
11 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluation of Rust code verbosity, understandability and complexity / Ardito, Luca; Barbato, Luca; Coppola, Riccardo;
Valsesia, Michele. - In: PEERJ. COMPUTER SCIENCE.. - ISSN 2376-5992. - (2021), pp. 1-33. [10.7717/peerj-cs.406]

Original

Evaluation of Rust code verbosity, understandability and complexity

Publisher:

Published
DOI:10.7717/peerj-cs.406

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2869605 since: 2021-02-26T09:44:17Z

PeerJ

Evaluation of Rust code verbosity,1

understandability and complexity2

Luca Ardito1, Luca Barbato2, Riccardo Coppola1, and Michele Valsesia1
3

1Politecnico di Torino4

2Luminem5

Corresponding author:6

Luca Ardito1
7

Email address: luca.ardito@polito.it8

ABSTRACT9

Rust is an innovative programming language initially implemented by Mozilla, developed to ensure high
performance, reliability, and productivity.

10

11

The final purpose of this study consists of applying a set of common static software metrics to pro-
grams written in Rust to assess the verbosity, understandability, organization, complexity, and maintain-
ability of the language.

12

13

14

To that extent, nine different implementations of algorithms available in different languages were se-
lected. We computed a set of metrics for Rust, comparing them with the ones obtained from C and a
set of object-oriented languages: C++, Python, JavaScript, TypeScript. To parse the software artifacts
and compute the metrics, it was leveraged a tool called rust-code-analysis that was extended with a
software module, written in Python, with the aim of uniforming and comparing the results.

15

16

17

18

19

The Rust code had an average verbosity in terms of the raw size of the code. It exposed the most
structured source organization in terms of the number of methods. Rust code had a better Cyclomatic
Complexity, Halstead Metrics, and Maintainability Indexes than C and C++ but performed worse than
the other considered object-oriented languages. Lastly, the Rust code exhibited the lowest COGNI-
TIVE complexity of all languages.

20

21

22

23

24

The collected measures prove that the Rust language has average complexity and maintainability com-
pared to a set of popular languages. It is more easily maintainable and less complex than the C and
C++ languages, which can be considered syntactically similar. These results, paired with the memory
safety and safe concurrency characteristics of the language, can encourage wider adoption of the lan-
guage of Rust in substitution of the C language in both the open-source and industrial environments.

25

26

27

28

29

1 INTRODUCTION30

Software maintainability is defined as the ease of maintaining software during the delivery of its re-31

leases. Maintainability is defined by the ISO 9126 standard as ”The ability to identify and fix a fault32

within a software component” [17], and by the ISO/IEC 25010:2011 standard as ”degree of effective-33

ness and efficiency with which a product or system can be modified by the intended maintainers” [18].34

Maintainability is an integrated software measure that encompasses some code characteristics, such as35

readability, documentation quality, simplicity, and understandability of source code [1].36

Maintainability is a crucial factor in the economic success of software products. It is commonly ac-37

cepted in the literature that the most considerable cost associated with any software product over its38

lifetime is the maintenance cost [50]. The maintenance cost is influenced by many different factors,39

e.g., the necessity for code fixing, code enhancements, the addition of new features, poor code quality,40

and subsequent need for refactoring operations [35].41

Hence, many methodologies have consolidated in software engineering research and practice to en-42

hance this property. Many metrics have been defined to provide a quantifiable and comparable measure-43

ment for it [37]. Many metrics measure lower-level properties of code (e.g., related to the number of44

lines of code and code organization) as proxies for maintainability. Several comprehensive categoriza-45

tions and classifications of the maintainability metrics presented in the literature during the last decades46

have been provided, e.g., the one by Frantz et al. provides a categorization of 25 different software47

metrics under the categories of Size, Coupling, Complexity, and Inheritance [13].48

The academic and industrial practice has also provided multiple examples of tools that can automati-49

cally compute software metrics on source code artifacts developed in many different languages [34].50

Several frameworks have also been described in the literature that leverage combinations of software51

code metrics to predict or infer the maintainability of a project [22, 3, 33]. The most recent work in the52

field of metric computation is aiming at applying machine learning-based approaches to the prediction53

of maintainability by leveraging the measurements provided by static analysis tools [44].54

However, the benefit of the massive availability of metrics and tooling for their computation is con-55

trasted by the constant emergence of novel programming languages in the software development com-56

munity. In most cases, the metrics have to be readapted to take into account newly defined syntaxes,57

and existing metric-computing tools cannot work on new languages due to the unavailability of parsers58

and metric extraction modules. For recently developed languages, the unavailability of appropriate59

tooling represents an obstacle for empirical evaluations on the maintainability of the code developed60

using them.61

This work provides a first evaluation of verbosity, code organization, understandability, and complexity62

of Rust, a newly emerged programming language similar in characteristics to C++, developed with the63

premises of providing better maintainability, memory safety, and performance [29]. To this purpose, we64

(i) adopted and extended a tool to compute maintainability metrics that support this language; (ii) de-65

veloped a set of scripts to arrange the computed metrics into a comparable JSON format; (iii) executed66

a small-scale experiment by computing static metrics for a set of programming languages, including67

Rust, analyzing and comparing the final results. To the best of our knowledge, no existing study in the68

literature has provided computations of such metrics for the Rust language and the relative comparisons69

with other languages.70

The remainder of the manuscript is structured as follows: Section 2 provides background information71

about the Rust language and presents a brief review of state-of-the-art tools available in the literature72

for the computation of metrics related to maintainability; Section 3 describes the methodology used to73

conduct our experiment, along with a description of the developed tools and scripts, the experimental74

subjects used for the evaluation, and the threats to the validity of the study; Section 4 presents and75

discusses the collected metrics; Section 5 concludes the paper by listing its main findings and providing76

possible future directions of this study.77

2 BACKGROUND AND RELATED WORK78

This section provides background information about the Rust language characteristics, studies in the79

literature that analyzes its advantages, and the list of available tools present in the literature to measure80

metrics used as a proxy to quantify software projects’ maintainability.81

2.1 The Rust programming language82

Rust is an innovative programming language initially developed by Mozilla and is currently maintained83

and improved by the Rust Foundation1.84

The main goals of the Rust programming language are: memory-efficiency, with the abolition of85

garbage collection, with the final aim of empowering performance-critical services running on em-86

bedded devices, and easy integration with other languages; reliability, with a rich type system and own-87

ership model to guarantee memory-safety and thread-safety; productivity, with an integrated package88

manager and build tools.89

Rust is compatible with multiple architectures and is quite pervasive in the industrial world. Many90

companies are currently using Rust in production today for fast, low-resource, cross-platform solutions:91

for example, software like Firefox, Dropbox, and Cloudflare use Rust [41].92

The Rust language has been analyzed and adopted in many recent studies from academic literature.93

Uzlu et al. pointed out the appropriateness of using Rust in the Internet of Things domain, mentioning94

its memory safety and compile-time abstraction as crucial peculiarities for the usage in such domain95

[48]. Balasubramanian et al. show that Rust enables system programmers to implement robust security96

and reliability mechanisms more efficiently than other conventional languages [7]. Astrauskas et al.97

1https://www.rust-lang.org/

2/26

Table 1. Languages supported by the metrics tools

Language C
B

R
In

si
gh

t

C
C

Fi
nd

er
X

C
K

JM

C
od

eA
na

ly
ze

rs

H
al

st
ea

d
M

et
ri

cs
To

ol

M
et

ri
cs

R
el

oa
de

d

Sq
ua

le

C x x x x x
C++ x x x x x
C# x x x
Cobol x x x x
Java x x x x x x
Rust
Others x x

Table 2. Case study definition template [40]

Objective Evaluation of code verbosity, understandability and complexity
The case Development with the Rust programming language
Theory Static measures for software artifacts
Research questions What is the verbosity, organization, complexity and maintainability of Rust?
Methods Comparison of Rust static measurements with other programming languages
Selection strategy Open-source multi-language repositories

leveraged Rust’s type system to create a tool to specify and validate system software written in Rust [6].98

Koster mentioned the speed and high-level syntax as the principal reasons for writing in the Rust lan-99

guage the Rust-Bio library, a set of safe bioinformatic algorithms [24]. Levy et al. reported the process100

of developing an entire kernel in Rust, with a focus on resource efficiency [26]. These common usages101

of Rust in such low-level applications encourage thorough analyses of the quality and complexity of a102

code with Rust.103

2.2 Tools for measuring static code quality metrics104

Several tools have been presented in academic works or are commonly used by practitioners to measure105

quality metrics related to maintainability for software written in different languages.106

In our previous works, we conducted a systematic literature review that led us to identify fourteen dif-107

ferent open-source tools that can be used to compute a large set of different static metrics [5]. In the108

review, it is found that the following set of open-source tools can cover most of quality metrics de-109

fined in the literature, for the most common programming languages: CBR Insight, a tool based on the110

closed-source metrics computation Understand framework, that aims at computing reliability and main-111

tainability metrics [27]; CCFinderX, a tool tailored for finding duplicate code fragments [30]; CKJM, a112

tool to compute the C&K metrics suite and method-related metrics for Java code [21]; CodeAnalyzers,113

a tool supporting more than 25 software maintainability metrics, that covers the highest number of114

programming languages along with CBR Insight [43]; Halstead Metrics Tool, a tool specifically devel-115

oped for the computation of the Halstead Suite [16]; Metrics Reloaded, able to compute many software116

metrics for C and Java code either in a plug-in for IntelliJ IDEA or through command line [42]; Squale,117

a tool to measure high-level quality factors for software and measuring a set of code-level metrics to118

predict economic aspects of software quality [28].119

Table 1 reports the principal programming languages supported by the described tools. For the sake of120

conciseness, only the languages that were supported by at least two of the tools are reported. With this121

comparison, it can be found that none of the considered tools is capable of providing metric computa-122

tion facilities for the Rust language.123

3/26

Table 3. List of metrics used in this study

RQ Acronym Name Description

RQ1 SLOC Source Lines of Code It returns the total number of lines in a file
PLOC Physical Lines of Code It returns the total number of instructions

and comment lines in a file
LLOC Logical Lines of Code It returns the number of logical lines

(statements) in a file
CLOC Comment Lines of Code It returns the number of comment lines in

a file
BLANK Blank Lines of Code Number of blank statements in a file

RQ2 NOM Number of Methods It returns the number of methods in a
source file

NARGS Number of Arguments It counts the number of arguments for
each method in a file

