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Abstract

The aim of this thesis is to present the results obtained during my PhD, concerning String
Field Theory and Supergravity.
In the first Part, we introduce the main mathematical tools needed to perform an analysis
of the regularities properties of the Intertwining solution in Open Cubic Superstring Field
Theory. This analysis leads to constraints on the explicit form of the tachyon vacuum solution,
which, if satisfied, guarantee that the intertwining solution is well-defined as a string field and
that it does not produce ambiguous terms when inserted in the equations of motion.
In the second Part of this thesis, we introduce the geometric formulation of Supergravity and
its applications to condensed matter systems and holography. In the first case, we build an
analogy between Supergravity and graphene-like materials, where Supersymmetry proves to
be fundamental to describe the electronic properties of these materials. Motivated by this
result, we then perform a holographic analysis of the asymptotic properties of N = 2 pure
AdS Supergravity in presence of a boundary and, by following the AdS/CFT prescriptions,
we prove that the Ward identities of the dual theory are satisfied, which signals that there
are no anomalies.
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1 Introduction

Over the decades, String theory and Supergravity have drawn a lot of interest in the academic
world as they arose as candidates for unifying all four fundamental particle interactions.
Strong nuclear, weak and electromagnetic interaction have been successfully described by the
Standard Model and, from a theoretical point of view, they correspond to internal symmetries
of the action, called gauge symmetries. Gravity is instead described by General Relativity,
which is a geometrical theory of spacetime, whose action is invariant under diffeomorphisms.
These transformations, unlike gauge symmetries, involve spacetime itself and for this reason
are fundamentally different.
The profound distinction between these two kinds of symmetries is also reflected by the hi-
erarchy problem, which is the name often used to refer to the immense difference in strength
between gravity and the other interactions.
A theory capable of properly quantising gravity and describing all fundamental interactions is
called a Theory of Everything (TOE): such a theory should also be able to solve the hierarchy
problem and explain, through a Higgs mechanism, the breakdown of the original symmetry
group at low energies.
One way of solving the hierarchy problem is by introducing a symmetry associating to each
particle a partner obeying the opposite statistics. In this way, it can be shown that the mass
of the Higgs field, whose value would otherwise be driven, by perturbative corrections, all
the way to the Plank scale, does not receive contributions from such high energy scales. The
mentioned symmetry, called Supersymmetry, is then believed to be a possible solution to this
problem and a consistent phenomenological theory extending the Standard Model should is
expected to feature it.
Both bosonic String theory and General Relativity can be made supersymmetric: one then
talks about Superstring theory and Supergravity as the resulting theories.

Let us start with a general overview of these two theories, briefly describing their origins
and main underlying ideas.
String theory is a theory of 1-dimensional laces, which was first proposed to explain the
strong nuclear force, but Quantum Chromodynamics (QCD) proved to be better suited for
that purpose. It was then realised that String theory was not meant to be discarded as the
idea was far reaching: the spectrum of such theory, given by the vibrational modes of open
and closed strings, contains indeed both the photon and the graviton.
The introduction of Supersymmetry brought even more interest in String theory, as it could
now include fermions, which are a key part of the Standard Model.
As a compromise for these astounding properties, Superstring theory can only be formulated
on a 10-dimensional target spacetime: the necessity of this condition can be shown in several
ways. For example, one has to set to zero the mass of gauge fields which arise in the open
string spectrum in the light-cone quantization. Another way of retrieving the same result is
to notice that the worldsheet theory is a (Super-)Conformal Field Theory: one of the defining
features of these theories is that the trace of the energy momentum tensor vanishes. At the
quantum level, though, this trace is proportional to the total central charge of the CFT: the
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vanishing of the trace then requires that

ctot = cX + cψ + cghosts =
3

2
D − 15 = 0 =⇒ D = 10,

where Xµ are the coordinates of the target spacetime in which the strings propagate, ψµ are
their supersymmetric partners and the ghost fields are associated with the symmetries of the
worldsheet theory.
One way of dealing with this unusual feature of String theory is by means of dimensional
compactification: in this way, the extra dimensions are assumed to be compact and to form,
for example, small circles (toroidal compactification) that can only be seen at high enough en-
ergies. This idea goes back to the early work of Kaluza and Klein and turns a feature, which
could certainly appear as dangerous, in an advantageous property, since compactifications
can be used to build a variety of phenomenological models in which spacetime is effectively
4-dimensional.
Another mathematical consequence of String theory are the Dirichlet-branes, in short D-
branes, which are hypersurfaces of the target manifold described by the boundary conditions
of Dirichlet type imposed on the end points of open strings. Apart from their mathematical
origin, their physical importance has been noticed in virtue of the fact that they can lead
to non-abelian gauge symmetries. Furthermore, they have been the key to understand the
process of tachyon condensation, which explains the presence of a tachyonic particle in the
spectrum of the open bosonic string.
The richness of this mathematical setup is shown by the fact that there are five different
consistent Superstring theories, type IIB, type IIA, type I, Heterotic SO(32) and Heterotic
E8×E8. This feature has again turned into an interesting property, as they can all be linked
by a series of dualities, consisting of the so-called S-duality and T-duality: the first one is a
strong-weak duality obtained by inverting the coupling constant, whereas the second one is
deeply linked to compactification and to the fact that strings are 1-dimensional objects that
can wind around compact directions.
These different theories can actually be seen as describing particular limits of a 11-dimensional
more general theory, the M-theory, whose high energy description is still unknown: in this
framework, the mentioned dualities can be further generalised by the so called U-dualities,
which consist in their combination.
One of the main conceptual criticisms against String theory has been that it is not mani-
festly background independent. This can be traced to the fact that the action, written in
superconformal gauge, depends on an explicit choice of background metric

S = − 1

8π

∫
dσ Gµν(X)

(
2

α′
∂αX

µ∂αXν + 2iψ
µ
γα∂αψ

ν

)

Without entering into details, here Gµν(X) is a non-dynamical background metric, which is
usually taken to be the flat metric. From a relativistic point of view, a theory of gravity should
in principle be background independent and progress in this direction has been achieved both
for open and closed strings. In this thesis, we will further investigate this subject in the
context of open strings.
As we argued, String theory contains a graviton in its spectrum: in order for such a theory
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do correctly describe gravity, this particle has indeed to satisfy the Einstein’s equations, or
their supersymmetric generalisation. This can be seen by requiring that the theory remains
(super)conformal even a the quantum level. This condition is encoded in the vanishing of the
beta function, which reproduces the gravity equations in the bosonic case and the equations
of motion of Supergravity, in presence of Supersymmetry. Furthermore, the effective action
in the background fields, having the vanishing of the beta function as equations of motion, is
a Supergravity action.

