
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluation of Rust code verbosity, understandability and complexity / Ardito, Luca; Barbato, Luca; Coppola, Riccardo;
Valsesia, Michele. - In: PEERJ. COMPUTER SCIENCE.. - ISSN 2376-5992. - (2021), pp. 1-33. [10.7717/peerj-cs.406]

Original

Evaluation of Rust code verbosity, understandability and complexity

Publisher:

Published
DOI:10.7717/peerj-cs.406

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2869605 since: 2021-02-26T09:44:17Z

PeerJ

Evaluation of Rust code verbosity,
understandability and complexity
Luca Ardito1, Luca Barbato2, Riccardo Coppola1 and Michele Valsesia1

1 Department of Control and Computer Engineering, Polytechnic Institute of Turin, Torino,
Piemonte, Italia

2 Luminem, Torino, Piemonte, Italia

ABSTRACT
Rust is an innovative programming language initially implemented by Mozilla,
developed to ensure high performance, reliability, and productivity. The final
purpose of this study consists of applying a set of common static software metrics to
programs written in Rust to assess the verbosity, understandability, organization,
complexity, and maintainability of the language. To that extent, nine different
implementations of algorithms available in different languages were selected.
We computed a set of metrics for Rust, comparing them with the ones obtained from
C and a set of object-oriented languages: C++, Python, JavaScript, TypeScript.
To parse the software artifacts and compute the metrics, it was leveraged a tool called
rust-code-analysis that was extended with a software module, written in Python, with
the aim of uniforming and comparing the results. The Rust code had an average
verbosity in terms of the raw size of the code. It exposed the most structured source
organization in terms of the number of methods. Rust code had a better Cyclomatic
Complexity, Halstead Metrics, and Maintainability Indexes than C and C++ but
performed worse than the other considered object-oriented languages. Lastly,
the Rust code exhibited the lowest COGNITIVE complexity of all languages. The
collected measures prove that the Rust language has average complexity and
maintainability compared to a set of popular languages. It is more easily maintainable
and less complex than the C and C++ languages, which can be considered
syntactically similar. These results, paired with the memory safety and safe
concurrency characteristics of the language, can encourage wider adoption of the
language of Rust in substitution of the C language in both the open-source and
industrial environments.

Subjects Software Engineering
Keywords Software maintainability, Software quality, Software metrics

INTRODUCTION
Software maintainability is defined as the ease of maintaining software during the delivery
of its releases. Maintainability is defined by the ISO 9126 standard as “The ability to
identify and fix a fault within a software component” (ISO, 1991), and by the ISO/IEC
25010:2011 standard as “degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers” (ISO/IEC, 2011). Maintainability is
an integrated software measure that encompasses some code characteristics, such as
readability, documentation quality, simplicity, and understandability of source code
(Aggarwal, Singh & Chhabra, 2002).

How to cite this article Ardito L, Barbato L, Coppola R, Valsesia M. 2021. Evaluation of Rust code verbosity, understandability and
complexity. PeerJ Comput. Sci. 7:e406 DOI 10.7717/peerj-cs.406

Submitted 10 November 2020
Accepted 1 February 2021
Published 26 February 2021

Corresponding author
Luca Ardito, luca.ardito@polito.it

Academic editor
Antonia Lopes

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.406

Copyright
2021 Ardito et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.406
mailto:luca.�ardito@�polito.�it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.406
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Maintainability is a crucial factor in the economic success of software products. It is
commonly accepted in the literature that the most considerable cost associated with
any software product over its lifetime is the maintenance cost (Zhou & Leung, 2007).
The maintenance cost is influenced by many different factors, for example, the necessity
for code fixing, code enhancements, the addition of new features, poor code quality, and
subsequent need for refactoring operations (Nair & Swaminathan, 2020).

Hence, many methodologies have consolidated in software engineering research and
practice to enhance this property. Many metrics have been defined to provide a
quantifiable and comparable measurement for it (Nuñez-Varela et al., 2017). Many metrics
measure lower-level properties of code (e.g., related to the number of lines of code and
code organization) as proxies for maintainability. Several comprehensive categorizations
and classifications of the maintainability metrics presented in the literature during the
last decades have been provided, for example, the one by Frantz et al. (2019) provides a
categorization of 25 different software metrics under the categories of Size, Coupling,
Complexity, and Inheritance.

The academic and industrial practice has also provided multiple examples of tools that
can automatically compute software metrics on source code artifacts developed in
many different languages (Mshelia, Apeh & Edoghogho, 2017). Several frameworks
have also been described in the literature that leverage combinations of software code
metrics to predict or infer the maintainability of a project (Kaur, Kaur & Pathak, 2014b;
Amara & Rabai, 2017; Mshelia & Apeh, 2019). The most recent work in the field of
metric computation is aiming at applying machine learning-based approaches to the
prediction of maintainability by leveraging the measurements provided by static analysis
tools (Schnappinger et al., 2019).

However, the benefit of the massive availability of metrics and tooling for their
computation is contrasted by the constant emergence of novel programming languages in
the software development community. In most cases, the metrics have to be readapted to
take into account newly defined syntaxes, and existing metric-computing tools cannot
work on new languages due to the unavailability of parsers and metric extraction modules.
For recently developed languages, the unavailability of appropriate tooling represents
an obstacle for empirical evaluations on the maintainability of the code developed using
them.

This work provides a first evaluation of verbosity, code organization, understandability,
and complexity of Rust, a newly emerged programming language similar in characteristics
to C++, developed with the premises of providing better maintainability, memory
safety, and performance (Matsakis & Klock, 2014). To this purpose, we (i) adopted
and extended a tool to compute maintainability metrics that support this language;
(ii) developed a set of scripts to arrange the computed metrics into a comparable JSON
format; (iii) executed a small-scale experiment by computing static metrics for a set of
programming languages, including Rust, analyzing and comparing the final results. To the
best of our knowledge, no existing study in the literature has provided computations of
such metrics for the Rust language and the relative comparisons with other languages.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 2/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

The remainder of the manuscript is structured as follows: “Background and Related
Work” provides background information about the Rust language and presents a brief
review of state-of-the-art tools available in the literature for the computation of metrics
related to maintainability; “Study Design” describes the methodology used to conduct
our experiment, along with a description of the developed tools and scripts, the
experimental subjects used for the evaluation, and the threats to the validity of the study;
“Results and Discussion” presents and discusses the collected metrics; “Conclusion and
Future Work” concludes the paper by listing its main findings and providing possible
future directions of this study.

BACKGROUND AND RELATED WORK
This section provides background information about the Rust language characteristics,
studies in the literature that analyzes its advantages, and the list of available tools present in
the literature to measure metrics used as a proxy to quantify software projects’
maintainability.

The Rust programming language
Rust is an innovative programming language initially developed by Mozilla and is
currently maintained and improved by the Rust Foundation (https://www.rust-lang.org/).

The main goals of the Rust programming language are: memory-efficiency, with the
abolition of garbage collection, with the final aim of empowering performance-critical
services running on embedded devices, and easy integration with other languages;
reliability, with a rich type system and ownership model to guarantee memory-safety
and thread-safety; productivity, with an integrated package manager and build tools.

Rust is compatible with multiple architectures and is quite pervasive in the industrial
world. Many companies are currently using Rust in production today for fast, low-
resource, cross-platform solutions: for example, software like Firefox, Dropbox, and
Cloudflare use Rust (2020).

The Rust language has been analyzed and adopted in many recent studies from
academic literature. Uzlu & Şaykol (2017) pointed out the appropriateness of using Rust
in the Internet of Things domain, mentioning its memory safety and compile-time
abstraction as crucial peculiarities for the usage in such domain. Balasubramanian et al.
(2017) show that Rust enables system programmers to implement robust security and
reliability mechanisms more efficiently than other conventional languages. Astrauskas
et al. (2019) leveraged Rust’s type system to create a tool to specify and validate system
software written in Rust. Köster (2016) mentioned the speed and high-level syntax as the
principal reasons for writing in the Rust language the Rust-Bio library, a set of safe
bioinformatic algorithms. Levy et al. (2017) reported the process of developing an entire
kernel in Rust, with a focus on resource efficiency. These common usages of Rust in
such low-level applications encourage thorough analyses of the quality and complexity of a
code with Rust.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 3/33

https://www.rust-lang.org/
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

Tools for measuring static code quality metrics
Several tools have been presented in academic works or are commonly used by
practitioners to measure quality metrics related to maintainability for software written in
different languages.

In our previous works, we conducted a systematic literature review that led us to identify
fourteen different open-source tools that can be used to compute a large set of different
static metrics (Ardito et al., 2020b). In the review, it is found that the following set of
open-source tools can cover most of quality metrics defined in the literature, for the most
common programming languages: CBR Insight, a tool based on the closed-source metrics
computation Understand framework, that aims at computing reliability and
maintainability metrics (Ludwig & Cline, 2019); CCFinderX, a tool tailored for finding
duplicate code fragments (Matsushita & Sasano, 2017); CKJM, a tool to compute the C&K
metrics suite and method-related metrics for Java code (Kaur, Kaur & Pathak, 2014a);
CodeAnalyzers, a tool supporting more than 25 software maintainability metrics, that
covers the highest number of programming languages along with CBR Insight (Sarwar
et al., 2008); Halstead Metrics Tool, a tool specifically developed for the computation of
the Halstead Suite (Hariprasad et al., 2017); Metrics Reloaded, able to compute many
software metrics for C and Java code either in a plug-in for IntelliJ IDEA or through
command line (Saifan, Alsghaier & Alkhateeb, 2018); Squale, a tool to measure high-level
quality factors for software and measuring a set of code-level metrics to predict economic
aspects of software quality (Ludwig, Xu & Webber, 2017).

Table 1 reports the principal programming languages supported by the described
tools. For the sake of conciseness, only the languages that were supported by at least two of
the tools are reported. With this comparison, it can be found that none of the considered
tools is capable of providing metric computation facilities for the Rust language.

As additional limitations of the identified set of tools, it can be seen that the tools do
not provide complete coverage of the most common metrics for all the tools (e.g., the
Halstead Metric suite is computed only by the Halstead Metrics tool), and in some cases,
(e.g., CodeAnalyzer), the number of metrics is limited by the type of acquired license.
Also, some of the tools (e.g., Squale) appear to have been discontinued by the time of the
writing of this article.

Table 1 Languages supported by the metrics tools.

Language CBR insight CCFinderX CKJM CodeAnalyzers Halstead
metrics tool

Metrics
reloaded

Squale

C x x x x x

C++ x x x x x

C# x x x

Cobol x x x x

Java x x x x x x

Rust

Others x x

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 4/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

STUDY DESIGN
This section reports the goal, research questions, metrics, and procedures adopted for the
conducted study.