NEXITS Number of Exit Points It counts the number of exit points of each
method in a file

RQ3 CC McCabe’s Cyclomatic Complexity It calculates the code complexity exam-
ining the control flow of a program; the
original McCabe’s definition of cyclo-
matic complexity is the the maximum
number of linearly independent circuits in
a program control graph [14]

COGNITIVE Cognitive Complexity It is a measure of how difficult a unit of
code is to intuitively understand, by ex-
amining the cognitive weights of basic
software control structures [20]

Halstead Halstead suite A suite of quantitative intermediate mea-
sures that are translated to estimations
of software tangible properties, e.g. vol-
ume, difficulty and effort (see Table 4 for
details)

RQ4 MI Maintainability Index A composite metric that incorporates a
number of traditional source code metrics
into a single number that indicates relative
maintainability (see Table 5 for details
about the considered variants) [49]

4/26

As additional limitations of the identified set of tools, it can be seen that the tools do not provide com-124

plete coverage of the most common metrics for all the tools (e.g., the Halstead Metric suite is computed125

only by the Halstead Metrics tool), and in some cases, (e.g., CodeAnalyzer), the number of metrics126

is limited by the type of acquired license. Also, some of the tools (e.g., Squale) appear to have been127

discontinued by the time of the writing of this article.128

3 STUDY DESIGN129

This section reports the goal, research questions, metrics, and procedures adopted for the conducted130

study.131

To report the plan for the experiment, the template defined by Robson was adopted [40]. The purpose132

of the research, according to Robson’s classification, is Exploratory, i.e., to find out whats is happening,133

seeking new insights, and generating ideas and hypotheses for future research. The main concepts of134

the definition of the study are reported in table 2.135

In the following subsections, the best practices for case study research provided by Runeson and Host136

are adopted to organize the presentation of the study [19]. More specifically, the following elements are137

reported: goals, research questions, and variables; objects; instrumentation; data collection and analysis138

procedure; evaluation of validity.139

3.1 Goals, Research Questions and Variables140

The high-level goal of the study can be expressed as:141

Analyze and evaluate the characteristics of the Rust programming language, focusing on verbosity,142

understandability and complexity measurements, measured in the context of open-source code, and143

interpreting the results from developers and researchers’ standpoint.144

Based on the goal, the research questions that guided the definition of the experiment are obtained.145

Four different aspects that deserve to be analyzed for code written in Rust programming language146

were identified, and a distinct Research Question was formulated for each of them. In the following,147

the research questions are listed, along with a brief description of the metrics adopted to answer them.148

Table 3 reports a summary of all the metrics.149

The comparisons between different programming languages were made through the use of static met-150

rics. A static metric (opposed to dynamic or runtime metrics) is obtained by parsing and extracting151

information from a source file without depending on any information deduced at runtime.152

• RQ1: What is the verbosity of Rust code with respect to code written in other programming153

languages?154

To answer RQ1, the size of code artifacts written in Rust was measured in terms of the number of code155

lines in a source file. Four different metrics have been defined to differentiate between the nature of the156

inspected lines of code:157

• SLOC, i.e., Source lines of code;158

• CLOC, Comment Lines of Code;159

• PLOC, Physical Lines of Code, including both the previous ones;160

• LLOC, Logical Lines of Code, returning the count of the statements in a file;161

• BLANK, Blank Lines of Code, returning the number of blank lines in a code.162

The rationale behind using multiple measurements for the lines of code can be motivated by the need163

for measuring different facets of the size of code artifacts and of the relevance and content of the lines164

of code. The measurement of physical lines of code (PLOC) does not take into consideration blank165

lines or comments; the count, however, depends on the physical format of the statements and pro-166

gramming style since multiple PLOC can concur to form a single logical statement of the source code.167

PLOC are sensitive to logically irrelevant formatting and style conventions, while LLOC are less sen-168

sitive to these aspects [36]. In addition to that, the CLOC and BLANK measurements allow a finer169

analysis of the amount of documentation (in terms of used APIs and explanation of complex parts of170

algorithms) and formatting of a source file.171

5/26

Table 4. The Halstead Metrics Suite

Measure Symbol Formula

Base measures η1 Number of distinct operators
η2 Number of distinct operands
N1 Total number of occurrences of operators
N2 Total number of occurrences of operands

Program length N N = N1+N2
Program vocabulary η η = η1+η2
Volume V V = N ∗ log2(η)
Difficulty D D = η1/2∗N2/η2
Program Level L L = 1/D
Effort E E = D∗V
Estimated Program Length H H = η1∗ log2(η1)+η2∗ log2(η2)
Time required to program (in seconds) T T = E/18
Number of delivered bugs B B = E2/3/3000
Purity Ratio PR PR = H/N

• RQ2: How is Rust code organized with respect to code written in other programming languages?172

To answer RQ2, the source code structure was analyzed in terms of the properties and functions of173

source files. To that end, three metrics were adopted: NOM, Number of Methods; NARGS, Number174

of Arguments; NEXITS, Number of exits. NARGS and NEXITS are two software metrics defined by175

Mozilla and have no equivalent in the literature about source code organization and quality metrics.176

The two metrics are intuitively linked with the easiness in reading and interpreting source code: a177

function with a high number of arguments can be more complex to analyze because of a higher number178

of possible paths; a function with many exits may include higher complexity in reading the code for179

performing maintenance efforts.180

• RQ3: What is the complexity of Rust code with respect to code written in other programming181

languages?182

To answer RQ3, three metrics were adopted: CC, McCabe’s Cyclomatic Complexity; COGNITIVE,183

Cognitive Complexity; and the Halstead suite. The Halstead Suite, a set of quantitative complexity184

measures originally defined by Maurice Halstead, is one of the most popular static code metrics avail-185

able in the literature [16]. Table 4 reports the details about the computation of all operands and oper-186

ators. The metrics in this category are more high-level than the previous ones and are based on the187

computation of previously defined metrics as operands.188

• RQ4: What are the composite maintainability indexes for Rust code with respect to code written189

in other programming languages?190

To answer RQ4, the Maintainability Index was adopted, i.e., a composite metric originally defined by191

Oman et al. to provide a single index of maintainability for software [38]. Three different versions192

of the Maintainability Index are considered. First, the original version by Oman et al.. Secondly, the193

version defined by the Software Engineering Institute (SEI), originally promoted in the C4 Software194

Technology Reference Guide [9]; the SEI adds to the original formula a specific treatment for the195

comments in the source code (i.e., the CLOC metric), and it is deemed by research as more appropriate196

given that the comments in the source code can be considered correct and appropriate [49]. Finally, the197

version of the MI metric implemented in the Visual Studio IDE [31]; this formula resettles the MI value198

in the 0-100 range, without taking into account the distinction between CLOC and SLOC operated by199

the SEI formula [32].200

The respective formulas are reported in Table 5. The interpretation of the measured MI varies accord-201

ing to the adopted formula to compute it: the ranges for each of them are reported in Table 6. For the202

6/26

Table 5. Considered variants of the MI metric

Acronym Meaning Formula

MIO Original Maintainability Index 171.0− 5.2 ∗ ln(V)− 0.23 ∗CC− 16.2 ∗
ln(SLOC)

MISEI MI by Software Engineering Institute 171.0 − 5.2 ∗ log2(V) − 0.23 ∗
CC − 16.2 ∗ log2(SLOC) + 50.0 ∗
sin(

√
2.4∗ (CLOC/SLOC))

MIV S MI implemented in Visual Studio max(0,(171− 5.2 ∗ ln(V)− 0.23 ∗CC−
16.2∗ ln(SLOC))∗100/171)

Table 6. Maintainability ranges of source code according to different formulas for the MI metric

Variant Low maintanability Medium maintainability High maintainability

Original MI < 65 65 < MI < 85 MI > 85
SEI MI < 65 65 < MI < 85 MI > 85
VS MI < 10 10 < MI < 20 MI > 20

traditional and the SEI formulas of the MI, a value over 85 indicates easily maintainable code; a value203

between 65 and 85 indicates average maintainability for the analyzed code; a value under 65 indicates204

hardly maintainable code. With the original and SEI formulas, the MI value can also be negative. With205

the Visual Studio formula, the thresholds for medium and high maintainability are moved respectively206

to 10 and 20.207

The Maintainability Index is the highest-level metric considered in this study, as it includes an interme-208

diate computation of one of the Halstead suite metrics.209

3.2 Objects210

For the study, it was necessary to gather a set of simple code artifacts to analyze the Rust source code211

properties and compare them with other programming languages.212

To that end, a set of nine simple algorithms was collected. In the set, each algorithm was implemented213

in 5 different languages: C, C++, JavaSript, Python, Rust, and TypeScript. All implementations of214

the code artifacts have been taken from the Energy-Languages repository2. The rationale behind the215

repository selection is its continuous and active maintenance and the fact that these code artifacts are216

adopted by various other projects for tests and benchmarking purposes, especially for evaluations of the217

execution speed of code written in a given programming language after compilation.218

The number of different programming languages for the comparison was restricted to 5 because those219

languages (additional details are provided in the next section) were the common ones for the Energy-220

Languages repository and the set of languages that are correctly parsed by the tooling employed in the221

experiment conduction.222

Table 7 lists the code artifacts used (sorted out alphabetically) and provides a brief description of each223

of them.224

3.3 Instruments225

This section provides details about the framework that was developed to compare the selected metrics226

and the existing tools that were employed for code parsing and metric computation.227

A graphic overview of the framework is provided in Figure 1. The diagram only represents the logical228

flow of the data in the framework since the actual flow of operations is reversed, being the compare.py229

script the entry point of the whole computation.230

The rust-code-analysis tool is used to compute static metrics and save them in the JSON format. The231

analyzer.py script receives as input the results in JSON format provided by the rust-code-analysis tool232

and formats them in a common notation that is more focused on academic facets of the computed met-233

rics rather than the production ones used by the rust-code-analysis default formatting. The compare.py234