It must be noticed, though, that Supergravity was first introduced in 1976 independently
from String theory, as a supersymmetric generalization of Einstein’s General Relativity. In
addition to the background independence, Supergravity unfortunately inherits from General
Relativity the fact that it is not renormalizable, because one would need to add to the start-
ing D = 4 lagrangian an infinite number of counterterms to account for all the diverging
diagrams.
At first, it was believed that Supersymmetry could make the theory finite by itself: however,
in the simplest case, N = 1 Supergravity with matter is divergent at one loop order. The
introduction of more supersymmetries, which lead to the so-called Extended Supergravities,
does improve the behaviour of the theory, which nonetheless remains divergent up untilN = 8.
In the presence of the maximum number of supersymmetries the situation is still uncertain
and the computation of scattering amplitudes at seveth loop order, which is the one where
divergences could start showing up, is still under way. Despite this, even if this theory would
prove to be finite, Extended Supergravities are not chiral theories, in the sense that in the
same supermultiplet one has both left and right handed fields, thus belonging to the same
representation of the R-Symmetry group, whereas this does not seem to be the case in the
Standard Model.
All these elements brought to the conclusion that Supergravity should be interpreted as a low
energy effective field theory of some more fundamental theory in an analogous way as the old
Fermi theory was an effective theory for the weak interaction, which could be taken as valid
only for low enough energies. As anticipated before, Superstring theory is a candidate for the
needed fundamental theory, but in principle Supergravity could admit other UV completions.
This interpretation does not downplay the role of Supergravity, as such an effective theory
selects only the low lying modes out of the infinite tower of string states. This theory indeed
should be understood as an intermediate step between energy levels available today and those
needed to access stringy effects. Unfortunately, as of now, all phenomenological models de-
rived from both theories lack of an experimental support.

A new and renovated interest in both Supergravity and Superstring theory has been
brought by one of the most important developments in the last decades: the gauge-gravity du-
ality. This is a correspondence between theories of quantum gravity in D = d+ 1 dimensions
and non-gravitational QFTs on the d dimensional boundary. This idea was first proposed by
Maldacena in 1997, who related type IIB Superstring theory on the 10-dimensional AdS5×S5

curved background to N = 4 super Yang-Mills theory with gauge group SU(N ), which is a
Conformal Field Theory (CFT).
This correspondence, which for this reason is often called AdS/CFT duality, can be restated
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as a duality between a gravity theory, like General Relativity, Supergravity or String theory
and a gauge theory. By considering the low energy limit of String theory, this conjecture
provides an important tool to investigate strong coupling regimes on the QFT side, which can
not be reached by ordinary perturbation theory.
The AdS/CFT correspondence can in principle be expressed as an equality of path inte-
grals [1, 2]

ZG[Φ0] = ZCFT [J ],

where Φ0 is the value of all the fields at the boundary of an asymptotically Anti de-Sitter space
and J are the sources of the CFT. Furthermore, one must have a match between symmetries
of the two theories: in particular global symmetries in the CFT side must correspond to local
ones on the gravity counterpart. For example, if one has global Supersymmetry on one side,
the other must have local Supersymmetry, which implies Supergravity.
Most crucially, if one wants to infer properties of a CFT and obtain physical and finite results
from the gravity side, one has to consider finite gravity actions: this is achieved by means
of the so called holographic renormalization, which is a way of removing IR divergences, cor-
responding to UV ones in the QFT side. This procedure consists in adding to the action
suitable boundary terms, which therefore do not alter the equations of motion of the fields:
they instead remove singularities coming from the presence of a boundary. We will further
discuss this issue during this thesis and we will focus in particular on topological invariant
terms.
The applications of this duality are countless and range from Black holes to Nuclear physics
and even to Condensed matter physics. In particular, the possibility of studying properties of
superconductors, superfluids or graphene-like systems near Dirac points through theories of
gravity, which as particle theories are out of our experimental reach, is an idea as fascinating
as powerful. Indeed, by relating the physics described by such seemingly different theories,
one could for example experimentally test ideas and results of String theory. In this inter-
pretation, without giving up on its privileged role as a fundamental theory of nature, String
theory could also be considered as an insightful mathematical framework.

This thesis is organised as follows: in Part I we will briefly review the basic concepts
and purposes of String Field Theory as well as its formalism, which heavily relies on 2-
dimensional CFT results. We will then focus on Cubic Open String Field Theory and tachyon
condensation. We will study analytic solutions of the cubic equations of motion, paying
particular attention to the the intertwining solution. After describing the defining features of
this solution in the bosonic case, we will study its properties in the superstring case. We will
then understand under which conditions the solution is well defined as a string field: with
this in mind, we will notice that by extending the set of fields used to describe the solution,
we will improve its behaviour, thus allowing to study cases that were previously prohibited.
In Part II, we will start by reviewing the geometric approach to Supergravity: we will focus
on mathematical and physical principles allowing the construction of lagrangians for fields in
the gravitational multiplet. This framework will outline the two research paths that we will
analyse in this thesis: in the first one we will study a particular vacuum theory with the aim
of constructing a model describing relativistic spin 1/2 particles, which will be associated to
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the wavefunction of charge carriers in of graphene-like materials. The second research line
will instead be devoted to N = 2 pure Supergravity with negative cosmological constant, in
presence of a spacetime with a boundary. In particular, we will be interested in understanding
if the addition of topological boundary terms to the starting bulk lagrangian yields a consistent
boundary theory. This holographic analysis will be the first step to further explore and
strengthen the link between Supergravity and graphene models.
At the end of both Parts, we will conclude by commenting the obtained results and by
discussing the possible future developments that the research activity carried out during the
PhD has outlined.

Part I

String Field Theory
String theory, which is usually described as a quantum mechanical theory, can be studied in
a second quantised approach, in terms of oscillations of fields around a stable vacuum. This
approach is therefore called String Field Theory (SFT) and can be applied to both closed and
open strings: closed SFT describes fluctuations around a closed string background, without
D-branes, whereas open SFT deals with fluctuations around a D-brane system living in a
chosen closed string background.
From a historical point of view, such framework has provided, in the open bosonic string case,
a better understanding of the tachyon mode appearing in the spectrum of the open string and
of the non-manifest background independence of String theory.
Regarding the first problem, in a quantum field theory context, the presence of a tachyon is
understood as a sign of instability of the vacuum: in this case it suggests that the D-brane the
open strings are attached to is unstable. This problem has been first addressed by Ashoke Sen
in [3], where the author conjectured that the tachyon potential possesses a minimum, called
tachyon vacuum, with an associated energy density, measured with respect to the unstable
vacuum, equal to minus the tension of the D-brane. Sen also conjectured that, in such mini-
mum, the starting D-brane, together with open strings, should vanish and spacetime should
be left in a closed string vacuum: the rolling of the theory from the unstable vacuum to the
tachyon vacuum has been called tachyon condensation. The absence of physical states around
this configuration means that all infinitesimal shifts around the tachyon vacuum are pure
gauge.
Following this idea, lower dimensional D-branes should arise as classical solutions on the back-
ground of the tachyon vacuum.
The condensation process was first formulated in the context of bosonic String theory, where
a tachyon naturally appears in the spectrum, but it can also be studied in Superstring the-
ory, as tachyons arise, for example, from open strings stretched between D-branes and anti
D-branes.

