
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

New Perspectives on Core In-field Path Delay Test / Cantoro, Riccardo; Foti, Dario; Sartoni, Sandro; Sonza Reorda,
Matteo; Anghel, Lorena; Portolan, Michele. - ELETTRONICO. - (2020), pp. 1-5. (Intervento presentato al convegno 2020
IEEE International Test Conference (ITC) tenutosi a Washington DC (USA) nel 01-06 November 2020)
[10.1109/ITC44778.2020.9325260].

Original

New Perspectives on Core In-field Path Delay Test

Publisher:

Published
DOI:10.1109/ITC44778.2020.9325260

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2869358 since: 2021-01-29T10:46:44Z

IEEE

New Perspectives on Core In-field Path Delay Test
Riccardo Cantoro, Dario Foti,

Sandro Sartoni and Matteo Sonza Reorda
Politecnico di Torino

{riccardo.cantoro, sandro.sartoni, matteo.sonzareorda}@polito.it
s251581@studenti.polito.it

Lorena Anghel and Michele Portolan
Univ Grenoble Alpes, CNRS, Grenoble INP,

TIMA, 38000 Grenoble, France

Abstract—Path Delay fault test currently exploits DfT-based
techniques, mainly relying on scan chains, widely supported by
commercial tools. However, functional testing may be a desirable
choice in this context because it allows to catch faults at-speed
with no hardware overhead and it can be used both for end-
of-manufacturing tests and for in-field test. The purpose of this
article is to compare the results that can be achieved with both
approaches. This work is based on an open-source RISC-V-based
processor core as benchmark device. Gathered results show that
there is no correlation between stuck-at and path delay fault
coverage, and provide guidelines for developing more effective
functional test.

Index Terms—software-based self-test, software test library,
on-line test, path-delay test, safety, scan test, LOC

I. INTRODUCTION

Semiconductor companies are developing new advanced
technologies that require more complex and sophisticated
manufacturing processes. The complexity is related to the
shorter channel length that allows high working frequencies
and dense designs. This advantage, however, comes at the
price of more frequent physical defects and shorter device
lifespan. Some of these defects cannot be tested by adopting
the traditional stuck-at fault model anymore, as they can only
be modeled by delay fault models. Path delay faults, however,
although already known in academia, are not supported as
extensively as stuck-at faults by EDA tools. This poses new
challenges in the matter of testing.

Delay faults are usually addressed by employing Design for
Testability (DfT) solutions. The most commonly adopted ones
rely on the use of scan and Built-In Self-Test (BIST). Their
main advantage is that they are based on mature technology,
currently supported by most commercial tools; on the other
hand, however, they introduce additional hardware that may
lead to an area overhead and timing performance decrease.
Moreover, routing of clock signals may be further complicated
by the insertion of the scan and BIST circuitry.

Functional solutions, mainly in the form of Software-Based
Self-Test (SBST) [1], could be considered as well. They are
reliable, affordable, and applicable even in situations where ac-
cessibility is reduced. Test is performed by running a Self-Test
Library (STL), hence at-speed test, crucial in delay testing,
can be conducted. Only functional patterns are applied; as a
consequence, overtesting is avoided and power consumption is
reduced. Finally, functional solutions are suitable to be applied
for in-field test, too. Currently, STLs are commonly provided

by several semiconductor companies as companion products
of their CPUs or SoCs wherever they are used in safety-critical
applications where comprehensive in-field testing is required
[2]–[7]. Unfortunately, no commercial tool currently supports
functional path delay test of sequential circuits.

The main goal of this work is to report the results of
a detailed analysis on the effectiveness of functional path
delay test, by means of an SBST approach on an open-
source pipelined RISC-V CPU, and to compare them against
the results obtained with a DfT approach. To do that, we
developed a flow to perform functional delay fault simulation
on sequential circuits based on commercial tools integrated
through Bash/Python scripts, while the DfT-based analysis
is carried out by using standard functionalities offered by
ATPG and fault simulation tools. To perform the functional
fault simulation process, we evaluated a set of test programs
originally developed for stuck-at faults. Some insights on
testability and test generation can be evinced, highlighting
some limitations in the currently available test flow for path
delay faults, and suggesting new ideas for improving the
effectiveness of functional test. To the best of our knowledge,
this is the first work that reports quantitative results on the
path delay fault coverage that can be achieved resorting to a
functional approach on a pipelined CPU core.