2https://github.com/greensoftwarelab/Energy-Languages

7/26

Table 7. Selected source code artifacts for the study

Name Description

binarytrees Allocate and deallocate binary trees
fannkuchredux Indexed-access to tiny integer-sequence
fasta Generate and write random DNA sequences
knucleotide Hashtable update and k-nucleotide strings
mandelbrot Generate Mandelbrot set portable bitmap file
nbody Double-precision N-body simulation
regexredux Match DNA 8-mers and substitute magic patterns
revcomp Read DNA sequences - write their reverse-complement
spectralnorm Eigenvalue using the power method

.c .cpp .rs
.js .ts .py

rust-code-analysis analyzer.py compare.py

.json

.json .json

Figure 1. Representation of the data flow of the framework

has been developed to call the analyzer.py script and to use its results to perform pair-by-pair compar-235

isons between the JSON files obtained for source files written in different programming languages.236

These comparison files allow us to immediately assess the differences in the metrics computed by the237

different programming languages on the same software artifacts. The stack of commands that are called238

in the described evaluation framework is shown in Figure 2.239

The evaluation framework has been made available as an open-source repository on GitHub3.240

3.3.1 The Rust Code Analysis tool241

All considered metrics have been computed by adopting and extending a tool developed in the Rust242

language, and able to compute metrics for many different ones, called rust-code-analysis. We have243

forked version 0.0.18 of the tool to fix a few minor defects in metric computation and to uniform the244

presentation of the results, and we have made it available on a GitHub repository4.245

We have decided to adopt and personally extend a project written in Rust because of the advantages246

guaranteed by this language, such as memory and thread safety, memory efficiency, good performance,247

and easy integration with other programming languages.248

rust-code-analysis builds, through the use of an open-source library called tree-sitter5, builds an Ab-249

stract Syntax Tree (AST) to represent the syntactic structure of a source file. An AST differs from a250

Concrete Syntax Tree because it does not include information about the source code less important251

details, like punctuation and parentheses. On top of the generated AST, rust-code-analysis performs252

a division of the source code in spaces, i.e., any structure that can incorporate a function. It contains253

a series of fields such as the name of the structure, the relative line start, line end, kind, and a metric254

object, which is composed of the values of the available metrics computed by rust-code-analysis on255

the functions contained in that space. All metrics computed at the function level are then merged at256

the parent space level, and this procedure continues until the space representing the entire source file is257

3https://github.com/SoftengPoliTo/SoftwareMetrics
4https://github.com/SoftengPoliTo/rust-code-analysis
5https://tree-sitter.github.io/

8/26

rust-code-analysis

analyzer.py

compare.py

Figure 2. Representation of the process stack of the framework

reached.258

The tool is provided with parser modules that are able to construct the AST (and then to compute the259

metrics) for a set of languages: C, C++, C#, Go, JavaScript, Python, Rust, Typescript. The program-260

ming languages currently implemented in rust-code-analysis have been chosen because they are the261

ones that compose the Mozilla-central repository, which contains the code of the Firefox browser. The262

metrics can be computed for each language of this repository with the exception of Java, which does263

not have an implementation yet, and HTML and CSS, which are excluded because they are formatting264

languages.265

rust-code-analysis can receive either single files or entire directories, detect whether they contain266

any code written in one of its supported languages, and output the resultant static metrics in various267

formats: textual, JSON, YAML, toml, cbor. [4].268

Concerning the original implementation of the rust-code-analysis tool, the project was forked and269

modified by adding metrics computations (e.g., the COGNITIVE metric). Also, the possible output270

format provided by the tool was changed.271

Listing 1, reported in the annex of the manuscript, reports an excerpt of the JSON file produced as272

output by rust-code-analysis.273

3.3.2 Analyzer274

A Python script named analyzer.py was developed to analyze the metrics computed from rust-code-275

analysis. This script can launch different software libraries to compute metrics and adapt their results to276

a common format.277

In this experiment, the analyzer.py script was used only with the Rust-code-analysis tool, but in a future278

extension of this study – or other empirical assessments – the script can be used to launch different279

tools simultaneously on the same source code.280

The analyzer.py script performs the following operations:281

• The arguments are parsed to verify their correctness. For instance, analyzer.py receives as argu-282

ments the list of tools to be executed, the path of the source code to analyze, and the path to the283

directory where to save the results;284

• The selected metric computation tool(s) is (are) launched, to start the computation of the soft-285

ware metrics on the source files passed as arguments to the analyzer script;286

• The output of the execution of the tool(s) is converted in JSON and formatted in order to have a287

common standard to compare the measured software metrics;288

• The newly formatted JSON files are saved in the directory previously passed as an argument to289

analyzer.py.290

The output produced by rust-code-analysis through analyzer.py was modified for the following reasons:291

• The names of the metrics computed by the tool are not coherent with the ones selected from the292

scientific literature about software static quality metrics;293

9/26

• The types of data representing the metrics are floating-point values instead of integers since294

rust-code-analysis aims at being as versatile as possible;295

• The missing aggregation of each source file metrics contained in a directory within a single296

JSON-object, which is composed of global metrics and the respective metrics for each file. This297

additional aggregate data allows obtaining a more general prospect on the quality of a project298

written in a determined programming language.299

Listing 2 reports an excerpt of the JSON file produced as output by the Analyzer script. As further300

documentation of the procedure, the full JSON files generated in the evaluation can be found in the301

Results folder of the project6.302

3.3.3 Comparison303

A second Python script, Compare.py, was finally developed to perform the comparisons over the JSON304

result files generated by the Analyzer.py script. The Compare.py script executes the comparisons be-305

tween different language configurations, given an analyzed source code artifact and a metric.306

The script receives a Configuration as a parameter, a pair of versions of the same code, written in two307

different programming languages.308

The script performs the following operations for each received Configuration:309

• Computes the metrics for the two files of a configuration by calling the analyzer.py script;310

• Loads the two JSON files from the Results directory and compares them, producing a JSON file311

of differences;312

• Deletes all local metrics (the ones computed by rust-code-analysis for each subspace) from the313

JSON file of differences;314

• Saves the JSON file of differences, now containing only global file metrics, in a defined destina-315

tion directory.316

The JSON differences file is produced using a JavaScript program called JSON-diff7.317

Listing 3 reports an excerpt of the JSON file produced as output by the Comparison script. As further318

documentation of the procedure, the full JSON files generated in the evaluation can be found in the319

Compare folder of the project8.320

3.4 Data collection and Analysis procedure321

To collect the data to analyze, the described instruments were applied on each of the selected software322

objects for all the languages studied (i.e., for a total of 45 software artifacts).323

The collected data was formatted in a single .csv file containing all the measurements.324

To analyze the results, comparative analyses of the average and median of each of the measured metrics325

were performed to provide a preliminary discussion.326

A non-parametric Kruskal-Wallis test was later applied to identify statistically significant differences327

among the different sets of metrics for each language.328

For significantly different distributions, post-hoc comparisons with Wilcoxon signed rank-sum test,329

with Benjamini-Hochberg correction [11], were applied to analyze the difference between the metrics330

measured for Rust and the other five languages in the set.331

Descriptive and statistical analyses and graph generation were performed in R. The data and scripts332

have been made available in an online repository9.333

6https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Results
7https://www.npmjs.com/package/json-diff
8https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Compare
9https://github.com/SoftengPoliTo/rust-analysis

10/26

3.5 Threats to Validity334

Threats to Internal Validity. The study results may be influenced by the specific selection of the tool335

with which the software metrics were computed, namely the rust-code-analysis tool. The values mea-336

sured for the individual metrics (and, by consequence, the reasoning based upon them) can be heavily337

influenced by the exact formula used for the metric computation.338

In the Halstead suite, the formulas depend on two coefficients defined explicitly in the literature for339

every software language, namely the denominators for the T and B metrics. Since no previous result340

in the literature has provided Halstead coefficients specific to Rust, the C coefficients were used for341

the computation of Rust Halstead metrics. More specifically, 18 was used as the denominator of the342

T metric. This value, called Stoud number (S), is measured in moments, i.e., the time required by the343

human brain to carry out the most elementary decision. In general, S is comprised between 5 and 20. In344

the original Halstead metrics suite for the C language, a value of 18 is used. This value was empirically345

defined after psychological studies of the mental effort required by coding. 3000 was selected as the346

denominator of the Number of delivered Bugs metric; this value, again, is the original value defined for347

the Halstead suite and represents the number of mental discriminations required to produce an error in348

any language. The 3000 value was originally computed for the English language and then mutuated349

for programming languages [39]. The choice of the Halstead parameters may significantly influence350

the values obtained for the T and B metrics. The definition of the specific parameters for a new pro-351

gramming language, however, implies the need for a thorough empirical evaluation of such parameters.352

Future extensions of this work may include studies to infer the optimal Halstead parameters for Rust353

source code.354

Finally, two metrics, NARGS and NEXITS, were adopted for the evaluation of readability and organi-355

zation of code. Albeit extensively used in production (they are used in the Mozilla-central open-source356

codebase), these metrics still miss empirical validation on large repositories, and hence their capacity of357

predicting code readability and complexity cannot be ensured.358

Threats to External Validity. The results presented in this research have been measured on a limited359

number of source artifacts (namely, nine different code artifacts per programming language). Therefore,360

we acknowledge that the results cannot be generalized to all software written with one of the analyzed361

programming languages. Another bias can be introduced in the results by the characteristics of the362

considered code artifacts. All considered source files were small programs collected from a single363

software repository. The said software repository itself was implemented for a specific purpose, namely364

the evaluation of the performance of different programming languages at runtime. Therefore, it is365

still unsure whether our measurements can scale up to bigger software repositories and real-world366

applications written in the evaluated languages. As well, the results of the present manuscript may367

inherit possible biases that the authors of the code had in writing the source artifacts employed for368

our evaluation. Future extensions of the current work should include the computation of the selected369

metrics on more extensive and more diverse sets of software artifacts to increase the generalizability of370

the present results.371

Threats to Conclusion Validity. The conclusions detailed in this work are only based on the analysis of372

quantitative metrics and do not consider other possible characteristics of the analyzed source artifacts373

(e.g., the developers’ coding style who produced the code). Like the generalizability of the results, this374

bias can be reduced in future extensions of the study using a broader and more heterogeneous set of375

source artifacts [45].376

In this work, we make assumptions on verbosity, complexity, understandability, and maintainability of377

source code based on quantitative static metrics. It is not ensured that our assumptions are reflected by378

maintenance and code understanding effort in real-world development scenarios. It is worth mentioning379

that there is no unanimous opinion about the ability of more complex metrics (like MI) to capture the380

maintainability of software programs more than simpler metrics like lines of code and Cyclomatic381

