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Abstract

We study the equilibrium of a mechanical system composed by two rods that bend
under the action of a pressure difference; they have one fixed endpoint and are partially
in contact. This system can be viewed as a bi-valve made by two smooth leaflets
that lean on each other. We obtain the balance equations of the mechanical system
exploiting the principle of virtual work and the contact point is identified by a jump
condition. The problem can be simplified exploiting a first integral. In the case of
quadratic energy, another first integral exists: its peculiarity is discussed and a further
reduction of the equations is carried out. Numerical integration of the differential
system shows how the shape of the beams and the position of the contact point
depend on the applied pressure. For small pressure, an asymptotic expansion in a
small parameter allows us to find an approximate solutions of polynomial form which
is in surprisingly good agreement with the solution of the original system of equations,
even beyond the expected range of validity. Finally, the asymptotics predicts a value
of the pressure that separates the contact from the no-contact regime of the beams
that compares very well with the one numerically evaluated.

Introduction

Various theories of elastic rods, with different level of sophistication, are used to describe
the deformation of three dimensional elastic slender bodies, with one dimension much
larger than the other two. These models are usually considered a first step towards the
understanding of a number of physical and bio-mechanical phenomena. Despite their
apparent simplicity, contact problems among elastic rods are still challenging due to the
unilateral constraints and the free boundary conditions (the contact region is a-priori
unknown) they introduce.

In the framework of interacting elastic bodies, the problem of determining equilibrium
states of inextensible strings in contact, provides a rich paradigm. In particular the problem
of finding these states when the applied load is only a normal pressure of constant intensity
is a fascinating example. In this case, every beam is called a velaria (“like sail in the wind”)
(1). The adhesion problem of a rod with a rigid surface, or confined by a rigid external
container, has been extensively studied (2, 3, 4, 5, 6, 7); on the other hand, the problem of
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two elastic rods, confined by their mutual interaction, has received less attention (8, 9). In
both cases, adhesion boundary conditions arise from a variational formulation, and we will
follow this approach too. Similar problems have been numerically addressed, for a single
buckled elastica (10), as a function of the compressive exerted force, and analytically in the
case of two nested elastic rings (8). A remarkable example is provided by the sophisticated
rod theories that have been used to investigate DNA conformations (11, 12), where the
DNA molecule is modelled as a structure made of two interacting elastic strands. Similar
models are used for closely related problems such as delamination from elastic substrates
(13) and peeling (3), where the contact is enforced through an adhesive potential rather
than a geometric constraint. The propagation of an arterial dissection is an important
biological application in this context and it has been extensively studied via numerical
simulations (14, 15).

Here, we study a planar system composed of two inextensible elastic beams, hinged at one
end, which are subject to a pressure difference pushing the rods upwards, so that equilibrium
is possible when they are in contact for a portion of their length. We assume there is no
friction between the rods. The mechanical system can be understood as a 2D cartoon of
two parachutes in contact (without wires) or a mitral valve without chordae tendineae.

The numerical literature of rods in contact is ample, also in a biological context.
Most of the studies consider three-dimensional systems, finite cross-sections and include
friction/adhesion forces in the contact region (16, 17, 18). Due to their intrinsic complexity,
the numerical solution of the resulting equations is the only option available in such cases.
By contrast, our aim is to formulate a minimalistic one-dimensional model able to capture
some key physical features and simple enough to be analytically tractable. Despite its
simplicity, a one-dimensional model gives a valuable insight into the mechanics of the
system. Non trivial questions that can be answered by this simple model are, for example,
the determination of the threshold pressure that the attached beams can sustain. In the
same vein, what is the length of the free portion as a function of the pressure and of other
material parameters?

We ideally split each rod in its attached and unattached portion and the equilibrium
equations are obtained exploiting the principle of virtual work, written for rods under the
action of an external constant pressure (with dimensions of force per unit length). After
taking the first variation of the energy functional, we obtain a system of twenty-four first-
order ordinary differential equations, supplemented by suitable boundary conditions and
two nonlinear algebraic equations that define the curvilinear coordinates of the attachment
point. We show that balance equations have a first integral, that we exploit to simplify
the differential system. When quadratic energy is assumed, there is one more first-integral.
The peculiarity of this first integral and its relation with the contact condition (that might
yield indifferent equilibrium configurations) are discussed. First integrals of the system are
then exploited up to reduce further the problem to two scalar (very nonlinear) second order
equations in the angular coordinate.