To report the plan for the experiment, the template defined by Robson was adopted
(Robson & McCartan, 2016). The purpose of the research, according to Robson’s
classification, is Exploratory, that is, to find out whats is happening, seeking new insights,
and generating ideas and hypotheses for future research. The main concepts of the
definition of the study are reported in Table 2.

In the following subsections, the best practices for case study research provided by
Runeson and Host are adopted to organize the presentation of the study (Jedlitschka &
Pfahl, 2005). More specifically, the following elements are reported: goals, research
questions, and variables; objects; instrumentation; data collection and analysis procedure;
evaluation of validity.

Goals, research questions and variables
The high-level goal of the study can be expressed as:

Analyze and evaluate the characteristics of the Rust programming language, focusing
on verbosity, understandability and complexity measurements, measured in the context
of open-source code, and interpreting the results from developers and researchers’
standpoint.

Based on the goal, the research questions that guided the definition of the experiment
are obtained. Four different aspects that deserve to be analyzed for code written in
Rust programming language were identified, and a distinct Research Question was
formulated for each of them. In the following, the research questions are listed, along with
a brief description of the metrics adopted to answer them. Table 3 reports a summary of all
the metrics.

The comparisons between different programming languages were made through the use
of static metrics. A static metric (opposed to dynamic or runtime metrics) is obtained by
parsing and extracting information from a source file without depending on any
information deduced at runtime.

� RQ1: What is the verbosity of Rust code with respect to code written in other
programming languages?

Table 2 Case study definition template (Robson & McCartan, 2016).

Objective Evaluation of code verbosity, understandability and complexity

The case Development with the Rust programming language

Theory Static measures for software artifacts

Research questions What is the verbosity, organization, complexity and maintainability of Rust?

Methods Comparison of Rust static measurements with other programming languages

Selection strategy Open-source multi-language repositories

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 5/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

To answer RQ1, the size of code artifacts written in Rust was measured in terms of the
number of code lines in a source file. Four different metrics have been defined to
differentiate between the nature of the inspected lines of code:

� SLOC, i.e., Source lines of code;

� CLOC, Comment Lines of Code;

� PLOC, Physical Lines of Code, including both the previous ones;

� LLOC, Logical Lines of Code, returning the count of the statements in a file;

� BLANK, Blank Lines of Code, returning the number of blank lines in a code.

The rationale behind using multiple measurements for the lines of code can be
motivated by the need for measuring different facets of the size of code artifacts and of the
relevance and content of the lines of code. The measurement of physical lines of code
(PLOC) does not take into consideration blank lines or comments; the count, however,
depends on the physical format of the statements and programming style since multiple
PLOC can concur to form a single logical statement of the source code. PLOC are
sensitive to logically irrelevant formatting and style conventions, while LLOC are less
sensitive to these aspects (Nguyen et al., 2007). In addition to that, the CLOC and BLANK
measurements allow a finer analysis of the amount of documentation (in terms of used
APIs and explanation of complex parts of algorithms) and formatting of a source file.

� RQ2: How is Rust code organized with respect to code written in other programming
languages?

Table 3 List of metrics used in this study.

RQ Acronym Name Description

RQ1 SLOC Source Lines of Code It returns the total number of lines in a file

PLOC Physical Lines of Code It returns the total number of instructions and comment lines in a file

LLOC Logical Lines of Code It returns the number of logical lines (statements) in a file

CLOC Comment Lines of
Code

It returns the number of comment lines in a file

BLANK Blank Lines of Code Number of blank statements in a file

RQ2 NOM Number of Methods It returns the number of methods in a source file

NARGS Number of Arguments It counts the number of arguments for each method in a file

NEXITS Number of Exit Points It counts the number of exit points of each method in a file

RQ3 CC McCabe’s Cyclomatic
Complexity

It calculates the code complexity examining the control flow of a program; the original McCabe’s
definition of cyclomatic complexity is the the maximum number of linearly independent circuits in a
program control graph (Gill & Kemerer, 1991)

COGNITIVE Cognitive Complexity It is a measure of how difficult a unit of code is to intuitively understand, by examining the cognitive
weights of basic software control structures (Jingqiu & Yingxu, 2003)

Halstead Halstead suite A suite of quantitative intermediate measures that are translated to estimations of software tangible
properties, for example, volume, difficulty and effort (see Table 4 for details)

RQ4 MI Maintainability Index A composite metric that incorporates a number of traditional source code metrics into a single number
that indicates relative maintainability (see Table 5 for details about the considered variants) (Welker,
2001)

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 6/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

To answer RQ2, the source code structure was analyzed in terms of the properties and
functions of source files. To that end, three metrics were adopted: NOM, Number of
Methods; NARGS, Number of Arguments; NEXITS, Number of exits. NARGS and
NEXITS are two software metrics defined by Mozilla and have no equivalent in the
literature about source code organization and quality metrics. The two metrics are
intuitively linked with the easiness in reading and interpreting source code: a function
with a high number of arguments can be more complex to analyze because of a higher
number of possible paths; a function with many exits may include higher complexity in
reading the code for performing maintenance efforts.

� RQ3: What is the complexity of Rust code with respect to code written in other
programming languages?

To answer RQ3, three metrics were adopted: CC, McCabe’s Cyclomatic Complexity;
COGNITIVE, Cognitive Complexity; and the Halstead suite. The Halstead Suite, a set of
quantitative complexity measures originally defined by Maurice Halstead, is one of the
most popular static code metrics available in the literature (Hariprasad et al., 2017).
Table 4 reports the details about the computation of all operands and operators.
The metrics in this category are more high-level than the previous ones and are based on
the computation of previously defined metrics as operands.

� RQ4:What are the composite maintainability indexes for Rust code with respect to code
written in other programming languages?

To answer RQ4, the Maintainability Index was adopted, that is, a composite metric
originally defined by Oman & Hagemeister (1992) to provide a single index of
maintainability for software. Three different versions of the Maintainability Index are
considered. First, the original version by Oman & Hagemeister (1992). Secondly, the

Table 4 The halstead metrics suite.

Measure Symbol Formula

Base measures η1 Number of distinct operators

η2 Number of distinct operands

N1 Total number of occurrences of operators

N2 Total number of occurrences of operands

Program length N N = N1 + N2

Program vocabulary η η = η1 + η2

Volume V V = N * log2(η)

Difficulty D D = η1/2 * N2/η2

Program level L L = 1/D

Effort E E = D * V

Estimated program length H H = η1 * log2(η1) + η2 * log2(η2)

Time required to program (in seconds) T T = E/18

Number of delivered bugs B B = E2/3/3000

Purity ratio PR PR = H/N

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 7/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

version defined by the Software Engineering Institute (SEI), originally promoted in the C4
Software Technology Reference Guide (Bray et al., 1997); the SEI adds to the original
formula a specific treatment for the comments in the source code (i.e., the CLOC metric),
and it is deemed by research as more appropriate given that the comments in the source
code can be considered correct and appropriate (Welker, 2001). Finally, the version of
the MI metric implemented in the Visual Studio IDE (Microsoft, 2011); this formula
resettles the MI value in the 0–100 range, without taking into account the distinction
between CLOC and SLOC operated by the SEI formula (Molnar & Motogna, 2017).

The respective formulas are reported in Table 5. The interpretation of the measured MI
varies according to the adopted formula to compute it: the ranges for each of them are
reported in Table 6. For the traditional and the SEI formulas of the MI, a value over
85 indicates easily maintainable code; a value between 65 and 85 indicates average
maintainability for the analyzed code; a value under 65 indicates hardly maintainable code.
With the original and SEI formulas, the MI value can also be negative. With the Visual
Studio formula, the thresholds for medium and high maintainability are moved
respectively to 10 and 20.

The Maintainability Index is the highest-level metric considered in this study, as it
includes an intermediate computation of one of the Halstead suite metrics.

Objects
For the study, it was necessary to gather a set of simple code artifacts to analyze the
Rust source code properties and compare them with other programming languages.

To that end, a set of nine simple algorithms was collected. In the set, each algorithm was
implemented in five different languages: C, C++, JavaSript, Python, Rust, and TypeScript.
All implementations of the code artifacts have been taken from the Energy-Languages
repository (https://github.com/greensoftwarelab/Energy-Languages). The rationale
behind the repository selection is its continuous and active maintenance and the fact that
these code artifacts are adopted by various other projects for tests and benchmarking

Table 5 Considered variants of the MI metric.

Acronym Meaning Formula

MIO Original maintainability index 171.0 − 5.2 � ln(V) − 0.23 � CC − 16.2 � ln(SLOC)

MISEI MI by Software Engineering Institute 171:0−5:2 � log2ðVÞ−0:23 � CC−16:2 � log2ðSLOCÞ þ 50:0 � sin ffi
2:4 � ðCLOC=SLOCÞp� �

MIVS MI implemented in Visual Studio max(0, (171 − 5.2 � ln(V) − 0.23 � CC − 16.2 � ln(SLOC)) � 100/171)

Table 6 Maintainability ranges of source code according to different formulas for the MI metric.

Variant Low maintainability Medium maintainability High maintainability

Original MI < 65 65 < MI < 85 MI > 85

SEI MI < 65 65 < MI < 85 MI > 85

VS MI < 10 10 < MI < 20 MI > 20

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 8/33

https://github.com/greensoftwarelab/Energy-Languages
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

purposes, especially for evaluations of the execution speed of code written in a given
programming language after compilation.

The number of different programming languages for the comparison was restricted to
five because those languages (additional details are provided in the next section) were the
common ones for the Energy-Languages repository and the set of languages that are
correctly parsed by the tooling employed in the experiment conduction.

Table 7 lists the code artifacts used (sorted out alphabetically) and provides a brief
description of each of them.

Instruments
This section provides details about the framework that was developed to compare the
selected metrics and the existing tools that were employed for code parsing and metric
computation.

A graphic overview of the framework is provided in Fig. 1. The diagram only represents
the logical flow of the data in the framework since the actual flow of operations is reversed,
being the compare.py script the entry point of the whole computation. The rust-code-
analysis tool is used to compute static metrics and save them in the JSON format.

Table 7 Selected source code artifacts for the study.