Complexity.382

Researcher bias is a final theoretical threat to the validity of this study since it involved a comparison in383

terms of different metrics of different programming languages. However, the authors have no reason to384

favor any particular approach, neither inclined to demonstrate any specific result.385

11/26

0

100

200

300

SLOC PLOC LLOC CLOC BLANK
Metric

M
ea

su
re

Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 3. Distribution of the metrics about lines of code for all the considered programming
languages

Table 8. Mean (Median) values of the metrics about lines of code for all the considered programming
languages

Language SLOC PLOC LLOC CLOC BLANK

C 209 (201) 129 (128) 48 (41) 43 (49) 37 (36)
C++ 186 (177) 137 (120) 51 (50) 20 (15) 28 (26)
Rust 144 (145) 105 (95) 52 (62) 21 (19) 18 (17)
Python 99 (76) 73 (61) 59 (53) 8 (6) 18 (16)
JavaScript 107 (92) 83 (76) 58 (60) 9 (7) 16 (9)
TypeScript 95 (64) 74 (46) 51 (42) 8 (7) 13 (10)

4 RESULTS AND DISCUSSION386

This section reports the results gathered by applying the methodology described in the previous section,387

subdivided according to the research question they answer.388

4.1 RQ1 - Code verbosity389

The boxplots in Figure 3 and Table 8 report the measures for the metrics adopted to answer RQ1.390

The mean and median values of the Source Lines of Code (SLOC) metric (i.e., total lines of code in the391

source files) are largely higher for the C, C++, and Rust language: the highest mean SLOC was for C392

(209 average LOCs per source file), followed by C++ (186) and Rust (144). The mean values are way393

smaller for Python, TypeScript, and JavaScript (respectively, 98, 107, and 95).394

A similar trend is assumed by the Physical Lines of Code (PLOC) metric, i.e., the total number of in-395

structions and comment lines in the source files. In the examined set, 74 average PLOCs per file were396

measured for the Rust language. The highest and smallest values were again measured respectively for397

C and TypeScript, with 129 and 74 average PLOCs per file. The values measured for the CLOC and398

BLANK metrics showed that a higher number of empty lines of code and comments were measured399

for C than for all other languages. In the CLOC metric, the Rust language exhibited the second-highest400

mean of all languages, suggesting a higher predisposition of Rust developers at providing documenta-401

tion in the developed source code.402

12/26

Table 9. Null hypotheses and p-values for RQ1 metrics obtained by applying Kruskal-Wallis
chi-squared test10

Name Description p-value Decision Significance

H0SLOC No significant difference in SLOC for the sw artifacts 0.001706 Reject **
H0PLOC No significant difference in PLOC for the artifacts 0.03617 Reject *
H0LLOC No significant difference in LLOC for the artifacts 0.9495 Not Reject -
H0CLOC No significant difference in CLOC for the artifacts 7.07e-05 Reject ***
H0BLANK No significant difference in BLANK for the artifacts 0.0001281 Reject ***

Table 10. p-values for post-hoc Wilcoxon Signed Rank test for RQ1 metrics between Rust and the
other languages

Metric C C++ JavaScript Python TypeScript

SLOC 0.0519 0.3309 0.2505 0.0420 0.0519
PLOC 0.3770 0.3081 0.3607 0.2790 0.2790
CLOC 0.0399 0.8242 0.0620 0.0620 0.097
BLANK 0.0053 0.0618 0.1944 0.7234 0.0467

A slightly different trend is assumed by the Logical Lines of Code (LLOC) metric (i.e., the number of403

instructions or statements in a file). In this case, the mean number of statements for Rust code is higher404

than the ones measured for C, C++ and TypeScript, while the SLOC and PLOC metrics are lower. The405

Rust scripts also had the highest median LLOC. This result may be influenced with the different num-406

ber of types of statements that are offered by the language. For instance, the Rust language provides407

19 types of statements while C offers just 14 types (e.g., the Rust statements If let and While let are not408

present in C). The higher amount of logical statements may indeed hint at a higher decomposition of409

the instructions of the source code into more statements, i.e., more specialized statements covering less410

operations.411

Albeit many higher-level measures and metrics have been derived in the latest years by related litera-412

ture to evaluate the understandability and maintainability of software, the analysis of code verbosity413

can be considered a primary proxy for these evaluations. In fact, several studies have linked the intrin-414

sic verbosity of a language to lower readability of the software code, which translates to higher effort415

when the code has to be maintained. For instance, Flauzino et al. state that verbosity can cause higher416

mental energy in coders working on implementing an algorithm and can be correlated to many smells417

in software code [12]. Toomim et al. highlight that redundancy and verbosity can obscure meaningful418

information in the code, thereby making it difficult to understand [47].419

The metrics for RQ1 where mostly evenly distribuited among different source code artifacts. Two out-420

liers were identified for the PLOC metric in C and C++ (namely, fasta.c and fasta.cpp), mostly due to421

the fact that they have the highest SLOC value, so the results are coherent. More marked outliers were422

found for the BLANK metric, but such measure is strongly influenced by the developer’s coding style423

and the used code formatters; thereby, no valuable insight can be found by analyzing the individual424

code artifacts.425

Table 9 reports the results of applying the Kruskal-Wallis non-parametric test on the set of measures for426

RQ1. The difference for SLOC, PLOC, CLOC, and BLANK were statistically significant (with strong427

significance for the last two metrics). Post-hoc statistical tests focused on the comparison between Rust,428

and the other languages (table 10) led to the evidence that Rust had a significantly lower CLOC than C429

and a significantly lower BLANK than C and TypeScript.430

Answer to RQ1: The examined source files written in Rust exhibited an average verbosity (144
mean SLOCs per file and 74 mean PLOCs per file). Such values are lower than C and C++ and
higher than the other considered object-oriented languages. Rust exhibited the third-highest aver-
age (and highest median) LLOC among all considered languages. Significantly lower values were
measured for CLOC against C and BLANK against C and TypeScript.

431

432

10Signific. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’-’ 1

13/26

0

10

20

30

40

NOM NARGS (Sum) NARGS (Avg) NEXITS (Sum) NEXITS(Avg)
Metric

M
ea

su
re

Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 4. Distribution of the metrics about organization of code for all the considered programming
languages

Table 11. Mean (Median) values of the metrics about code organization for all the considered
programming languages

Language NOM NARGS (Sum) NARGS (Avg) NEXITS (Sum) NEXITS (Avg)

C 4.4 (4) 8.6 (9) 2.0 (2) 3.1 (4) 0.75 (0.67)
C++ 10.6 (8) 13.4 (11) 1.4 (1) 6.0 (5) 0.48 (0.5)
Rust 10.3 (10) 25.1 (30) 2.0 (2) 5.7 (4) 0.44 (0.43)
Python 5.7 (5) 10.6 (9) 1.8 (2) 2.8 (1) 0.45 (0.33)
JavaScript 5.9 (3) 7.4 (4) 1.1 (1) 4.6 (4) 0.63 (0.5)
TypeScript 4.7 (4) 5.7 (4) 1.1 (1) 2.1 (2) 0.58 (0.4)

4.2 RQ2 - Code organization433

The boxplots in Figure 4 and Table 11 report the measures for the metrics adopted to answer RQ2.434

For each source file, two different measures were collected for the Number of Arguments (NARGS)435

metric: the sum at file level of all the methods arguments and the average at file level of the number of436

arguments per method (i.e., NARGS/NOM).437

The Rust language had the highest median value for the Number of Methods (NOM) metric, with a438

median of 10 methods per source file. The average NOM value was only lower than the one measured439

for C++ sources. However, this value was strongly influenced by the presence of one outlier in the set440

of analyzed sources (namely, the C++ implementation of fasta having a NOM equal to 20). While the441

NOM values were similar for C++ and Rust, all other languages exhibited much lower distributions,442

with the lowest median value for JavaScript (3). This high number of Rust methods can be seen as443

evidence of higher modularity than the other languages considered.444

Regarding the number of arguments, it can be noticed that the Rust language exhibited the highest av-445

erage and median cumulative number of arguments (Sum of Arguments) of all languages. The already446

discussed high NOM value influences this result. The highest NOM (and, by consequence, of the total447

cumulative number of arguments) can be caused by the missing possibility of having default values in448

the Rust language. This characteristic may lead to multiple variations of the same method to take into449

account changes in the parameter, thereby leading to a higher NARGS.450

14/26

Table 12. Null hypotheses and p-values for RQ2 metrics obtained by applying Kruskal-Wallis
chi-squared test

Name Description p-value Decision Significance

H0NOM No significant difference in NOM for the artifacts 0.04372 Reject *
H0NARGSSUM No significant difference in NARGSSUM for the artifacts 0.02357 Reject *
H0NARGSAV G No significant difference in NARGSAV G for the artifacts 0.008224 Reject **
H0NEXIT SSUM No significant difference in NEXIT SSUM for the artifacts 0.142 Not Reject -
H0NEXIT SAV G No significant difference in NEXIT SAV G for the artifacts 0.2485 Not Reject -

Table 13. p-values for post-hoc Wilcoxon Signed Rank test for RQ2 metrics between Rust and the
other languages

Metric C C++ JavaScript Python TypeScript

NOM 0.0534 0.7560 0.1037 0.0546 0.0533
NARGSSUM 0.0239 0.0633 0.0199 0.0318 0.0177
NARGSAV G 0.5658 0.1862 0.0451 0.4392 0.0662

The lowest average measures for NOM and NARGS Sum metrics were obtained for the C language.451

This result can be justified by the lower modularity of the C language. By examining the C source452

files, it could be verified that the code presented fewer functions and more frequent usage of nested453

loops, while the Rust sources were using more often data structures and ad-hoc methods. In general,454

the results gathered for these metrics suggest a more structured Rust code organization with respect to455

the C language.456

The NOM metric has an influence on the verbosity of the code, and therefore it can be considered as a457

proxy of the readability and maintainability of the code.458

Regarding the Number of Exits (NEXITS) metric, the values were close for most languages, except459

Python and TypeScript, which respectively contain more methods without exit points and fewer func-460

tions. The obtained NEXITS value for Rust shows many exit points distributed among many functions,461

as demonstrated by the NOM value, making the code much more comfortable to follow.462

An analysis of the outliers of the distributions of the measurements for RQ2 was performed. For C++,463

the highest value of NOM was exhibited by the revcomp.cpp source artifact. This high value was464

caused by the extensive use of classes methods to handle chunks of DNA sequences. knucleotide.py465

and spectralnorm.py had a higher number of functions than the other considered source artifacts.466

fasta.cpp uses lots of mall functions with many arguments, resulting in an outlier value for the NARGSSUM467

metric. pidigits.py had 0 values for NOM and NARGS, since it used zero functions. Regarding NEX-468

ITS, very high values were measured for fasta.cpp and revcomp.cpp, which had many functions with469

return statements. Lower values were measured for regexredup.cpp, which has a single main function470

without any return, and pidigits.cpp, which has a single return. A final outlier was the NEXITS value471

for fasta.js, which features a very high number of function with return statements.472

Table 12 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of473

measures for RQ2. The difference for NOM, NARGSSUM and NARGSAV G was statistically significant,474

while no significance was measured fo the metrics related to the NEXITS. Post-hoc statistical tests475

focused on the comparison between Rust, and the other languages (table 13) highlighted that Rust had476

a significantly higher NARGSSUM than C, JavaScript, Python, and TypeScript, and a significantly higher477

NARGSAV G than JavaScript.478

Answer to RQ2: The examined source files written in Rust exhibited the most structured organi-
zation of the considered set of languages (with a mean 10.3 NOM per file, with a mean of 2 argu-
ments for each method). The Rust language had a significantly higher number of arguments than C,
JavaScript, Python, and TypeScript.