This paper is organized as follows: in Section II, a back-
ground on the path delay fault model, commercial tools, and
related works is given. Section III describes the flow we
developed to perform functional path delay test. Section IV
gives details about the case study, while the achieved results,
as well as some considerations, are presented in Section V.
Finally, Section VI draws the conclusions.

II. BACKGROUND

A. Path Delay test

In a generic synchronous system, input and output signals
are synchronized with respect to a specific periodic clock
signal. All signals are supposed to assume a steady value
within a certain time frame marked by clock signal edges,
indicated as clock period. The Path Delay fault (PDF) can be
defined as the modelling of a defect, distributed along a path,
that affects the nominal propagation delay of that path causing
a specific state transition to happen later than the sampling
edge of the clock. A circuit can pass a delay test if it produces
correct outputs when specific inputs are given at the maximum

Invited Paper
978-1-7281-9113-3/20/$31.00 ©2020 IEEE

INTERNATIONAL TEST CONFERENCE 1

working frequency. Since delay testing requires to generate
and catch a state transition, test patterns for PDFs must be
composed of pairs of test vectors to be applied in succession.

Nowadays, many commercial tools specialized in fault
simulation are available. Such tools can fully handle stuck-
at faults, the analysis of which is the de-facto standard in the
testing industry. Moreover, some of them also support gate
delay faults, such as transition delays. Path delays, on the
other hand, are still not as popular as stuck-at and transition
ones; even though they are supported by EDA tools, they
imply the presence of DfT modules, generally by means of
classic scan chain protocols, such as Launch-on-Shift (LOS)
and Launch-on-Capture (LOC), thus restricting the effort to
the combinational part of circuit1. Unfortunately, to the best of
our knowledge, no commercial tool fully supports sequential
fault simulation of very long sequences of patterns, such as
SBST programs.

B. Related Works

Numerous works on path delay faults can be found in
literature. To start off, [8] reports a comprehensive overview
of the state-of-the-art on delay faults. Our work is also
complementary to the ones presented in [9], [10], as they
elaborate on the insertion of monitors at the end of the most
critical paths in order to make sure their arrival time does
not exceed the nominal clock period. The analyses these
papers perform are mainly based on aging effects. Works [11]–
[13] focus on the generation of test programs for path delay
faults, either by means of identifying functional constraints
or by using evolutionary tools. These approaches, however,
are tested on non-pipelined processors, thus avoiding the
problem of propagating detected delay faults through the
pipeline stages. Moreover, custom fault simulation tools are
used in all previous works. [14], [15] present two different
methods for generating test programs for computational blocks
in pipelined processors. Such works aim at testing specific
combinational datapath modules inside the CPU, thus not
dealing with the complexity of exciting and observing faults
inside a pipelined module. Finally, the authors of [16] present a
test pattern generation method based on a graph representation
of pipelined processors. However, obtaining a graph model for
internal modules of a CPU may not be an easy task when
dealing with complex processor cores; moreover, an ad-hoc
fault simulation has been adopted.

Despite the presence of several works on the functional test
of path delay faults on processor cores, a thorough comparison
between results achieved by adopting DfT solutions against
those achieved by means of a purely functional approach (such
as SBST to fully pipelined CPUs) is still missing.

1Such tools allow the user to change the number of capture cycles during
LOC, which corresponds to the case when the fault effect is propagated in the
sequential logic for some clock cycles before capturing the results into the
scan chains; however, the number of capture cycles is limited, thus making
this approach not suitable for an SBST scenario, in which fault effects may
be latent for a significant amount of clock cycles.