The conjecture and its implications have first been tackled from a perturbative point of
view, by studying, with increasing precision, the difference in energy density between the
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unstable vacuum and the tachyon vacuum in the tachyon potential. In this analysis, the
infinite expansion of the string field

Φ =

∫
dDk

(
φ(k)c1|0, k〉+ χ(k)c0|0, k〉+Aµ(k)αµ−1c1|0, k〉+ ...

)
, (1.1)

which would in principle contain the entirety of the string excitations, is truncated at a cer-
tain level: this operatively allowed to study the mentioned energy difference, computed from
the Witten’s cubic action of [4]. This procedure confirmed the conjecture with an incredible
precision. For a review of this approach, see [5].

The analytical proofs of Sen’s conjectures, in the bosonic case, have been provided in [6], [7]
and [8] and are characterised by a different mathematical approach to this problem, relying
on an algebra of string fields capable generating exact solutions of the equations of motion.
We will briefly review this method in the following Section, as it will be the main tool that
we will use in this part of the thesis.
The Superstring case is instead more delicate, as the construction of the theory requires
more effort: in particular, the cubic action used in the bosonic case has to be replaced by a
non-polynomial action, built of fields living in the Large Hilbert space [9]. Clearly, finding
solutions of the equations of motion derived from this action is challenging and the standard
analysis performed in the bosonic case is no longer sufficient.
However, it turns out that analytic solutions of the cubic equations of motion can be used
to build solutions of the non-polynomial ones, as shown in [10]. For this reason, by following
the work done in [11], we will provide a solution of the cubic equations of motion in the
superstring case, together with a careful study of its potential divergences.
The solution extends the results of [7] and [12], to the superstring case and describes generic
D-brane systems starting from a reference one, as we will see.
We will conclude with some comments on possible future developments.

2 Worldsheet and Conformal Field Theories

One of the main applications of Conformal Field Theory is to String theory: the string action,
once the worldsheet metric has been fixed to the conformal gauge value, is indeed still invariant
under a residual symmetry, generated by the so called conformal Killing vectors. This means
that the gauge fixing choice is preserved under this set of diffeomorphisms and that the theory
must be invariant under them.
Furthermore, the requirement of conformal invariance completely fixes the dimension of the
background target space in which the string worldsheet is embedded, as we will see. For this
reason, we will now review the main tools of 2d CFTs, which will play an important role
when discussing the results presented in this thesis. The main references for this analysis
are [13–17].
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2.1 Bosonic string setting

The worldsheet is usually parametrised by the real coordinates (τ, σ), in such a way that
τ ∈ (−∞,+∞) and σ ∈ [0, π), σ ∈ [0, 2π) for open and closed strings respectively. In these
coordinates, the worldsheet is thought of as a strip, for the open strings and as a cylinder
for closed ones. One then usually performs a Wick rotation τ → −iτ from the Minkowskian
signature to the Euclidean one and defines two complex coordinates

w = τ − iσ, w̄ = τ + iσ.

.
At last, the obtained coordinates are mapped to

z = ew, z̄ = ew̄, (2.1)

which describe the Upper Half Plane (UHP) in the open string case and the full complex
plane in the closed one.
Equal τ lines, which describe equal time lines, are mapped, in the coordinates z, z̄ to (semi)circles
centered in the origin, which instead corresponds to past infinity. For this reason, time ordered
product of fields is mapped into radial ordering, which is defined in the following way

R(Φ1(z)Φ2(w)) =

{
Φ1(z)Φ2(w) for |z| > |w|
(−1)|Φ1||Φ2|Φ2(w)Φ1(z) for |w| > |z|,

where Φ1 and Φ2 are two generic fields, whose Grassmanality is denoted by |Φ1,2|.
In the following, any product of fields will be considered to be radially ordered and we will
therefore drop the ordering symbol. As a consequence of radial ordering, the equal time
commutator is then defined as

[Φ1(z),Φ2(w)]||z|=|w| = lim
δ→0
{Φ1(z)Φ2(w)||z|=|w|+δ − Φ2(w)Φ1(z)||z|=|w|−δ}. (2.2)

Let us now first focus on the closed string case, whereas the open string one will be dealt with
later on.

In d = 2, conformal transformations, which are solutions to the conformal Killing vector
equation, actually coincide with the holomorphic and anti-holomorphic coordinate transfor-
mations given by

z′ = f(z), z̄′ = f̄(z̄).

The main mathematical objects studied in CFTs are the primary fields, which transform as
tensors under conformal transformations

Φ′(z′, z̄′) =

(
∂z′

∂z

)−h(∂z̄′
∂z̄

)−h̄
Φ(z, z̄), (2.3)
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where h, h̄ are called weights and the combinations h + h̄ and h − h̄ are respectively called
scaling dimension and conformal spin of Φ.
An holomorphic field can be expressed in the complex plane as a mode expansion

Φ(z) =
∑

n∈Z
Φnz

−n−h, (2.4)

where the various modes can be obtained by Cauchy’s residue theorem as

Φn =

∮

C0

dz

2πi
Φ(z)zn+h−1, (2.5)

C0 being a circle around the origin.
Since the energy momentum tensor of a CFT is classically traceless and covariantly conserved,
its only two components are holomorphic Tzz ≡ T (z) and anti-holomorphic Tz̄z̄ ≡ T̄ (z̄): a
generic infinitesimal conformal transformation δz = ξ(z), δz̄ = ξ̄(z̄) then leads to the following
conserved quantity

Tξ,ξ̄ =
1

2πi

∮

C0

(
dz ξ(z)T (z) + dz̄ ξ̄(z̄)T̄ (z̄)

)
. (2.6)

We therefore obtain an infinite number of conserved quantities, parametrised by the vectors
ξ, ξ̄: this is a reflection of the fact that, as we will mention, the conformal algebra in two
dimensions is infinite dimensional.
The above quantity generates infinitesimal transformations of primary fields: for holomorphic
fields we have

δξΦ(z) = −[Tξ,Φ(z)], (2.7)

which can be compared with the defining relation (2.3). This allows to obtain the Operator
Product Expansion (OPE), which in general describes the short distance behaviour of two
fields, between the energy momentum tensor and the chosen primary field

T (z)Φ(w) =
hΦ(w)

(z − w)2
+
∂Φ(w)

z − w + finite terms. (2.8)

We see that the weight of the primary operator always appears as the coefficient of the
(z − w)−2 term.
By examining the transformation law of the energy momentum tensor, one can inspect its
OPE with itself:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w + finite terms. (2.9)

The first term appearing in the above formula depends on a number c and in general prevents
us from considering the energy momentum tensor as a primary field of conformal weight h = 2.
An analogous formula can be written for the anti-holomorphic sector.
The T-T OPE (2.9) can be equivalently restated in terms of the energy momentum modes

Ln =

∮
dz

2πi
zn+1T (z)
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as

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n. (2.10)

We then see that the c-term appearing in (2.9) generates the unique central extension of the
classical Witt algebra. The algebra (2.10) is called Virasoro algebra and the number c is
referred to as the central charge.
The central charge measures how much of the conformal invariance is lost at the quantum
level: a non-anomalous String theory should always have c = 0.
We observe that (2.10) allows for a closed finite subalgebra generated by L0, L±1, which de-
scribe the infinitesimal transformations δz = α+βz+γz2. These generators define the group
of transformations PSL(2,C) = SL(2,C)/Z2.