479

480

15/26

0

20

40

60

CC (Sum) CC (Avg) COGNITIVE (Sum) COGNITIVE (Avg)
Metric

M
ea

su
re

Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 5. Distribution of complexity metrics for all the considered programming languages

Table 14. Mean (Median) values of the complexity metrics for all the considered programming
languages

Language CCSum CCAvg COGNIT IV ESum COGNIT IV EAvg

C 27.3 (28) 4.3 (3.5) 24.3 (21.0) 11.2 (5.5)
C++ 31.1 (29) 2.7 (2.4) 22.4 (23.0) 3.2 (1.5)
Rust 25.3 (22) 2.0 (2.0) 13.1 (10.0) 1.5 (0.7)
Python 23.0 (16) 3.6 (3.0) 25.4 (13.0) 4.4 (3.0)
JavaScript 17.6 (17) 3.4 (2.2) 19.9 (15.0) 8.5 (2.3)
TypeScript 15.2 (14) 3.4 (2.2) 17.0 (12.0) 7.2 (2.3)

4.3 RQ3 - Code complexity481

The boxplots in Figure 5 and Table 14 report the measures for the metrics adopted to answer RQ3. For482

the Computational Complexity, two metrics were computed: the sum of the Cyclomatic Complexity483

(CC) of all spaces in a source file (CCSum), and the averaged value of CC over the number of spaces in484

a file (CCAvg). A space is defined in rust-code-analysis as any structure that incorporates a function. For485

what concerns the COGNITIVE complexity, two metrics were computed: the sum of the COGNITIVE486

complexity associated to each function and closure present in a source file, (COGNIT IV ESum), and the487

average value of COGNITIVE complexity, (COGNIT IV EAvg), always computed over the number of488

functions and closures. Table 14 reports the mean and median values over the set of different source489

files selected for each language, of the sum and average metrics computed at the file level.490

As commonly accepted in the literature and practice, a low cyclomatic complexity generally indicates491

a method that is easy to understand, test, and maintain. The reported measures showed that the Rust492

language had a lower median CCSum (22) than C and C++ and the second-highest average value (25.3).493

The lowest average and median CCSum was measured for the TypeScript language. By considering494

the average of the Cyclomatic Complexity, CCAvg, at the function level, the highest average and mean495

values are instead obtained for the Rust language. It is worth mentioning that the average CC values for496

all the languages were rather low, hinting at an inherent simplicity of the software functionality under497

examination. So an analysis based on different codebases may result in more pronounced differences498

between the programming languages.499

16/26

B
ug

s
D

iff
ic

ul
ty

E
ffo

rt
Le

ng
th

T
im

e
V

ol
um

e

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

1

2

3

30

60

90

0e+00

2e+05

4e+05

6e+05

8e+05

500

1000

0
10000
20000
30000
40000

2500

5000

7500

10000

Language

M
et

ric

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6. Distribution of Halstead metrics (A: Bugs; B: Difficulty; C: Effort; D: Length; E: Time; F:
Volume) for all the considered programming languages

Table 15. Mean (Median) values of Halstead metrics for all the considered programming languages

Language Bugs Difficulty Effort Length Programming Time Volume

C 1.52 (1.6) 66.7 (55.9) 322,313 (342,335) 726.0 (867.0) 17,906 (19,018) 4,819 (5,669)
C++ 1.46 (1.3) 57.8 (56.4) 311,415 (248,153) 728.1 (634.0) 17,300 (13,786) 4,994 (4,274)
Rust 1.1 (1.3) 48.6 (45.9) 199,152 (246,959) 602.2 (550.0) 11,064 (13,719) 4,032 (3610)
Python 0.7 (0.6) 33.7 (30.0) 111,103 (72,110) 393.8 (334.0) 6,172 (4,006) 2,680 (2204)
JavaScript 0.8 (0.9) 43.1 (44.1) 139,590 (140,951) 458.6 (408.0) 7,755 (7,830) 2,963 (2615)
TypeScript 0.8 (0.6) 45.2 (41.9) 132,644 (82,369) 435.7 (302.0) 7,369 (4,576) 2,734 (1730)

COGNITIVE complexity is a software metric that assesses the complexity of code starting from hu-500

man judgment and is a measure for source code comprehension by the developers and maintainers [8].501

Moreover, empirical results have also proved the correlation between COGNITIVE complexity and502

defects [2]. For both the average COGNITIVE complexity and the sum of COGNITIVE complexity503

at the file level, Rust provided the lowest mean and median values. Specifically, Rust guaranteed a504

COGNITIVE complexity of 0.7 per method, which is less than half the second-lowest value for C++505

(1.5). The highest average COGNITIVE complexity per class was measured for C code (5.5). This506

very low value of the COGNITIVE complexity per method for Rust is related to the highest number507

of methods for Rust code (described in the analysis of RQ2 results). By considering the sum of the508

COGNITIVE complexity metric at the file level, Rust had a mean COGNIT IV ESum of 13.1 over the 9509

analyzed source files. The highest mean value for this metric was measured for Python (25.4), and the510

highest median for C++ (23). Such lower values for the Rust language can suggest a more accessible,511

less costly, and less prone to bug injection maintenance for source code written in Rust. This lowest512

value for the COGNITIVE metric counters some measurements (e.g., for the LLOC and NOM metrics)513

by hinting that the higher verbosity of the Rust language has not a visible influence on the readability514

and comprehensibility of the Rust code.515

The boxplots in Figure 6 and Table 15 report the distributions, mean, and median of the Halstead met-516

17/26

Table 16. Null hypotheses and p-values for RQ3 metrics obtained by applying Kruskal-Wallis
chi-squared test

Name Description p-value Decision Significance

H0CC SUM No significant difference in CCSUM for the artifacts 0.113 Not reject -
H0CC AV G No significant difference in CCAV G for the artifacts 0.1309 Not Reject -
H0COGNIT IV E SUM No significant difference in COGNIT IV ESUM for the artifacts 0.4554 Not Reject -
H0COGNIT IV E AV G No significant difference in COGNIT IV EAV G for the artifacts 0.009287 Reject **
H0Halstead Vocabulary No significant difference in Halstead Vocabulary for the artifacts 0.07718 Not Reject .
H0Halstead Di f f iculty No significant difference in Halstead Difficulty for the artifacts 0.01531 Reject *
H0Halstead Prog.time No significant difference in Halstead Prog. time for the artifacts 0.005966 Reject **
H0Halstead E f f ort No significant difference in Halstead Effort for the artifacts 0.005966 Reject **
H0Halstead Volume No significant difference in Halstead Volume for the artifacts 0.03729 Reject *
H0Halstead Bugs No significant difference in Halstead Bugs for the artifacts 0.005966 Reject **

Table 17. p-values for post-hoc Wilcoxon Signed Rank test for RQ3 metrics between Rust and the
other languages

Metric C C JavaScript Python TypeScript

COGNIT IV EAV G 0.0062 0.0244 0.0222 0.0240 0.0222
HALST EADDi f f iculty 0.2597 0.2621 0.5328 0.2621 0.6587
HALST EADProgrammingTime 0.1698 0.3767 0.3081 0.1930 0.3134
HALST EADE f f ort 0.1698 0.3767 0.3081 0.1930 0.3134
HALST EADVolume 0.5960 0.5328 0.2621 0.2330 0.2330
HALST EADBugs 0.1698 0.3767 0.3081 0.1930 0.3134

rics computed for the six different programming languages.517

The Halstead Difficulty (D) is an estimation of the difficulty of writing a program that is statically518

analyzed. The Difficulty is the inverse of the program level metric. Hence, as the volume of the imple-519

mentation of code increases, the difficulty increases as well. The usage of redundancy hence influences520

the Difficulty. It is correlated to the number of operators and operands used in the code implementa-521

tion. The results suggest that the Rust programming language has an average Difficulty (median of522

45.9) on the set of considered languages. The most difficult code to interpret, according to Halstead523

metrics, was C (median of 55.9), while the easiest to interpret was Python (median of 30.0). A similar524

hierarchy between the different languages is obtained for the Halstead Effort (E), which estimates the525

mental activity needed to translate an algorithm into code written in a specific language. The Effort is526

linearly proportional to both Difficulty and Volume. The unit of measure of the metric is the number of527

elementary mental discriminations [15].528

The Halstead Length (L) metric is given by the total number of operator occurrences and the total529

number of operand occurrences. The Halstead Volume (V) metric is the information content of the530

program, linearly dependent on its vocabulary. Rust code had the third-highest mean and median Hal-531

stead Length (602.2 mean, 550.0 median) and Halstead Volume (4,032 mean, 3,610 median), again532

below those measured for C and C++. The results measured for all considered source files were in line533

with existing programming guidelines (Halstead Volume lower than 8000). The reported results about534