In §4 we carry out an asymptotic expansion of the solution in terms of small α,
a nondimensional parameter that characterizes the pressure regime versus the bending
stiffness of the material. Thus, we obtain a polynomial representation of the solution that
fits rather well with the numerical solution of the original problem. More importantly, we
exploit a reduced basis expansion to find approximate solutions in the symmetric version of
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the problem and obtain an asymptotic value for the critical pressure load above which the
rods are no longer in contact.

Numerical results are reported in §5: at variance of pressure and bending stiffness, the
rods take different shape and attach to each other in different points. The equilibrium
profiles, as given by the asymptotic approximation, compares in an excellent way with the
numerical fully nonlinear ones. A contact equilibrium configuration exists up to a critical
pressure, beyond which the leaflets open up: the theoretical and numerical critical value
are in very good agreement.

1. The two leaflet system

1.1 Kinematics

We consider a mechanical system composed by two inextensible leaflets that are in contact
for a portion of their length. For mathematical convenience, each physical leaflet is treated
as two connected rods (see Fig.1). We therefore conveniently extend the approach outlined
in (8) and introduce four curves in the plane: the former ones describe the non–attached
portion of the leaflets, subject to a pressure difference, while the latter accounts for the
partially attached configuration,

ri(si) : [0, s̄i]→ R2, i = 1, 2, 3, 4 (1)

where ri(si) = (x(si), y(si)) and in the mutual attachment point (the interface)

r1(s̄1) = r2(s̄2) = r3(s̄3) = r4(s̄4). (2)

The rods r1 and r2 have a fixed endpoint

r1(0) = r0
1, r2(0) = r0

2, (3)

while the endpoints r3(0) and r4(0) are free (see Figure 1). At variance with the 3-rod
model employed in (8), our 4-rod model accounts for the free sliding of one rod against
the other. In so doing, we implicitly assume that no friction occurs among the rods and
possible equilibrium will be provided by balance of normal force and null tangential force.

A unit tangent vector ti = (cos(θi), sin(θi)) is uniquely defined in every point of a curve,
where θi(si) is the angle between the tangent vector and the x-axis. Normal unit vectors
are defined as ni = (sin(θi),− cos(θi)) so that t′i = −niθ

′
i. In the attachment point the

tangent vector is smooth:

θ1(s̄1) = θ2(s̄2) = θ3(s̄3) + π = θ4(s̄4) + π. (4)

We adopt arc-length parametrizations, so that

s̄1 + s̄3 = `1, s̄2 + s̄4 = `2, (5)

where `1 and `2 are the rods lengths. Moreover the following relations hold:

n1(s̄1) = n2(s̄2) = −n3(s̄3) = −n4(s̄4), (6)

while
t1(s̄1) = t2(s̄2) = −t3(s̄3) = −t4(s̄4). (7)
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Figure 1 The two leaflets have a fixed endpoint and partially overlap, starting from the common
point r1(s̄1) = r2(s̄2). Orange arrows show the constant pressure acting on the lower side of the
system and pushing the rods upwards.

1.2 Equilibrium equations

The inextensible rods store elastic energy only because of bending

w̃i(θ
′
i, s̄i) =

∫ s̄i

0

wi(θ
′
i)dsi, (8)

where wi(θ
′
i), i = 1, 2, 3, 4 are convex functions of the arguments, with the unique minimum

in θi = 0. Of course, (w1(θ′1), w3(θ′3)) and (w2(θ′2), w4(θ′4)) are the same function except for
the domain, because they represent the same physical rod.

We append the energy the inextensibility constraints and we get

W (ri, θ
′
i,Ni, s̄i) =

4∑
i=1

(
w̃i −

∫ s̄i

0

Ni · (r′i − ti)dsi

)
(9)

where Ni(si) = (Nx
i (si), N

y
i (si)) is the (unknown) reaction force of the i-th rod.

In our system a pressure difference applies to the rods, i.e. r1 and r2. The virtual work
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of the external forces reads

δL =

∫ s̄1

0

pn1 · δr1ds1 −
∫ s̄2

0

pn2 · δr2ds2. (10)

The external forces per unit length, pni, are not related to the reactive forces due to
the rod contact: they represent the active external constant pressure difference acting
perpendicularly on both rods. Furthermore, pni is neither conservative nor dissipative.