Name Description

binarytrees Allocate and deallocate binary trees

fannkuchredux Indexed-access to tiny integer-sequence

fasta Generate and write random DNA sequences

knucleotide Hashtable update and k-nucleotide strings

mandelbrot Generate Mandelbrot set portable bitmap file

nbody Double-precision N-body simulation

regexredux Match DNA 8-mers and substitute magic patterns

revcomp Read DNA sequences—write their reverse-complement

spectralnorm Eigenvalue using the power method

.c .cpp .rs
.js .ts .py

rust-code-analysis analyzer.py compare.py

.json

.json .json

Figure 1 Representation of the data flow of the framework.
Full-size DOI: 10.7717/peerj-cs.406/fig-1

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 9/33

http://dx.doi.org/10.7717/peerj-cs.406/fig-1
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

The analyzer.py script receives as input the results in JSON format provided by the
rust-code-analysis tool and formats them in a common notation that is more focused
on academic facets of the computed metrics rather than the production ones used by the
rust-code-analysis default formatting. The compare.py has been developed to call the
analyzer.py script and to use its results to perform pair-by-pair comparisons between the
JSON files obtained for source files written in different programming languages. These
comparison files allow us to immediately assess the differences in the metrics computed by
the different programming languages on the same software artifacts. The stack of
commands that are called in the described evaluation framework is shown in Fig. 2.

The evaluation framework has been made available as an open-source repository on
GitHub (https://github.com/SoftengPoliTo/SoftwareMetrics).

The Rust code analysis tool
All considered metrics have been computed by adopting and extending a tool developed in
the Rust language, and able to compute metrics for many different ones, called rust-code-
analysis. We have forked version 0.0.18 of the tool to fix a few minor defects in metric
computation and to uniform the presentation of the results, and we have made it
available on a GitHub repository (https://github.com/SoftengPoliTo/rust-code-analysis).

We have decided to adopt and personally extend a project written in Rust because of the
advantages guaranteed by this language, such as memory and thread safety, memory
efficiency, good performance, and easy integration with other programming languages.

rust-code-analysis builds, through the use of an open-source library called tree-sitter
(https://tree-sitter.github.io/), builds an Abstract Syntax Tree (AST) to represent the
syntactic structure of a source file. An AST differs from a Concrete Syntax Tree because
it does not include information about the source code less important details, like
punctuation and parentheses. On top of the generated AST, rust-code-analysis performs a
division of the source code in spaces, that is, any structure that can incorporate a function.
It contains a series of fields such as the name of the structure, the relative line start,

rust-code-analysis

analyzer.py

compare.py

Figure 2 Representation of the process stack of the framework.
Full-size DOI: 10.7717/peerj-cs.406/fig-2

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 10/33

https://github.com/SoftengPoliTo/SoftwareMetrics
https://github.com/SoftengPoliTo/rust-code-analysis
https://tree-sitter.github.io/
http://dx.doi.org/10.7717/peerj-cs.406/fig-2
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

line end, kind, and ametric object, which is composed of the values of the available metrics
computed by rust-code-analysis on the functions contained in that space. All metrics
computed at the function level are then merged at the parent space level, and this
procedure continues until the space representing the entire source file is reached.

The tool is provided with parser modules that are able to construct the AST (and then to
compute the metrics) for a set of languages: C, C++, C#, Go, JavaScript, Python, Rust,
Typescript. The programming languages currently implemented in rust-code-analysis
have been chosen because they are the ones that compose the Mozilla-central repository,
which contains the code of the Firefox browser. The metrics can be computed for each
language of this repository with the exception of Java, which does not have an
implementation yet, and HTML and CSS, which are excluded because they are formatting
languages.

rust-code-analysis can receive either single files or entire directories, detect whether
they contain any code written in one of its supported languages, and output the
resultant static metrics in various formats: textual, JSON, YAML, toml, cbor (Ardito et al.,
2020a).

Concerning the original implementation of the rust-code-analysis tool, the project
was forked and modified by adding metrics computations (e.g., the COGNITIVE metric).
Also, the possible output format provided by the tool was changed.

Listing 1, reports an excerpt of the JSON file produced as output by rust-code-analysis.

1 {

2 ” name ” : ” A s s e t s / Rus t / b i n a r y t r e e s . r s ” ,

3 ” s t a r t l i n e ” : 1 ,

4 ” e n d l i n e ” : 75 ,

5 ” k ind ” : ” u n i t ” ,

6 ” m e t r i c s ” : {

7 ” n a r g s ” : {

8 ”sum” : 14 . 0 ,

9 ” a v e r a g e ” : 2 . 0

10 } ,

11 ” n e x i t s ” : {

12 ”sum” : 3 . 0 ,

13 ” a v e r a g e ” : 0 . 42857142857142855

14 } ,

15 ” c o g n i t i v e ” : {

16 ”sum” : 5 . 0 ,

17 ” a v e r a g e ” : 0 . 7142857142857143

18 } ,

19 ” c y c l o m a t i c ” : {

20 ”sum” : 12 . 0 ,

21 ” a v e r a g e ” : 1 . 5

22 } ,

23 ” h a l s t e a d ” : {

24 ” n1 ” : 22 . 0 ,

25 ”N1” : 193 . 0 ,

26 ” n2 ” : 43 . 0 ,

27 ”N2” : 140 . 0 ,

28 ” l e n g t h ” : 333 . 0 ,

29 ” e s t i m a t e d p r o g r a m l e n g t h ” : 331 . 4368800622107 ,

30 ” p u r i t y r a t i o ” : 0 . 9953059461327649 ,

31 ” v o c a b u l a r y ” : 65 . 0 ,

32 ” volume ” : 2005 . 4484817384753 ,

33 ” d i f f i c u l t y ” : 35 . 81395348837209 ,

34 ” l e v e l ” : 0 . 02792207792207792 ,

35 ” e f f o r t ” : 71823 . 03864830818 ,

36 ” t ime ” : 3990 . 168813794899 ,

37 ” bugs ” : 0 . 5759541722145377

38 } ,

39 ” l o c ” : {

40 ” s l o c ” : 75 . 0 ,

41 ” p l o c ” : 56 . 0 ,

42 ” l l o c ” : 31 . 0 ,

43 ” c l o c ” : 7 . 0 ,

44 ” b l a n k ” : 12 . 0

45 } ,

46 ”nom” : {

47 ” f u n c t i o n s ” : 4 . 0 ,

48 ” c l o s u r e s ” : 3 . 0 ,

49 ” t o t a l ” : 7 . 0

50 } ,

51 ” mi ” : {

52 ” m i o r i g i n a l ” : 58 . 75785297946959 ,

53 ” m i s e i ” : 33 . 08134287773029 ,

54 ” m i v i s u a l s t u d i o ” : 34 . 36131753185356

55 }

56 }

57 }

Listing 1 Sample output of the rust-code-analysis tool for the Rust version of the binarytrees
algorithm. Full-size DOI: 10.7717/peerj-cs.406/list-1

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 11/33

http://dx.doi.org/10.7717/peerj-cs.406/list-1
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

Analyzer
A Python script named analyzer.py was developed to analyze the metrics computed from
rust-code-analysis. This script can launch different software libraries to compute metrics
and adapt their results to a common format.

In this experiment, the analyzer.py script was used only with the Rust-code-analysis
tool, but in a future extension of this study—or other empirical assessments—the script
can be used to launch different tools simultaneously on the same source code.

The analyzer.py script performs the following operations:

� The arguments are parsed to verify their correctness. For instance, analyzer.py receives
as arguments the list of tools to be executed, the path of the source code to analyze, and
the path to the directory where to save the results;

� The selected metric computation tool(s) is (are) launched, to start the computation of
the software metrics on the source files passed as arguments to the analyzer script;

� The output of the execution of the tool(s) is converted in JSON and formatted in order
to have a common standard to compare the measured software metrics;

� The newly formatted JSON files are saved in the directory previously passed as an
argument to analyzer.py.

The output produced by rust-code-analysis through analyzer.py was modified for the
following reasons:

� The names of the metrics computed by the tool are not coherent with the ones selected
from the scientific literature about software static quality metrics;

� The types of data representing the metrics are floating-point values instead of integers
since rust-code-analysis aims at being as versatile as possible;

� The missing aggregation of each source file metrics contained in a directory within a
single JSON-object, which is composed of global metrics and the respective metrics for
each file. This additional aggregate data allows obtaining a more general prospect on the
quality of a project written in a determined programming language.

Listing 2 reports an excerpt of the JSON file produced as output by the Analyzer script.
As further documentation of the procedure, the full JSON files generated in the evaluation
can be found in the Results folder of the project (https://github.com/SoftengPoliTo/
SoftwareMetrics/tree/master/Results).

Comparison
A second Python script, Compare.py, was finally developed to perform the comparisons
over the JSON result files generated by the Analyzer.py script. The Compare.py script
executes the comparisons between different language configurations, given an analyzed
source code artifact and a metric.

The script receives a Configuration as a parameter, a pair of versions of the same code,
written in two different programming languages.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 12/33

https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Results
https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Results
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

The script performs the following operations for each received Configuration:

� Computes the metrics for the two files of a configuration by calling the analyzer.py
script;

� Loads the two JSON files from the Results directory and compares them, producing a
JSON file of differences;

� Deletes all local metrics (the ones computed by rust-code-analysis for each subspace)
from the JSON file of differences;

� Saves the JSON file of differences, now containing only global file metrics, in a defined
destination directory.

The JSON differences file is produced using a JavaScript program called JSON-diff
(https://www.npmjs.com/package/json-diff).

Listing 3 reports an excerpt of the JSON file produced as output by the Comparison
script. As further documentation of the procedure, the full JSON files generated in the
evaluation can be found in the Compare folder of the project (https://github.com/
SoftengPoliTo/SoftwareMetrics/tree/master/Compare).

Data collection and Analysis procedure
To collect the data to analyze, the described instruments were applied on each of the
selected software objects for all the languages studied (i.e., for a total of 45 software
artifacts).

The collected data was formatted in a single .csv file containing all the measurements.
To analyze the results, comparative analyses of the average and median of each of the

measured metrics were performed to provide a preliminary discussion.
A non-parametric Kruskal–Wallis test was later applied to identify statistically

significant differences among the different sets of metrics for each language.

