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Abstract

This work presents a shape sensing method capable of handling some geomet-

rical complexities commonly observed in aerospace structures. The method

presented is based on the one-dimensional inverse Finite Element Method

(1D-iFEM), which is capable of accurately reconstructing structural displace-

ments of beam structures using surface strain measurements. The effects of

cross-sectional variation in shear strains due to transverse or torsional loads

for any general beam profile is accounted for in this 1D-iFEM formulation.

The introduction of these effects allows the use of iFEM for the shape sens-

ing of solid or thin-walled prismatic beams with any general beam profile.

The performance of the new method is demonstrated through some example
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problems of prismatic beams under various static loading scenarios.

Keywords: Timoshenko Beam, Shape Sensing, Structural Health
Monitoring

1. Introduction

For a mechanical structure, obtaining the strain field given a continuous2

displacement field is a well-defined problem. Theoretically, it is governed by

the strain-displacement relationships, and one example of its numerical appli-4

cation is observed when using the Finite Element Method (FEM). However,

the inverse problem of obtaining the displacement field using continuous or6

discrete strain data is ill-defined and suffers from the issues of existence and

uniqueness of a solution. However, it is a problem of considerable significance8

for various practical aerospace applications.

One field of application is for Structural Health Monitoring (SHM), where10

the mechanical quantity measured by sensors embedded in the structure is

often strain or acceleration. In this context, a full-scale reconstruction of the12

displacement and, subsequently, stress fields can be used to calculate damage

indexes based on stress concentration or displacement curvature [1, 2, 3].14

Such damage indexes can be used to identify the presence of damage in the

structure. Another application is for morphing structures where knowledge16

2



of the structural shape is critical, but often, the displacement field cannot

be measured directly. Real-time displacement reconstruction using strain18

sensor data can be used as a feedback component when designing a control

system for the active control of the shape of the structure [4, 5]. In all these20

cases, techniques that can reconstruct the displacement field, using discrete

or continuous strain data measured on the surface of the structure, are called22

shape sensing techniques [6, 7, 8, 9, 10].

The inverse Finite Element Method (iFEM) is one such shape sensing24

technique, developed separately for 2D plate and shell structures[11, 12] and

1D beam structures [13]. For the shape sensing of any general 3D beam or26

frame structure, the 1D iFEM methodology is used. It is based on minimizing

a least-square functional defined as the difference between the theoretical and28

experimental sectional strain measures. The sectional strain measures are

defined based on the Timoshenko beam theory and correspond to the axial,30

bending, transverse shear, and torsional strains experienced by any beam

section. The results of the iFEM reconstruction are computationally efficient32

and robust in the presence of measurement noise. It can handle structures

subjected to both static and dynamic loading [13] and in the geometrically34

linear and non-linear deformation regimes as well [14]. As the methodology is
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independent of the structure’s material properties and loading conditions, it36

is suitable for various SHM problems. Application of iFEM for SHM has been

demonstrated for simple 1D structures using Fibre-Optic sensors [15] and38

simple plate structures with embedded cracks, using strain sensor grids [16,

3]. As 1D iFEM accuracy is dependent on the location and orientation of the40

strain sensors on the structure, various optimal sensor placement techniques

have also been developed. Multi-parameter optimization problems solved42

using the Particle Swarm Optimization (PSO) algorithm [17, 18] can be used

to identify optimal sensor positions that minimize the effect of experimental44

noise and maximize the accuracy of the iFEM reconstruction.

The 1D-iFEM was initially proposed for solving problems involving pris-46

matic beams with simple circular or rectangular profiles [13, 19]. While

efforts have focused on expanding the method for more complex structures,48

such as using an iso-geometric analysis for handling non-prismatic beams[20],

the 1D-iFEM formulation still produces inaccurate results when handling50

beams with complex cross-sections, such as an airfoil. An initial effort to

generalize the 1D formulation for any general beam cross-section was made52

by capturing the dependence of transverse shear strain on the shape of the

beam cross-section [21]. However, the applicability of the method is con-54
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strained to those structures satisfying the assumptions of the formulation.

Expanding the methodology to more practical aerospace structures, such as56

an aircraft wing-box, requires further development of the formulation. The

method should be able to handle effects such as torsional deformation, cross-58

sectional warping, cases of non-prismatic and tapered beams, and the effects

of additional stiffening members such as ribs and spars. This paper presents60

a gradual step in this direction by introducing some of these features into

the existing 1D iFEM formulation.62

The paper begins with the theoretical description of the 1D-iFEM for

beams. The improvements proposed to account for shear and torsional load-64

ing are described in section 2. Section 3 gives a brief review of some numerical

techniques which can be used for computing the transverse shear strain vari-66

ation due to shear and torsional loading for any general beam profile. Section

4 describes an optimal sensor placement technique and presents the results68

of some example problems of prismatic beams under various static loading

scenarios. Finally, section 5 concludes with the paper’s main achievements70

and presents potential areas for future work.
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2. Theoretical Formulation72