In a generic quantum field theory, the space of states and the set of local operators differ
from each other, whereas in CFTs there exists an isomorphisms which relates them: this is
the so called state-operator correspondence and can be concretely expressed for in-states as

|Φ〉 := lim
z,z̄→0

Φ(z, z̄)|0〉, (2.11)

where |0〉 is the in-vacuum state and Φ is a primary field. Regularity of the constructed state
at past infinity means that

Φn|0〉 = 0 for n > −h, (2.12)

as a consequence of (2.5). Out-states are defined as Hermitian conjugate of in-states and their
regularity requires

〈0|Φn = 0 for n < h. (2.13)

In particular, we can consider the Virasoro generators Lm, which have to satisfy

Ln|0〉 = 0 for n > −2 ∧ 〈0|Ln = 0 for n < 2.

We then see that the previously considered PSL(2,C) algebra annihilates both the in- and
the out-vacuum, which is therefore called SL(2,C) invariant vacuum.
As we will see in the next sections, when considering correlation functions, one can define
another notion of out-state, the so called BPZ conjugate, which reads

(|Φ〉)BPZ := 〈0|I ◦ Φ(0), (2.14)

where I(z) = −1
z .

The state-operator correspondence relates unitary representations of the Virasoro algebra to
primary fields: indeed, it can be shown that the state |Φ〉 is a highest weight representation
satisfying

L0|Φ〉 = h|Φ〉, (2.15)
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where h is the conformal weight of the holomorphic field Φ(z). Since L0 is associated to
dilatations in the complex plane, which are time translations on the cylinder and therefore
coincides with the hamiltonian, the conformal weight can be understood as the energy of the
state, being the eigenvalue of such operator.

Let us now consider the open string case: as we have said, the worldsheet is mapped to
the UHP, where the real axis corresponds to the edges of the strip. One usually imposes a
physical condition on the energy momentum tensor of the theory

T (z) = T (z̄)
∣∣∣
z=z̄

(2.16)

indicating that there is no flow of momentum across the boundary. This suggests us to perform
an analytic continuation of energy momentum tensor to the lower half plane, a procedure
called doubling trick. We therefore identify T (z′) = T̄ (z) for Im(z′) < 0, yielding a single
holomorphic energy momentum tensor on the whole complex plane.
This condition breaks the conformal symmetry from two independent Virasoro algebras to a
single (diagonal) Virasoro algebra. whose generators are defined in the usual way as

Ln =

∮

C0

dz

2πi
zn+1T (z).

Open strings are characterised by the possibility of having different boundary conditions
on the two endpoints: for this reason, the theory describing them is actually a Boundary
CFT (BCFT). The latter deals with boundary condition changing operators (bcco), which,
inserted at the origin of the UHP, allow to change boundary conditions between the negative
and positive real axis, which correspond, in the strip frame, to the worldlines drawn by the
two endpoints.

2.1.1 Free CFTs and BRST symmetry

We discuss now two examples of free CFTs, needed for the analysis of bosonic String the-
ory: the scalar fields Xµ and the bc-system. Since the closed string CFT actually splits into
two isomorphic sectors, left-moving (holomorphic) and a right-moving (anti-holomorphic),
whereas the open string BCFT has only one, we will mainly focus on the main properties of
the holomorphic sector.

The Polyakov action in the conformal gauge for strings propagating in flat Minkowski
space reads

SX =
1

2πα′

∫
d2z ∂Xµ(z, z̄)∂̄Xµ(z, z̄), µ = 0, 1, . . . , D − 1, (2.17)

where, in virtue of the equations of motion, Xµ(z, z̄) = Xµ(z) + X̄(z̄). The holomorphic
energy momentum tensor reads

TX(z) = −∂Xµ∂Xµ, (2.18)
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where we have set α′ = 1. In order for it to be finite, the conformal normal ordering : . . . :
defined for generic fields as

: A(z)B(z) := lim
w→z

A(w)B(z)− poles =

∮
dw

2πi

A(w)B(z)

w − z

is intended. The T-T OPE agrees with (2.9) and reads

TX(z)TX(w) =
D/2

(z − w)4
+

2TX(w)

(z − w)2
+
∂TX(w)

z − w + ...

and allows to retrieve cX = D. The free bosons Xµ are not primary fields, as they do not
transform according (2.8), but the current Jµ = i

√
2 ∂Xµ is a primary field of conformal

weight h = 1.

The action describing the (holomorphic part of the) bc-system is instead given by

Sbc =
1

2π

∫
d2z b∂̄c, (2.19)

where the OPE between the two anticommuting fields is given by

b(z)c(w) = c(z)b(w) =
1

z − w + . . . . (2.20)

The action is conformally invariant when the fields transform as primaries with

hb = λ, hc = 1− λ,

for any real number λ. The energy momentum tensor for the bc-system is given by

T bc(x) = (1− λ)∂bc− λb∂c, (2.21)

with associated central charge cbc = −3(2λ−1)2 +1. Furthermore, the bc-system is invariant
under a U(1) symmetry δb = −iεb, δc = iεc, which generates a current jbc(z) = −bc (z)
satisfying

T bc(z)jbc(w) =
1− 2λ

(z − w)3
+

jbc(w)

(z − w)2
+
∂jbc(w)

z − w + . . . . (2.22)

This last formula shows that the ghost current does not transform as a primary field, unless
λ = 1

2 . One can then define a conserved charge

Qbc =

∮

C0

dz

2πi
jbc(z),

which associates a number to each field: in particular Qbcc(z) = +1, Qbcb(z) = −1.
The λ = 2 bc-system arises when gauge-fixing the worldsheet diffeomorphisms of the Polyakov
string and the two fields are therefore called ghosts.
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The combination of the matter CFT with the ghost λ = 2 CFT is a theory with central charge
ctot = D− 26: this number appears in the expression of the vacuum expectation value of the
trace of the energy momentum tensor and it is referred to as the Weyl anomaly. Its vanishing
allows to preserve the conformal symmetry of String theory at the quantum level and fixes
the dimension of the target spacetime at D = 26.
The λ = 2 ghost fields can be expanded according to (2.4) as

c(z) =
∑

n∈Z
cnz
−n−1, b(z) =

∑

n∈Z
bnz
−n−2, (2.23)

whose modes satisfy (2.12)

cn|0〉 = 0 ∀n ≥ 2, bn|0〉 = 0 ∀n ≥ −1. (2.24)

After gauge fixing of the symmetries, the combined theory still preserves a part of the
original gauge symmetry. This residual redundancy is called BRST symmetry and generates
a current in the form

jB(z) = c

(
TX +

1

2
T bc

)
(z) +

3

2
∂2c(z), (2.25)

which can be used to define a BRST charge

QB =

∮

C0

dz

2πi
jB(z) =⇒ Q2 = 0.