III. FUNCTIONAL FAULT SIMULATION FLOW

The flow we developed for path delay functional test is
based on a set of commercial tools coordinated together by
means of Python and Bash scripts and it is devised for
functional testing, meaning that the netlist is supposed to either
not use any scan chains or to not have such hardware at all.
Before launching the fault simulation process, few preliminary
steps are needed. First, the device under test (DUT) has to be
synthesized such that the combinational cells of the gate-level
netlist are separated from the sequential ones, thus producing a
combinational netlist, containing only combinational elements,
as well as a top-level netlist that consists of the combinational
and sequential cells. The latter netlist is then employed in
a logic simulation, in which the test program is simulated
to record the golden responses from the combinational and
top-level circuits into a patterns list. Lastly, it is necessary to
extract a list of combinational paths from the combinational
netlist with the most stringent timing requirements to be stored
into a path definition list. Such task is performed by means of a
Static Timing Analysis (STA) tool and the paths produced are
those that will be tested when running the fault simulation. It
is worth mentioning that STA tools are not able to recognize
false paths that could introduce untestable faults: a pruning
of those paths from the path definition list may be needed,
e.g., as detailed in [17]. Once these steps are cleared, the
fault simulation process is launched. To start a combinational-
level fault simulation is performed, where paths from the
path definition list are tested with the patterns stored in the
patterns list. This allows to identify all PDFs that produce
a difference on a primary output (PO) or pseudo primary
output (PPO) port and the clock period when this happens. If
available, more accurate results can be achieved by enabling
the no fault-dropping option, i.e., by never deleting faults, even
when detected, from the active fault list. This allows us to
consider, in the following steps, the propagation of fault effects
through the sequential logic not just for the first pattern, but
for the whole test set. The last step consists of propagating
the effects of detected faults throughout the sequential logic
and check whether it reaches an observable point. We modeled
this sequential-level fault simulation by means of translating
each detected fault, together with its possible propagation
endpoint and the time instant at which it reaches the sequential
element, into a bit-flip applied to faulty path endpoint at the
aforementioned time instant.

IV. CASE STUDY

This section introduces the chosen DUT benchmark as well
as a set of test programs that will be used to conduct path
delay fault simulations. Such test programs were originally
designed for stuck-at fault testing and they are representative
of the current state-of-the-art in test program generation [18],
which mainly focuses on this fault model.

A. Processor Core

The adopted benchmark device is an open-source single-
core SoC platform based on a 32-bit RISC-V core, developed

Invited Paper INTERNATIONAL TEST CONFERENCE 2

by ETH Zurich and Università di Bologna, named PULPino
[19]. In this work, PULPino was configured to use the RI5CY
core, an in-order, single-issue core with 4 pipeline stages. The
experiments we performed focused only on the core that was
isolated from other boundary components such as peripherals.
The processor core was synthesized using the 45nm Silvaco
Open Cell library (former Nangate Open Cell library) [20],
with a clock period of 5ns and a total area (equivalent gates)
of 51, 001.65. The hierarchy was flattened and then processed
after synthesis to allow us to focus on the combinational logic.
The list of paths was obtained from the synthesized core after
the STA process. In order not to focus too much on a single
module of the CPU, a maximum of 10 most critical paths per
endpoint were extracted, with a total of 17,738 paths withing
a slack range of [0.37 : 4.95]ns. As the fault list minimization
was not among the objectives of this work, no pruning of
functionally untestable faults was performed. The only faults
that were identified and removed by the fault simulation tool
are the structurally untestable faults.

B. Test Programs

A total of five stuck-at fault (SAF) oriented test programs
were considered. A brief explanation of their characteristics is
given in this paragraph.

Program 1 is a medium-sized test program composed of a
series of macros, each one targeting a separate functionality
of the core. The code includes dedicated test macros for each
core unit, that allows to reach above 90% of SAF coverage
on crucial modules like the ALU, multiplier, and register file.
The macros are composed of blocks of instructions followed
by blocks of store instructions.