The theoretical formulation of the 1D and 2D iFEM for beam, plate, and

shell structures has been discussed extensively in previous papers by Gherlone74

et al.[13, 19] and Tessler et al. [11]. The readers are encouraged to go through

these to get a detailed explanation of the technique. This section briefly76

explains the iFEM formulation for 1D structures and the efforts to generalize

the formulation for prismatic beams with any general cross-sectional profile.78

2.1. inverse Finite Element Method for Beams

The 1D-iFEM is based on the Timoshenko beam theory, where the dis-80

placement field of the beam can be defined using the six kinematic variables,

{u, v, w, θx, θy, θz} (see Figure 1) as,82

ux(x, y, z) = u(x) + zθy(x)− yθz(x)

uy(x, y, z) = v(x)− zθx(x) (1)

uz(x, y, z) = w(x) + yθx(x)

Based on the small-strain hypothesis, the axial and transverse shear strain

components on any section of the beam can be described as,84
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εx(x, y, z) = e1(x) + ze2(x) + ye3(x)

γxz(x, y, z) = e4(x) + ye6(x) (2)

γxy(x, y, z) = e5(x)− ze6(x)

where ei, (i = 1, ..., 6) are the sectional strain measures of the beam. These

strain measures represent the axial, bending, transverse shear, and torsional86

strains and can be defined in terms of the six kinematic variables as,

e1(x) = u,x(x) e2(x) = θy,x(x) e3(x) = −θz,x(x) (3)

e4(x) = w,x + θy(x) e5(x) = v,x − θz(x) e6(x) = θx,x(x)

The displacement reconstruction is performed by discretizing the beam88

into a set of inverse elements and interpolating the kinematic variables, and as

a consequence the sectional strain measures, using element shape functions.90

For each inverse element of the beam, e, and each sectional strain measure,

k, the functional φek can be defined as the least square error between the92
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theoretical and the experimental value of that strain measure,

φek =
Le

n

n∑
i=1

[ek(xi)− eexp,ik ]2 (k = 1, ..., 6) (4)

where Le is the element length, and n is the number of axial locations in94

an element where the experimental strain measures have been calculated.

The experimental sectional strain measures are calculated using linear strain96

measurements made on the outer surface of the beam. The element functional

φe can be written as the sum of the individual functionals, φek, multiplied by98

suitable weighing coefficients, wi, (i = 1, ..., 6), which are calculated using the

area, second moments of inertia, and polar moment of inertia of the beam100

cross-section [13].

φe =
6∑

k=1

wekφ
e
k (5)

Individual contributions from all the elements are assembled as in the102

direct FEM, and the final functional, φ, is minimized with respect to the

unknown nodal degrees of freedom to get a set of linear algebraic equations.104

These equations can be solved to obtain the nodal displacements of the beam.
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Figure 1: Sign conventions used for the six kinematic variables of the beam (left); NACA
0016 airfoil profile with the parameter c indicating the distance along the perimeter (right)

2.2. Estimating Strain Measures106

To implement the iFEM procedure, the six sectional strain measures of

the beam have to be calculated using experimental linear strain measure-108

ments made on the surface of the beam. This calculation can be done by

formulating a set of equations relating these two quantities. The calcula-110

tion of the strain measures for prismatic beams with simple profiles has been

discussed previously by Gherlone et al. [13, 19]. This formulation was ex-112

panded by Roy et al. [21] to accommodate prismatic beams with any general

cross-sectional profile, with specific examples of symmetric airfoil profiles.114

However, the previous work was not successful in accurately accounting for

the distribution of transverse shear strains due to torsion. The present work116

handles this limitation and provides a more detailed explanation of the entire

procedure.118

Assuming a prismatic beam with any arbitrary solid cross-section sub-
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Figure 2: Strain gauge placed on the surface of the beam, oriented at an angle β with
respect to the axis of the beam

jected to a generalized tip load consisting of axial, transverse and torsional120

loads. The magnitude of strain, ε∗, measured by a linear strain gauge placed

on the outer surface of the beam and oriented at an angle, β, with respect to122

the beam-axis (see Figure 2) can be written as a function of the axial strain,εx,

tangential strain,εc, and tangential shear strain, γxc, on the perimeter of the124

beam section. Using a suitable strain-tensor transformation, it can be defined

as[13],126

ε∗(x, c, β) = εx(x, c)cos
2β + εc(x, c)sin

2β + γxc(x, c)cosβsinβ (6)

where c represents the distance along the perimeter from the trailing edge

for either solid or thin-walled beam sections (see Figure 1). Equation 6 can128
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be further simplified as [13],

ε∗(x, c, β) = εx(x, c)(cos
2β − νsin2β) + γxc(x, c)cosβsinβ (7)

Here the axial strain, εx(x, c), and tangential shear strain, γxc(x, c), should130

be represented in terms of the strain measures. Using Equation 2, the dis-

tribution of εx along the perimeter of the beam can be written as,132

εx(x, c) = e1(x) + e2(x)z(c) + e3(x)y(c) (8)