The latter actually satisfies the nilpotency condition Q2
B = 0 at the critical dimension D = 26.

The BRST charge satisfies the following commutation relations

[QB, X
µ(z)] = c∂Xµ(z), [QB, T

X(z) + T bc(z)] =
D − 26

12
∂3c(z),

[QB, c(z)] = c∂c(z), [QB, b(z)] = TX(z) + T bc(z), (2.26)

where the bracket [·, ·] is the graded commutator. Physical states are BRST invariant states,
which are not exact, namely

QB|Φ〉 = 0, |Φ〉 6= QB|χ〉 (2.27)

This means that there is a correspondence between physical states and the cohomology of the
BRST operator: any physical quantity should not depend on the representative we choose
from each class.
Finally, due to the fact that the mode c0 commutes with the hamiltonian L0 and that
[c0, b0] = 1, the vacuum is actually degenerate and does not coincide with the usual SL(2,C)
vacuum. This is also a consequence of the U(1) anomaly of the ghost current (2.22), in the
λ = 2 case. Indeed it can be proved that physical states are built from | ↓ 〉 := c1|0〉 and that
the only non-vanishing correlator is 〈0|c−1c0c1|0〉, with ghost number three.
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We conclude this discussion, by noticing that the bc-system in the λ = 1
2 case can be

reformulated by calling b→ ψ and c→ ψ̄. By then redefining the fields as

ψ =
1√
2

(ψ1 + iψ2), ψ̄ =
1√
2

(ψ1 − iψ2),

one obtains two ψ-theories with central charge c = 1
2 . This latter case will gain relevance in

the upcoming discussion on superstring theory.

2.2 The RNS formalism for Superstring theory

From a phenomenological point of view, bosonic String theory is unsatisfactory as it cannot
describe fermions, which can instead be considered if one introduces Supersymmetry. The
correct mathematical framework needed to study this theory is the one of Super Conformal
Field Theories (SCFTs): superconformal symmetry appears as a consequence of the symme-
tries of the fermionic string in the superconformal gauge. We now start reviewing the basic
properties of N = 1 SCFT.

One first defines coordinates z = (z, θ), z̄ = (z̄, θ̄) on a superspace, where θ, θ̄ are
fermionic quantities satisfying θ2 = θ̄2 = 0. A field is called holomorphic chiral supercon-
formal primary if it is written as

Φ(z) = Φ0(z) + θΦ1(z) ⇐⇒ D̄Φ = 0 (2.28)

and if it transforms under superconformal transformations z′ = z′(z′(z, θ), θ′(z, θ)) as

Φ(z) = (Dθ′)2hΦ′(z′). (2.29)

Here the covariant derivative in superspace is defined as D = ∂
∂θ + θ ∂

∂z .
One accordingly defines a superfield containing both the energy momentum tensor and the
supercurrent TF (z), generating infinitesimal superconformal transformations

T (z) = TF (z) + θT (z), (2.30)

whose OPE with the Φ0 component in (2.28) reads

T (z)Φ0(w) =
hΦ0(w)

(z − w)2
+
∂Φ0(w)

z − w + . . . ,

TF (z)Φ0(w) =
Φ1(w)

z − w . (2.31)

The components of the super energy momentum tensor satisfy the following relations

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w + . . . ,

T (z)TF (w) =
3
2T(w)

(z − w)2
+
∂TF (w)

z − w + . . . ,
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TF (z)TF (w) =
c/6

(z − w)3
+
T (w)

z − w (2.32)

and can be expressed in terms of their modes as

T (z) =
∑

n∈Z
Lnz

−n−2,

TF (z) =
∑

r∈Z+a

Grz
−r− 3

2 . (2.33)

The parameter a has been introduced here to distinguish between two cases: integer modings
a = 0 correspond to half integer powers, whereas half integers modings a = 1

2 correspond to
integer powers.
These two cases respectively correspond to the Ramond(R) and Neveu-Schwarz (NS) boundary
conditions that one can impose for the fermions appearing in the supersymmetric generalisa-
tion of the Polyakov action

S(x,ψ) =
1

4π

∫
d2z

(
2

α′
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
, (2.34)

where the fermions ψ, ψ̃ are described by the λ = 1
2 bc-system shown at the end of the

previous Subsection.
For the closed string, both right moving and left moving fermions have to be provided with
(possibly different) boundary conditions, whereas in the open string case they can be combined
into a single holomorphic spinor satisfying one of the two boundary conditions. In the latter
case, the doubling trick procedure has also to be applied on the energy momentum tensor, as
in the bosonic theory and on the supercurrent TF (z).
From (2.32) one can derive the algebra that the modes satisfy

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n,

[Lm, Gr] =

(
1

2
m− r

)
Gm+r,

[Gr, Gs] = 2Lr+s +
c

3

(
r2 − 1

4

)
δr,−s. (2.35)

Only in the NS case, where a is half integer, there exists a finite dimensional subalgebra
generated by L0, L±1, G± 1

2
. The latter actually generalises the SL(2,C) algebra to the su-

peralgebra of OSp(1, 2). An OSp(1, 2) invariant vacuum can be then defined only in the NS
case and the regularity of both components of the super energy momentum tensor implies

Ln|0〉 = 0 ∀n ≥ −2, Gr|0〉 = 0 ∀r ≥ −3

2
. (2.36)

At last, let us observe that the global supersymmetry algebra on the complex plane

G2
− 1

2

= L−1. (2.37)

can be obtained from the last relation in (2.35).
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2.2.1 Free SCFTs and BRST symmetry

We now discuss, as we did for the bosonic string, free SCFTs examples and their relation to
the BRST quantisation of the Superstring Theory.

