matrix

M =

(
A + BR−1DTC BR−1BT

−CTS−1C −AT −CTDR−1BT

)
. (5)

with R = I − DTD and S = I − DDT has no purely
imaginary eigenvalues µk = jω̂k. Such eigenvalues denote
the crossing points of any singular value of H(jω) with the
passivity threshold γ = 1, see [16], [31]. Therefore, they
also provide localization of passivity violations. Unfortunately,
the eigenvalue spectrum of M is required, whose numerical
determination scales as O((2N)3). Extension to large-scale
and sparse (decompositions) was documented in [17], [18],
allowing some improvement for systems with moderate P
and possibly large n̄. Extension to large port count P appears
problematic, since the Krylov subspace iterations required for
detection of purely imaginary eigenvalues of M require the
repeated inversion of full P × P matrices, leading to a cost
that once again becomes impractical in the large-scale case.

We remark that (5) is applicable only when state-space
matrix D has no singular values too close to γ = 1. In
this case, it is preferable to process the extended Hamiltonian
pencil (Me,K) defined as [38]

Me =


A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D −I

 K =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0


(6)

to find its purely imaginary generalized eigenvalues µk. Some
of the test cases that will be investigated in Section VI fall in
this situation, in which the standard Hamiltonian matrix (5)
is ill-defined. Throughout this work, we use (6) only when
|σmax{D} − 1| < 10−4, since the associated computational
cost is higher than for (5).

B. Discussion

Table I summarizes the number of elementary operations for
the three leading passivity characterization approaches. Only
the leading terms are included, and the number of floating
point operations is reported up to a constant factor which
depends on the specific algorithm or numerical library used
to implement each method.

As an example, let us consider a system with P = 400
ports and n̄ = 50 poles (hence N = 20000). The LMI and
the Hamiltonian approaches would require about 3 GB and

TABLE I
ASYMPTOTIC SCALING FACTORS OF COMPUTATIONAL COSTS FOR

DIFFERENT PASSIVITY CHARACTERIZATION APPROACHES

Characterization method Operations
Linear Matrix Inequalities [36] O(N4)
Hamiltonian (full) O((2N)3)
Sampling O(K(P 3 + P 2n̄))
N : model order (number of states)
P : number of input-output ports
K: number of frequency samples
n̄: number of (common) poles

12 GB of storage, respectively, with a relative CPU cost with
respect to sampling a huge number K = 105 of frequencies
about 2 · 104× and 9×, respectively. From this example and
Table I, it is evident that the only framework that has the
potential to scale favorably with the problem size is the
sampling approach. Therefore, we concentrate our efforts on
the sampling scheme, with the main objective of reducing the
likelihood of missing passivity violations and classifying of a
non-passive model as passive.

III. PROBLEM STATEMENT AND GOALS

Considering the passivity condition (2) and the definition of
the passivity metric (3), we can state the main problem that is
here addressed as: find all local maxima larger than a given
threshold of a continuous univariate function of frequency over
the entire frequency axis. This problem may appear simple, but
various difficulties arise in practical implementation. These are
discussed below with reference to the top panel of Fig. 1 and
its enlarged view in the top panel of Fig. 2.
• The passivity metric ϕ(ω) is usually characterized by

multiple peaks, and it is necessary to identify all of them
in order to check if they exceed the threshold γ. It is
imperative not to miss any local maximum.

• Some peaks can be extremely narrow, hence they can be
almost invisible with an inadequate sampling.

• Some peaks may be characterized by a local maximum
that is very close to the threshold; in such cases, it may be
difficult to detect whether there exists a passivity violation
with ϕ(ω) > γ at some frequency point.

The above difficulties can only be addressed by adapting
the sampling process, in order to automatically refine the
resolution where ϕ(ω) is characterized by fast variations
and/or its values are close to the threshold γ. At the same
time, it is mandatory to limit as much as possible the total
number K of computed samples.

These objectives are here pursued through a multi-stage
adaptive sampling scheme. First, a preprocessing step is
applied to split the frequency band into a possibly large
number of subbands, whose individual extent is adaptively
defined and rescaled so that the total variation of the passivity
metric becomes nearly uniform (see Section IV). Second,
a hierarchical tree-based refinement is applied within each
individual subband to track all local maxima (see Section V).
The combination of these two stages will be demonstrated to
outperform competing approaches, still retaining (and in some
cases even improving) the reliability of algebraic passivity
verification methods.
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Fig. 1. Top panel: graphical illustration of the adaptive sampling-based
passivity characterization. Bottom panel: rescaled passivity metric θ(ζ) after
adaptive frequency warping.

IV. STEP 1: POLE-BASED ADAPTIVE FREQUENCY WARPING

A preview of the results of this first step is available
in the bottom panels of Fig. 1 and its enlarged view of
Fig. 2. We want to identify a nonlinear (invertible) frequency
transformation ζ = W(ω) that induces the following change
of variable

θ(ζ) = ϕ(W−1(ζ)) (7)

with the main objective of “flattening” the local variations of
ϕ(ω), so that the resulting θ(ζ) is characterized by peaks with
an approximately uniform width.