Length and Volume were, to some extent, expectable since these metrics are largely correlated to the535

number of lines of code present in a source file [46].536

The Halstead Time metric (T) is computed as the Halstead Effort divided by 18. It estimates the time537

in seconds that it should take a programmer to implement the code. A mean and median T of 11,064538

and 13,719 seconds were measured, respectively, for the Rust programming language. These values539

are significantly distant from those measured for Python and TypeScript (the lowest) and from those540

measured for C and C++ (the highest).541

Finally, the Halstead Bugs Metric estimates the number of bugs that are likely to be found in the soft-542

ware program. It is given by a division of the Volume metric by 3000. We estimated a mean value of543

1.1 (median 1.3) bugs per file with the Rust programming language on the considered set of source544

artifacts.545

An analysis of the outliers of the distributions of measurements regarding RQ3 was performed. A546

18/26

O
rig

in
al

S
E

I
V

is
ua

l S
tu

di
o

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

20

40

60

80

−25

0

25

50

75

10

20

30

40

Language

M
et

ric

(A)

(B)

(C)

Figure 7. Distribution of Maintainability Indexes (A: Original; B: SEI; C: Visual Studio) for all the
considered programming languages

Table 18. Mean (Median) values of Maintainability Indexes for all the considered programming
languages

Language Original SEI Visual Studio

C 35.9 (36.7) 10.5 (5.0) 21.0 (21.5)
C++ 36.5 (36.3) 3.6 (9.9) 21.3 (21.2)
Rust 43.0 (43.3) 15.8 (22.6) 25.1 (25.3)
Python 52.5 (55.5) 23.3 (25.7) 30.7 (32.5)
JavaScript 54.2 (51.7) 27.7 (25.3) 31.7 (30.3)
TypeScript 55.9 (61.6) 29.4 (39.2) 32.7 (36.0)

relevant outlier for the CC metric was revcomp.cpp, in which the usage of many nested loops and547

conditional statements inside class methods significantly increased the computed complexity. For the548

set of Python source files, knucleoutide.py had the highest CC due to the usage of nested code; the549

same effect occurred for fannchuckredux.rs which had the highest CC and COGNITIVE complexity550

for the Rust language. The JavaScript and TypeScript versions of fannchuckredux both presented a551

high usage of nested code, but the lower level of COGNITIVE complexity for the TypeScript version552

suggests a better-written source code artifact. The few outliers that were found for the Halstead metrics553

measurements were principally for C++ source artifacts and mostly related to the higher PLOC and554

number of operands of the C++ source codes.555

Table 16 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of556

measures for RQ3. No statistical significance was measured for the differences in the measurements557

of the two metrics related to CC. A statistically significant difference was measured for the averaged558

COGNITIVE complexity. Regarding the Halstead metrics, all differences were statistically significant559

with the exception of those for the Difficulty metric. Post-hoc statistical tests focused on the compar-560

ison between Rust and the other languages (table 17) highlighted that Rust had a significantly lower561

average COGNITIVE complexity than all the other considered languages.562

Answer to RQ3: The Rust software artifacts exhibited an average Cyclomatic Complexity (mean
2.0 per function) and a significantly lower COGNITIVE complexity (mean 1.5 per function) than all
other languages. Rust was the third-highest performing language, after C and C++, for the Halstead
metric values.

563

564

19/26

Table 19. Null hypotheses and p-values for RQ4 metrics obtained by applying Kruskal-Wallis
chi-squared test11

Name Description p-value Decision Significance

H0MI Original No significant difference in MI Original for the artifacts 0.006002 Reject **
H0MI SEI No significant difference in MI SEI for the artifacts 0.1334 Not Reject .
H0MI Visual Studio No significant difference in MI Visual Studio for the artifacts 0.006002 Reject **

Table 20. p-values for post-hoc Wilcoxon Signed Rank test for RQ4 metrics between Rust and the
other languages

Metric C C JavaScript Python TypeScript

MIOriginal 0.2624 0.3308 0.2698 0.2624 0.2624
MIVisualStudio 0.2624 0.3308 0.2698 0.2624 0.2624

4.4 RQ4 - Code maintainability565

The boxplots in Figure 7 and Table 18 report the distributions, mean, and median of the Maintainability566

Indexes computed for the six different programming languages.567

The Maintainability Index is a composite metric aiming to give an estimate of software maintainability568

over time. The Metric has correlations with the Halstead Volume (V), the Cyclomatic Complexity (CC),569

and the number of lines of code of the source under examination.570

The source files written in Rust had an average MI that placed the fourth among all considered pro-571

gramming languages, regardless of the specific formula used for the calculation of the MI. Minor dif-572

ferences in the placement of other languages occurred, e.g., the median MI for C is higher than for573

C++ with the original formula for the Maintainability Index and lower with the SEI formula. Regard-574

less of the formula used to compute MI, the highest maintainability was achieved by the TypeScript575

language, followed by Python and JavaScript. These results were expectable in light of the previous576

metrics measured, given the said strong dependency of the MI on the raw size of source code.577

It is interesting to underline that, in accordance with the original guidelines for the MI computation, all578

the values measured for the software artifacts under study would suggest hard to maintain code, being579

the threshold for easily maintainable code set to 80. On the other hand, according to the documentation580

of the Visual Studio MI metric, all source artifacts under test can be considered as easy to maintain581

(MIV S20).582

Outliers in the distributions of MI values were mostly found for C++ sources and were likely related to583

higher values of SLOC, CC, and Halstead Volume, all leading to very low MI values.584

Table 19 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of585

measures for RQ4. The measured differences were statistically significant for the original MI metric586

and for the version employed by Visual Studio. Post-hoc statistical tests focused on the comparison be-587

tween Rust, and the other languages (table 20) highlighted that difference was statistically significant.588

Answer to RQ4: Rust exhibited an average Maintainability Index, regardless of the specific formula
used (median values of 43.3 for MIO, 22.6 for MISEI , 25.3 for MIV S). Highest Maintainability index
were obtained for Python, JavaScript and TypeScript.

589

590

However, it is worth mentioning that several works in the literature from the latest years have high-591

lighted the intrinsic limitations of the MI metric. A study by T. Kuipers underlines how the MI metric592

exposes limitations, particularly for systems built using object-oriented languages since it is based593

on the CC metric that will be largely influenced by small methods with small complexity; hence both594

will inevitably be low [25]. Counsell et al. as well warn against the usage of MI for Object-Oriented595

software, highlighting the class size as a primary confounding factor for the interpretation of the MI596

metric [10]. Several works have tackled the issue of adapting the MI to object-oriented code: Kaur et597

al., for instance, propose the utilization of package-level metrics [23]. Kaur et al. have evaluated the598

correlation between the traditional MI metrics and the more recent maintainability metrics provided599

by the literature, like the CHANGE metric. They found that a very scarce correlation can be measured600

between MI and CHANGE [21]. Lastly, many white and grey literature sources underline how different601

20/26

metrics for the MI can provide different estimations of the maintainability for the same code. This issue602

is reflected by our results. While the comparisons between different languages are mostly maintained603

by all three MI variations, it can be seen that all average values for original and SEI MI suggest very604

low code maintainability, while the average values for the Visual Studio MI would suggest high code605

maintainability for the same code artifacts.606

5 CONCLUSION AND FUTURE WORK607

In this paper, we have evaluated the complexity and maintainability of Rust code by using static metrics608

and compared the results on equivalent software artifacts written in C, C++, JavaScript, Python, and609

TypeScript. The main findings of our evaluation study are the following:610

• The Rust language exhibited average verbosity between all considered languages, with lower611

verbosity than C and C++;612

• The Rust language exhibited the most structured code organization of all considered languages.613

More specifically, the examined source code artifacts in Rust had a significantly higher number614

of arguments than most of the other languages;615

• The Rust language exhibited average CC and values for Halstead metrics. Rust had a signifi-616

cantly lower COGNITIVE complexity with respect to all other considered languages;617

• The Rust language exhibited average compound maintainability indexes. Comparative analyses618

showed that the maintainability indexes were slightly higher (hinting at better maintainability)619

than C and C++.620

All the evidence collected in this paper suggests that the Rust language can produce less verbose, more621

organized, and readable code than C and C++, the languages to which it is more similar in terms of622

code structure and syntax. The difference in maintainability with these two languages was not signifi-623

cant. On the other hand, the Rust language provided lower maintainability than that measured for more624

sophisticated and high-level object-oriented languages.625

It is worth underlining that the source artifacts written in the Rust language exhibited the lowest COG-626

NITIVE complexity, meaning that the language can guarantee the highest understandability of source627

code compared to all others. Understandability is a fundamental feature of code during its evolution628

since it may significantly impact the required effort for maintaining and fixing it.629

This work contributes to the existing literature of the field as a first, preliminary evaluation of static630

qualities related to maintainability for the Rust language and a first comparison with a set of other pop-631

ular programming languages. As the prosecution of this work, we plan to perform further developments632

on the rust-code-analysis tool such that it can provide more metric computation features. At the present633

time, for instance, the tool is not capable of computing class-level metrics. However, it can only be634

employed to compute metrics only on function and class methods.635

We also plan to implement parsers for more programming languages (e.g., Java) to enable additional636

comparisons. We also plan to extend our analysis to real projects composed of a significantly higher637

amount of code lines that embed different programming paradigms, such as the functional and concur-638

rent ones. To this extent, we plan to mine software projects from open source libraries, e.g., GitHub.639

REFERENCES640

[1] Aggarwal, K. K., Singh, Y., and Chhabra, J. K. (2002). An integrated measure of software main-641

tainability. In Annual Reliability and Maintainability Symposium. 2002 Proceedings (Cat. No.642

02CH37318), pages 235–241. IEEE.643

[2] Alqadi, B. S. and Maletic, J. I. (2020). Slice-based cognitive complexity metrics for defect prediction.644

In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering645

(SANER), pages 411–422. IEEE.646

[3] Amara, D. and Rabai, L. B. A. (2017). Towards a new framework of software reliability measurement647

based on software metrics. Procedia Computer Science, 109:725–730.648

21/26

[4] Ardito, L., Barbato, L., Castelluccio, M., Coppola, R., Denizet, C., Ledru, S., and Valsesia, M.649