Variation of γxc along the perimeter can be represented as a superposition

of strains due to transverse and torsional loads. Under a transverse or tor-134

sional load, the shear strain at any section is not constant but is a function

of the parameter c. The tangential shear strain variation due to a transverse136

load along the z-axis can be represented with the help of the shear strain

variation function, f1(c), and the tangential shear strain maximum, γzxc,max,138

which represents the amplitude of the variation. Similarly, the tangential

shear strain variation due to a transverse load along the y-axis can be rep-140

resented with the help of the shear strain variation function, f2(c), and the

tangential shear strain maximum, γyxc,max, which represents the amplitude of142
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the variation. The overall tangential shear strain variation due to the two

transverse loads will be the sum of these two contributions.144

For the case of a torsional load, it is assumed that the effect of warping is

negligible. Hence, the tangential shear strain variation for a beam due to a146

torsional load at the tip is represented using the torsional strain measure, e6,

and the function f3(c), which indicates the variation of tangential shear strain148

associated with a unit rate of twist (e6 = 1). Hence the overall variation of

γxc along the perimeter of the beam can be written as,150

γxc(x, c) = γzxc,max(x)f1(c) + γyxc,max(x)f2(c) + e6(x)f3(c) (9)

The quantities {γzxc,max, γyxc,max, e6} are proportional to the magnitudes of

the loads along the z and y-axes and torsional load along the x-axis respec-152

tively. For a 3D beam, the transverse shear strain varies over the cross-section

and is in contrast to the Timoshenko beam theory that proposes a constant154

transverse shear strain for any cross-section. Therefore, for implementing

the 1D-iFEM, {γzxc,max, γyxc,max}, which are measured experimentally have to156

be related to the sectional strain measures, {e4, e5}, which are based on the

Timoshenko beam theory.158

For the case of a cantilevered prismatic beam with a tip load, Fz, applied
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along the z-axis, this can be done by equating the shear strain energy per160

unit length at the mid-beam cross-section (to avoid end-effects) for a 3D

beam, with a similar case for a Timoshenko beam. Under the Timoshenko162

beam theory, the shear strain energy per unit length will be the same in any

beam section. For the present case, the shear strain energy per unit length164

for the Timoshenko beam,φT imSE , can be defined as,

φT imSE =
F 2
z

2AG
(10)

where A indicates the area of the beam cross-section, and G represents the166

shear modulus of the beam material. The two shear strain energies can be

equated using a coefficient,ktz, which is the classical shear correction factor,168

and is defined as the ratio between the two quantities,

ktz =
φT imSE

φFESE
=

F 2
z

2AGφFESE
=
Fz/GA

e4
(11)

where φFESE is the shear strain energy calculated using a high-fidelity 3D FE170

analysis or any equivalent highly accurate approach. The coefficient, kty, can

be calculated similarly by calculating φT imSE and φFESE for a load applied along172

13



the y-axis.

kty =
φT imSE

φFESE
=

F 2
y

2AGφFESE
=
Fy/GA

e5
(12)

Now, {e4, e5} can be related to {γzxc,max, γyxc,max} using the coefficients,174

{kεy, kεz}, which are defined as the ratio between the two,

kεz =
e4

γzxc,max
=

Fz/GA

ktzγzxc,max
, kεy =

e5
γyxc,max

=
Fy/GA

ktyγ
y
xc,max

(13)

The coefficients, {kty, kεy, ktz, kεz}, are purely functions of the shape of176

the beam section. The tangential shear strain along the perimeter of the

beam can be written in terms of the shear coefficients as,178

γxc(x, c) =
1

kεz
e4(x)f1(c) +

1

kεy
e5(x)f2(c) + e6(x)f3(c) (14)

Finally, the experimentally measured surface strains can be written as a

function of the sectional strain measures by substituting Equations 8 and 14180

into Equation 7,
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ε∗(x, c, β) =
(
e1(x) + e2(x)z(c) + e3(x)y(c)

)
[cos2β − νsin2β]+( 1

kεz
e4(x)f1(c) +

1

kεy
e5(x)f2(c) + e6(x)f3(c)

)
cosβsinβ (15)

As Equation 15 is a linear algebraic equation with six unknowns, at least182

six experimental strain measurements are required at a beam section for

solving the equation.184

2.3. Calculating coefficients and functions

A more detailed explanation of the procedure used for calculating the186

functions, {f1, f2, f3}, and coefficients, {kty, kεy, ktz, kεz}, is provided for the

case of a prismatic beam with a solid NACA 0016 airfoil profile. The beam188

considered has a length of 20 m and a chord length of 1m. Results from

a high fidelity 3D FE model of the beam is used for the calculations. The190

beam model is meshed in ABAQUS using solid C3D8R elements, with 8490

elements used per cross-section and 100 elements used along the beam length192

to ensure convergent results (see Table 1). An example of the meshed beam

cross-section is shown in Figure 3.194

For calculating the coefficients and functions for a load along the z-axis,

15



Table 1: Element discretization details of the FE model used in the numerical procedure:
for the case of solid beam models