The change of variable is constructed based on a set of
control points Ω = {ω̂`, ` = 0, . . . , L} such that

0 = ω̂0 < ω̂1 < · · · < ω̂` < ω̂`+1 < · · · < ω̂L =∞ (8)

These points are used to build a local linear map between
the normalized subband ζ ∈ [`, ` + 1] and the corresponding
subband ω ∈ [ω̂`, ω̂`+1]. The global change of variable W is
constructed piecewise as

ζ = `+
ω − ω̂`

∆`
∀ω ∈ [ω̂`, ω̂`+1], ` = 0, . . . , L− 2 (9)

where ∆` = ω̂`+1 − ω̂` is the extent of the `-th subband. The
last (infinite-sized) subband is handled as

ζ = `+
ω − ω̂`
ω

∀ω ∈ [ω̂`, ω̂`+1], ` = L− 1 (10)

The piecewise linear frequency warping function W maps
the entire frequency axis ω ∈ [0,+∞) into the normalized
interval [0, L]. The effects are visible by comparing the top and
bottom panels of Fig. 1 or Fig. 2 (enlarged view). The control

Fig. 2. Enlarged view of Figure 1.

points highlighted with crosses in the top panels are mapped
to uniformly distributed points in the bottom panels. Wherever
the density of the control points is higher, corresponding to fast
variations of ϕ(ω), the final effect after renormalization will
be to stretch narrow peaks and shrink wide peaks, so that all
local maxima in the normalized domain ζ are located at peaks
with a comparable and statistically uniform width. We see
from Fig. 2 that the number of local maxima in each subband
is at most few units (usually only one), with a most probable
situation characterized by this maximum occurring at one edge
of the subinterval. This favorable situation is guaranteed by a
careful selection of the control points, discussed below.

A. Choosing control points

The strategy for constructing the control points ω̂` aims at
reducing ∆` in those regions that are characterized by fast
variations of ϕ(ω), and conversely relaxing and enlarging ∆`

where ϕ(ω) is slowly-varying or nearly constant. The main un-
derlying assumption is that variations of the singular values are
induced by variations in the transfer matrix elements, which
in turn are induced by the location of each pole/residue term.
Therefore, we start with the pole-based sample distribution
discussed in [18], which for each pair of complex conjugate
poles pn = αn ± jβn contributes the following candidate
frequency samples

ωn,r = βn + αntan
rπ

2(R+ 1)
r = −R, · · · , R (11)

The parameter R is used to control how many samples are
due to each pole term in a partial fraction expansion of the
model response. Only frequencies ωn,r ≥ 0 are retained and
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assembled in a single set Ω, that is then sorted in ascending
order. A final scan is performed to remove samples that are
closer than a predefined resolution ∆ω, which is defined as
in [18] as

∆ω =
pmax

Nρ
(12)

where ρ � 1 is another control parameter and pmax =
max(ωmax,maxn |pn|).

The above-defined set Ω was tested and proved to be
inadequate for a pure sampling-based passivity check. In
particular,

1) the parameters setting suggested in [18] results in a
large set of subbands, improving the robustness of the
procedure but reducing its overall speed. A more efficient
check would call for small R. This strategy would provide
an adequate sample distribution in band, but the passivity
metric variations for ω > ωmax might not be sampled
appropriately.

2) variations induced by real poles are not adequately sam-
pled by (11).

3) poles that are very close to the imaginary axis lead
to subbands with very small ∆`, whose edges may
be removed accidentally by (12), leading to inaccurate
sampling.

The above issues 1 and 2 are here solved by introducing three
separate control parameters Rν with ν = {cp, rp,hf} to be
used respectively for in-band complex pole pairs, real poles,
and poles with either real or imaginary part magnitude that is
close to or larger than ωmax. In particular,
• Rcp can be safely chosen very small, even Rcp = 1;
• Rrp should be larger, with at least Rrp ≥ 2;
• Rhf should also be larger, with at least Rhf ≥ 3.

Issue 3 is partially compensated by modifying ωn,r corre-
sponding to highly resonant poles in (11) by setting

αn ← c · αn if Qn ≈
|βn|

2 |αn|
> Qmax (13)

where Qmax is here set to 500 and c = 50. Finally, since
the entire real line ω ∈ R needs to be sampled, we add ω =
∞ together with the following κ + 1 logarithmically spaced
samples extending d decades beyond the fitting model band

ων = ωmax · 10d
ν
κ ν = 0, · · · , κ (14)

where d is an additional control parameter. Typical values are
d ≥ 0.5 and κ ≥ 2.

In summary, frequency warping and renormalization is here
achieved by a pole-based control point distribution, whose
behavior can be controlled by the eight parameters summa-
rized in Table II. The above guidelines and parameter settings
have been heuristically proven to be quasi-optimal over a
large number of test cases, see Section VI. It should be
considered that, when inserted in a passivity enforcement loop,
the number of subbands can be adaptively increased as the
passivity violations are iteratively removed and become more
difficult to identify, simply by increasing the values of Rν , as
discussed and illustrated in Sec. V-B through an application
example.

V. STEP 2: A MODIFIED NAIVE MULTI-SCALE SEARCH
OPTIMIZATION

The second step of the proposed passivity verification algo-
rithm applies a hierarchical adaptive sampling process to the
rescaled passivity metric θ(ζ) within each normalized subband
ζ ∈ X` = [`, `+ 1], with the main objective of identifying all
local maxima that exceed the passivity threshold γ = 1.