In principle, if one considers separately the mechanics of the attached rods, there is a
reaction force between rod 3 and rod 4. However, in the attached portion of the system we
give up representing the force balance of every single rod and, for the sake of simplicity, we
only consider the overall system composed by three elements: “rod 1”, “rod 2” and “rod
3+4”. For the action–reaction principle, internal actions balance in every subsystem and
are therefore immaterial in our representation. By contrast, the reaction force should be
explicitly included if one were interested in modeling, for instance, the friction among the
rods, so that the contact could no longer be considered as an ideal constraint. Therefore,
the only non-vanishing contribution to the virtual work (10) comes from the free portions
of the leaflets.

The principle of virtual work δW = δL writes explicitly

4∑
i=1

(∫ s̄i

0

dwi
dθ′i

δθ′idsi −
∫ s̄i

0

δNi · (r′i − ti)−
∫ s̄i

0

Ni · (δr′i + niδθi)

)

+

4∑
i=1

[wi(θ
′
i)−Ni · (r′i − ti)]s̄i δs̄i =

∫ s̄1

0

pn1 · δr1ds1 −
∫ s̄2

0

pn2 · δr2ds2

(11)

After integration by parts we get

4∑
i=1

(
−
∫ s̄i

0

d2wi
d2θ′i

θ′′i δθidsi +

[
dwi
dθ′i

δθi

]s̄i
0

−
∫ s̄i

0

δNi · (r′i − ti) +

∫ s̄i

0

N′i · δri − [Ni · δri]s̄i0 −
∫ s̄i

0

Ni · niδθidsi
)

+

4∑
i=1

[wi(θ
′
i)−Ni · (r′i − ti)]s̄i δs̄i =

∫ s̄1

0

pn1 · δr1ds1 −
∫ s̄2

0

pn2 · δr2ds2.

(12)

The Euler-Lagrange equations of the system (12) are to be obtained by independent
variations of the fields of the energy functional (9): positions, angles, reactions and the
curvilinear coordinates s̄i. However the variations δri(s̄i) and δθi(s̄i), appearing in equation
(12) after integration by parts, are not independent. To decouple the increments we observe
that the total variation of θi, say δθ̄i, up to first order is composed by two terms (19)

δθ̄i = (θi(s̄i + δs̄i) + δθi(s̄i + δs̄i))− θ(s̄i) = θ′(s̄i)δs̄i + δθi(s̄i), (13)

and, analogously,

δr̄i = r′(s̄i)δs̄i + δri(s̄i). (14)
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Moreover, from the conditions (2) and (5) the following relations follow

δr1(s̄1) = δr2(s̄2) = δr3(s̄3) = δr4(s̄4), δs̄3 = −δs̄1, δs̄4 = −δs̄2. (15)

Using equation (13) to represent δθi(s̄i) and δri(s̄i), equation (12) rewrites

4∑
i=1

(
−
∫ s̄i

0

d2wi
d2θ′i

θ′′i δθidsi +
dwi
dθ′i

(s̄i)δθ̄i −
dwi
dθ′i

(0)δθi(0)

)

+

4∑
i=1

(
−
∫ s̄i

0

δNi · (r′i − ti) +

∫ s̄i

0

N′i · δri −Ni(s̄i) · δr̄i + Ni(0) · δri(0)−
∫ s̄i

0

Ni · niδθidsi
)

+

4∑
i=1

[
wi(θ

′
i)− θ′i

dwi
dθ′i
−Ni · (r′i − ti) + Ni · r′i

]
s̄i

δs̄i

=

∫ s̄1

0

pn1 · δr1ds1 −
∫ s̄2

0

pn2 · δr2ds2

(16)

Now all independent variations can be carried out so that the following differential equations
are obtained

d2wi
d2θ′i

θ′′i + Ni · ni = 0, i = 1, 2, 3, 4 (17a)

N′1 = pn1, N′2 = −pn2, N′3 = 0, N′4 = 0, (17b)

r′i = ti, i = 1, 2, 3, 4. (17c)

which coincide with the classical equations of rod theory (1, 20). On the basis of
the assumptions (2) and (3), the system of equations is supplemented by the boundary
conditions

r1(0) = r0
1, r2(0) = r0

2, N3(0) = 0, N4(0) = 0, (18a)

dwi
dθi

(0) = 0, i = 1, 2, 3, 4. (18b)

Note that, because of the assumptions on the bending energy function, the last condition
is equivalent to θ′i(0)=0.