(2020a). rust-code-analysis: A rust library to analyze and extract maintainability information from650

source codes. SoftwareX, 12:100635.651

[5] Ardito, L., Coppola, R., Barbato, L., and Verga, D. (2020b). A tool-based perspective on software652

code maintainability metrics: A systematic literature review. Scientific Programming, 2020.653

[6] Astrauskas, V., Müller, P., Poli, F., and Summers, A. J. (2019). Leveraging rust types for modular654

specification and verification. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–655

30.656

[7] Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A., Rakamarić, Z., and Ryzhyk, L.657

(2017). System programming in rust: Beyond safety. In Proceedings of the 16th Workshop on Hot658

Topics in Operating Systems, pages 156–161.659

[8] Barón, M. M. n., Wyrich, M., and Wagner, S. (2020). An empirical validation of cognitive complexity660

as a measure of source code understandability. In Proceedings of the 14th ACM / IEEE International661

Symposium on Empirical Software Engineering and Measurement (ESEM), ESEM ’20, New York,662

NY, USA. Association for Computing Machinery.663

[9] Bray, M., Brune, K., Fisher, D. A., Foreman, J., and Gerken, M. (1997). C4 software technology ref-664

erence guide-a prototype. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering665

Inst.666

[10] Counsell, S., Liu, X., Eldh, S., Tonelli, R., Marchesi, M., Concas, G., and Murgia, A. (2015). Re-667

visiting the’maintainability index’metric from an object-oriented perspective. In 2015 41st Euromicro668

Conference on Software Engineering and Advanced Applications, pages 84–87. IEEE.669

[11] Ferreira, J., Zwinderman, A., et al. (2006). On the benjamini–hochberg method. Annals of Statistics,670

34(4):1827–1849.671

[12] Flauzino, M., Verı́ssimo, J., Terra, R., Cirilo, E., Durelli, V. H., and Durelli, R. S. (2018). Are you672

still smelling it? a comparative study between java and kotlin language. In Proceedings of the VII673

Brazilian symposium on software components, architectures, and reuse, pages 23–32.674

[13] Frantz, R. Z., Rehbein, M. H., Berlezi, R., and Roos-Frantz, F. (2019). Ranking open source675

application integration frameworks based on maintainability metrics: A review of five-year evolution.676

Software: Practice and Experience, 49(10):1531–1549.677

[14] Gill, G. K. and Kemerer, C. F. (1991). Cyclomatic complexity density and software maintenance678

productivity. IEEE transactions on software engineering, 17(12):1284.679

[15] Halstead, M. H. (1977). Elements of software science, volume 7. Elsevier New York.680

[16] Hariprasad, T., Vidhyagaran, G., Seenu, K., and Thirumalai, C. (2017). Software complexity681

analysis using halstead metrics. In 2017 International Conference on Trends in Electronics and682

Informatics (ICEI), pages 1109–1113. IEEE.683

[17] ISO (1991). Iso 9126 software quality characteristics. http://www.sqa.net/iso9126.684

html. Online; accessed 08/12/2020.685

[18] ISO/IEC (2011). Iso/iec 25010:2011 systems and software engineering — systems and software686

quality requirements and evaluation (square) — system and software quality models. https:687

//www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en. Online; accessed688

08/12/2020.689

[19] Jedlitschka, A. and Pfahl, D. (2005). Reporting guidelines for controlled experiments in software690

engineering. In 2005 International Symposium on Empirical Software Engineering, 2005., pages691

10–pp. IEEE.692

[20] Jingqiu Shao and Yingxu Wang (2003). A new measure of software complexity based on cognitive693

weights. Canadian Journal of Electrical and Computer Engineering, 28(2):69–74.694

[21] Kaur, A., Kaur, K., and Pathak, K. (2014a). A proposed new model for maintainability index of open695

source software. In Proceedings of 3rd International Conference on Reliability, Infocom Technologies696

and Optimization, pages 1–6. IEEE.697

[22] Kaur, A., Kaur, K., and Pathak, K. (2014b). Software maintainability prediction by data mining of698

software code metrics. In 2014 International Conference on Data Mining and Intelligent Computing699

(ICDMIC), pages 1–6. IEEE.700

[23] Kaur, K. and Singh, H. (2011). Determination of maintainability index for object oriented systems.701

ACM SIGSOFT Software Engineering Notes, 36(2):1–6.702

[24] Köster, J. (2016). Rust-bio: a fast and safe bioinformatics library. Bioinformatics, 32(3):444–446.703

22/26

http://www.sqa.net/iso9126.html
http://www.sqa.net/iso9126.html
http://www.sqa.net/iso9126.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

[25] Kuipers, T. and Visser, J. (2007). Maintainability index revisited–position paper. In Special session704

on system quality and maintainability (SQM 2007) of the 11th European conference on software705

maintenance and reengineering (CSMR 2007). Citeseer.706

[26] Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., and Levis, P. (2017). The case for writing707

a kernel in rust. In Proceedings of the 8th Asia-Pacific Workshop on Systems, pages 1–7.708

[27] Ludwig, J. and Cline, D. (2019). Cbr insight: measure and visualize source code quality. In 2019709

IEEE/ACM International Conference on Technical Debt (TechDebt), pages 57–58. IEEE.710

[28] Ludwig, J., Xu, S., and Webber, F. (2017). Compiling static software metrics for reliability and711

maintainability from github repositories. In 2017 IEEE International Conference on Systems, Man,712

and Cybernetics (SMC), pages 5–9. IEEE.713

[29] Matsakis, N. D. and Klock, F. S. (2014). The rust language. ACM SIGAda Ada Letters, 34(3):103–714

104.715

[30] Matsushita, T. and Sasano, I. (2017). Detecting code clones with gaps by function applications. In716

Proceedings of the 2017 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-717

tion, pages 12–22.718

[31] Microsoft (2011). Code Metrics – Maintainability Index. https://docs.microsoft.com/719

en-gb/archive/blogs/zainnab/code-metrics-maintainability-index. On-720

line; accessed 08/12/2020.721

[32] Molnar, A. and Motogna, S. (2017). Discovering maintainability changes in large software systems.722

In Proceedings of the 27th International Workshop on Software Measurement and 12th International723

Conference on Software Process and Product Measurement, pages 88–93.724

[33] Mshelia, Y. U. and Apeh, S. T. (2019). Can software metrics be unified? In International Conference725

on Computational Science and Its Applications, pages 329–339. Springer.726

[34] Mshelia, Y. U., Apeh, S. T., and Edoghogho, O. (2017). A comparative assessment of software727

metrics tools. In 2017 International Conference on Computing Networking and Informatics (ICCNI),728

pages 1–9. IEEE.729

[35] Nair, L. S. and Swaminathan, J. (2020). Towards reduction of software maintenance cost through730

assignment of critical functionality scores. In 2020 5th International Conference on Communication731

and Electronics Systems (ICCES), pages 199–204. IEEE.732

[36] Nguyen, V., Deeds-Rubin, S., Tan, T., and Boehm, B. (2007). A sloc counting standard. In Cocomo733

ii forum, volume 2007, pages 1–16. Citeseer.734

[37] Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martı́nez-Perez, F. E., and Soubervielle-Montalvo, C.735

(2017). Source code metrics: A systematic mapping study. Journal of Systems and Software, 128:164 –736

197.737

[38] Oman, P. and Hagemeister, J. (1992). Metrics for assessing a software system’s maintainability. In738

Proceedings Conference on Software Maintenance 1992, pages 337–338. IEEE Computer Society.739

[39] Ottenstein, L. M., Schneider, V. B., and Halstead, M. H. (1976). Predicting the number of bugs740

expected in a program module.741

[40] Robson, C. and McCartan, K. (2016). Real world research. John Wiley & Sons.742

[41] Rust (2020). Rust in production. https://www.rust-lang.org/. Online; accessed743

07/12/2020.744

[42] Saifan, A. A., Alsghaier, H., and Alkhateeb, K. (2018). Evaluating the understandability of android745

applications. International Journal of Software Innovation (IJSI), 6(1):44–57.746

[43] Sarwar, M. I., Tanveer, W., Sarwar, I., and Mahmood, W. (2008). A comparative study of mi tools:747

Defining the roadmap to mi tools standardization. In 2008 IEEE International Multitopic Conference,748

pages 379–385. IEEE.749

[44] Schnappinger, M., Osman, M. H., Pretschner, A., and Fietzke, A. (2019). Learning a classifier for750

prediction of maintainability based on static analysis tools. In 2019 IEEE/ACM 27th International751

Conference on Program Comprehension (ICPC), pages 243–248. IEEE.752

[45] Sjøberg, D. I., Anda, B., and Mockus, A. (2012). Questioning software maintenance metrics: a753

comparative case study. In Proceedings of the 2012 ACM-IEEE International Symposium on Empirical754

Software Engineering and Measurement, pages 107–110. IEEE.755

[46] Tashtoush, Y., Al-Maolegi, M., and Arkok, B. (2014). The correlation among software complexity756

metrics with case study. arXiv preprint arXiv:1408.4523.757

[47] Toomim, M., Begel, A., and Graham, S. L. (2004). Managing duplicated code with linked editing.758

23/26

https://docs.microsoft.com/en-gb/archive/blogs/zainnab/code-metrics-maintainability-index
https://docs.microsoft.com/en-gb/archive/blogs/zainnab/code-metrics-maintainability-index
https://docs.microsoft.com/en-gb/archive/blogs/zainnab/code-metrics-maintainability-index
https://www.rust-lang.org/

In 2004 IEEE Symposium on Visual Languages-Human Centric Computing, pages 173–180. IEEE.759

[48] Uzlu, T. and Şaykol, E. (2017). On utilizing rust programming language for internet of things. In760

2017 9th International Conference on Computational Intelligence and Communication Networks761

(CICN), pages 93–96. IEEE.762

[49] Welker, K. D. (2001). The software maintainability index revisited. CrossTalk, 14:18–21.763

[50] Zhou, Y. and Leung, H. (2007). Predicting object-oriented software maintainability using multivari-764

ate adaptive regression splines. Journal of systems and software, 80(8):1349–1361.765