Program 2, instead, is a short test program organized as
multiple couples of instructions, where arithmetic operations
are immediately followed by a store operation. The approach
was to explicitly target the register file, multiplier, ALU, and
the Control and Status Register (CSR), while other modules
were covered as a side effect. Random values were used to test
arithmetic units, while the register file were tested using the
method presented in [21]. Other parts of the design, such as
hardware loops, and CSR registers, were tested with custom
algorithms.

Program 3 is the shortest among the set of programs. The
code was randomly generated by a suitable script and it is
structured by groups of instructions composed of two register
loads, one arithmetic operation and then one store instruction.
This program also includes instructions for vector operation,
hardware interrupts, and performance counters reading.

Program 4 is the longest one. The approach of the program
4 is also based on macros. At the beginning of each macro, the
register file is cleared; then, new values are loaded in registers
that will be used as source operands in the subsequent couple
of instructions (any instruction, except for load or store ones,
can be used here). Lastly, a store instruction is issued, to
save the previously computed result. This program is very
interesting as it covers the most important modules in the
design, reaching above 85% of fault coverage.

The last program was obtained by randomly generating
instructions targeting the ALU module, only. Its structure is
based on groups of instructions where the register file is loaded
with immediate random values, then a random number of
arithmetic instructions (such as add, mul, div, and rem) are
performed also in random order and finally all the registers
values are stored back in the memory.

The goal pursued with our experiments was to evaluate
the path delay fault coverage achieved by each program
and compare the functional fault coverage with the coverage
achieved by current scan-based benchmark test procedures.

V. FAULT SIMULATION DATA

In this section, we analyze the results gathered on the
various fault simulation experiments. It is worth noting that
the results obtained in this paper are not tool dependent, as
each step has been cross-validated with similar EDA tools
from different vendors.

The presented experiments have been run on 5 cores of an
Intel Xeon CPU E5-2680 v3. The whole functional simulation
flow required indicatively 48 to 72 hours for each program.

In order to set a reference for the following analysis, we
analyzed the combinational logic of the RI5CY core only,
i.e., assuming that its input/output signals are fully control-
lable/observable with an ATPG process. The ATPG engine
produced a PDF coverage of 38.79%, with 13,762 detected
faults, and 21,714 untestable faults. This is the ideal upper-
bound for the achievable fault coverage that can hardly be
achieved even when adopting scan-based — i.e., LOC — tests,
due to constraints imposed by the test procedure.

Furthermore, in order to perform a more realistic estimation
of the coverage, we launched an ATPG process targeting LOC.
To do so, a scan version of the core netlist was produced. This
choice was driven by the need to have comparable results,
since we use the same fault list for both scan-based and
functional tests. The scan chain featured 1,300 MUX D flip-
flops. LOC analysis led to the following conclusion: 12,389
(34.92%) — corresponding to 90% of the faults detected
by the previous reference experiment — of the faults can
be detected with LOC, while 23,087 have been marked as
untestable. The higher number of untestable faults may be
attributed to the constraints imposed by LOC. A comparative
summary of these experiments is reported in Table I.

TABLE I
COMBINATIONAL ATPG VS. LOC COMPARISON

Detected
faults

Untestable
faults

Total
faults FC% FC% wrt

reference

Comb. ATPG 13,762 21,714 35,476 38.79% 100.00%
LOC 12,389 23,087 35,476 34.92% 90.02%

A. Combinational-level fault simulation

Fault simulation results of the test programs on the combi-
national logic are summarized in Table II.

For each test program, the table reports information about
the amount of test patterns corresponding to its execution, the

Invited Paper INTERNATIONAL TEST CONFERENCE 3

TABLE II
COMBINATIONAL-LEVEL FAULT SIMULATION RESULTS

Progr. 1 Progr. 2 Progr. 3 Progr. 4 Random Cumulative

Test patterns 64,502 36,394 17,269 118,098 32,416 268,679
Detected faults 6,816 6,973 6,856 7,554 6,573 8,085
Fault coverage% 19.21 19.66 19.33 21.29 18.53 22.79
FC% wrt refer. 49.5 50.67 49.81 54.89 47.76 58.75

number of detected faults, the fault coverage, and the fault
coverage normalized with respect to the reference experiment.
The last column, Cumulative, reports the aforementioned data
in a cumulative fashion, as if all test programs could be
collapsed into a single program.