Among the several adaptive algorithms offered by the
literature, our starting point is the so-called Naive Multi-scale
Search Optimization (NMSO) algorithm [32], which is based
on a tree-search divide-and-conquer strategy. Although based
on adaptive tree refinement, the NMSO algorithm may suffer
from the presence of many local maxima, since its main objec-
tive is to find the unique global maximum in its search domain.
This is the main reason why we performed the subband
splitting and frequency warping in Section IV. Each subband
X` = [ζ`, ζ`+1] is constructed to include a very limited number
of local maxima, usually only one. Therefore, we propose a
repeated and independent application of a suitably constructed
NMSO scheme to each subband X` independently, so that the
identification of all local maxima is greatly simplified. The
discussion below focuses on X = X0 = [0, 1] without loss of
generality.

The proposed algorithm builds a tree T whose nodes are
iteratively refined at multiple scales h ≥ 0, in order to partition
the search space X at any level h into a set of Mh cells

Xh,i = [iM−h, (i+ 1)M−h], i = 0, . . . ,Mh − 1. (15)

Each cell has a center point ζh,i = (i+ 1
2 )M−h, denoted as leaf

or node in the following. The partition factor M ≥ 2 defines
the number of children to be expanded from each leaf of the
tree when increasing refinement level. The main objective is
to find all local maxima of θ(ζ) over the search space X , by
evaluating θh,i = θ(ζh,i) at a minimal number of tree leaves,
which are determined adaptively through hierarchical refine-
ment of the tree. Figure 3 provides a graphical illustration,
where the entire set Lh of leaves of a complete tree at a given
maximum refinement level h is represented by dots, while the
set Eh ⊆ Lh of evaluated leaves is depicted by filled dots.

A. Adaptive sampling rules

The various assumptions and features of the proposed
scheme are illustrated below, whereas a pseudocode version
is available in Algorithm 1.

1) General structure: The dynamic evolution of the tree
is performed through successive iterations with index µ. At
any iteration, the set of evaluated nodes Eµ is characterized
by three levels
• hmin: the minimum level of any node in Eµ
• hmax: the maximum level of any node in Eµ
• h: the level of the node being processed, also denoted as

current node; h is henceforth denoted as current level.
The elements of Eµ are split into two subsets

Eµ = Cµ ∪ Bµ (16)

where Cµ collects candidates for refinement at the next itera-
tion, and Bµ forms the so-called basket, which includes those
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h = 0

h = 1

h = 2

h = 3

ζ = 0 ζ = 1

ζh,i

{ζh+1,j , j ∈ Jh,i}

Fig. 3. Graphical illustration of a M -tree with M = 3. All leaves up to
level h = 3 are denoted by dots. Filled dots represent leaves that have been
evaluated (set Eh). Red dots denote all leaves currently in the tree, whereas
yellow dots are nodes that have been expanded and relabeled (M odd).

Algorithm 1 Find θmax = arg max θ(ζ) for ζ ∈ [0, 1]

Require: h0, M , δζ, δθ, δη, ε, %, ne, δne

1: Initialize µ = 0, h← h0, B0 = ∅
2: Initialize C0 = {ζh,i, i = 0, ..,Mh − 1}, K = Mh

3: Initialize θmax = −∞
4: while Cµ 6= ∅ do
5: Choose current point ζh,ı∗ via (20)
6: Expand current point via (19)
7: K ← K +M − 1
8: Update θmax ← max{θmax, {ζh+1,j , j ∈ Jh,ı∗}}
9: if K > ne then

10: if U1 AND (U2 OR U3) then
11: update budget via (34)
12: update ε← % ε
13: else
14: go to 27
15: end if
16: end if
17: if S1 OR S2 OR S3 then
18: insert new points in basket via (29)
19: h← hmin

20: reset ε
21: else
22: flag new points for refinement via (27)
23: h← h+ 1
24: end if
25: µ← µ+ 1
26: end while
27: return samples Eµ = Cµ ∪ Bµ and maximum θmax

nodes that do not need to be refined since a stop condition is
verified (see below).

2) Constraints: We aim at minimizing the number of
function evaluations. Therefore, we allow a total initial budget
ne of function evaluations. Another constraint on which we
build our implementation is to enforce M to be odd.

3) Initialization: The algorithm is initialized for µ = 0 by
choosing an initial refinement level h0 ≥ 0 and evaluating the
passivity metric θ (our target function) at the corresponding
nodes {ζh0,i, i = 0, . . . ,Mh − 1}. Such samples are inserted
into E0 = C0, with the initial basket B0 = ∅.

4) Expansion (refinement): The expansion process splits a
given cell Xh,i into its M children at level h+ 1, denoted as

Xh+1,j , j ∈ Jh,i = {Mi, . . . ,M(i+ 1)− 1} (17)

The set Jh,i collects the indices of the nodes within cone
of influence of node ζh,i under refinement by one level. We
remark that using an odd partition factor M guarantees that
the midpoint of the central children cell coincides with that of
the expanded leaf

ζh+1,Mi+bM/2c = ζh,i, (18)

which does not need to be re-evaluated but simply relabeled,
see Fig. 3. Note also that elimination of node ζh,i upon its
refinement may trigger an update of hmin as a consequence
of this relabeling. Refinement of one leaf ζh,i can thus be
expressed as

Eµ+1 = (Eµ − {ζh,i}) ∪ {ζh+1,j : j ∈ Jh,i} (19)

5) Choosing leaves for refinement: One key operation is the
selection of best node for refinement among a set of candidates
in Cµ. This is simply the leaf corresponding to the largest value
of the passivity metric

ζh,ı∗ = arg max{θ(ζh,i) : ζh,i ∈ Cµ} (20)

selected among all leaves at the current level h. This choice
is motivated by the main objective of finding local maxima.