24/26

Listing 1. Sample output of the rust-code-analysis tool for the Rust version of the binarytrees766

algorithm.767

1 {768

2 ”name” : ” A s s e t s / Rus t / b i n a r y t r e e s . r s ” ,769

3 ” s t a r t l i n e ” : 1 ,770

4 ” e n d l i n e ” : 75 ,771

5 ” k ind ” : ” u n i t ” ,772

6 ” m e t r i c s ” : {773

7 ” n a r g s ” : {774

8 ”sum” : 14 . 0 ,775

9 ” a v e r a g e ” : 2 . 0776

10 } ,777

11 ” n e x i t s ” : {778

12 ”sum” : 3 . 0 ,779

13 ” a v e r a g e ” : 0 . 42857142857142855780

14 } ,781

15 ” c o g n i t i v e ” : {782

16 ”sum” : 5 . 0 ,783

17 ” a v e r a g e ” : 0 . 7142857142857143784

18 } ,785

19 ” c y c l o m a t i c ” : {786

20 ”sum” : 12 . 0 ,787

21 ” a v e r a g e ” : 1 . 5788

22 } ,789

23 ” h a l s t e a d ” : {790

24 ” n1 ” : 22 . 0 ,791

25 ”N1” : 193 . 0 ,792

26 ” n2 ” : 43 . 0 ,793

27 ”N2” : 140 . 0 ,794

28 ” l e n g t h ” : 333 . 0 ,795

29 ” e s t i m a t e d p r o g r a m l e n g t h ” : 331 . 4368800622107 ,796

30 ” p u r i t y r a t i o ” : 0 . 9953059461327649 ,797

31 ” v o c a b u l a r y ” : 65 . 0 ,798

32 ” volume ” : 2005 . 4484817384753 ,799

33 ” d i f f i c u l t y ” : 35 . 81395348837209 ,800

34 ” l e v e l ” : 0 . 02792207792207792 ,801

35 ” e f f o r t ” : 71823 . 03864830818 ,802

36 ” t ime ” : 3990 . 168813794899 ,803

37 ” bugs ” : 0 . 5759541722145377804

38 } ,805

39 ” l o c ” : {806

40 ” s l o c ” : 75 . 0 ,807

41 ” p l o c ” : 56 . 0 ,808

42 ” l l o c ” : 31 . 0 ,809

43 ” c l o c ” : 7 . 0 ,810

44 ” b l a n k ” : 12 . 0811

45 } ,812

46 ”nom” : {813

47 ” f u n c t i o n s ” : 4 . 0 ,814

48 ” c l o s u r e s ” : 3 . 0 ,815

49 ” t o t a l ” : 7 . 0816

50 } ,817

51 ” mi ” : {818

52 ” m i o r i g i n a l ” : 58 . 75785297946959 ,819

53 ” m i s e i ” : 33 . 08134287773029 ,820

54 ” m i v i s u a l s t u d i o ” : 34 . 36131753185356821

55 }822

56 }823

57 }824

Listing 2. Sample output of the analyzer.py script for the Rust version of the binarytrees algorithm.825

1 {826

2 ”SLOC” : 75 ,827

3 ”PLOC” : 56 ,828

4 ”LLOC” : 31 ,829

5 ”CLOC” : 7 ,830

6 ”BLANK” : 12 ,831

7 ”CC SUM” : 12 ,832

8 ”CC AVG” : 1 . 5 ,833

9 ”COGNITIVE SUM” : 5 ,834

10 ”COGNITIVE AVG” : 0 . 7142857142857143 ,835

11 ”NARGS SUM” : 14 ,836

12 ”NARGS AVG” : 2 . 0 ,837

13 ”NEXITS” : 3 ,838

14 ”NEXITS AVG” : 0 . 42857142857142855 ,839

15 ”NOM” : {840

16 ” f u n c t i o n s ” : 4 ,841

17 ” c l o s u r e s ” : 3 ,842

18 ” t o t a l ” : 7843

19 } ,844

20 ”HALSTEAD” : {845

21 ” n1 ” : 22 ,846

22 ” n2 ” : 43 ,847

23 ”N1” : 193 ,848

24 ”N2” : 140 ,849

25 ” Vocabu la ry ” : 65 ,850

26 ” Length ” : 333 ,851

27 ” Volume ” : 2005 . 4484817384753 ,852

28 ” D i f f i c u l t y ” : 35 . 81395348837209 ,853

29 ” Leve l ” : 0 . 02792207792207792 ,854

30 ” E f f o r t ” : 71823 . 03864830818 ,855

31 ” Programming t ime ” : 3990 . 168813794899 ,856

32 ” Bugs ” : 0 . 5759541722145377 ,857

33 ” E s t i m a t e d program l e n g t h ” : 331 . 4368800622107 ,858

34 ” P u r i t y r a t i o ” : 0 . 9953059461327649859

35 } ,860

36 ”MI” : {861

37 ” O r i g i n a l ” : 58 . 75785297946959 ,862

38 ” S e i ” : 33 . 08134287773029 ,863

39 ” V i s u a l S t u d i o ” : 34 . 36131753185356864

40 }865

41 }866

25/26

Listing 3. Sample output of the compare.py script for the C++/Rust comparisons of the binarytrees867

algorithm. The old label identifies C++ metric values, while new the Rust ones.868

1 {869

2 ”SLOC” : {870

3 ” o l d ” : 139 ,871

4 ” new ” : 75872

5 } ,873

6 ”PLOC” : {874

7 ” o l d ” : 98 ,875

8 ” new ” : 56876

9 } ,877

10 ”LLOC” : {878

11 ” o l d ” : 25 ,879

12 ” new ” : 31880

13 } ,881

14 ”CLOC” : {882

15 ” o l d ” : 15 ,883

16 ” new ” : 7884

17 } ,885

18 ”BLANK” : {886

19 ” o l d ” : 26 ,887

20 ” new ” : 12888

21 } ,889

22 ”CC SUM” : {890

23 ” o l d ” : 19 ,891

24 ” new ” : 12892

25 } ,893

26 ”CC AVG” : {894

27 ” o l d ” : 1 . 4615384615384615 ,895

28 ” new ” : 1 . 5896

29 } ,897

30 ”COGNITIVE SUM” : {898

31 ” o l d ” : 8 ,899

32 ” new ” : 5900

33 } ,901

34 ”COGNITIVE AVG” : {902

35 ” o l d ” : 0 . 8888888888888888 ,903

36 ” new ” : 0 . 7142857142857143904

37 } ,905

38 ”NARGS SUM” : {906

39 ” o l d ” : 2 ,907

40 ” new ” : 14908

41 } ,909

42 ”NARGS AVG” : {910

43 ” o l d ” : 0 . 2222222222222222 ,911

44 ” new ” : 2912

45 } ,913

46 ”NEXITS” : {914

47 ” o l d ” : 5 ,915

48 ” new ” : 3916

49 } ,917

50 ”NEXITS AVG” : {918

51 ” o l d ” : 0 . 5555555555555556 ,919

52 ” new ” : 0 . 42857142857142855920

53 } ,921

54 ”NOM” : {922

55 ” f u n c t i o n s ” : {923

56 ” o l d ” : 9 ,924

57 ” new ” : 4925

58 } ,926

59 ” c l o s u r e s ” : {927

60 ” o l d ” : 0 ,928

61 ” new ” : 3929

62 } ,930

63 ” t o t a l ” : {931

64 ” o l d ” : 9 ,932

65 ” new ” : 7933

66 }934

67 } ,935

68 ”HALSTEAD” : {936

69 ” n1 ” : {937

70 ” o l d ” : 28 ,938

71 ” new ” : 22939

72 } ,940

73 ” n2 ” : {941

74 ” o l d ” : 56 ,942

75 ” new ” : 43943

76 } ,944

77 ”N1” : {945

78 ” o l d ” : 251 ,946

79 ” new ” : 193947

80 } ,948

81 ”N2” : {949

82 ” o l d ” : 173 ,950

83 ” new ” : 140951

84 } ,952

85 ” Vocabu la ry ” : {953

86 ” o l d ” : 84 ,954

87 ” new ” : 65955

88 } ,956

89 ” Length ” : {957

90 ” o l d ” : 424 ,958

91 ” new ” : 333959

92 } ,960

93 ” Volume ” : {961

94 ” o l d ” : 2710 . 3425872581947 ,962

95 ” new ” : 2005 . 4484817384753963

96 } ,964

97 ” D i f f i c u l t y ” : {965

98 ” o l d ” : 43 . 25 ,966

99 ” new ” : 35 . 81395348837209967

100 } ,968

101 ” Leve l ” : {969

102 ” o l d ” : 0 . 023121387283236993 ,970

103 ” new ” : 0 . 02792207792207792971

104 } ,972

105 ” E f f o r t ” : {973

106 ” o l d ” : 117222 . 31689891692 ,974

107 ” new ” : 71823 . 03864830818975

108 } ,976

109 ” Programming t ime ” : {977

110 ” o l d ” : 6512 . 3509388287175 ,978

111 ” new ” : 3990 . 168813794899979

112 } ,980

113 ” Bugs ” : {981

114 ” o l d ” : 0 . 7983970910222301 ,982

115 ” new ” : 0 . 5759541722145377983

116 } ,984

117 ” E s t i m a t e d program l e n g t h ” : {985

118 ” o l d ” : 459 . 81781345283866 ,986

119 ” new ” : 331 . 4368800622107987

120 } ,988

121 ” P u r i t y r a t i o ” : {989

122 ” o l d ” : 1 . 0844759751246196 ,990

123 ” new ” : 0 . 9953059461327649991

124 }992

125 } ,993

126 ”MI” : {994

127 ” O r i g i n a l ” : {995

128 ” o l d ” : 45 . 586404609681736 ,996

129 ” new ” : 58 . 75785297946959997

130 } ,998

131 ” S e i ” : {999

132 ” o l d ” : 16 . 3624350913677 ,1000

133 ” new ” : 33 . 081342877730291001

134 } ,1002

135 ” V i s u a l S t u d i o ” : {1003

136 ” o l d ” : 26 . 658716146012715 ,1004

137 ” new ” : 34 . 361317531853561005

138 }1006

139 }1007

140 }1008

26/26

	Introduction
	Background and Related Work
	The Rust programming language
	Tools for measuring static code quality metrics

	Study Design
	Goals, Research Questions and Variables
	Objects
	Instruments
	The Rust Code Analysis tool
	Analyzer
	Comparison

	Data collection and Analysis procedure
	Threats to Validity

	Results and Discussion
	RQ1 - Code verbosity
	RQ2 - Code organization
	RQ3 - Code complexity
	RQ4 - Code maintainability

	Conclusion and Future Work
	References