Elements used

Solid Profile Per cross-section Along beam length Total
NACA 0016 8490 100 849000
NACA 6516 8710 100 871000

Table 2: Element discretization details of the FE model used in the numerical procedure:
for the case of thin-walled beam models (thickness=5mm)

Elements used

Thin-walled Profile Per cross-section Along beam length Total
NACA 0016 4828 150 642124
NACA 6516 4495 150 674250

the FE beam model, clamped at one end, is subject to a unit tip load along196

the z-axis. The FE results are used to calculate the shear strain energy per

unit length for any beam cross-section. Undesired contributions due to end198

effects caused by beam clamping and loading are avoided by considering the

beam’s mid-way cross-section.200

Figure 3: FE mesh of the beam cross-section for the solid beam model with a NACA 0016
airfoil profile
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As the beam is meshed using solid elements, it is assumed that the strain

and stress variations within each element is a constant and has a value equal202

to that at the centroid of the element.Now that the stress and strain variation

is independent of the element length, the shear strain energy per unit length204

for each element is calculated as the product of the shear stress and shear

strain integrated over the projected element area in the mid-beam cross-206

section. The total shear strain energy per unit length can be found as the

sum of the shear strain energies of each element of the cross-section,208

φFESE =
1

2

∫
A

(τFExz γ
FE
xz + τFExy γ

FE
xy )dA =

1

2

Nelem∑
i=1

(τxzγxz + τxyγxy)iA
e
i (16)

where, Aei indicates the projected area of each element of the cross-section and

the transverse shear strains and stresses, {τxz, γxz, τxy, γxy}i are calculated at210

the centroid of each element of the cross-section. The variation of tangential

shear strain, γxc, along the perimeter can be calculated as a combination of212

the two transverse shear strain components along the perimeter. For any

node lying on the perimeter of the beam section, γxc on that node can be214

17



calculated as (see Figure 3),

γxc(c) = γxy(c) cos(θ(c)) + γxz(c) sin(θ(c)) (17)

where, angle θ represents the angle between the horizontal, y-axis, and the216

tangent to the cross-section at that node. Iterating through all the nodes

along the perimeter, the variation of γxc and the corresponding tangential218

shear strain maxima,γzxc,max, can be calculated for a unit tip load along the

z-axis. Using the shear strain energy and the tangential shear strain max-220

ima obtained, the shear coefficients, {ktz, kεz} can be calculated using Equa-

tions 11 and 13. The variation function, f1(c), is obtained by calculating222

the tangential shear strain variation using Equation 17 and representing the

variation using a suitable Fourier series or polynomial function.224

A similar process can be used to obtain the shear coefficients, {kty, kεy}

and variation function, f2(c), using a FEM beam model with a unit tip load226

applied along the y-axis.

To obtain the variation function, f3(c), a beam model with a unit torsional228

strain applied at the beam tip is used and Equation 17 is used for calculating

the tangential shear strain variation. For the example case of a solid prismatic230

beam with a NACA 0016 airfoil profile, the shear coefficients calculated using
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Table 3: Shear Coefficients for some common airfoil profiles

Beam Profile Type kty ktz kεy kεz
NACA 0016 Solid 0.91 0.31 0.84 1.24
NACA 0016 Thin-walled (t=5mm) 0.75 0.03 0.85 3.93
NACA 6516 Solid 1.01 0.28 0.81 1.15
NACA 6516 Thin-walled (t=5mm) 0.83 0.03 0.73 3.06

the above procedure is provided in Table 3 and the variation functions are232

represented using a suitable Fourier series expansions as,

f1(c) = cos(
3

2
π
c

P
) , f2(c) = sin(π

c

P
) (18)

f3(c) = 0.9 sin(2.3c+ 0.4) + 0.24 sin(12.6c− 1.6)

where, P , indicates the half perimeter distance of the cross-section. A similar234

procedure was used to calculate the shear coefficients for some alternative

solid and thin-walled, symmetric, and cambered airfoil profiles. The details236

of the FE mesh used for these beam profiles are provided in Tables 1 and 2,

and the coefficients calculated using the numerical procedure are shown in238

Table 3.
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3. Numerical methods for calculating coefficients and functions240