6) Stopping conditions, classification, and restarts: The
proposed implementation checks the nodes generated upon
refinement (19) to determine if they need to be further refined.
This is achieved through various stopping conditions
• condition S1: a target resolution has been reached. Con-

sidering current level h being refined into nodes at levels
h+ 1 this condition is expressed as

M−h−1 < δζ (21)

where δζ is a control parameter.
• condition S2: the largest variation among adjacent refined

nodes is within a prescribed tolerance. Denoting

∆h,i = max{|θh+1,j+1−θh+1,j |, j = Mi, . . . ,M(i+1)−2}
(22)

condition S2 can be expressed as

∆h,i < δθ (23)

where δθ is a control parameter.
• condition S3: the largest variation among adjacent refined

nodes is less than their distance from the passivity thresh-
old

∆h,i < |θ̂h,i − γ|, (24)

where
θ̂h,i = max{θ(ζh+1,j), j ∈ Jh,i} (25)
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This latter condition is only considered when a minimum
resolution has been achieved

M−h−1 < δη (26)

where δη is a control parameter.
After a refinement process, if all conditions S1, S2, S3 are
false, all nodes ζh+1,j obtained from refinement are flagged
as potentially critical and will be candidates for refinement at
the next iteration, so that

Cµ+1 = (Cµ − {ζh,i}) ∪ {ζh+1,j , j ∈ Jh,i} (27)

At the same time, current level is increased as

h← h+ 1 (28)

Otherwise, the new nodes ζh+1,j from refinement are flagged
as non-critical and are inserted in the basket

Bµ+1 = (Bµ − {ζh,i}) ∪ {ζh+1,j , j ∈ Jh,i}. (29)

These nodes will not be further refined. The latter condition
will trigger a restart by resetting current level to

h← hmin (30)

This condition enhances the exploration capabilities of the
search.

7) Budget updates: In principle, when the budget of func-
tion evaluations is reached upon a refinement step, the algo-
rithm should stop. However, it may be possible that some
critical regions to be explored or refined are still present.
Therefore, a budget update (increase) is triggered by the three
conditions below
• condition U1: all nodes from the last refinement are

detected as passive
θ̂h,i < γ (31)

• condition U2: at least one node from the last refinement is
closer to the passivity threshold than a prescribed relative
threshold ε

γ − θ̂h,i
θ̂h,i

< ε (32)

• condition U3: the largest variation among adjacent refined
nodes exceeds their smallest distance from the passivity
threshold

|γ − θ̂h,i| < ∆h,i (33)

As for condition S3, this latter condition is only checked
when a minimum resolution has been achieved according
to (26).

When U1 holds and one among U2, U3 is verified, budget
update is achieved by setting

ne ← ne + δne (34)

where δne is a control parameter that can even be iteration-
dependent. In order to preserve the effectiveness of condition
U2 when the tree level h increases, any budget update (34)
triggers a reduction of ε by a factor % < 1 as ε ← %ε. The
original value of ε is restored upon restarts.

TABLE II
CONTROL PARAMETERS OF PROPOSED STEP-1: FREQUENCY WARPING.

Step 1: Frequency Warping
Mode ρ Rcp Rrp Rhf c Qmax κ d

soft 103 1 2 5 50 500 3 0.5
hard ∞ 3 3 6 50 500 3 0.5
final ∞ 3 3 6 50 500 3 0.5

Three different settings are suggested, to emphasize speed (soft), accuracy
(hard) and to perform model qualification (final).

TABLE III
CONTROL PARAMETERS OF PROPOSED STEP-2: ADAPTIVE REFINEMENT.

Step 2: Modified NMSO
Mode M δζ , δθ δη ε % ne

soft 5 10−8 10−3 10−3 0.1 7, 10, 20, . . . , 100
hard 5 10−8 10−2 10−3 0.1 10, 20, . . . , 100
final 3 10−8 10−3 10−4 0.1 50, 100, . . . , 250

Three different settings are suggested, to emphasize speed (soft), accuracy
(hard) and to perform model qualification (final).

8) Basket reuse: The above-listed strategies prevent reusing
and further refining the leaves in the basket Bµ, which is ap-
propriate when execution speed is to be privileged with respect
to accuracy. Nevertheless, the procedure can be easily modified
to include the elements of Bµ in the set of candidates for
future expansions Cµ+1, as in the original NMSO scheme [32].
This basket reuse strategy should be used for more aggressive
sampling, such as required for model qualification at the end
of passivity enforcement loops (see below).