In the contact point (the interface among the fictitious two plus two rods) equations (2)
and (4) provide continuity of position and angles

r1(s̄1) = r2(s̄2) = r3(s̄3) = r4(s̄4),

θ1(s̄1) = θ2(s̄2) = θ3(s̄3) + π = θ4(s̄4) + π,
(19)

and are complemented by balance of forces and torques

N1(s̄1) + N2(s̄2) + N3(s̄3) + N4(s̄4) = 0,

dw1

dθ′1
(s̄1) +

dw2

dθ′2
(s̄2) +

dw3

dθ′3
(s̄3) +

dw4

dθ′4
(s̄4) = 0.

(20)
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The extra terms due to the total variations of the fields in the unknown contact point,
appearing in equation (16) in square brackets, can be understood as a continuity of the
Legendre transform of the strain energy (the Hamiltonian) or, in other contexts, as the
continuity of the Eshelby stress (2, 4, 21). Using equations (5) and (20) we eventually find
the condition that defines the curvilinear coordinates s̄1 and s̄2 of the interface point[

w1 − θ′1
dw1

dθ′1
+ N1 · t1

]
(s̄1)−

[
w3 − θ′3

dw3

dθ′3
+ N3 · t3

]
(s̄3) = 0, (21a)[

w2 − θ′2
dw2

dθ′2
+ N2 · t2

]
(s̄2)−

[
w4 − θ′4

dw4

dθ′4
+ N4 · t4

]
(s̄4) = 0, (21b)

where relations (7), (15) and (17c) have been used.
The statement of the differential problem is well posed: the system (17) contains four second
order boundary value scalar equations and eight vectorial first order equations, requiring
altogether twentyfour boundary conditions provided by equations (18), (19) and (20). The
differential system is fully coupled: despite equations (17a) and (17b) apparently do not
involve the position, their boundary conditions do.

2. Reduction of the system of equations

The equation for the unloaded rod r3 and r4 can be readily integrated: equation (17b) with
boundary condition (18a) has solution N3(s3) = N4(s4) = 0. Equation (17a) can now be
integrated with boundary condition (18b) thus giving θ′3(s̄3) = θ′4(s̄4) = 0; it follows that
θ3(s3) and θ4(s4) are equal to constants to be fixed by the continuity conditions (4). It
follows that whatever the actual length of the leaflets `1 and `2, the superposition lengths
`1 − s̄1 and `2 − s̄2 are immaterial and the condition (5) does not affect the generality of
the results. The equations for rods r3 and r4, not subject to pressure, are therefore trivial,
and we can concentrate our efforts in solving the equations for r1 and r2. Because of the
arguments above, the system of equations and the corresponding boundary conditions can
then be rewritten as follows:

d2wi
d2θ′i

θ′′i + Ni · ni = 0, i = 1, 2 (22a)

N′1 = pn1, N′2 = −pn2, (22b)

r′i = ti, i = 1, 2. (22c)

The system of equations is supplemented by the boundary conditions

dwi
dθi

(0) = 0, i = 1, 2 (23a)

r1(0) = r0
1, r2(0) = r0

2. (23b)

In the contact point (the interface among the fictitious four rods) equations (2) and (4)
provide continuity of position and angles

r1(s̄1) = r2(s̄2), (24a)

θ1(s̄1) = θ2(s̄2), (24b)
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and are complemented by balance of forces and torques

N1(s̄1) + N2(s̄2) = 0, (25a)

dw1

dθ′1
(s̄1) +

dw2

dθ′2
(s̄2) = 0. (25b)

Finally, the interface conditions (21) simplify to

w1(θ′1)(s̄1)− dw1

dθ′1
(s̄1) θ′1(s̄1) + N1(s̄1) · t1(s̄1) = 0, (26a)

w2(θ′2)(s̄2)− dw2

dθ′2
(s̄2) θ′2(s̄2) + N2(s̄2) · t2(s̄2) = 0. (26b)

The complexity of the original system has been significantly reduced: we now have to
solve two second order boundary value problems and four vectorial first order differential
equations, altogether complemented by twelve (coupled) boundary conditions.