The calculation of the functions, {f1, f2, f3}, and coefficients, {kεy, kεz},

for any arbitrary beam profile is essential for shape reconstruction based on242

the iFEM methodology described above. As these functions and coefficients

are dependent on the beam profile, it is necessary to calculate them before244

implementation. A possible procedure was demonstrated in detail in the

previous section, where a high fidelity 3D FE model of a beam with the246

desired profile under different loading scenarios was used. The drawbacks of

using this procedure are that the results are obtained at a high computational248

cost due to the high fidelity mesh used and require an iterative exercise to

simulate each beam profile under different loading scenarios. In this context,250

it would be useful to investigate alternative methods that would provide

accurate analytical or numerical solutions at a lower computational cost.252

The analytical solution of transverse shear strain for the bending or tor-

sion of a cantilevered prismatic beam requires a solution based on the theory254

of elasticity. A solution for the torsion problem can be obtained using Saint-

Venant’s Semi-Inverse Method, where the axial displacement is considered256

a function of the warping function, ψ(y, z). This problem can be solved by

writing the warping function in terms of a stress function,Φ(y, z), satisfying258
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the Poisson’s equation,

Φ,yy + Φ,zz = −2Gθx,x (19)

where G is the shear modulus of the beam material. For solving the bend-260

ing problem, the Semi-Inverse Method can be used again by making certain

assumptions regarding the stress distribution across the beam. It can also262

be solved by representing the shear stresses using a suitable stress function,

which satisfies the equilibrium equations, boundary conditions, and com-264

patibility conditions. Closed-form solutions for Saint-Venant’s bending and

torsion problems exist only for a few simple cross-sections like a circle or rect-266

angle [22]. The difficulties of finding an analytical solution can be avoided

by considering a few simple numerical and semi-analytical methods. Some268

of these methods are discussed below.

Even though analytical solutions for the torsion problem of Equation 19270

exists for simple cross-sections, it is not easy to find an exact solution for a

general class of airfoil profiles. However, it is possible to obtain solutions for272

certain specific airfoil shapes using a specific definition of the stress function,

which satisfies Equation 19, like a specific family of airfoils. This approach274

is described by Wang [23], where the stress function, is defined using specific
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terms of a power series as,276

Φ = Gθx,x

(
− y2 + z2

2
+ a0 + a2(y

2 − z2) + a4(y
4 − 6y2z2 + z4)

)
(20)

Here the values of the coefficients a0, a2, and a4 are chosen such that the

stress function satisfies Equation 19. They also define the boundary profile278

where, the stress function should be a constant (Φ = const = 0). Values

for the coefficients are chosen such that the boundary profile represents a280

family of airfoils. The limitation is that the closed-form torsion solutions

are only available for some classes of symmetric airfoils. This method can282

only be used for the torsion problem, and hence only the function, f3, can

be calculated. Nonetheless, it does offer the ease of using a direct analytical284

solution for the iFEM procedure.

As discussed above, representation in terms of a power series is a powerful286

tool for solving such problems. Kosmatka [24] describes another approach

for a prismatic beam under any general loading scenario. The overall bend-288

ing and torsional warping function,ψ, is defined using a double power series
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represented in terms of the coordinates of the beam profile,290

ψ(y, z) =
∞∑
m=0

∞∑
n=0

Cmny
mzn (21)

Here the overall warping function can be assumed to be a linear com-

bination of warping contributions due to beam bending and torsion. The292

coefficients, Cmn, are calculated using the principle of minimum potential

energy, which is subsequently simplified to get a set of variationally defined294

linear algebraic equations. This procedure can be implemented numerically

by discretizing the beam area using a series of triangular elements and solv-296

ing the equations for each element. As it is used for solving the bending

and torsion problems, all three functions, {f1, f2, f3}, and coefficients can be298

calculated using this method. The advantage of this method is that it is

capable of handling any general beam cross-section effectively.300

As the aerospace domain is primarily concerned with thin-walled beam

sections, the assumption that the shell thickness tends to zero can be used for302

obtaining useful, practical results regarding the transverse shear strain vari-

ation. Based on the above assumption, the Jourawski formula [25] offers a304

way of calculating the transverse shear variation functions,{f1, f2}, for closed

thin-walled beam profiles, as a function of the length along the perimeter.306
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It can only be applied for transverse loading scenarios where the beam un-

dergoes torsion-less bending. Hence, the function, f3, cannot be computed.308

It can be applied to relatively simple sections, such as a thin-walled airfoil,

or more complicated profiles such a thin-walled airfoil with a single or mul-310

tiple supporting spar structures. The results, however, are constrained by

the initial assumptions made. As wall thickness is a crucial assumption for312

thin-walled beams, more accurate solutions will be achieved when the wall

thickness is low.314

Further simplifications can be made for solving the torsional problem

in the case of some thin-walled sections. Given the assumption that wall316

thickness tends to zero (t → 0), the shear strain along the thickness can

be considered uniform with a value equal to that along the center-line of318

the section thickness [25]. In such a scenario, it can be shown that the

product of tangential shear strain along the section wall, e6(x)f3(c), and320

the wall thickness, t(c), is a constant. Hence, for a section with a constant

wall thickness, the tangential shear strain variation, f3(c), is a constant with322

respect to the parameter, c.