Let us start from the supersymmetric generalisation of the Polyakov action, (2.34): the
explicit expression of its super energy momentum tensor reads

T (X,ψ) = −∂Xµ∂Xµ(z)− 1

2
ψµ∂ψµ(z), (2.38)

whose central charge is given by c(X,ψ) = 3
2D. The process of gauge fixing of the redundancies

of the starting action introduces ghost fields: in particular, bosonic(fermionic) symmetries
induce fermionic(bosonic) ghosts: besides the known bc-system, one has to introduce two
bosonic superghosts β and γ. These fields can all be arranged in superfields as

B(z) = β(z) + θb(z), C(z) = c(z) + θγ(z) (2.39)

and appear in the total ghost action as

Sghost =
1

2π

∫
dz
(
b∂̄c+ β∂̄γ

)
. (2.40)

The βγ-system in the generic case hβ = λ, hγ = 1−λ has a central charge cβγ = 3(2λ−1)2−1.
In the gauge fixing process, these bosonic ghosts appear with λ = 3

2 and the total central
charge is cghost = cbc + cβγ = −15. To preserve superconformal invariance at the quantum
level, we find that the critical dimension of the superstring is

c(X,ψ) + cghost = 0 =⇒ D = 10. (2.41)

However, as a consequence of the action being linear in the derivatives and due to the
bosonic nature of the superghost fields, it turns out that the energy of the vacuum is un-
bounded from below. In order to avoid this problem, it is more convenient to “bosonise” the
βγ system: this procedure consists in introducing new fields allowing to reproduce the same
properties and behaviour of the chosen ghost CFT.
In order to do so, let us consider a λ = 1 bc-system, whose fields are known in the literature
as η and ξ and whose conformal weights are hη = 1 and hξ = 0. Moreover, let us introduce a
scalar field φ, whose action is given by

Sφ = − 1

8π

∫
d2z
√
h
(
hαβ∂αφ∂βφ+QRφ

)
. (2.42)

The number Q is a positive background charge and can be determined by matching the
properties of the resulting CFT with the βγ-system: indeed

c(βγ) = c(ηξ) + cφ =⇒ 11 = −2 + cφ =⇒ cφ = 13 (2.43)
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The explicit expression of the energy momentum tensor in in the superconformal gauge picks
up a contribution proportional to Q and reads

T φ = −1

2
∂φ∂φ− Q

2
∂2φ. (2.44)

The central charge associated to this system can be computed from the OPE ∂φ(z)∂φ(w) =
−1

(z−w)2
+ . . . and reads

cφ = 1 + 3Q2 = 13 =⇒ Q = 2.

In this way, the bosonic ghosts β and γ can be then related to the newly introduced fields as

β(z) = e−φ(z)∂ξ(z), γ(z) = eφ(z)η(z), (2.45)

where it is now trivial to show that the two ghosts satisfy the correct OPE relations.
Notice that the scalar field ξ appears in (6.33) only through its derivative: this implies that an
arbitrary OPE of superghost will never generate ξ, and therefore the zero mode ξ0, but only its
derivatives. Since operators are in one to one correspondence with states, we can distinguish
between a Large Hilbert space containing states generated by ξ and a Small Hilbert space
excluding them.
At last, one can introduce the following two currents:

jηξ(z) = −ξη(z), jp = ∂φ(z) + ξη(z). (2.46)

The first one is the standard current associated to a bc-system and its charge associates to
each field the corresponding super ghost number

Qηξβ(z) = −β(z), Qηξγ(z) = γ(z), Qηξη(z) = η(z), Qηξξ(z) = ξ(z), (2.47)

whereas the second current introduces a new quantum number, called picture number, in the
following way

Qpβ(z) = Qpγ(z) = 0, Qpη(z) = −η(z), Qpξ(z) = ξ(z), Qpeqφ(z) = qeqφ(z). (2.48)

In Superstring theory, every state has different equivalent representations in terms of vertex
operators with different picture numbers. However, similarly to the fact that the anomaly of
the bosonic ghost current meant that non-vanishing correlators had to contain three ghosts
c, here both currents in (2.46) are anomalous at the quantum level. Therefore, it turns out
that non vanishing correlators in Superstring theory must have ghost number 3 and picture
number −2 in order for them not to be zero.

We now review the main results concerning BRST quantisation in the supersymmetric
case: as said for the bosonic theory, after gauge fixing, the action preserves some residual
symmetries, which induce a charge

QB =

∮
dz

2πi

((
cT (X,ψ) +

1

2
cT ghost

)
+
(
γT

(X,ψ)
F +

1

2
γT ghost

F

))
, (2.49)
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where the quantities appearing in the above formula are given by

T ghost = −(∂b)c− 2b∂c− 1

2
(∂β)γ − 3

2
β∂γ,

T ghost
F = (∂β)c+

3

2
β∂c− 2bγ. (2.50)

The obtained charge is nilpotent in the critical dimension D = 10, has picture number zero
and satisfies the following identities

[QB, c(w)] = c∂c(w)− γ2(w), [QB, b(w)] = T (X,ψ)(w) + T ghost(w),

[QB, γ(w)] = c∂γ(w)− 1

2
γ∂c(w), [QB, γ

2(w)] = c∂γγ(w) + γc∂γ(w)− γ2∂c(w). (2.51)

Furthermore, as discussed previously, physical states belong to the cohomology of the BRST
charge. These results will be of central importance for the upcoming discussion, where we
will consider the cubic formulation of Open String Field Theory (OSFT) and its relation to
the background independence problem of the open string.

3 Selected topics on Cubic Open String Field Theory

In order to study fluctuations of a D-brane, it is useful to group all the excitations of an open
string attached to the given D-brane in a single object, the string field. As a consequence of
the state-operator correspondence, string fields are elements of a state space H generated by
the worldsheet BCFT defining the D-brane. We are now interested in reviewing the different
approaches developed for studying the dynamics of this object.
Let us first start with the bosonic case: in 1986, Witten formulated an axiomatic approach
to OSFT [4], based on a graded vector space

A =

+∞⊕

q=−∞
Aq, (3.1)

whose grading q is identified with the ghost number of the string fields. This vector space is
equipped with a nilpotent operator, coinciding with the BRST charge,

QB : Aq → Aq+1,

Q2
B = 0 (3.2)

and with an associative, non-commutative product, called Witten’s star product

? : Ap ⊗Aq → Ap+q,
(a ? b) ? c = a ? (b ? c), (3.3)

for a, b, c ∈ A. The latter operation has to be compatible with the structure introduced
previously: this means that the BRST charge has to satisfy the Leibnitz rule

QB(a ? b) = QB(a) ? b+ (−1)gh(a)a ? QB(b). (3.4)
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As a final operation, Witten proposed a linear map
∫

: A → C, (3.5)

called integration, with the following properties
∫
QBa = 0,

∫
a ? b =(−1)gh(a)gh(b)

∫
b ? a, (3.6)