3. Integrals of the motion

The equations of every rod has an integral of motion. Noting that n1 = N′1/p and n2 =
−N′2/p, we can write

d2w1

d2θ′1
θ′′1 + N1 ·

N′1
p

=

(
dw1

dθ′1
+
|N1|2

2p

)′
= 0, (27a)

d2w2

d2θ′2
θ′′2 −N2 ·

N′2
p

=

(
dw2

dθ′2
− |N2|2

2p

)′
= 0. (27b)

A first integral can be used, for instance, to obtain relationships about the value of the
unknowns at the endpoints of the rods: because of the arguments illustrated above and
exploiting the boundary conditions (18b) and (25b), the sum of the first integrals in (27)
evaluated at the endpoints satisfy

|N1(0)|2 − |N2(0)|2 = |N1(s̄1)|2 − |N2(s̄2)|2. (28)

First integrals play an important role also because if they are functionally independent,
i.e. their Jacobian matrix has maximal rank, the number of equations of motion can be
reduced introducing a new system of coordinates adapted to the foliation generated by the
first integrals. To this aim, we first rewrite equations (22b) and (26) in a slightly different
form,

(Nx
1 )′ = −p sin θ1, (Nx

2 )′ = p sin θ2, (29a)

|N1|′ = −
p
(
dw1

dθ′1

)
θ′′1

|N1|
, |N2|′ =

p
(
dw2

dθ′2

)
θ′′2

|N2|
, (29b)

and we give a name to the first integrals:

h1 =
dw1

dθ′1
+
|N1|2

2p
and h2 =

dw2

dθ′2
− |N2|2

2p
. (30)
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Since they are functionally independent, we can compute |Ni| as a function of hi, namely

|N1| =

√
2
(
h1p−

dw1

dθ′1

)
|N2| =

√
2
(dw2

dθ′2
− h2p

)
. (31)

Finally, we can rewrite the equation of motion as follows

d2w1

d2θ′1
θ′′1 −Nx

1 sin θ1 ± cos θ1

√
2
(
h1p−

dw1

dθ′1

)
− (Nx

1 )2 = 0, (32a)

d2w2

d2θ′2
θ′′2 −Nx

2 sin θ2 ± cos θ2

√
2
(dw2

dθ′2
− h2p

)
− (Nx

2 )2 = 0, (32b)

(Nx
1 )′ = −p sin θ1, (Nx

2 )′ = p sin θ2 (32c)

h′1 = 0, h′2 = 0 (32d)

r′i = ti, i = 1, 2. (32e)

The system (32) is complemented by the boundary conditions (23–25b) and the ones
deriving from the first integral, i.e. (28). The plus or minus sign is due to the fact that the
level sets defined by the first integrals cannot be parametrized by a global chart, like the
sphere, so the sign depends on the initial conditions.

3.1 The quadratic energy case

In the particular case of quadratic bending energy

wi(θi) =
ki
2

(θ′i)
2, (33)

where ki is a bending modulus, another first integral exists. After multiplication of equation
(17a) by θ′i, we can write

kiθ
′′
i θ
′
i + Ni · niθ′i =

ki
2

d

dsi
(θ′i)

2 −Ni · t′i

=
ki
2

d

dsi
(θ′i)

2 − (Ni · ti)′ + N′i · ti

=

(
ki
2

(θ′i)
2 −Ni · ti

)′
= 0.

(34)

A simple calculation shows that this first integral coincides with the interface condition
(26). This peculiarity of the quadratic energy (and of the linear bending moment) can
be understood observing that in equation (26) it is prescribed the jump of the Legendre
transform of the bending energy, but the Legendre transform of a quadratic function is
(out of the sign) the function itself. It follows that, for a quadratic energy, the interface
conditions prescribe the curvilinear coordinate of the attachment point fixing the value
of the first integral. If the value of such a first integral were prescribed as a boundary
condition (which is not the case considered herein) two possibilities apply: if the jump
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condition across s̄ is satisfied, that is true for every s̄ and all the interface points are of
indifferent equilibrium; otherwise no equilibrium exists.