1 {

2 ”SLOC” : 75 ,

3 ”PLOC” : 56 ,

4 ”LLOC” : 31 ,

5 ”CLOC” : 7 ,

6 ”BLANK” : 12 ,

7 ”CC SUM” : 12 ,

8 ”CC AVG” : 1 . 5 ,

9 ”COGNITIVE SUM” : 5 ,

10 ”COGNITIVE AVG” : 0 . 7142857142857143 ,

11 ”NARGS SUM” : 14 ,

12 ”NARGS AVG” : 2 . 0 ,

13 ”NEXITS” : 3 ,

14 ”NEXITS AVG” : 0 . 42857142857142855 ,

15 ”NOM” : {

16 ” f u n c t i o n s ” : 4 ,

17 ” c l o s u r e s ” : 3 ,

18 ” t o t a l ” : 7

19 } ,

20 ”HALSTEAD” : {

21 ” n1 ” : 22 ,

22 ” n2 ” : 43 ,

23 ”N1” : 193 ,

24 ”N2” : 140 ,

25 ” Vocabu la ry ” : 65 ,

26 ” Length ” : 333 ,

27 ” Volume ” : 2005 . 4484817384753 ,

28 ” D i f f i c u l t y ” : 35 . 81395348837209 ,

29 ” Leve l ” : 0 . 02792207792207792 ,

30 ” E f f o r t ” : 71823 . 03864830818 ,

31 ” Programming t ime ” : 3990 . 168813794899 ,

32 ” Bugs ” : 0 . 5759541722145377 ,

33 ” E s t i m a t e d program l e n g t h ” : 331 . 4368800622107 ,

34 ” P u r i t y r a t i o ” : 0 . 9953059461327649

35 } ,

36 ”MI” : {

37 ” O r i g i n a l ” : 58 . 75785297946959 ,

38 ” S e i ” : 33 . 08134287773029 ,

39 ” V i s u a l S t u d i o ” : 34 . 36131753185356

40 }

41 }

Listing 2 Sample output of the analyzer.py script for the Rust version of the binarytrees algorithm.
Full-size DOI: 10.7717/peerj-cs.406/list-2

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 13/33

https://www.npmjs.com/package/json-diff
https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Compare
https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Compare
http://dx.doi.org/10.7717/peerj-cs.406/list-2
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

1 {

2 ”SLOC” : {

3 ” o l d ” : 139 ,

4 ” new ” : 75

5 } ,

6 ”PLOC” : {

7 ” o l d ” : 98 ,

8 ” new ” : 56

9 } ,

10 ”LLOC” : {

11 ” o l d ” : 25 ,

12 ” new ” : 31

13 } ,

14 ”CLOC” : {

15 ” o l d ” : 15 ,

16 ” new ” : 7

17 } ,

18 ”BLANK” : {

19 ” o l d ” : 26 ,

20 ” new ” : 12

21 } ,

22 ”CC SUM” : {

23 ” o l d ” : 19 ,

24 ” new ” : 12

25 } ,

26 ”CC AVG” : {

27 ” o l d ” : 1 . 4615384615384615 ,

28 ” new ” : 1 . 5

29 } ,

30 ”COGNITIVE SUM” : {

31 ” o l d ” : 8 ,

32 ” new ” : 5

33 } ,

34 ”COGNITIVE AVG” : {

35 ” o l d ” : 0 . 8888888888888888 ,

36 ” new ” : 0 . 7142857142857143

37 } ,

38 ”NARGS SUM” : {

39 ” o l d ” : 2 ,

40 ” new ” : 14

41 } ,

42 ”NARGS AVG” : {

43 ” o l d ” : 0 . 2222222222222222 ,

44 ” new ” : 2

45 } ,

46 ”NEXITS” : {

47 ” o l d ” : 5 ,

48 ” new ” : 3

49 } ,

50 ”NEXITS AVG” : {

51 ” o l d ” : 0 . 5555555555555556 ,

52 ” new ” : 0 . 42857142857142855

53 } ,

54 ”NOM” : {

55 ” f u n c t i o n s ” : {

56 ” o l d ” : 9 ,

57 ” new ” : 4

58 } ,

59 ” c l o s u r e s ” : {

60 ” o l d ” : 0 ,

61 ” new ” : 3

62 } ,

63 ” t o t a l ” : {

64 ” o l d ” : 9 ,

65 ” new ” : 7

66 }

67 } ,

68 ”HALSTEAD” : {

69 ” n1 ” : {

70 ” o l d ” : 28 ,

71 ” new ” : 22

72 } ,

73 ” n2 ” : {

74 ” o l d ” : 56 ,

75 ” new ” : 43

76 } ,

77 ”N1” : {

78 ” o l d ” : 251 ,

79 ” new ” : 193

80 } ,

81 ”N2” : {

82 ” o l d ” : 173 ,

83 ” new ” : 140

84 } ,

85 ” Vocabu la ry ” : {

86 ” o l d ” : 84 ,

87 ” new ” : 65

88 } ,

89 ” Length ” : {

90 ” o l d ” : 424 ,

91 ” new ” : 333

92 } ,

93 ” Volume ” : {

94 ” o l d ” : 2710 . 3425872581947 ,

95 ” new ” : 2005 . 4484817384753

96 } ,

97 ” D i f f i c u l t y ” : {

98 ” o l d ” : 43 . 25 ,

99 ” new ” : 35 . 81395348837209

100 } ,

101 ” Leve l ” : {

102 ” o l d ” : 0 . 023121387283236993 ,

103 ” new ” : 0 . 02792207792207792

104 } ,

105 ” E f f o r t ” : {

106 ” o l d ” : 117222 . 31689891692 ,

107 ” new ” : 71823 . 03864830818

108 } ,

109 ” Programming t ime ” : {

110 ” o l d ” : 6512 . 3509388287175 ,

111 ” new ” : 3990 . 168813794899

112 } ,

113 ” Bugs ” : {

114 ” o l d ” : 0 . 7983970910222301 ,

115 ” new ” : 0 . 5759541722145377

116 } ,

117 ” E s t i m a t e d program l e n g t h ” : {

118 ” o l d ” : 459 . 81781345283866 ,

119 ” new ” : 331 . 4368800622107

120 } ,

121 ” P u r i t y r a t i o ” : {

122 ” o l d ” : 1 . 0844759751246196 ,

123 ” new ” : 0 . 9953059461327649

124 }

125 } ,

126 ”MI” : {

127 ” O r i g i n a l ” : {

128 ” o l d ” : 45 . 586404609681736 ,

129 ” new ” : 58 . 75785297946959

130 } ,

131 ” S e i ” : {

132 ” o l d ” : 16 . 3624350913677 ,

133 ” new ” : 33 . 08134287773029

134 } ,

135 ” V i s u a l S t u d i o ” : {

136 ” o l d ” : 26 . 658716146012715 ,

137 ” new ” : 34 . 36131753185356

138 }

139 }

140 }

Listing 3 Sample output of the compare.py script for the C++/Rust comparisons of the binarytrees
algorithm. The _old label identifies C++ metric values, while new the Rust ones.

Full-size DOI: 10.7717/peerj-cs.406/list-3

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 14/33

http://dx.doi.org/10.7717/peerj-cs.406/list-3
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

For significantly different distributions, post-hoc comparisons with Wilcoxon signed
rank-sum test, with Benjamini-Hochberg correction (Ferreira & Zwinderman, 2006),
were applied to analyze the difference between the metrics measured for Rust and the other
five languages in the set.

Descriptive and statistical analyses and graph generation were performed in R. The data
and scripts have been made available in an online repository (https://github.com/
SoftengPoliTo/rust-analysis).

Threats to validity
Threats to internal validity

The study results may be influenced by the specific selection of the tool with which the
software metrics were computed, namely the rust-code-analysis tool. The values measured
for the individual metrics (and, by consequence, the reasoning based upon them) can be
heavily influenced by the exact formula used for the metric computation.

In the Halstead suite, the formulas depend on two coefficients defined explicitly in
the literature for every software language, namely the denominators for the T and B
metrics. Since no previous result in the literature has provided Halstead coefficients
specific to Rust, the C coefficients were used for the computation of Rust Halstead metrics.
More specifically, 18 was used as the denominator of the T metric. This value, called Stoud
number (S), is measured in moments, that is, the time required by the human brain to
carry out the most elementary decision. In general, S is comprised between 5 and 20. In the
original Halstead metrics suite for the C language, a value of 18 is used. This value was
empirically defined after psychological studies of the mental effort required by coding.
A total of 3,000 was selected as the denominator of the Number of delivered Bugs metric;
this value, again, is the original value defined for the Halstead suite and represents
the number of mental discriminations required to produce an error in any language.
The 3,000 value was originally computed for the English language and then mutuated for
programming languages (Ottenstein, Schneider & Halstead, 1976). The choice of the
Halstead parameters may significantly influence the values obtained for the T and B
metrics. The definition of the specific parameters for a new programming language,
however, implies the need for a thorough empirical evaluation of such parameters. Future
extensions of this work may include studies to infer the optimal Halstead parameters for
Rust source code.

Finally, two metrics, NARGS and NEXITS, were adopted for the evaluation of
readability and organization of code. Albeit extensively used in production (they are
used in the Mozilla-central open-source codebase), these metrics still miss empirical
validation on large repositories, and hence their capacity of predicting code readability and
complexity cannot be ensured.

Threats to external validity
The results presented in this research have been measured on a limited number of source
artifacts (namely, nine different code artifacts per programming language). Therefore,
we acknowledge that the results cannot be generalized to all software written with one of

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 15/33

https://github.com/SoftengPoliTo/rust-analysis
https://github.com/SoftengPoliTo/rust-analysis
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

the analyzed programming languages. Another bias can be introduced in the results by the
characteristics of the considered code artifacts. All considered source files were small
programs collected from a single software repository. The said software repository itself
was implemented for a specific purpose, namely the evaluation of the performance of
different programming languages at runtime. Therefore, it is still unsure whether our
measurements can scale up to bigger software repositories and real-world applications
written in the evaluated languages. As well, the results of the present manuscript may
inherit possible biases that the authors of the code had in writing the source artifacts
employed for our evaluation. Future extensions of the current work should include the
computation of the selected metrics on more extensive and more diverse sets of software
artifacts to increase the generalizability of the present results.

Threats to conclusion validity
The conclusions detailed in this work are only based on the analysis of quantitative
metrics and do not consider other possible characteristics of the analyzed source artifacts
(e.g., the developers’ coding style who produced the code). Like the generalizability of
the results, this bias can be reduced in future extensions of the study using a broader and
more heterogeneous set of source artifacts (Sjøberg, Anda & Mockus, 2012).

In this work, we make assumptions on verbosity, complexity, understandability, and
maintainability of source code based on quantitative static metrics. It is not ensured that
our assumptions are reflected by maintenance and code understanding effort in real-world
development scenarios. It is worth mentioning that there is no unanimous opinion
about the ability of more complex metrics (like MI) to capture the maintainability of
software programs more than simpler metrics like lines of code and Cyclomatic
Complexity.

Researcher bias is a final theoretical threat to the validity of this study since it involved a
comparison in terms of different metrics of different programming languages. However,
the authors have no reason to favor any particular approach, neither inclined to
demonstrate any specific result.

RESULTS AND DISCUSSION
This section reports the results gathered by applying the methodology described in the
previous section, subdivided according to the research question they answer.

RQ1: code verbosity
The boxplots in Fig. 3 and Table 8 report the measures for the metrics adopted to
answer RQ1.