B. Implementation: choosing algorithm parameters

The proposed two-step adaptive sampling algorithm is con-
trolled by two sets of parameters for step-1 and step-2. These
parameters are collected in Tables II and III, respectively.
Both tables report our suggestion for three possible execution
modes. Settings labeled as soft are adequate for passivity
checks that are executed at the beginning of a passivity
enforcement loop, where only the largest passivity violations
are of interest and an aggressive accuracy is not necessary.
Conversely, settings labeled as hard are adequate when results
are expected to be very accurate, and passivity violations
are very small, such as at the last iteration(s) of passivity
enforcement loops. Settings labeled as final are adequate for
final model qualification.

The differences between the two soft and final settings
in algorithm performance are illustrated through an example.
Figure 4 compares the results obtained by both settings on a
representative test case, precisely #444 with reference to the
complete benchmark database analyzed below in Sec. VI-A.
The structure has P = 92 ports, with a model having n̄ = 16
pole-residue terms and a corresponding state-space matrix size
N = 1472.

The proposed adaptive sampling check in soft mode re-
sulted in L = 30 control points and K = 2255 evaluated
frequency samples, 28 of which denoting passivity violations
with ϕ(ω) > γ. Algorithm in hard mode requested K = 4245
samples with L = 55 and 47 violation points, whereas final
mode led to K = 9827 samples evaluation, with L = 55 and
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Fig. 4. Test case #444. Top panel: graphical illustration of the adaptive
sampling-based passivity characterization. Bottom panel: rescaled passivity
metric θ(ζ) after adaptive frequency warping.

271 violation points. It should be noted that the above detected
violation points can be at the edges of each subband X`, in
which case they should be dropped since not corresponding
to actual local maxima over the entire frequency axis. After
suitable postprocessing, the actual number of detected local
maxima largest than the passivity threshold resulted 7, 14,
and 21 after soft, hard, and final mode checks, respectively.
These results are consistent with the asymptotic outcome of
the algorithm used in soft mode, imposing ne =∞. Figure 4
and its enlarged view of Fig. 5 compare results of soft and
final mode, showing that the latter provides a more accurate
detection of even very small violations over narrow frequency
bands.

VI. NUMERICAL RESULTS

We document the performance of the proposed algorithm
on a large set of test cases. Section VI-A presents the results
of a systematic testing campaign on a database of interconnect
macromodels, while Sections VI-B and VI-C concentrate on
two representative large-scale application examples. All docu-
mented numerical results have been obtained on a Workstation
based on Core i9-7900X CPU running at 3.3 GHz with 64 GB
RAM.

A. Consistency and performance

The proposed passivity check algorithm was applied to a
large set of benchmarks, including 447 models of different size
and complexity (details in the bottom panel of Fig. 7). A total
of 243 independent models form a database constructed by
applying a standard VF scheme as available in the commercial

Fig. 5. Zoom of Fig. 4 on a frequency band with small passivity violations.

software IdEM [39]. Only 37 of these models were initially
passive, while the remaining 206 (non-passive) models showed
in some cases very significant (and not challenging to be
detected, even with simplistic algorithms) passivity violations.
For this reason, additional examples were obtained by applying
few passivity enforcement iterations on 204 models from
the first set. Since the passivity metric changes completely
through passivity enforcement iterations, these latter models
can be considered as independent. Moreover, since passivity
enforcement iteratively removes passivity violations, models
that are processed by few enforcement iterations are charac-
terized by smaller violations, which are, therefore, potentially
more difficult to be detected.

A summary of the results is shown in Table IV, where the
passivity characterization offered by the proposed scheme is
compared to a state-of-the-art Hamiltonian-based check based
on (5) or (6), see Sec. II-A3. The various models are classified
as

• True Positive (TP), if both the proposed adaptive sam-
pling and the Hamiltonian based passivity check were in
agreement, producing the same outcome (passive or not
passive);

• False Positive (FP), if the adaptive sampling approach
identified a passive model while the Hamiltonian check

TABLE IV
SUMMARY OF PASSIVITY CHECK RESULTS ON ALL BENCHMARKS

# Tests Passive TP FP FN Passive but FN
447 179 446 0 1 1

Models are classified as: True Positive (TP), False Positive (FP), False
Negative (FN), see text for details.
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Fig. 6. Passivity characterization of the unique False Negative case (#260),
showing a residual and marginal passivity violation that is not detected by
the Hamiltonian test. Bottom panel: zoom on the passivity metric θ(ζ) after
frequency warping.

did not;
• False Negative (FN), if the Hamiltonian check classified

a model as passive while the adaptive sampling did not;
• the last column Passive but FN indicates models that are

really non-passive even if the Hamiltonian check did not
find any passivity violation.

We see that the proposed algorithm agreed in the 99.9% of
the cases with the Hamiltonian check. The proposed algorithm
gave only one different result with respect to the Hamiltonian
check, providing a False Negative result. It turns out that this
model was actually not passive (with a very tight passivity
violation region, and |σ1 − 1| ≈ 1 · 10−10), but imaginary
Hamiltonian eigenvalues were not detected. Figure 6 provides
a graphical illustration. We conclude from this systematic
testing campaign that the proposed scheme may be able to
detect very small passivity violations also in the rare and
extreme cases when the Hamiltonian algebraic test fails due
to ill-conditioning.