As we have seen before, first integrals play an important role in reducing the number of
equations of motion. We define

h1 = k1θ
′
1 +
|N1|2

2p
, g1 = k1

θ′21
2
−N1 · t1 = 0,

h2 = k2θ
′
2 −
|N2|2

2p
, g2 = k2

θ′22
2
−N2 · t2 = 0,

(35)

where the fact that g1 and g2 are zero is exactly the reformulation of the interface (boundary)
condition (26), in the case of quadratic energy.

The first integrals gi, peculiar of the quadratic energy, provide us with some information
a priori about the reaction force at the boundary of the rods. In fact, recalling the boundary
condition (18b) and observing that the force balance (20) can be enforced in the contact
point only if the tangent reaction forces vanish, we get the additional information:

Ni(0) · ti(0) = 0, Ni(s̄i) · ti(s̄i) = 0, θ′i(s̄i) = 0. (36)

The map (θi, θ
′
i,Ni) 7→ (h1, g1, h2, g2), away from singular points, is a submersion and can

therefore be inverted representing Ni as a function of h1, g1, h2, and g2. Thus a new system
of coordinates, adapted to the level sets of the first integrals can be defined in the phase
space. By the adhesion condition (26a),(26b) in the case of quadratic energy we know that
the value of the first integrals g1 and g2 is zero. Thus the system can be rewritten as

k1θ
′′
1 ∓

√
2ph1 − 2pk1θ′1 −

k2
1

4
θ′41 = 0 (37a)

k2θ
′′
2 ∓

√
−2ph2 + 2pk2θ′2 −

k2
2

4
θ′42 = 0 (37b)

h′i = 0, i = 1, 2 (37c)

r′i = ti, i = 1, 2 (37d)

where equations are coupled by the boundary conditions (23a)-(26b). As before, the plus or
minus sign is linked to the fact that the level sets of the first integrals cannot be parametrized
by a global chart, then the sign depends on the initial conditions.

4. Asymptotic analysis and critical pressure

In this section we explore an approximation of the nonlinear problem obtained by an
asymptotic expansion in a small parameter, corresponding to the low pressure. We will
show numerically that, rather surprisingly, the approximation retains its validity beyond
the low pressure regime. This analysis will lead us to determine a critical pressure beyond
which there is no more contact of the rods and therefore no more equilibrium solution.

In this section we restrict to consider the symmetric case and quadratic energy, where
the problem can be reduced to the analysis of a single beam, with boundary conditions
θ′(0) = 0, θ′(s̄) = 0, θ(s̄) = 3π/2 and x(0) = 0, y(0) = 0. In this simpler setting there
is no need to consider explicitly the reaction force N, since it can be eliminated using a
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first integral, and the contact condition (26) is replaced by the condition x(s̄) = d/2. To
this aim, let us differentiate equation (22a); then using the first integral g2 in (35) and the
projection of equations (22b) along the normal component, we obtain

kθ′′′ +
k

2
(θ′)3 − p = 0. (38)

This decoupled third order equation is valid out of assumptions, but its applicability is
restricted by the knowledge of the needed boundary conditions in θ and its derivatives; this
applies only for the symmetric case assumed herein. For fixed s̄, it is known that (38) can
be solved in terms of elliptic functions (22, 23, 24). However, for our purposes, a more
transparent insight of the solution is obtained by a simpler asymptotic analysis.

We can make this equation non-dimensional by introducing the variable σ = s/s̄, the
dimensionless parameters

α =
pd3

k
, ξ =

s̄

d
, (39)

and the function θ̂(σ) = θ(s)|s=s̄ σ so that the problem for θ̂ readsθ̂
′′′ + 1

2 (θ̂′)3 − α ξ3 = 0

θ̂′(0) = 0, θ̂′(1) = 0, θ̂(1) = 3
2π,

(40)

where the differentiation is taken with respect to the variable σ. It is worth noticing that
we do not know the value of ξ yet, since the contact point s̄, as a function of α, is unknown.
Nonetheless, in order to proceed with the derivation of the asymptotic expansion, it is
convenient to assume that αξ3 � 1 as α → 0. We will have to check a-posteriori that our
asymptotic results are compatible with this assumption.

When α ξ3 � 1 it is possible to look for a regular asymptotic expansion (25) of (40).