∀a, b ∈ A. The star product is interpreted as the gluing of the right half piece of a first
string to the left half of a second one, effectively yielding a third open string. The integration
operation is instead thought of as the gluing of the left and right halves of a single string.
All these operations have an equivalent formulation in the CFT language: the Witten’s inte-
gral, for example, becomes a CFT correlator built out of the BPZ inner product, which, as we
said, is non-zero provided that there are three insertions of ghost c. Therefore the integrand
must be at ghost number three as well.
By making use of these definitions, Witten studied an action for a dynamical string field Φ
with ghost number one, capable of generalising the physical condition (2.27) to the interacting
case. The action resembles a Chern-Simons one and reads

S = − 1

g2
0

(
1

2

∫
Φ ? QBΦ +

1

3

∫
Φ ? Φ ? Φ

)
, (3.7)

where g0 is the open string coupling, related to the closed one by g2
0 = gclosed. This action is

invariant under an infinitesimal non-abelian gauge symmetry given by

δΦ = QBΛ + (Φ ? Λ− Λ ? Φ), (3.8)

with ghost number zero gauge parameter Λ and the equations of motion are

QBΦ + Φ ? Φ = 0. (3.9)

The cubic action (3.7) is then well defined from the point of view of the axioms stated above,
as the total ghost number of the integrand is indeed three. As stated above, this construction
can be obtained by analogy with non-abelian Chern-Simons theories, where the string field Φ
and the ghost number are identified with the gauge field and the rank of a differential form
respectively.
From this point of view, the cubic term in the action, which is responsible for interactions, is
actually the only non-linear extension compatible with the non-abelian gauge symmetry (3.8).

The cubic action we just introduced cannot be straightforwardly upgraded to the super-
symmetric case: if we focus on the NS sector, the natural picture number of the dynamical
string field is −1 and the Witten’s integral would have the correct total ghost number, but
the wrong total picture number, −3. One way to avoid this problem is to choose instead a
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dynamical string field at picture number 0 and to consider a double-step picture changing
operator Y−2(z) := Y−1(z)Y−1(z̄): this allows to obtain the Modified Cubic action [18, 19],
which reads

S = − 1

g2
0

(
1

2

∫
Y−2Ψ ? QBΨ +

1

3

∫
Y−2Ψ ?Ψ ?Ψ

)
, (3.10)

where the operators Y−1(z) = c∂ξe−2φ(z) are inserted at the string midpoint. However, the
main problem of this approach comes from the equations of motion, which read

Y−2(QBΨ + Ψ ?Ψ) = 0. (3.11)

Since the double-step picture changing operator Y−2(z) has a non-trivial kernel, one could in
principle obtain, in the linearised theory, solutions which are not in the cohomology of the
BRST operator. As of today, it is still not clear if this approach truly leads to inconsistencies.

A very different approach for the OSFT in the NS sector has been proposed by Berkovits
in 1995 [9]: the dynamical string field described with this formulation belongs to the Large
Hilbert space, it is Grassmann even and with picture number 0. The action takes the form of
a Wess-Zumino-Witten model

S =
1

2

∫ [(
e−ΦQBe

Φ
)(
e−Φη0e

Φ
)
−
∫ 1

0
dt
(
e−tΦ∂te

tΦ
){(

e−tΦQBe
tΦ
)
,
(
e−tΦη0e

tΦ
)}]

,

(3.12)

where the integral is defined by the Witten’s gluing prescription of the strings and where we
omitted the ? in all products of string fields.
The action enjoys a non-linear gauge invariance under the infinitesimal transformation

δeΦ = (QBΛ1)eΦ + eΦ(η0Λ2),

where (Λ1,Λ2) are two gauge parameters of ghost number −1 and its equations of motion
read

η0(e−ΦQBe
Φ) = 0. (3.13)

We can have a grasp of the meaning of these equations of motion if we look at the linearised
theory: they read QB(η0Φ) = 0, from which we see that the zero mode of η maps the dy-
namical string field into the Small Hilbert space. The equations of motion then reduce to the
known physical condition.

The equations of motion (3.13) are in principle very hard to solve, because they are non-
polynomial. However, they can be formally solved by ignoring the Y−2 operator in (3.11),
as shown in [10]: this simplification effectively allows to reduce to the previously considered
equations of motion (3.9), where now Ψ is a picture number 0 dynamical string field. Indeed,
let Ψ∗ be a solution of such equations: if we impose the relation

Ψ∗ = e−ΦQBe
Φ, (3.14)
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we see that the cubic equations of motion are trivially satisfied. The above equation relates
solutions of the Berkovits theory to solutions of the cubic approach. From the latter point
of view, the solution is written as a pure gauge transformation with gauge parameter eΦ:
however, this field and its inverse are not defined as string fields in the space of states of
the Chern-Simons-like action (3.10), which ultimately means that the solution Ψ∗ can be
of physical interest. The very same argument has been used to understand the physical
implications of the tachyon vacuum solution that we will describe in the next Subsection.
The identification in (3.14) can be rewritten as

Q0Ψ∗e
Φ = 0, (3.15)

in terms of a modified BRST operator

QABC = QBC +AC − (−1)gh(C)CB. (3.16)

This operator is actually nilpotent if the subscripts are solutions of the cubic equations of
motion. In this case we then have a solution

eΦ = Q0Ψ∗β. (3.17)

The real challenge, once we have a solution of the equations of motion, is to find a string field
β making eΦ invertible. Nonetheless, finding solutions of the cubic equations of motion does
provide a first step towards solving the Berkovits’ ones. For this reason, in this thesis we will
be interested in these kind of solutions and in particular in their regularity properties.

3.1 Analytic solutions of the cubic equations of motion

As we have mentioned, the Witten’s cubic approach has an equivalent formulation in terms
of CFT tools: indeed, the action (3.7) can be rewritten as

S(Φ) = − 1

g2
0

[
1

2
〈Φ, QBΦ〉+

1

3
〈Φ,Φ ? Φ〉

]
, (3.18)

where 〈·, ·〉 is the BPZ bilinear inner product, defined as

〈φ1, φ2〉 = 〈I ◦ φ1(0)φ2(0)〉UHP. (3.19)

If ξ is the original coordinate frame on the upper half plane, we consider the following map

z = f(ξ) =
2

π
arctanξ =

i

π
ln
(

i− ξ
i + ξ

)
, (3.20)

which defines a new coordinate frame, called sliver frame, on the UHP. This definition maps
the right half of the string (ξ = eiθ with θ ∈ [0, π]) into a semi infinite vertical line with
Rez = −1

2 and positive imaginary part. A detailed representation of this transformation is
shown in Figure 1 consistently with the conventions of [20].
If one considers the insertion of the identity operator in the origin of the ξ coordinates, one
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Figure 1: On the left the half unit disk of the upper half plane, on the right the semi-infinite
strip in the sliver frame.

obtains in the sliver frame a semi infinite strip of width 1. This state can be multiplied by
itself to obtain strips of arbitrary natural width. These states can be further generalised to
strips with real non negative width and it can be shown that they actually form and algebra,
called wedge algebra, under the star product