The time performances of the two passivity check strategies
are presented in the top panel of Fig. 7. In all cases a
MATLAB-based single-thread prototypal code was used, using
a full Hamiltonian eigensolver. We see that the Hamiltonian
check remains the method of choice for small-scale models
(number of ports and poles is reported in the bottom panel
for comparison). For small-scale models, both Hamiltonian
and proposed check produce their results in a fraction of a
second. When it comes to large-scale models, the situation is
drastically different. The proposed scheme has a runtime that
for all investigated cases is below 10 seconds, which can be
as much as 50× faster than the Hamiltonian check.

The timing results of Fig. 7 show that the speedup of
the proposed adaptive sampling scheme with respect to the
Hamiltonian tests is problem-dependent, even for models
characterized by the same level of complexity. This is in fact
expected, based on the following considerations:

1) some of the models required the extended Hamiltonian
pencil (6), which is slower but numerically more accurate
and robust) than the regular Hamiltonian matrix (5) when
‖D‖2 ≈ 1;

2) in presence of singular value maxima that are very close
to the threshold γ, our proposed NMSO scheme keeps on
refining samples until the precision on the local maxima
is sufficient to discriminate possible passivity violations,
while the Hamiltonian test detects the only threshold
crossings.

Focusing on the latter scenario 2, it may be the case that local
maxima (if any) fall below the passivity threshold. In this situa-
tion, adaptive sampling will not detect any violation, and there
will be no imaginary Hamiltonian eigenvalues. Conversely,
when two singular value crossings are very close so that a local
maximum occurs just above the threshold, as in Fig. 6, the
corresponding imaginary Hamiltonian eigenvalues are almost
collapsed, the Hamiltonian matrix is defective, and the asso-
ciated eigenproblem is ill-conditioned. In both situations, the
proposed adaptive sampling scheme needs to continue refining
samples, until precision in the local maximum estimation is
sufficient. This may lead to some small computing overhead.
The execution speed of the Hamiltonian test will not be
affected, but it may happen that the corresponding results are
not reliable, as in Fig. 6.

Finally, we show through a toy example that the requirement
of local refinements is unavoidable for all subbands. This may
cause a small overhead due to the presence computed samples
that are not functional to detect passivity violations, in those
cases where there are no sharp variations or local maxima.
Figure 8 depicts the maximum singular value of a system with
two sets of closely-spaced poles p1

n = α1
n ± jω1

n and p2
n =

α2
n ± jω2

n where ωin = ωi0 + n · δωi and δωi � ωi0. The
local variations around these poles may have local maxima or
not, depending on the residues. A reduced number of samples
based only on control points or on a coarse sampling (dots)
is not sufficient to detect the presence of sharp local maxima:
such an implementation would not distinguish between the two
trajectories centered at ω1

0 and ω2
0 . This is the main reason why

the proposed scheme places additional samples also where a
first sight would deem these samples unnecessary, see e.g.
Fig. 1 beyond 1010 GHz. Local refinement needs to guarantee
that sharp peaks as in Fig. 8 (right) are not missed.

B. A large-scale multiport shielding enclosure

We compare here the performance of the proposed passivity
characterization to various implementations of Hamiltonian-
based tests available in the state-of-the-art commercial package
IdEM [39]. The structure that is selected for this comparison
is a large-scale model of a shielding enclosure, depicted in
Fig. 9. The enclosure is part of an energy-selective shield,
obtained by loading the P = 20 × 20 = 400 ports located
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Fig. 7. Time performances and models complexity for all the investigated 447 test cases.

Fig. 8. A synthetic test case, showing that presence of local maxima and sharp
variations cannot be ascertained from control points only, but do require some
local refinement.

Fig. 9. A perfectly conducting box enclosure designed for energy-selective
shielding. Size: 50 × 50 × 50 cm. Red dots depict lumped ports distributed
on a regular 20× 20 grid throughout the 25× 25 cm aperture.

Fig. 10. Model vs data comparison of selected responses of the shielding
enclosure.

throughout the opening with nonlinear elements (back-to-back
diode pairs). For an overview of energy-selective shielding
see [22], in particular [23]–[25].

The unloaded structure was initially characterized through
a Method-of-Moments (MoM) frequency-domain code [40],
obtaining a set of P × P scattering responses, each with
a total of 500 frequency samples over the frequency band
[0.25, 990] MHz. These samples were subjected to VF to
obtain a rational model (n̄ = 26 poles), leading to a state-space
realization of size N = 10400. Few selected port responses
of the model are compared to field solver data in Figure 10,
demonstrating good model accuracy.

The model was processed by four different passivity char-
acterization schemes, namely
• Full Hamiltonian check: as implemented in [39], extract-

ing all imaginary eigenvalues of the full Hamiltonian
matrix (5);

• Sparse Hamiltonian check: as implemented in [39], based
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Fig. 11. Singular value plot of the shielding enclosure model. Bottom panel:
enlarged view.

TABLE V
TIMING RESULTS FOR SHIELDING ENCLOSURE MODEL

Hamiltonian [39] Proposed
# Threads Full Sparse Adaptive soft hard final

8 180 76 75 0.4 1.41 4.49
1 226 189 183 1.03 3.19 9.82

Execution time in minutes for different passivity characterization
approaches, under both single- and multi-threaded execution. See text for

details.

on the Hamiltonian eigensolver exploiting the iterative
multishift Krylov subspace iterations of [17];

• Adaptive Hamiltonian check: as implemented in [39],
based on the hybrid sampling-sparse Hamiltonian eigen-
solver documented in [18];

• Proposed two-stage adaptive sampling check.