Therefore, we look for a solution of the form θ̂(σ) = 3
2π +

∑N
k=1 ε

k θ̂k(σ) + O(εN+1), with
ε = αξ3. By collecting the terms of homogeneous degree in ε, we obtain a chain of linear
differential equations that are easily solved. Namely, up to order O(ε3) we get

θ̂′′′1 (σ) = 1, θ̂′′′2 (σ) = 0, θ̂′′′3 (σ) +
1

2
θ̂′1(σ)3 = 0, (41)

whose solutions, with vanishing boundary conditions, allow us to write θ̂(σ) as

θ̂(σ) =
3

2
π +

α ξ3

12
(1− σ)2(1 + 2σ)

+
(α ξ3)3

80640
(1− σ)2

(
4 + 8σ + 3σ2 − 2σ3 − 7σ4 − 12σ5 + 25σ6 − 10σ7

)
+O

(
(α ξ3)5

)
.

(42)

It can be noticed that boundary conditions, that are zero-th order in ε, are satisfied by the
zero-th order term of the asymptotic expansion, while the higher order contributions and
their derivatives vanish at the boundary.

This expression reproduces accurately the numerical solution in s = s̄, and works
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Figure 2 Comparison between the numerical solution and the approximate angle θ as given in
(42) for α ≈ 15.6. The numerical solution returns s̄/d ≈ 0.94 in this case. Hence, we find a
relatively large value of αξ3 ≈ 12.8. Despite this, the asymptotic approximation is still close to the
numerical solution.

remarkably well also for rather large values of α ξ3 (see Fig.2 for a comparison). However, its
error is larger as far as s decreases and its extension to s ≈ 0 is only valid at low pressures.

We can use (42) to find an explicit approximate evaluation of ξ = s̄/d. From the boundary
condition x(s̄) = d/2 and x′(s) = cos θ(s) we derive, to leading order,

d

2
= s̄

∫ 1

0

sin

(
α ξ3

12
(1− σ)2(1 + 2σ)

)
dσ ∼ s̄

∫ 1

0

α ξ3

12
(1− σ)2(1 + 2σ)dσ = s̄

αξ3

24
. (43)

Finally, using ξ = s̄/d, we obtain

ξ ∼
(

12

α

)1/4

. (44)

This result shows that αξ3 ∼ 123/4α1/4, which is compatible with our initial assumption
αξ3 � 1, as α→ 0. Therefore, the asymptotic analysis is consistent.

Equation (42) provides an indication on the asymptotic behavior of various quantities of
interest, such as s̄/d and θ(0) as far as the rods are in contact. A comparison of (42) with
the numerical solution, corresponding to αξ3 ≈ 12.8 is shown in Fig.2. The estimate (44)
returns s̄/d ≈ 0.936 against the numerical result 0.94.

Remarkably, the approximation (44) is very robust and also applies when the pressure
is high. In Fig.3 we plot the ratio s̄/d against the dimensionless pressure difference. We
observe that the simple asymptotic approximation (44) captures the correct behavior also
for relatively large pressures. It is therefore tempting to look for an approximation of (40)
which is uniformly valid in [0, 1]. To this aim, we consider the family of functions of the
form

θ̂(σ) =
3

2
π +A

(
1 + cos(πσ)

)
, (45)
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Figure 3 Arc-length of the contact point as a function of α. For comparison, the dashed line
shows the asymptotic approximation ξ ∼ (12/α)1/4, as given in Eq.(44). Red dot shows the limit
point (αcr, ξcr) ≈ (31.8, 0.78).

.

parametrized by the amplitude A. Furthermore, we observe that (40) is the Euler-Lagrange
equation of the reduced functional

Wr(θ̂
′) =

∫ 1

0

(
1

2

(
θ̂′′(σ)

)2

− 1

8

(
θ̂′(σ)

)4

+ αξ3θ̂′(σ)

)
dσ, (46)

so that, in our family of functions, we look for the amplitude A that makes Wr stationary.
This way, we identify the value of A that approximates at best a solution within the
considered functional space. The substitution of (45) into (46) yields, after an explicit
integration, a function of the amplitude A

g(A) = −3π4

64
A4 +

π4

4
A2 − 2αξ3A, (47)

whose critical points identify the values of A. The analysis of the discriminant of g′(A) = 0
reveals that there are three real critical points if αξ3 ≤