The fault coverage values of Program 1, 2, and 3 are
differing by just few decimal digits, although Program 3 is
faster. This is of particular importance when considering that
the test programs have been devised with different techniques
and structures being also very heterogeneous in terms of
duration and number of instructions. It also suggests that no
correlation between SAF and PDF functional coverages may
exist.

B. Sequential-level fault simulation

We injected faults detected at the combinational level after
removing those affecting specific ports like POs, clock or
enable signals (detected by implication), as their effect is in-
stantly noticeable on the whole system’s behaviour. Moreover,
in order to decrease this fault simulation cost, we grouped
together all faults producing a bit-flip on the same PPO during
the same clock cycle (equivalent faults). Table III presents
results of the sequential-level fault simulation.

TABLE III
FUNCTIONAL FAULT SIMULATION RESULTS

Parameter Program 1 Program 2 Program 3 Program 4 Random

Injected 6,484 6,772 6,629 7,067 6,333
Det. by Simulation 4,797 5,420 4,781 6,660 5,011
Det. by Implication 332 201 227 487 206
Fault Coverage% 14.45 15.84 14.11 20.14 14.12
FC% wrt reference 37.27 40.84 36.39 51.93 37.91
Prop. Coefficient% 75.25 80.61 73.04 94.61 76.23

In the set of injected faults, those that caused an observable
misbehaviour on POs are indicated as Detected by Simulation.
Such faults, together with those detected by implication, were
used to compute the fault coverage. In the table, we also
reported the fault coverage with respect to the reference exper-
iment. Finally, the Propagation Coefficient is the percentage of
faults that have been successfully propagated to a PO among
those faults detected at combinational level.

It is possible to see that program 4 achieved the best
results in terms of both faults detected at combinational level
(7, 554) and propagation coefficient (94.61%). This result may
be partly due to the longer duration of the program 4. Program
Random shows very interesting results as well. Despite the
large gap in terms of fault coverage for SAF and TDF,
the functional test results are comparable to what has been
achieved with other test programs. This brings us again to

the conclusion that no correlation among the considered fault
models coverage exists.

C. Test programs effectiveness

Finally, we have performed an analysis of the effectiveness
of the test programs to understand how delay faults on paths
with different slacks are covered. Moreover, we wanted to
see if there is a correlation between detected faults and the
associated path slack value.

The distribution of the considered PDFs with respect to
slack intervals is presented in Table IV. Each line takes into
account a 0.5ns step interval; if a path owns a slack ranging in
that interval, it will be counted in the row. The absolute number
of faults per interval is reported in the first column, while in
the other columns, we report the fault coverage achieved by
combinational ATPG patterns, LOC patterns and functional
test programs, respectively. Interestingly, all faults belonging
to the slack interval [0.0-1.5]ns were not detected by any test
method. These numbers are in accordance with data shown in
previous publications [22], [23]. Delay faults untestability was
not further investigated as it is not a focus of the current paper
and will be analyzed in future works.

TABLE IV
FAULT COVERAGE PER SLACK RANGE

Slack
intervals
[ns]

Total
faults

Comb.
ATPG
FC%

LOC
FC%

Functional
test programs

FC%

[0.0 - 0.5] 4,672 0.0 0.0 0.0
[0.5 - 1.0] 3,228 0.0 0.0 0.0
[1.0 - 1.5] 640 0.0 0.0 0.0
[1.5 - 2.0] 248 79.4 67.3 7.2
[2.0 - 2.5] 388 66.0 56.7 7.0
[2.5 - 3.0] 422 64.6 56.6 6.6
[3.0 - 3.5] 4,670 5.8 5.2 0.5
[3.5 - 4.0] 7,176 12.7 6.9 0.3
[4.0 - 4.5] 3,968 56.1 41.3 3.6
[4.5 - 5.0] 10,064 95.0 93.2 75.1

In order to identify the most critical faults and how those
are covered by the test methods considered in this work, we
have analyzed the faults affecting the arithmetic blocks within
the core. Table V reports such information. We highlight the
fact that not all faults from the fault list traverse one of these
modules; in some cases, one path could traverse more than
one arithmetic block.