The methods presented here summarize some analytical and numerical324

techniques explored by the authors for applying the iFEM for any complex
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Figure 4: Comparison plot of the shear variation functions for a solid NACA 0016 airfoil
profile, calculated based on different numerical methods: f1(c) due to a transverse load
along the z-axis (left), f2(c) due to a transverse load along the y-axis (right)

beam profile. The list is by no means exhaustive, and more suitable method-326

ologies might be available in the literature. For the case of a solid prismatic

beam with a NACA 0016 airfoil profile, the three functions obtained using328

FE results, the approaches of Wang [23] and Kosmatka [24] and Fourier series

approximations of Equation 18 are compared and plotted in Figures 4 and 5.330

Apart from the Fourier series approximations, the other approaches provide

similar results. Similar results are also observed for beams with different332

profiles considered in Table 3. The shear coefficients can also be evaluated

using the different approaches with similar results.334

For these reasons, the FE approach is used to calculate the shear coeffi-

cients (Table 3), and these results will be used for the example problems de-336

scribed in Section 4. For calculating the functions {f1, f2, f3}, a combination
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Figure 5: Comparison plot of the shear variation functions for a solid NACA 0016 airfoil
profile, calculated based on different numerical methods: f3(c) due to a torsional load
along the x-axis

of various methods are used. This is because the FE results do not provide338

a direct analytical expression, but a suitable Fourier series approximation

has to be used to fit the data, leading to potential errors. Therefore, for all340

solid beam problems, functions {f1, f2}, are computed using the method of

Kosmatka [24] and the torsion function,f3, using the method of Wang [23].342

For thin-walled beam problems, the Jourawski formula is used for comput-

ing functions,{f1, f2}, and a constant shear strain variation is used for the344

function,f3, based on FE results. As described above, no one method is used

for all problems. Depending on the beam cross-section, the method that of-346

fers the greatest ease in application, without loss of accuracy, is used in the

iFEM formulation.348
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4. Application Problems

The performance of the formulation is tested through different example350

problems of prismatic beams under various static loading scenarios. The ex-

perimental strains required for the iFEM reconstruction are obtained from a352

high fidelity FE model of the beam modeled in ABAQUS. The solid beam

geometries are meshed using the C3D8R element, an 8-node linear brick354

element with reduced integration. The thin-walled beams are modeled as

shell structures and are meshed using the S8R element, an 8-node thick shell356

element with reduced integration and a quadratic interpolation of displace-

ments. The iFEM reconstruction accuracy is assessed by comparing it to the358

displacement results of the direct FE model. All beams geometries used have

a length of 20 m, and the chord length of the airfoil profiles used is 1 m. The360

thin-walled beams have a shell thickness of 5 mm.

Two different 1D iFEM elements are used to perform the displacement362

reconstruction: 0th and 1st order inverse elements. The elements were devel-

oped by Gherlone et al. [13, 19] and have been discussed extensively previ-364

ously, but is briefly described in this section. For each 0th order element, the

strain measures {e1, e4, e5, e6} are a constant throughout the element while366

{e2, e3} has a linear interpolation across the element. Hence, the element

27



requires knowledge of the sectional strains at two axial locations for each ele-368

ment. At each axial location being investigated, three sensor positions along

the beam perimeter are used. Furthermore, at each sensor position, two lin-370

ear strain measurements are used, one along the axis to measure the axial

strain and the second at an angle, β (usually 450), with respect to the beam372

axis to measure the shear strain, following the requirements of Equations 15.

Therefore, a total of 12 experimental strain measurements are required per374

element. For the 1st order element, strain measures {e1, e6} are a constant,

{e4, e5} are linear and {e2, e3} have parabolic interpolation across the ele-376

ment. So the element requires knowledge of the sectional strains at three

axial locations and 18 experimental strain measurements per element.378

Figure 6: Parametrical representation of the sensor positions as a function of the chord
length(left); The parameters, [p, xs, β], used to represent the sensor position and orienta-
tion for a strain gauge placed on the upper surface of the beam (right)

A simple convention is proposed to accurately describe the position and

orientation of a sensor at any location on the surface of the beam regardless380
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of the airfoil profile: [p±, xs, β], where the variable, p, indicates the position

of a sensor on the surface of the beam, with respect to the centroid of the382

section, and is measured as the distance along the chord line of the airfoil

profile. It is parameterized with respect to the airfoil chord length to get a384

normalized distance value for any profile. The superscript indicates whether

the sensor is positioned on the beam’s top or bottom surface, respectively.386

The variables xs and β denote the length along the centroidal axis from the

root and the orientation of the sensor with respect to the centroidal axis,388

respectively. A simple representation of the parameters is shown in Figure 6.

So, for a sensor located 10% of the chord length from the centroid, placed on390

the upper surface and is one-third of the beam length, L, from the root and

oriented at an angle of 600 with respect to the centroidal axis, the notation392

would be
[
0.1+, L

3
, 60
]
. This particular sensor position and arrangement can

be visualized by referring to Figure 7.394

4.1. Optimal Strain Sensor Placement

Finding the optimal location for placing the strain gauges on the surface396

of the beam is an aspect which influences the results of the iFEM solution.