The mean and median values of the Source Lines of Code (SLOC) metric (i.e., total lines
of code in the source files) are largely higher for the C, C++, and Rust language: the highest
mean SLOC was for C (209 average LOCs per source file), followed by C++ (186) and
Rust (144). The mean values are way smaller for Python, TypeScript, and JavaScript
(respectively, 98, 107, and 95).

A similar trend is assumed by the Physical Lines of Code (PLOC) metric, i.e., the total
number of instructions and comment lines in the source files. In the examined set,

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 16/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

74 average PLOCs per file were measured for the Rust language. The highest and smallest
values were again measured respectively for C and TypeScript, with 129 and 74 average
PLOCs per file. The values measured for the CLOC and BLANK metrics showed that a
higher number of empty lines of code and comments were measured for C than for all
other languages. In the CLOC metric, the Rust language exhibited the second-highest
mean of all languages, suggesting a higher predisposition of Rust developers at providing
documentation in the developed source code.

A slightly different trend is assumed by the Logical Lines of Code (LLOC) metric
(i.e., the number of instructions or statements in a file). In this case, the mean number of
statements for Rust code is higher than the ones measured for C, C++ and TypeScript,
while the SLOC and PLOCmetrics are lower. The Rust scripts also had the highest median
LLOC. This result may be influenced with the different number of types of statements

Table 8 Mean (Median) values of the metrics about lines of code for all the considered programming
languages.

Language SLOC PLOC LLOC CLOC BLANK

C 209 (201) 129 (128) 48 (41) 43 (49) 37 (36)

C++ 186 (177) 137 (120) 51 (50) 20 (15) 28 (26)

Rust 144 (145) 105 (95) 52 (62) 21 (19) 18 (17)

Python 99 (76) 73 (61) 59 (53) 8 (6) 18 (16)

JavaScript 107 (92) 83 (76) 58 (60) 9 (7) 16 (9)

TypeScript 95 (64) 74 (46) 51 (42) 8 (7) 13 (10)

0

100

200

300

SLOC PLOC LLOC CLOC BLANK
Metric

M
ea

su
re

Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 3 Distribution of the metrics about lines of code for all the considered programming
languages. Full-size DOI: 10.7717/peerj-cs.406/fig-3

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 17/33

http://dx.doi.org/10.7717/peerj-cs.406/fig-3
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

that are offered by the language. For instance, the Rust language provides 19 types of
statements while C offers just 14 types (e.g., the Rust statements If let andWhile let are not
present in C). The higher amount of logical statements may indeed hint at a higher
decomposition of the instructions of the source code into more statements, that is, more
specialized statements covering less operations.

Albeit many higher-level measures and metrics have been derived in the latest years by
related literature to evaluate the understandability and maintainability of software, the
analysis of code verbosity can be considered a primary proxy for these evaluations. In fact,
several studies have linked the intrinsic verbosity of a language to lower readability of
the software code, which translates to higher effort when the code has to be maintained.
For instance, Flauzino et al. (2018) state that verbosity can cause higher mental energy
in coders working on implementing an algorithm and can be correlated to many smells
in software code. Toomim, Begel & Graham (2004) highlight that redundancy and
verbosity can obscure meaningful information in the code, thereby making it difficult to
understand.

The metrics for RQ1 where mostly evenly distributed among different source code
artifacts. Two outliers were identified for the PLOC metric in C and C++ (namely, fasta.c
and fasta.cpp), mostly due to the fact that they have the highest SLOC value, so the
results are coherent. More marked outliers were found for the BLANK metric, but such
measure is strongly influenced by the developer’s coding style and the used code
formatters; thereby, no valuable insight can be found by analyzing the individual code
artifacts.

Table 9 reports the results of applying the Kruskal–Wallis non-parametric test on the set
of measures for RQ1. The difference for SLOC, PLOC, CLOC, and BLANK were
statistically significant (with strong significance for the last two metrics). Post-hoc
statistical tests focused on the comparison between Rust, and the other languages
(Table 10) led to the evidence that Rust had a significantly lower CLOC than C and a
significantly lower BLANK than C and TypeScript.

Answer to RQ1: The examined source files written in Rust exhibited an average
verbosity (144 mean SLOCs per file and 74 mean PLOCs per file). Such values are lower
than C and C++ and higher than the other considered object-oriented languages. Rust
exhibited the third-highest average (and highest median) LLOC among all considered

Table 9 Null hypotheses and p-values for RQ1 metrics obtained by applying Kruskal–Wallis chi-
squared test (Signific. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “–” 1).

Name Description p-value Decision Significance

H0SLOC No significant difference in SLOC for the sw artifacts 0.001706 Reject **

H0PLOC No significant difference in PLOC for the artifacts 0.03617 Reject *

H0LLOC No significant difference in LLOC for the artifacts 0.9495 Not Reject –

H0CLOC No significant difference in CLOC for the artifacts 7.07e−05 Reject ***

H0BLANK No significant difference in BLANK for the artifacts 0.0001281 Reject ***

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 18/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

languages. Significantly lower values were measured for CLOC against C and BLANK
against C and TypeScript.

RQ2: code organization
The boxplots in Fig. 4 and Table 11 report the measures for the metrics adopted to answer
RQ2. For each source file, two different measures were collected for the Number of
Arguments (NARGS) metric: the sum at file level of all the methods arguments and the
average at file level of the number of arguments per method (i.e., NARGS/NOM).

The Rust language had the highest median value for the Number of Methods (NOM)
metric, with a median of 10 methods per source file. The average NOM value was only
lower than the one measured for C++ sources. However, this value was strongly influenced
by the presence of one outlier in the set of analyzed sources (namely, the C++
implementation of fasta having a NOM equal to 20). While the NOM values were similar
for C++ and Rust, all other languages exhibited much lower distributions, with the lowest

0

10

20

30

40

NOM NARGS (Sum) NARGS (Avg) NEXITS (Sum) NEXITS(Avg)
Metric

M
ea

su
re

Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 4 Distribution of the metrics about organization of code for all the considered programming
languages. Full-size DOI: 10.7717/peerj-cs.406/fig-4

Table 10 p-Values for post-hoc Wilcoxon signed rank test for RQ1 metrics between Rust and the
other languages (significant p-values in bold).

Metric C C++ JavaScript Python TypeScript

SLOC 0.0519 0.3309 0.2505 0.0420 0.0519

PLOC 0.3770 0.3081 0.3607 0.2790 0.2790

CLOC 0.0399 0.8242 0.0620 0.0620 0.097

BLANK 0.0053 0.0618 0.1944 0.7234 0.0467

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 19/33

http://dx.doi.org/10.7717/peerj-cs.406/fig-4
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

median value for JavaScript (3). This high number of Rust methods can be seen as evidence
of higher modularity than the other languages considered.

Regarding the number of arguments, it can be noticed that the Rust language exhibited
the highest average and median cumulative number of arguments (Sum of Arguments) of
all languages. The already discussed high NOM value influences this result. The highest
NOM (and, by consequence, of the total cumulative number of arguments) can be
caused by the missing possibility of having default values in the Rust language.
This characteristic may lead to multiple variations of the same method to take into account
changes in the parameter, thereby leading to a higher NARGS. The lowest average
measures for NOM and NARGS_Sum metrics were obtained for the C language. This
result can be justified by the lower modularity of the C language. By examining the C
source files, it could be verified that the code presented fewer functions and more frequent
usage of nested loops, while the Rust sources were using more often data structures and
ad-hoc methods. In general, the results gathered for these metrics suggest a more
structured Rust code organization with respect to the C language.

The NOM metric has an influence on the verbosity of the code, and therefore it can be
considered as a proxy of the readability and maintainability of the code.

Regarding the Number of Exits (NEXITS) metric, the values were close for most
languages, except Python and TypeScript, which respectively contain more methods
without exit points and fewer functions. The obtained NEXITS value for Rust shows many
exit points distributed among many functions, as demonstrated by the NOM value,
making the code much more comfortable to follow.

An analysis of the outliers of the distributions of the measurements for RQ2 was
performed. For C++, the highest value of NOM was exhibited by the revcomp.cpp source
artifact. This high value was caused by the extensive use of classes methods to handle
chunks of DNA sequences. knucleotide.py and spectralnorm.py had a higher number of
functions than the other considered source artifacts. fasta.cpp uses lots of mall functions
with many arguments, resulting in an outlier value for the NARGSSUM metric. pidigits.py
had 0 values for NOM and NARGS, since it used zero functions. Regarding NEXITS,
very high values were measured for fasta.cpp and revcomp.cpp, which had many functions
with return statements. Lower values were measured for regexredup.cpp, which has a single
main function without any return, and pidigits.cpp, which has a single return. A final

Table 11 Mean (Median) values of the metrics about code organization for all the considered
programming languages.

Language NOM NARGS (Sum) NARGS (Avg) NEXITS (Sum) NEXITS (Avg)

C 4.4 (4) 8.6 (9) 2.0 (2) 3.1 (4) 0.75 (0.67)

C++ 10.6 (8) 13.4 (11) 1.4 (1) 6.0 (5) 0.48 (0.5)

Rust 10.3 (10) 25.1 (30) 2.0 (2) 5.7 (4) 0.44 (0.43)

Python 5.7 (5) 10.6 (9) 1.8 (2) 2.8 (1) 0.45 (0.33)

JavaScript 5.9 (3) 7.4 (4) 1.1 (1) 4.6 (4) 0.63 (0.5)

TypeScript 4.7 (4) 5.7 (4) 1.1 (1) 2.1 (2) 0.58 (0.4)

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 20/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

outlier was the NEXITS value for fasta.js, which features a very high number of function
with return statements.

Table 12 reports the results of the application of the Kruskal–Wallis non-parametric test
on the set of measures for RQ2. The difference for NOM, NARGSSUM and NARGSAVG was
statistically significant, while no significance was measured fo the metrics related to the
NEXITS. Post-hoc statistical tests focused on the comparison between Rust, and the
other languages (Table 13) highlighted that Rust had a significantly higher NARGSSUM
than C, JavaScript, Python, and TypeScript, and a significantly higher NARGSAVG than
JavaScript.

Answer to RQ2: The examined source files written in Rust exhibited the most
structured organization of the considered set of languages (with a mean 10.3 NOM per file,
with a mean of 2 arguments for each method). The Rust language had a significantly higher
number of arguments than C, JavaScript, Python, and TypeScript.