TABLE V
FAULT COVERAGE PER MODULE

Module name Total
faults

ATPG
comb.
FC%

ATPG
scan
FC%

Functional
fault sim.

FC%

id_stage_i_add_531 160 100.0 98.1 0.0
alu_i_int_div_div_i_sub_100 12 50.0 50.0 33.3
alu_i_int_div_div_i_add_100 446 25.8 25.8 25.8
ex_stage_i_mult_i_add_109_2 1,580 0.0 0.0 0.0
ex_stage_i_mult_i_mult_109 1,580 0.0 0.0 0.0
cs_registers_i_add_775 132 100.0 100.0 0.0
load_store_unit_i_mult_add_463_aco 1,884 72.4 72.0 21.8
load_store_unit_i_add_463_aco 1,994 73.5 73.0 24.6
r1589 868 100.0 85.8 0.0
ex_stage_i_alu_i_add_168 6,960 0.0 0.0 0.0
ex_stage_i_alu_i_add_182 6,960 0.0 0.0 0.0

Invited Paper INTERNATIONAL TEST CONFERENCE 4

Furthermore, we analyzed the effort required to propagate
each fault from a PPO to a PO. As a reminder, each fault is
possibly detected at combinational level. In the positive case,
the difference with respect to the fault-free circuit at a given
clock cycle may possibly propagate to a PO; in such a case,
the fault is detected. As an indication of the testability of a
fault, we can measure how many times the fault produces a
difference on a PPO before being detected. As an example,
Table VI reports about the results measured by analyzing
Program 4. Most of the faults (nearly 80%) are immediately
detected, as soon as they produce a difference on a PPO.
Only a subset composed of about 20% of the faults require a
significant number of differences on PPOs at different clock
cycles before being detected. Currently, we are unable to state
whether we could speed-up the detection of the latter subset
of faults by a more careful design of the test programs, or
whether their detection strictly requires longer test programs.

TABLE VI
NUMBER OF DETECTED FAULTS VS. NUMBER OF DIFFERENCES ON PPOS

Differences on PPOs 1 10 30 64

Fault detected 5,712 6,552 6,918 7,146
(%) 79.9 91.7 96.8 100.0

Our results show that further efforts are required to identify
suitable techniques to generate effective test programs able
to achieve a higher PDF fault coverage. These results can be
achieved first of all by increasing the number of PDFs that
produce a difference at combinational level and, further to
that, by increasing the number of faults whose effects can be
propagated up to the POs, that is, by bettering the propagation
coefficient. With our experiments, we clearly show that the
correlation between the ability of a test program to detect
PDFs, and the ability to detect SAFs and TDFs is quite low.
Table VII collects the fault coverage percentages for each
program on the three fault models mentioned in this work.

TABLE VII
FAULT COVERAGE SUMMARY

Parameter Program 1 Program 2 Program 3 Program 4 Random

Clock cycles 64,527 36,500 17,308 181,370 32,455
SAF FC% 86.77 81.79 81.37 82.97 59.44
TDF FC% 41.90 44.21 63.16 61.90 24.41
PDF FC% 14.45 15.84 14.11 20.14 14.12

VI. CONCLUSIONS

In this work we evaluate the effectiveness of functional
techniques based on the SBST paradigm applied to the path
delay fault model in a pipelined CPU core and compare the
achieved results with those provided by scan-based techniques.

Results show that a large portion of faults was detected once
they produce a difference on an endpoint. Another important
conclusion is that more than a half of the faults detected
by scan tests was also detected with functional approaches.
Identifying functionally untestable faults is still an open issue;
moreover, some of the most critical faults are not functionally

observable until they create several differences at combina-
tional level.