The Hamiltonian eigensolvers were available in two execu-
tion modes using T = 1 and T = 8 parallel threads,
respectively. The proposed approach was implemented as a
serial code, executed in a MATLAB [41] environment both
enabling and disabling multithread capabilities (at low-level
for SVD computations). The results are collected in Table V,
which confirms a major speedup of the proposed approach
with respect to Hamiltonian characterizations. All methods
provided consistent passivity characterization results in terms
of number of violation bands. Figure 11 depicts the singular
value trajectories computed by the proposed adaptive sampling
scheme, highlighting the local maxima exceeding the passivity
threshold.

TABLE VI
TIMING RESULTS FOR VIA ARRAY MODEL

Hamiltonian [39] Proposed
# Threads Full Sparse Adaptive soft hard final

8 Fail 19 29 1.53 8.15 17.35
1 Fail 67 68 4.41 23,1 47.05

Execution time in minutes for different passivity characterization
approaches, under both single- and multi-threaded execution. See text for

details.

Fig. 12. Model vs data comparison of selected responses of the via array.

C. A via array

We analyze here a via array in a 8-layer Printed Circuit
Board (PCB) structure. The array consists of 20 × 20 vias
with a 4:1 signal to ground ratio, resulting in total of P = 640
electrical ports (1–320 in the top layer, 321–640 in the bottom
layer). A fast frequency-domain solver [42] was applied to
extract the P ×P scattering responses up to 30 GHz, defining
circular ports between via pad and antipad at top and bottom
layers. These 150 raw samples were in turn used to generate
a large-scale macromodel through VF using the IdEM soft-
ware [39], resulting in n̄ = 40 pole-residue terms and a total
number of states N = 25600.

The model was processed by the proposed passivity char-
acterization algorithm, as well as to all Hamiltonian checks
available in IdEM. Timing results are reported in Table VI,
whereas Fig. 12 provides a comparison between selected
model responses and corresponding field solver samples. Fig-
ure 13 depicts the largest singular value samples returned by
the proposed adaptive sampling scheme, highlighting all local
maxima exceeding the passivity threshold. Execution in both
hard and final mode identified all 11 local maxima, whereas
the fast soft mode found 10 maxima. Also for this example,
the execution time provided by the proposed passivity check
algorithm is drastically reduced with respect to Hamiltonian
checks, at least for soft and hard execution modes, with no loss
of accuracy in the characterization of passivity violations. Full
Hamiltonian checks could not be performed due to excessive
storage requirements.

D. Discussion

The above numerical results show that the proposed algo-
rithm appears to be the only viable and scalable solution for
passivity characterization of large-sized models. The following
considerations apply.
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Fig. 13. Singular value plot of the via array model. Bottom panel: enlarged
view showing that local maxima are correctly identified by the proposed
algorithm in hard (not shown) and final mode.

• The number of subbands produced by the step-1 adaptive
frequency warping grows with the number n̄ of model
poles and can be very large. This is not a limitation,
since the independent processing of those subbands lends
itself to a naive data-based parallelization, which is thus
expected to provide even further speedup with respect
to the already highly efficient implementation that is
here documented. Code parallelization is left to future
investigations.

• It may be the case that multiple passivity violation max-
ima in the same subband may be missed if the stopping
thresholds are excessively loose or the allocated budget
of evaluations is too small.

• The speed of the proposed scheme is affected by the
type of passivity violations. In case of large violations,
these are detected early and further refinements are not
necessary, as in the case reported in Fig 11. In fact,
since the check is designed to setup constraints for
a subsequent passivity enforcement, once a significant
number of constraints are available, it is not necessary
to further refine the search. Instead, when the violations
(if any) are smaller and the passivity metric shows many
local maxima close to the threshold, a larger number of
refinement iterations are potentially needed, as in Fig. 13.
Therefore, the performance of the proposed adaptive
scheme can only be assessed on a statistical basis since
problem-dependent.

• In case a very accurate test is needed, asymptotic conver-
gence to all local maxima can be guaranteed by releasing
budget constraints and enabling also basket reuse for re-

finement, building on the provable asymptotic consistency
of the NMSO algorithm class [32]. We remark that this
strategy was never required in our extensive tests, since
the proposed implementation never identified non-passive
models as passive.

VII. CONCLUSION

This work introduced a two-stage hierarchical sampling-
based passivity characterization algorithm for large-scale
lumped macromodels. The proposed scheme was tested on
about 450 test cases of increasing complexity and reaching
P = 640 ports and more than 25 × 103 states. The results
show that the proposed approach outperforms Hamiltonian
tests for medium and large-scale systems, with speedup in
runtime exceeding 200× in some cases.

Due to the multi-stage hierarchical implementation, our
proposed algorithm was always in agreement with Hamilto-
nian checks. The only exception was a single case that was
(correctly) detected as non-passive by the proposed method,
although the Hamiltonian check could not identify any passiv-
ity violation. Therefore, we conclude that the proposed scheme
is at least as reliable as state-of-the-art approaches, with much
more favorable scalability with model size.