When choosing the sensor location, the objective is to maximize the quantity398

and quality of strain information available in any section. In this context, it
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Figure 7: A strain sensor placed on the upper side of the beam, whose position and
orientation conforms to the notation

[
0.1+, L3 , 60

]
may seem obvious that two sensors placed too close-by or too far apart may400

not provide the desired strain information. An iterative study is performed

to gain a quantitative measure of the optimal sensor location for a symmetric402

airfoil profile [21].

The parameter being iterated is the variable, p, defined previously. Three404

strain sensor positions are required at each axial location of the beam, and

a sensor configuration that is symmetric with respect to the centroid of the406

beam is desired. A solid cantilevered prismatic beam with a NACA 0016

airfoil profile, with unit tip forces applied along the two transverse axes, is408

used as the model for the study, and a high fidelity FE model is used to

obtain the input strains and reference displacements. One 0th-order beam410

element is used for the iFEM reconstruction and the sensor configuration
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used can be described as:
[
(±p+, 0−), (L

3
, 2L

3
), (0, 45)

]
. For each iterated412

sensor configuration, the beam tip displacements are reconstructed, and the

percentage error in the displacements are calculated using Equation 22.414

%ErrorU =
(UFEM

tip − U iFEM
tip

UFEM
tip

)
X100, U = {u, v, w, θx, θy, θz} (22)

Only the percentage error in the axial displacement, u, and the two transverse

displacements,{v, w}, are used for the optimal sensor placement effort. The416

results of the rotational displacements are ignored. For a suitable comparison

between the absolute error values for all three displacements, the results are418

further normalized using Equation 23 so that they lie within the range of

(0, 1). The absolute and normalized percentage error values are plotted in420

Figure 8.

Normalized %ErrorU =
( %ErrorU −%ErrorU,min

%ErrorU,max −%ErrorU,min

)
(23)

The results of the iterative study show that percentage error increases for u422

and v and decreases for w, the further a sensor is positioned from the centroid.

The absolute value of percentage errors shows that the magnitude of the424
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Figure 8: Absolute and normalized percentage error plots of beam tip displacements, u, v
and w, plotted as a function of the sensor position p

errors are low, < 1% for u, v, and < 2% for w, highlighting the high accuracy

of the results. The absolute values also illustrate the higher sensitivity of426

displacements u and v with varying sensor positions compared to w. For

selecting a suitable sensor position, the plot of the normalized percentage428

error is used. A suitable sensor position would be one that presented a

minimum in all the three tip displacement errors. Based on the results of430

Figure 8, a position approximately 10-20 % of the chord length from the

centroid seems suitable. The theoretical formulation of the iFEM does not432

influence the choice of axial position for the sensors. It is only influenced by
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practical considerations such as any unwanted strain fields due to the effect434

of the free end or constraints present at the root. Hence, axial locations

sufficiently far from the root or the tip and from each other would be ideal.436

4.2. Tip Loading Cases

The performance of the new iFEM formulation is tested using the example438

problem of a solid prismatic beam with a cambered airfoil profile (NACA

6516). The beam is subjected to a generalized tip load consisting of axial,440

transverse concentrated loads, out-of-plane moments, and torsion applied at

the centroid of the beam (see Figure 9). The magnitude of the forces is 1N442

and the moments and torsion are 1Nm.

Figure 9: Generalized tip load on a solid prismatic beam with a NACA 6516 airfoil profile
[F = 1N,M = 1Nm]

One 0th-order beam element is used for the displacement reconstruction,444

and the sensor configuration used is described in Table 4.The accuracy of
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Table 4: Sensor position used for the 0th-order beam element and the percentage error in
tip displacements for the solid prismatic beam under a generalized tip load

Sensor Positions u v w θx θy θz[
(±0.1+, 0−), (L

3
, 2L

3
), (0, 45)

]
0.93 -5.51 -0.53 -4.66 1.09 -5.59

the iFEM is assessed by comparing the reconstructed tip displacements and446

rotations to the reference results coming from the direct FE model using

Equation 22.448

The percentage error in tip displacements and rotations are shown in

Table 4. The results present an interesting case where the magnitude of450

displacement in the two transverse directions will be different under similar

loads due to the unsymmetrical nature of the beam profile. Due to greater452

moment of inertia about the z−axis than about the y−axis, (Izz > Iyy), the

displacement along the z−axis will be greater than along y−axis (w > v).454

This difference in the displacement field is also reflected in the strain data,

causing a more accurate reconstruction of w than v. The reconstruction of456

the torsional rotation is also seen to be accurate, with an error of −4.66%. In

previous works [21], as transverse shear strain due to torsion was erroneously458

considered a function of the distance from the shear center, the error in θx

was found to be around 34%. So the present results provide validation to the460

improvements made in the formulation.
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The current reconstruction results were obtained by using only one in-462

verse element for the entire beam. Increasing the number of inverse elements

used (and correspondingly, the number of experimental strain measurements)464

along the beam axis would improve the reconstruction accuracy of the iFEM.