RQ3: code complexity
The boxplots in Fig. 5 and Table 14 report the measures for the metrics adopted to answer
RQ3. For the Computational Complexity, two metrics were computed: the sum of the
Cyclomatic Complexity (CC) of all spaces in a source file (CCSum), and the averaged value
of CC over the number of spaces in a file (CCAvg). A space is defined in rust-code-analysis
as any structure that incorporates a function. For what concerns the COGNITIVE
complexity, two metrics were computed: the sum of the COGNITIVE complexity
associated to each function and closure present in a source file, (COGNITIVESum), and
the average value of COGNITIVE complexity, (COGNITIVEAvg), always computed
over the number of functions and closures. Table 14 reports the mean and median values
over the set of different source files selected for each language, of the sum and average
metrics computed at the file level.

Table 12 Null hypotheses and p-values for RQ2 metrics obtained by applying Kruskal–Wallis chi-squared test (Signific. codes: 0 “***”
0.001 “**” 0.01 “*” 0.05 “.” 0.1 “–” 1).

Name Description p-value Decision Significance

H0NOM No significant difference in NOM for the artifacts 0.04372 Reject *

H0NARGSSUM No significant difference in NARGSSUM for the artifacts 0.02357 Reject *

H0NARGSAVG No significant difference in NARGSAVG for the artifacts 0.008224 Reject **

H0NEXITSSUM No significant difference in NEXITSSUM for the artifacts 0.142 Not Reject –

H0NEXITSAVG No significant difference in NEXITSAVG for the artifacts 0.2485 Not Reject –

Table 13 p-Values for post-hoc Wilcoxon signed rank test for RQ2 metrics between Rust and the
other languages (significant p-values in bold).

Metric C C++ JavaScript Python TypeScript

NOM 0.0534 0.7560 0.1037 0.0546 0.0533

NARGSSUM 0.0239 0.0633 0.0199 0.0318 0.0177

NARGSAVG 0.5658 0.1862 0.0451 0.4392 0.0662

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 21/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

As commonly accepted in the literature and practice, a low cyclomatic complexity
generally indicates a method that is easy to understand, test, and maintain. The reported
measures showed that the Rust language had a lower median CCSum (22) than C and C++
and the second-highest average value (25.3). The lowest average and median CCSum

was measured for the TypeScript language. By considering the average of the Cyclomatic
Complexity, CCAvg, at the function level, the highest average and mean values are
instead obtained for the Rust language. It is worth mentioning that the average CC values
for all the languages were rather low, hinting at an inherent simplicity of the software
functionality under examination. So an analysis based on different codebases may result in
more pronounced differences between the programming languages.

COGNITIVE complexity is a software metric that assesses the complexity of code
starting from human judgment and is a measure for source code comprehension by the
developers and maintainers (Barón, Wyrich & Wagner, 2020). Moreover, empirical results

0

20

40

60

CC (Sum) CC (Avg) COGNITIVE (Sum) COGNITIVE (Avg)
Metric

M
ea

su
re

Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 5 Distribution of complexity metrics for all the considered programming languages.
Full-size DOI: 10.7717/peerj-cs.406/fig-5

Table 14 Mean (Median) values of the complexity metrics for all the considered programming
languages.

Language CCSum CCAvg COGNITIVESum COGNITIVEAvg

C 27.3 (28) 4.3 (3.5) 24.3 (21.0) 11.2 (5.5)

C++ 31.1 (29) 2.7 (2.4) 22.4 (23.0) 3.2 (1.5)

Rust 25.3 (22) 2.0 (2.0) 13.1 (10.0) 1.5 (0.7)

Python 23.0 (16) 3.6 (3.0) 25.4 (13.0) 4.4 (3.0)

JavaScript 17.6 (17) 3.4 (2.2) 19.9 (15.0) 8.5 (2.3)

TypeScript 15.2 (14) 3.4 (2.2) 17.0 (12.0) 7.2 (2.3)

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 22/33

http://dx.doi.org/10.7717/peerj-cs.406/fig-5
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

have also proved the correlation between COGNITIVE complexity and defects (Alqadi &
Maletic, 2020). For both the average COGNITIVE complexity and the sum of
COGNITIVE complexity at the file level, Rust provided the lowest mean and median
values. Specifically, Rust guaranteed a COGNITIVE complexity of 0.7 per method, which
is less than half the second-lowest value for C++ (1.5). The highest average COGNITIVE
complexity per class was measured for C code (5.5). This very low value of the
COGNITIVE complexity per method for Rust is related to the highest number of methods
for Rust code (described in the analysis of RQ2 results). By considering the sum of the
COGNITIVE complexity metric at the file level, Rust had a mean COGNITIVESum of
13.1 over the 9 analyzed source files. The highest mean value for this metric was measured
for Python (25.4), and the highest median for C++ (23). Such lower values for the Rust
language can suggest a more accessible, less costly, and less prone to bug injection
maintenance for source code written in Rust. This lowest value for the COGNITIVEmetric
counters some measurements (e.g., for the LLOC and NOM metrics) by hinting that the
higher verbosity of the Rust language has not a visible influence on the readability and
comprehensibility of the Rust code.

The boxplots in Fig. 6 and Table 15 report the distributions, mean, and median of the
Halstead metrics computed for the six different programming languages.

The Halstead Difficulty (D) is an estimation of the difficulty of writing a program that is
statically analyzed. The Difficulty is the inverse of the program level metric. Hence, as
the volume of the implementation of code increases, the difficulty increases as well.
The usage of redundancy hence influences the Difficulty. It is correlated to the number
of operators and operands used in the code implementation. The results suggest that the
Rust programming language has an average Difficulty (median of 45.9) on the set of
considered languages. The most difficult code to interpret, according to Halstead metrics,
was C (median of 55.9), while the easiest to interpret was Python (median of 30.0).
A similar hierarchy between the different languages is obtained for the Halstead Effort (E),
which estimates the mental activity needed to translate an algorithm into code written in a
specific language. The Effort is linearly proportional to both Difficulty and Volume.
The unit of measure of the metric is the number of elementary mental discriminations
(Halstead, 1977).

The Halstead Length (L) metric is given by the total number of operator occurrences
and the total number of operand occurrences. The Halstead Volume (V) metric is the
information content of the program, linearly dependent on its vocabulary. Rust code had
the third-highest mean and median Halstead Length (602.2 mean, 550.0 median) and
Halstead Volume (4,032 mean, 3,610 median), again below those measured for C and C++.
The results measured for all considered source files were in line with existing programming
guidelines (Halstead Volume lower than 8,000). The reported results about Length and
Volume were, to some extent, expectable since these metrics are largely correlated to the
number of lines of code present in a source file (Tashtoush, Al-Maolegi & Arkok, 2014).

The Halstead Time metric (T) is computed as the Halstead Effort divided by 18.
It estimates the time in seconds that it should take a programmer to implement the code.
A mean and median T of 11,064 and 13,719 seconds were measured, respectively, for the

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 23/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

B
ug

s
D

iff
ic

ul
ty

E
ffo

rt
Le

ng
th

T
im

e
V

ol
um

e

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

1

2

3

30

60

90

0e+00

2e+05

4e+05

6e+05

8e+05

500

1000

0
10000
20000
30000
40000

2500

5000

7500

10000

Language

M
et

ric

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6 Distribution of Halstead metrics ((A) Bugs; (B) Difficulty; (C) Effort; (D) Length; (E) Time
and (F) Volume) for all the considered programming languages.

Full-size DOI: 10.7717/peerj-cs.406/fig-6

Table 15 Mean (Median) values of Halstead metrics for all the considered programming languages.

Language Bugs Difficulty Effort Length Programming time Volume

C 1.52 (1.6) 66.7 (55.9) 322,313 (342,335) 726.0 (867.0) 17,906 (19,018) 4,819 (5,669)

C++ 1.46 (1.3) 57.8 (56.4) 311,415 (248,153) 728.1 (634.0) 17,300 (13,786) 4,994 (4,274)

Rust 1.1 (1.3) 48.6 (45.9) 199,152 (246,959) 602.2 (550.0) 11,064 (13,719) 4,032 (3610)

Python 0.7 (0.6) 33.7 (30.0) 111,103 (72,110) 393.8 (334.0) 6,172 (4,006) 2,680 (2204)

JavaScript 0.8 (0.9) 43.1 (44.1) 139,590 (140,951) 458.6 (408.0) 7,755 (7,830) 2,963 (2615)

TypeScript 0.8 (0.6) 45.2 (41.9) 132,644 (82,369) 435.7 (302.0) 7,369 (4,576) 2,734 (1730)

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 24/33

http://dx.doi.org/10.7717/peerj-cs.406/fig-6
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

Rust programming language. These values are significantly distant from those measured
for Python and TypeScript (the lowest) and from those measured for C and C++
(the highest).

Finally, the Halstead Bugs Metric estimates the number of bugs that are likely to be
found in the software program. It is given by a division of the Volume metric by 3,000.
We estimated a mean value of 1.1 (median 1.3) bugs per file with the Rust programming
language on the considered set of source artifacts.

An analysis of the outliers of the distributions of measurements regarding RQ3 was
performed. A relevant outlier for the CC metric was revcomp.cpp, in which the usage of
many nested loops and conditional statements inside class methods significantly increased
the computed complexity. For the set of Python source files, knucleoutide.py had the
highest CC due to the usage of nested code; the same effect occurred for fannchuckredux.rs
which had the highest CC and COGNITIVE complexity for the Rust language.
The JavaScript and TypeScript versions of fannchuckredux both presented a high usage
of nested code, but the lower level of COGNITIVE complexity for the TypeScript version
suggests a better-written source code artifact. The few outliers that were found for the
Halstead metrics measurements were principally for C++ source artifacts and mostly
related to the higher PLOC and number of operands of the C++ source codes.

Table 16 reports the results of the application of the Kruskal-Wallis non-parametric
test on the set of measures for RQ3. No statistical significance was measured for the
differences in the measurements of the two metrics related to CC. A statistically significant
difference was measured for the averaged COGNITIVE complexity. Regarding the
Halstead metrics, all differences were statistically significant with the exception of those for
theDifficultymetric. Post-hoc statistical tests focused on the comparison between Rust and
the other languages (Table 17) highlighted that Rust had a significantly lower average
COGNITIVE complexity than all the other considered languages.

Answer to RQ3: The Rust software artifacts exhibited an average Cyclomatic
Complexity (mean 2.0 per function) and a significantly lower COGNITIVE complexity

Table 16 Null hypotheses and p-values for RQ3 metrics obtained by applying Kruskal–Wallis chi-squared test (Signific. codes: 0 “***”
0.001 “**” 0.01 “*” 0.05 “.” 0.1 “–” 1).