√
2π4/9. By contrast, when αξ3 >√

2π4/9 there is only one (negative) real solution, which, however, must be rejected since it
cannot represent our physical situation. This implies, after substitution of (44), that there
is a critical dimensionless pressure, αcr, above which the contact solution disappears

α ≤ αcr =

(
π8

972
√

3

)2

≈ 31.8, (48)

a value that is in excellent agreement with the simulations. Correspondingly, Eq.(44) yields
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Figure 4 Comparison between the numerical solutions (solid lines) and the approximation (45)
(dashed red lines), with the amplitude as given in (49), for α ≈ 3.12 (blue) and α ≈ 31.6 (black).
On the right figure, only the free parts of the rods are shown.

a critical value ξ: ξcr ≈ 0.78. When α ≤ αcr, the amplitude that approximates at best our
numerical solution is one of the critical values of g(A) and it is explicitly found to be

A =
2

3

√
2
(

cos
(

1
3 arctanβ

)
−
√

3 sin
(

1
3 arctanβ

))
, (49)

with

β =

√
π8

972
√

3α
− 1. (50)

A comparison of the numerical solution and (45), for two different values of α, is plotted in
Fig.4.

5. Numerical simulations

In this section we report the results of the numerical integration of the equations for the
quadratic energy discussed in Section 3. Numerical simulations are carried out for possibly
different values of the bending stiffness of the two rods, thus corresponding to equal or
different values of the dimensionless parameter α, denoted in the sequel as αi = pd3/ki
(i = 1, 2). The values of αi adopted in the simulations are representative of the low pressure
regime and near to the critical pressure regime, as found in the previous section. Numerical
integration is performed using the package bvp4c of Matlab which solves a boundary value
problem by multistep finite differences controlling the discrete relative error to be below
the tolerance of 10−8. Another, indirect, check of the consistency of the numerical results
is obtained comparing the computed curvilinear coordinate s̄ of the detachment point with
the one obtained by direct integration of the arc length

√
x′2 + y′2.

In figure 5 are plotted the shape of the rods at equilibrium for a symmetric system
(α1 = α2) for different values of the dimensionless parameter. The increasing pressure
raises the y coordinate of the contact points and increases the curvature of the rods.
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In figure 6 are shown the reaction forces N1(s) and N2(s) computed for α1 = α2 = 32
(symmetric case) and α1 = 26.6, α2 = 44.2 (non–symmetric system). As expected after the
remark (36), the tangent component of the reaction forces vanishes at the boundaries.

A plot of the profile with non–symmetric rods subject to pressure is shown in figure 7
for (α1 = 37, α2 = 22), and (α1 = 44, α2 = 26): the difference in stiffness generates a
non-vertical orientation of the overlapping region. Such an angle does not depend on the
length of the rods. We note that in the non-symmetric case, we are able to find a solution
for values of α1 greater than the critical pressure corresponding to the symmetric case.
This might lead us to conjecture that an non-symmetric configuration can sustain higher
pressures, a remark that could have consequences in terms of optimal design that remain
to be investigated.

6. Conclusions

We have studied the mechanical problem of two inextensible rods with a fixed point, partially
in contact, subject to a pressure difference. After variational statement of the problem,
we have obtained the balance equations of the system with the corresponding boundary
conditions, and the jump conditions that define the curvilinear coordinate of the contact
point. System reduction has been carried out exploiting first integrals, in particular in the
case of quadratic bending energy. Asymptotic analysis yields approximate solutions that fit
very well with the fully nonlinear theory. In particular, we have been able to determine in
a closed (approximate) way the value of the pressure that discriminates the closed regime
(when the two rods are in contact) from the open one (when the pressure is too large to be
sustained). The numerical simulations show the configuration of the rods for values of the
pressure below the critical one.

The problem discussed in this work has a theoretical relevance as a simplest paradigm
apt to study the contact of elastic bodies in the presence of large deformations. While the
interaction of a single elastic ring confined by rigid external container has been extensively
studied (5, 6, 7), few results are available for elastic rods confined by their mutual interaction
(10, 8, 9). The present contribution can be the basis for extension of the model to
more complex physical systems where interaction potentials or more complex constraints
intervene.
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