We are currently working at devising solutions to effectively
generate functional test programs able to achieve higher fault
coverage figures with respect to PDFs.

REFERENCES

[1] M. Psarakis et al., “Microprocessor software-based self-testing,” IEEE
Design Test of Computers, vol. 27, no. 3, pp. 4–19, 2010.

[2] Hitex. [Online]. Available: https://www.hitex.com/tools-components/
software-components/selftest-libraries-safety-libs

[3] STMicroelectronics. [Online]. Available: http://www.st.com/
content/ccc/resource/technical/document/application_note/02/1a/
91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:
content/translations/en.CD00290100.pdf

[4] Cypress Semiconductor. [Online]. Available: https://www.cypress.com/
file/249196/download

[5] Renesas Electronics. [Online]. Available: https://www.renesas.com/
en-eu/products/synergy/software/add-ons.html

[6] Microchip Technology Inc. [Online]. Available: http://ww1.microchip.
com/downloads/en/DeviceDoc/52076a.pdf

[7] ARM. [Online]. Available: https://developer.arm.com/technologies/
functional-safety

[8] J. Mahmod et al., “Special session: Delay fault testing - present and
future,” in 2019 IEEE 37th VLSI Test Symposium (VTS), 2019, pp. 1–
10.

[9] Z. Ghaderi et al., “Sensible: A highly scalable sensor design for path-
based age monitoring in fpgas,” IEEE Transactions on Computers,
vol. 66, no. 5, pp. 919–926, 2017.

[10] A. Sivadasan et al., “Nbti aged cell rejuvenation with back biasing and
resulting critical path reordering for digital circuits in 28nm fdsoi,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
2018, pp. 997–998.

[11] Wei-Cheng Lai et al., “Test program synthesis for path delay faults in
microprocessor cores,” in IEEE International Test Conference, 2000, pp.
1080–1089.

[12] P. Bernardi et al., “On the automatic generation of test programs for
path-delay faults in microprocessor cores,” in 12th IEEE European Test
Symposium (ETS’07), May 2007, pp. 179–184.

[13] K. Christou et al., “A novel sbst generation technique for path-delay
faults in microprocessors exploiting gate- and rt-level descriptions,” in
26th IEEE VLSI Test Symposium (vts 2008), April 2008, pp. 389–394.

[14] N. Hage et al., “On testing of superscalar processors in functional mode
for delay faults,” in 30th IEEE International Conference on VLSI Design
and 16th IEEE International Conference on Embedded Systems (VLSID),
2017, pp. 397–402.

[15] C. H. . Wen et al., “On a software-based self-test methodology and its
application,” in 23rd IEEE VLSI Test Symposium (VTS’05), 2005, pp.
107–113.

[16] V. Singh et al., “Instruction-based self-testing of delay faults in pipelined
processors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 11, pp. 1203–1215, Nov 2006.

[17] J. Chen et al., “Identification of testable representative paths for low-
cost verification of circuit performance during manufacturing and in-field
tests,” in 32nd IEEE VLSI Test Symposium (VTS), April 2014, pp. 1–6.

[18] P. Bernardi et al., “Development flow for on-line core self-test of
automotive microcontrollers,” IEEE Transactions on Computers, vol. 65,
no. 3, pp. 744–754, 2016.

[19] ETH Zurich and Università di Bologna. [Online]. Available: https:
//github.com/pulp-platform/pulpino

[20] Silvaco. [Online]. Available: https://www.silvaco.com/products/nangate/
FreePDK45_Open_Cell_Library/

[21] D. Sabena et al., “A new sbst algorithm for testing the register file of
vliw processors,” in 2012 Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pp. 412–417.

[22] N. Ahmed et al., “Timing-based delay test for screening small delay
defects,” in 2006 43rd ACM/IEEE Design Automation Conference, 2006,
pp. 320–325.

[23] X. Fu et al., “Testable path selection and grouping for faster than
at-speed testing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 2, pp. 236–247, 2012.

Invited Paper INTERNATIONAL TEST CONFERENCE 5