Name Description p-value Decision Significance

H0CC SUM No significant difference in CCSUM for the artifacts 0.113 Not reject –

H0CC AVG No significant difference in CCAVG for the artifacts 0.1309 Not Reject –

H0COGNITIVE SUM No significant difference in COGNITIVESUM for the artifacts 0.4554 Not Reject –

H0COGNITIVE AVG No significant difference in COGNITIVEAVG for the artifacts 0.009287 Reject **

H0Halstead Vocabulary No significant difference in Halstead Vocabulary for the artifacts 0.07718 Not Reject .

H0Halstead Difficulty No significant difference in Halstead Difficulty for the artifacts 0.01531 Reject *

H0Halstead Prog.time No significant difference in Halstead Prog. time for the artifacts 0.005966 Reject **

H0Halstead Effort No significant difference in Halstead Effort for the artifacts 0.005966 Reject **

H0Halstead Volume No significant difference in Halstead Volume for the artifacts 0.03729 Reject *

H0Halstead Bugs No significant difference in Halstead Bugs for the artifacts 0.005966 Reject **

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 25/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

(mean 1.5 per function) than all other languages. Rust was the third-highest performing
language, after C and C++, for the Halstead metric values.

RQ4: code maintainability
The boxplots in Fig. 7 and Table 18 report the distributions, mean, and median of the
Maintainability Indexes computed for the six different programming languages.

The Maintainability Index is a composite metric aiming to give an estimate of software
maintainability over time. The Metric has correlations with the Halstead Volume (V), the
Cyclomatic Complexity (CC), and the number of lines of code of the source under
examination.

Table 17 p-Values for post-hoc Wilcoxon signed rank test for RQ3 metrics between Rust and the
other languages (significant p-values in bold).

Metric C C## JavaScript Python TypeScript

COGNITIVEAVG 0.0062 0.0244 0.0222 0.0240 0.0222

HALSTEADDifficulty 0.2597 0.2621 0.5328 0.2621 0.6587

HALSTEADProgramming Time 0.1698 0.3767 0.3081 0.1930 0.3134

HALSTEADEffort 0.1698 0.3767 0.3081 0.1930 0.3134

HALSTEADVolume 0.5960 0.5328 0.2621 0.2330 0.2330

HALSTEADBugs 0.1698 0.3767 0.3081 0.1930 0.3134

O
rig

in
al

S
E

I
V

is
ua

l S
tu

di
o

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

20

40

60

80

−25

0

25

50

75

10

20

30

40

Language

M
et

ric

(A)

(B)

(C)

Figure 7 Distribution of maintainability indexes ((A) Original; (B) SEI and (C) Visual Studio) for all
the considered programming languages. Full-size DOI: 10.7717/peerj-cs.406/fig-7

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 26/33

http://dx.doi.org/10.7717/peerj-cs.406/fig-7
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

The source files written in Rust had an average MI that placed the fourth among all
considered programming languages, regardless of the specific formula used for the
calculation of the MI. Minor differences in the placement of other languages occurred, for
example, the median MI for C is higher than for C++ with the original formula for the
Maintainability Index and lower with the SEI formula. Regardless of the formula used
to compute MI, the highest maintainability was achieved by the TypeScript language,
followed by Python and JavaScript. These results were expectable in light of the previous
metrics measured, given the said strong dependency of the MI on the raw size of source
code.

It is interesting to underline that, in accordance with the original guidelines for the
MI computation, all the values measured for the software artifacts under study would
suggest hard to maintain code, being the threshold for easily maintainable code set to 80.
On the other hand, according to the documentation of the Visual Studio MI metric,
all source artifacts under test can be considered as easy to maintain (MIVS 20).

Outliers in the distributions of MI values were mostly found for C++ sources and
were likely related to higher values of SLOC, CC, and Halstead Volume, all leading to very
low MI values.

Table 19 reports the results of the application of the Kruskal-Wallis non-parametric
test on the set of measures for RQ4. The measured differences were statistically significant
for the original MI metric and for the version employed by Visual Studio. Post-hoc
statistical tests focused on the comparison between Rust, and the other languages
(Table 20) highlighted that difference was statistically significant.

Answer to RQ4: Rust exhibited an average Maintainability Index, regardless of the
specific formula used (median values of 43.3 for MIO, 22.6 for MISEI, 25.3 for MIVS).
Highest Maintainability index were obtained for Python, JavaScript and TypeScript.

Table 19 Null hypotheses and p-values for RQ4 metrics obtained by applying Kruskal–Wallis chi-squared test (Signific. codes: 0 “***”
0.001 “**” 0.01 “*” 0.05 “.” 0.1 “–” 1).

Name Description p-value Decision Significance

H0MI Original No significant difference in MI Original for the artifacts 0.006002 Reject **

H0MI SEI No significant difference in MI SEI for the artifacts 0.1334 Not Reject .

H0MI Visual Studio No significant difference in MI Visual Studio for the artifacts 0.006002 Reject **

Table 18 Mean (Median) values of maintainability indexes for all the considered programming
languages.

Language Original SEI Visual studio

C 35.9 (36.7) 10.5 (5.0) 21.0 (21.5)

C++ 36.5 (36.3) 3.6 (9.9) 21.3 (21.2)

Rust 43.0 (43.3) 15.8 (22.6) 25.1 (25.3)

Python 52.5 (55.5) 23.3 (25.7) 30.7 (32.5)

JavaScript 54.2 (51.7) 27.7 (25.3) 31.7 (30.3)

TypeScript 55.9 (61.6) 29.4 (39.2) 32.7 (36.0)

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 27/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

However, it is worth mentioning that several works in the literature from the latest years
have highlighted the intrinsic limitations of the MI metric. A study by T. Kuipers
underlines how the MI metric exposes limitations, particularly for systems built using
object-oriented languages since it is based on the CC metric that will be largely influenced
by small methods with small complexity; hence both will inevitably be low (Kuipers &
Visser, 2007). Counsell et al. (2015) as well warn against the usage of MI for Object-
Oriented software, highlighting the class size as a primary confounding factor for the
interpretation of the MI metric. Several works have tackled the issue of adapting the MI to
object-oriented code: Kaur & Singh (2011), for instance, propose the utilization of package-
level metrics. Kaur, Kaur & Pathak (2014a) have evaluated the correlation between the
traditional MI metrics and the more recent maintainability metrics provided by the
literature, like the CHANGE metric. They found that a very scarce correlation can be
measured between MI and CHANGE. Lastly, many white and grey literature sources
underline how different metrics for the MI can provide different estimations of the
maintainability for the same code. This issue is reflected by our results. While the
comparisons between different languages are mostly maintained by all three MI variations,
it can be seen that all average values for original and SEI MI suggest very low code
maintainability, while the average values for the Visual Studio MI would suggest high code
maintainability for the same code artifacts.

CONCLUSION AND FUTURE WORK
In this article, we have evaluated the complexity and maintainability of Rust code by using
static metrics and compared the results on equivalent software artifacts written in C, C++,
JavaScript, Python, and TypeScript. The main findings of our evaluation study are the
following:

� The Rust language exhibited average verbosity between all considered languages, with
lower verbosity than C and C++;

� The Rust language exhibited the most structured code organization of all considered
languages. More specifically, the examined source code artifacts in Rust had a
significantly higher number of arguments than most of the other languages;

� The Rust language exhibited average CC and values for Halstead metrics. Rust had a
significantly lower COGNITIVE complexity with respect to all other considered
languages;

Table 20 p-Values for post-hoc Wilcoxon signed rank test for RQ4 metrics between Rust and the
other languages.

Metric C C JavaScript Python TypeScript

MIOriginal 0.2624 0.3308 0.2698 0.2624 0.2624

MIVisual Studio 0.2624 0.3308 0.2698 0.2624 0.2624

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 28/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

� The Rust language exhibited average compound maintainability indexes. Comparative
analyses showed that the maintainability indexes were slightly higher (hinting at better
maintainability) than C and C++.

All the evidence collected in this paper suggests that the Rust language can produce
less verbose, more organized, and readable code than C and C++, the languages to which it
is more similar in terms of code structure and syntax. The difference in maintainability
with these two languages was not significant. On the other hand, the Rust language
provided lower maintainability than that measured for more sophisticated and high-level
object-oriented languages.

It is worth underlining that the source artifacts written in the Rust language exhibited
the lowest COGNITIVE complexity, meaning that the language can guarantee the highest
understandability of source code compared to all others. Understandability is a
fundamental feature of code during its evolution since it may significantly impact the
required effort for maintaining and fixing it.

This work contributes to the existing literature of the field as a first, preliminary
evaluation of static qualities related to maintainability for the Rust language and a first
comparison with a set of other popular programming languages. As the prosecution of
this work, we plan to perform further developments on the rust-code-analysis tool such
that it can provide more metric computation features. At the present time, for instance, the
tool is not capable of computing class-level metrics. However, it can only be employed to
compute metrics only on function and class methods.

We also plan to implement parsers for more programming languages (e.g., Java) to
enable additional comparisons. We also plan to extend our analysis to real projects
composed of a significantly higher amount of code lines that embed different
programming paradigms, such as the functional and concurrent ones. To this
extent, we plan to mine software projects from open source libraries, e.g., GitHub.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Mozilla Research funded this project with the research grant 2018 H2. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Mozilla Research Fund: 2018 H2.

Competing Interests
Luca Ardito is an Academic Editor for PeerJ Computer Science.

Luca Barbato is the owner of Luminem.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 29/33

http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

Author Contributions
� Luca Ardito conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

� Luca Barbato performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

� Riccardo Coppola analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

� Michele Valsesia performed the experiments, authored or reviewed drafts of the paper,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub: https://github.com/SoftengPoliTo/rust-analysis.
Code is available at these three GitHub repositories:
– https://github.com/greensoftwarelab/Energy-Languages.
– https://github.com/SoftengPoliTo/SoftwareMetrics.
– https://github.com/SoftengPoliTo/rust-code-analysis.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.406#supplemental-information.

REFERENCES
Aggarwal KK, Singh Y, Chhabra JK. 2002. An integrated measure of software maintainability. In:

2002 Proceedings of the Annual Reliability and Maintainability Symposium (Cat. No.
02CH37318). Piscataway: IEEE, 235–241.

Alqadi BS, Maletic JI. 2020. Slice-based cognitive complexity metrics for defect prediction. In:
2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). Piscataway: IEEE, 411–422.

Amara D, Rabai LBA. 2017. Towards a new framework of software reliability measurement based
on software metrics. Procedia Computer Science 109(2):725–730
DOI 10.1016/j.procs.2017.05.428.

Ardito L, Barbato L, Castelluccio M, Coppola R, Denizet C, Ledru S, Valsesia M. 2020a. rust-
code-analysis: a rust library to analyze and extract maintainability information from source
codes. SoftwareX 12(3):100635 DOI 10.1016/j.softx.2020.100635.