Significant research work is still needed for an efficient
extraction and handling of large-scale macromodels. Fully
coupled models with many ports and large dynamical orders
are in fact not effective when synthesized as equivalent circuits
and used in system-level simulations, due to the very large
number of model parameters. Ad hoc model representations
based on sparsification or compression appear to provide a
better solution for speeding up numerical simulations, possibly
combined with specialized solvers that are aware of the model
structure. We are actively investigating in this direction, the
results will be documented in a forthcoming report.

ACKNOWLEDGEMENT

This work was in part supported by the German Re-
search Foundation (DFG). The authors are grateful to Morten
Schierholz, Institut für Theoretische Elektrotechnik, Hamburg
University of Technology, for providing the via array dataset
of Section VI-C.

REFERENCES

[1] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Trans. Power Delivery,
vol. 14, no. 3, pp. 1052–1061, jul 1999.

[2] S. Grivet-Talocia and B. Gustavsen, Passive Macromodeling: Theory
and Applications. New York: John Wiley and Sons, 2016 (published
online on Dec 7, 2015).

[3] P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. Canavero, and R. Achar,
“Stability, causality, and passivity in electrical interconnect models,”
IEEE Trans. Advanced Packaging, vol. 30, no. 4, pp. 795–808, Nov
2007.

[4] J. C. Willems, “Dissipative dynamical systems part I: General theory,”
Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321–
351, 1972. [Online]. Available: http://dx.doi.org/10.1007/BF00276493

[5] M. R. Wohlers, Lumped and Distributed Passive Networks. Academic
press, 1969.

[6] B. D. O. Anderson and S. Vongpanitlerd, Network analysis and synthe-
sis. Prentice-Hall, 1973.

http://dx.doi.org/10.1007/BF00276493


13

[7] C. P. Coelho, J. Phillips, and L. M. Silveira, “A convex programming
approach for generating guaranteed passive approximations to tabulated
frequency-data,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 2, pp. 293 – 301, feb. 2004.

[8] D. Saraswat, R. Achar, and M. S. Nakhla, “Fast passivity verification
and enforcement via reciprocal systems for interconnects with large
order macromodels,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 1, pp. 48–59, Jan 2007.

[9] ——, “Global passivity enforcement algorithm for macromodels of
interconnect subnetworks characterized by tabulated data,” IEEE Trans.
Very Large Scale Integration (VLSI) Systems, vol. 13, no. 7, pp. 819–832,
July 2005.

[10] C. S. Saunders, J. Hu, C. E. Christoffersen, and M. B. Steer, “Inverse
singular value method for enforcing passivity in reduced-order models
of distributed structures for transient and steady-state simulation,” IEEE
Trans. Microwave Theory and Techniques, vol. 59, no. 4, pp. 837–847,
April 2011.

[11] T. Brull and C. Schroder, “Dissipativity enforcement via perturbation of
para-Hermitian pencils,” IEEE Trans. Circuits and Systems I: Regular
Papers, vol. 60, no. 1, pp. 164–177, Jan 2013.

[12] S. Gao, Y.-S. Li, and M.-S. Zhang, “An efficient algebraic method for the
passivity enforcement of macromodels,” IEEE Trans. Microwave Theory
and Techniques, vol. 58, no. 7, pp. 1830–1839, July 2010.

[13] T. D’haene and R. Pintelon, “Passivity enforcement of transfer func-
tions,” IEEE Trans. Instrumentation and Measurement, vol. 57, no. 10,
pp. 2181–2187, Oct 2008.

[14] B. Porkar, M. Vakilian, R. Iravani, and S. M. Shahrtash, “Passivity en-
forcement using an infeasible-interior-point primal-dual method,” IEEE
Trans. Power Systems, vol. 23, no. 3, pp. 966–974, Aug 2008.

[15] T. Wang and Z. Ye, “Robust passive macro-model generation with local
compensation,” IEEE Trans. Microwave Theory and Techniques, vol. 60,
no. 8, pp. 2313–2328, Aug 2012.

[16] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamitonian
matrices,” IEEE Trans. Circuits and Systems I: Fundamental Theory and
Applications, vol. 51, no. 9, pp. 1755–1769, September 2004.

[17] S. Grivet-Talocia and A. Ubolli, “On the generation of large passive
macromodels for complex interconnect structures,” IEEE Trans. Ad-
vanced Packaging, vol. 29, no. 1, pp. 39–54, February 2006.

[18] S. Grivet-Talocia, “An adaptive sampling technique for passivity char-
acterization and enforcement of large interconnect macromodels,” IEEE
Trans. Advanced Packaging, vol. 30, no. 2, pp. 226–237, May 2007.

[19] S. Grivet-Talocia and A. Ubolli, “A comparative study of passivity
enforcement schemes for linear lumped macromodels,” IEEE Trans.
Advanced Packaging, vol. 31, no. 4, pp. 673–683, Nov 2008.

[20] S. Grivet-Talocia, “On driving non-passive macromodels to instability,”
Int. Journal of Circuit Theory and Applications, vol. 37, no. 8, pp. 863–
886, Oct 2009.

[21] “Heterogeneous Integration Roadmap, 2019 Edi-
tion.” [Online]. Available: https://eps.ieee.org/technology/
heterogeneous-integration-roadmap/2019-edition.html

[22] G. V. Eleftheriades, “Protecting the weak from the strong,” Nature,
vol. 505, no. 7484, pp. 490–491, 2014. [Online]. Available:
https://doi.org/10.1038/nature12852
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