For the current problem, increasing the number of elements used is not es-466

sential as the results obtained using one element are accurate. As the main

focus of this paper is on extending the 1D-iFEM to beams with complex468

cross-sections, increasing the number of elements is not investigated further

in this paper. It is left for future works where more complicated beam struc-470

tures will be investigated.

Figure 10: Uniform distributed load on a thin-walled prismatic beam with a NACA 0016
airfoil profile (left);non-uniform distributed load on a thin-walled prismatic beam with a
NACA 6516 airfoil profile (right)
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4.3. Distributed Loading Cases472

The effect of a distributed load on the reconstruction results is tested

with two prismatic, thin-walled (5mm thick), beams: one with a symmetric474

profile (NACA 0016) and the other with a cambered profile (NACA 6516).

The former is subjected to a uniform distributed load, P1(x) = 1N/m. The476

latter is subjected to a parabolic distributed load, made to resemble the

aerodynamic loading experienced by an aircraft wing, with a greater load478

at the beam root, and it reduces and eventually vanishes at the beam tip

(Figure 10). The distributed load is defined as a function of the centroidal480

axis and the beam length, L, as,

P2(x) =
1

L2
(L2 − x2) , 0 < x < L (24)

For each load case, the displacement reconstruction results obtained using482

one 0th-order beam element is compared to the results obtained using one

1st-order beam element. According to the requirements of both elements,484

two different sensor distributions are also used (Table 5).

For the two distributed load cases, the reconstruction results of the dis-486

placement component, w, from both 0th and 1st order elements are normalized

with respect to the tip displacement of the FE beam model and is plotted488
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Table 5: Sensor configurations used for the 0th and 1st-order beam elements in the case
of a prismatic beam with distributed loading

Element Type Number of Sensors Sensor Location
0th order 12

[
(±0.2+, 0−), (L

3
, 2L

3
), (0, 45)

]
1st order 18

[
(±0.2+, 0−), (L

4
, 2L

4
, 3L

4
), (0, 45)

]

Figure 11: Plot of reconstructed normalized displacements using 0th order and 1st order
inverse beam elements: uniform distributed load (left); parabolic distributed load (right)

in Figure 11. The percentage error in tip displacement, calculated using

Equation 22, is shown in Table 6. It can be seen that the displacement490

reconstruction of the 1st order element is less than 4% and improves sig-

nificantly on that of the 0th order element. As explained in the previous492

section, increasing the number of 0th and 1st order elements used for iFEM

will improve the accuracy of the reconstructed displacements. However, the494

accuracy of the results when using the 1st order element indicates that one

element is sufficient, and further refinement is unnecessary. Structures with496

geometrical complexities that warrant further refinement will be addressed

37



Table 6: Percentage error in tip displacement,w, for the prismatic beams under distributed
loading

Beam Profile Load Condition 0th-order 1st-order
NACA 0016 Uniform Loading -14.83 -3.15
NACA 6516 Parabolic Loading -21.27 1.85

in future works.498

In the present case, as the primary load was along the z-axis, the other

two directions (x and y-axis) remain largely unloaded. Hence, the magnitude500

of the displacements {u, v} are significantly smaller (by more than a factor

of 10−3). Hence, only the displacements in the loading direction have been502

analyzed.

5. Conclusion504

This paper presented an improved framework for the 1D iFEM for han-

dling geometrical complexities commonly encountered in the shape sensing506

of 3D aerospace structures. The effects of shear and torsion are important

factors in describing the mechanical behavior of structures. This work pre-508

sented the efforts in reconciling the 2D effects of shear and torsional strains

with the assumptions of simple 1D beam theories. This was achieved with510

the help of certain shear coefficients and variation functions used to link the

linear strain measured on the beam surface with an equivalent theoretical512
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transverse shear and torsional strain at any cross-section.

The performance of this new formulation was demonstrated through some514

example problems of prismatic beams under various static loading scenarios.

The results of the iFEM show much greater reconstruction accuracy for tor-516

sional displacements compared to results from previous works, underlying the

importance of the changes proposed in this work. Transverse displacement518

reconstruction of prismatic beams was also seen to be accurate under both

uniform and non-uniform distributed loading, with greater accuracy seen to520

be obtained when using a higher-order inverse beam element.

Although the changes introduced in this paper offer a way of applying522

the 1D-iFEM for the shape sensing of a greater number of real-life aerospace

structures, it can by no means account for all the geometrical complexities524

observed in real structures. Further refinement of the methodology is an

essential part of existing research in this area. Future research aims to bridge526

this gap by focusing on thin-walled beam structures with additional stiffening

elements such as ribs and spars and how they affect overall shape sensing528

behavior. As the current work focused primarily on prismatic beams, future

work will emphasize beams with a tapered or variable profile along the beam530

length. Reconstruction performance under high and low-frequency structural
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excitations will also be investigated.532
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