Ardito L, Coppola R, Barbato L, Verga D. 2020b. A tool-based perspective on software code
maintainability metrics: a systematic literature review. Scientific Programming 2020:8840389
DOI 10.1155/2020/8840389.

Astrauskas V, Müller P, Poli F, Summers AJ. 2019. Leveraging rust types for modular
specification and verification. Proceedings of the ACM on Programming Languages
3(OOPSLA):1–30 DOI 10.1145/3360573.

Balasubramanian A, Baranowski MS, Burtsev A, Panda A, Rakamari Z, Ryzhyk L. 2017. System
programming in rust: Beyond safety. In: Proceedings of the 16th Workshop on Hot Topics in
Operating Systems. 156–161.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 30/33

https://github.com/SoftengPoliTo/rust-analysis
https://github.com/greensoftwarelab/Energy-Languages
https://github.com/SoftengPoliTo/SoftwareMetrics
https://github.com/SoftengPoliTo/rust-code-analysis
http://dx.doi.org/10.7717/peerj-cs.406#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.406#supplemental-information
http://dx.doi.org/10.1016/j.procs.2017.05.428
http://dx.doi.org/10.1016/j.softx.2020.100635
http://dx.doi.org/10.1155/2020/8840389
http://dx.doi.org/10.1145/3360573
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

Barón MMn, Wyrich M, Wagner S. 2020. An empirical validation of cognitive complexity as a
measure of source code understandability. In: Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), ESEM ’20. New York:
Association for Computing Machinery.

Bray M, Brune K, Fisher DA, Foreman J, Gerken M. 1997. C4 software technology reference
guide—a prototype. Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,
PA, Technical Report.

Counsell S, Liu X, Eldh S, Tonelli R, Marchesi M, Concas G, Murgia A. 2015. Re-visiting
the’maintainability index’metric from an object-oriented perspective. In: 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications. Piscataway: IEEE, 84–87.

Ferreira J, Zwinderman A. 2006. On the Benjamini–Hochberg method. Annals of Statistics
34(4):1827–1849 DOI 10.1214/009053606000000425.

Flauzino M, Verssimo J, Terra R, Cirilo E, Durelli VH, Durelli RS. 2018. Are you still smelling
it? A comparative study between Java and Kotlin language. In: Proceedings of the VII Brazilian
Symposium on Software Components, Architectures, and Reuse. 23–32.

Frantz RZ, Rehbein MH, Berlezi R, Roos-Frantz F. 2019. Ranking open source application
integration frameworks based on maintainability metrics: a review of five-year evolution.
Software: Practice and Experience 49(10):1531–1549 DOI 10.1002/spe.2733.

Gill GK, Kemerer CF. 1991. Cyclomatic complexity density and software maintenance
productivity. IEEE Transactions on Software Engineering 17(12):1284–1288
DOI 10.1109/32.106988.

Halstead MH. 1977. Elements of software science. Vol. 7. New York: Elsevier .

Hariprasad T, Vidhyagaran G, Seenu K, Thirumalai C. 2017. Software complexity analysis using
halstead metrics. In: 2017 International Conference on Trends in Electronics and Informatics
(ICEI). IEEE, 1109–1113.

ISO. 1991. ISO 9126 software quality characteristics. Available at http://www.sqa.net/iso9126.html
(accessed 12 August 2020).

ISO/IEC. 2011. ISO/IEC 25010: 2011 systems and software engineering—systems and software
quality requirements and evaluation (square)—system and software quality models. Available at
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en (accessed 12 August 2020).

Jedlitschka A, Pfahl D. 2005. Reporting guidelines for controlled experiments in software
engineering. In: 2005 International Symposium on Empirical Software Engineering. Piscataway:
IEEE, 10.

Jingqiu S, Yingxu W. 2003. A new measure of software complexity based on cognitive weights.
Canadian Journal of Electrical and Computer Engineering 28(2):69–74
DOI 10.1109/CJECE.2003.1532511.

Kaur A, Kaur K, Pathak K. 2014a.A proposed new model for maintainability index of open source
software. In: Proceedings of 3rd International Conference on Reliability, Infocom Technologies
and Optimization. Piscataway: IEEE, 1–6.

Kaur A, Kaur K, Pathak K. 2014b. Software maintainability prediction by data mining of software
code metrics. In: 2014 International Conference on Data Mining and Intelligent Computing
(ICDMIC). Piscataway: IEEE, 1–6.

Kaur K, Singh H. 2011. Determination of maintainability index for object oriented systems. ACM
SIGSOFT Software Engineering Notes 36(2):1–6.

Kuipers T, Visser J. 2007. Maintainability index revisited-position paper. In: Special Session on
System Quality and Maintainability (SQM 2007) of the 11th European Conference on Software
Maintenance and Reengineering (CSMR 2007).

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 31/33

http://dx.doi.org/10.1214/009053606000000425
http://dx.doi.org/10.1002/spe.2733
http://dx.doi.org/10.1109/32.106988
http://www.sqa.net/iso9126.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
http://dx.doi.org/10.1109/CJECE.2003.1532511
http://dx.doi.org/10.7717/peerj-cs.406
https://peerj.com/computer-science/

Köster J. 2016. Rust-bio: a fast and safe bioinformatics library. Bioinformatics 32(3):444–446
DOI 10.1093/bioinformatics/btv573.

Levy A, Campbell B, Ghena B, Pannuto P, Dutta P, Levis P. 2017. The case for writing a kernel in
rust. In: Proceedings of the 8th Asia-Pacific Workshop on Systems. 1–7.

Ludwig J, Cline D. 2019. CBR insight: measure and visualize source code quality. In: 2019 IEEE/
ACM International Conference on Technical Debt (TechDebt). Piscataway: IEEE, 57–58.

Ludwig J, Xu S, Webber F. 2017. Compiling static software metrics for reliability and
maintainability from GitHub repositories. In: 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). Piscataway: IEEE, 5–9.

Matsakis ND, Klock FS. 2014. The rust language. ACM SIGAda Ada Letters 34(3):103–104
DOI 10.1145/2692956.2663188.

Matsushita T, Sasano I. 2017. Detecting code clones with gaps by function applications. In:
Proceedings of the 2017 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. New York: ACM, 12–22.

Microsoft. 2011. Code metrics—maintainability index. Available at https://docs.microsoft.com/en-
gb/archive/blogs/zainnab/code-metrics-maintainability-index (accessed 12 August 2020).

Molnar A, Motogna S. 2017. Discovering maintainability changes in large software systems. In:
Proceedings of the 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement. 88–93.

Mshelia YU, Apeh ST. 2019. Can software metrics be unified? In: International Conference on
Computational Science and Its Applications, Springer, 329–339.

Mshelia YU, Apeh ST, Edoghogho O. 2017. A comparative assessment of software metrics tools.
In: 2017 International Conference on Computing Networking and Informatics (ICCNI).
Piscataway: IEEE, 1–9.

Nair LS, Swaminathan J. 2020. Towards reduction of software maintenance cost through
assignment of critical functionality scores. In: 2020 5th International Conference on
Communication and Electronics Systems (ICCES). Piscataway: IEEE, 199–204.

Nguyen V, Deeds-Rubin S, Tan T, Boehm B. 2007. A SLOC counting standard. Cocomo ii forum.
Vol. 2007. 1–16.

Nuñez-Varela AS, Pérez-Gonzalez Héctor G, Martínez-Perez FE, Soubervielle-Montalvo C.
2017. Source code metrics: a systematic mapping study. Journal of Systems and Software
128:164–197 DOI 10.1016/j.jss.2017.03.044.

Oman P, Hagemeister J. 1992. Metrics for assessing a software system’s maintainability. In:
Proceedings Conference on Software Maintenance 1992. Piscataway: IEEE Computer Society,
337–338.

Ottenstein LM, Schneider VB, Halstead MH. 1976. Predicting the number of bugs expected in a
program module. Department of Computer Science Technical Reports. Paper 146. Available at
https://docs.lib.purdue.edu/cstech/146.

Robson C, McCartan K. 2016. Real world research. Hoboken: John Wiley & Sons.

Rust. 2020. Rust in production. Available at https://www.rust-lang.org/ (accessed 12 July 2020).

Saifan AA, Alsghaier H, Alkhateeb K. 2018. Evaluating the understandability of android
applications. International Journal of Software Innovation 6(1):44–57
DOI 10.4018/IJSI.2018010104.

Sarwar MI, Tanveer W, Sarwar I, Mahmood W. 2008. A comparative study of mi tools: Defining
the roadmap to mi tools standardization. In: 2008 IEEE International Multitopic Conference.
Piscataway: IEEE, 379–385.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 32/33

http://dx.doi.org/10.1093/bioinformatics/btv573
http://dx.doi.org/10.1145/2692956.2663188
https://docs.microsoft.com/en-gb/archive/blogs/zainnab/code-metrics-maintainability-index
https://docs.microsoft.com/en-gb/archive/blogs/zainnab/code-metrics-maintainability-index
http://dx.doi.org/10.1016/j.jss.2017.03.044
https://docs.lib.purdue.edu/cstech/146
https://www.rust-lang.org/
http://dx.doi.org/10.4018/IJSI.2018010104
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.406

Schnappinger M, Osman MH, Pretschner A, Fietzke A. 2019. Learning a classifier for prediction
of maintainability based on static analysis tools. In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). Piscataway: IEEE, 243–248.

Sjøberg DI, Anda B, Mockus A. 2012. Questioning software maintenance metrics: a comparative
case study. In: Proceedings of the 2012 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. Piscataway: IEEE, 107–110.

Tashtoush Y, Al-Maolegi M, Arkok B. 2014. The correlation among software complexity metrics
with case study. Available at http://arxiv.org/abs/1408.4523.

Toomim M, Begel A, Graham SL. 2004. Managing duplicated code with linked editing. In: 2004
IEEE Symposium on Visual Languages-Human Centric Computing. Piscataway: IEEE, 173–180.

Uzlu T, Şaykol E. 2017.On utilizing rust programming language for internet of things. In: 2017 9th
International Conference on Computational Intelligence and Communication Networks (CICN).
Piscataway: IEEE, 93–96.

Welker KD. 2001. The software maintainability index revisited. CrossTalk 14:18–21.

Zhou Y, Leung H. 2007. Predicting object-oriented software maintainability using multivariate
adaptive regression splines. Journal of systems and software 80(8):1349–1361
DOI 10.1016/j.jss.2006.10.049.

Ardito et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.406 33/33

http://arxiv.org/abs/1408.4523
http://dx.doi.org/10.1016/j.jss.2006.10.049
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.406

	Evaluation of Rust code verbosity, understandability and complexity
	Introduction
	Background and related work
	Study design
	Results and discussion
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