Ωα ? Ωβ = Ωα+β, (3.21)

where Ωα is a wedge state of width α > 0. These states are actually the key to analytically
solve the equations of motion: the solutions are indeed obtained by considering operator
insertions inside wedge states, which have been well examined and reviewed in [6, 21–23].
In particular let us consider the following GSO(+) string fields

K : 〈φ,K〉 = 〈f ◦ φ(0)K〉C1 , B : 〈φ,B〉 = 〈f ◦ φ(0)B〉C1 ,

c : 〈φ, c〉 =

〈
f ◦ φ(0) c

(
−1

2

)〉

C1

, γ2 : 〈φ, γ2〉 =

〈
f ◦ φ(0) γ2

(
−1

2

)〉

C1

. (3.22)

These states are defined as inner products on a cylinder C1 with a generic test state φ, as it
is usually done in SFT and the operator insertions for the K, B string fields are defined as

K =

∫

Vγ

dz

2πi
T (z), B =

∫

Vγ

dz

2πi
b(z), (3.23)

where Vγ is a vertical infinite line with Rez = γ, with −α − 1
2 < γ < −1

2 , in the direction
from −i∞ to +i∞.
These states are represented as in Figure 2.
Due to the properties of the insertions and thanks to the wedge state algebra, the obtained
string fields satisfy the following differential relations1

QB = 0, QK = 0, Qc = c∂c− γ2, Qγ2 = cKγ2 − γ2Kc (3.24)
1In the following we will omit the subscript to the BRST charge to ease the notation.
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Figure 2: The string fields are obtained as wedge states of infinitesimal width with insertions
of operators.

and the algebraic ones

[K,B] = 0, [B, c] = 1, [B, γ2] = 0, [c, γ2] = 0, B2 = c2 = 0. (3.25)

Among all these string fields, K has a very important role, as it generates wedge states, which,
as said, are of key importance for these solutions. This relation is encoded in the fact that

Ωα = e−αK .

A generic function of F (K) will have to be expressed as a sum of exponentials in the following
way

F (K) =

∫ ∞

0
dt f(t)e−tK . (3.26)

Another property of the string field K is given by its role in partial derivatives of string fields,
because they can be expressed as ∂ · = [K, · ].
We now focus on specific solutions and their meaning: before checking the explicit expressions,
we observe that one can always reduce to bosonic solutions by setting all γ2-terms to zero.

The tachyon vacuum
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The first solution of the equations of motion (3.9) that we are going to analyse is the
tachyon vacuum solution. This specific solution can be written in the Okawa form [22] as

Ψtv =
√
F (K)

(
c

K

1− F (K)
Bc+Bγ2

)√
F (K), (3.27)

where F (K) satisfies the following conditions

F (0) = 1, F ′(0) < 0, F (∞) = 0, F (K) < 1.

By using (3.24) and (3.25), it is trivial to show that the above expression satisfies the equations
of motion. This solution does also satisfy Sen’s conjecture: the associated energy is indeed E =
−S(Ψ) = − 1

2π2 and equals minus the energy density of the collapsing D-brane. Furthermore,
one can define a well-behaving string field, called homotopy string field

H(K) =
1− F (K)

K
, (3.28)

satisfying QH+[Ψtv, H] = I, where I is the identity string field, an empty infinitesimal width
strip. This guarantees that the cohomology of the shifted BRST operator Qtv = Q+ [Ψtv, ·]
is empty and ultimately that there are not open string states in the tachyon vacuum.
A very special case is obtained by equating

H(K) = F (K) =⇒ F (K) =
1

1 +K
. (3.29)

The above choice is called simple solution and will play an important role in the upcoming
discussion.
In the bosonic case, where the superghost terms are absent, the solution (3.27) is well un-
derstood as describing the condensation of the tachyonic mode of the open string [6]. The
superstring case is more subtle, as this solution is only constructed out of GSO(+) string
fields and seems to exist even on a stable BPS D-brane. To clarify this point, we remind that,
since our formulation comes from the Modified cubic approach [23], the dynamical string field
has picture number zero. In the natural −1 picture there is only one tachyonic state, which
is correctly mapped away as it belongs to the GSO(−) sector; however, due to the fact that
the picture lowering operators Y−1 are not invertible, there are actually states in the 0 picture
that cannot be obtained from the −1 level, as shown in [24]. Among these states, which are
called auxiliary states, there is the level L0 = −1 state ceik·X(0)|0〉, which is usually called
tachyon for his similarity with the bosonic case. The latter state belongs to the GSO(+) and
the solution (3.27) that we have studied exactly describes its condensation.
The tachyon vacuum we just reviewed is a fundamental ingredient for the solution we are
going to discuss now.

The Intertwining solution

In the original paper [7], the authors studied a set of bosonic solutions of (3.9) showing
that open strings attached to a starting D-brane system can rearrange themselves to create
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a new one, sharing the same closed string background. The idea is that the starting D-brane
can be annihilated by a process of tachyon condensation and from the latter a new D-brane,
described by a possibly different BCFT, can emerge.
These intertwining solutions clearly address the open string background independence: the
original solution dealt with time independent backgrounds, but the construction has been
further generalised in [12], to include any kind of open string background.
This problem can be formulated in SFT by saying that two theories formulated on different
backgrounds are related by field redefinition. One can in particular postulate that the field
redefinition takes the form

Ψ(0) = Ψ∗ + f(Ψ(∗)), (3.30)

where

• Ψ(0) ∈ H0 is the dynamical field of the reference D-brane,

• Ψ(∗) ∈ H∗ is the dynamical field of the target D-brane,

• Ψ∗ ∈ H0 is a classical solution of the reference string field theory,

• f : H0 → H∗ is an invertible linear transformation.

The explicit form of the intertwining solution in the cubic approach reads

Ψ∗ = Ψtv − ΣΨtvΣ̄ (3.31)

and the equations of motion are satisfied provided that

QtvΣ = QtvΣ̄ = 0, Σ̄Σ = 1.

The first tachyon vacuum appearing in (3.31) belongs to the H0 Hilbert space, whereas the
one between the two Σ fields belongs to H∗.
Both formulations of the intertwining solution, [7] and [12], rely on boundary condition chang-
ing operators: in this thesis we will focus on time independent backgrounds, whose simpler,
but more restrictive, construction avoids some of the complications of the flag states intro-
duced in [12]. Indeed, in the particular case of static backgrounds, the intertwining string
fields (Σ,Σ) can be expressed as

Σ = Qtv(
√
HσB

√
H), Σ = Qtv(

√
HBσ

√
H),

with (σ, σ) being infinitesimal width strip with insertions of weight zero (super)conformal
primaries. These operators can be defined in terms of matter primaries of generic weight h
(σ(h), σ(h)) as

σ(x) = ei
√
hX0

σ(h)(x),

σ(x) = e−i
√
hX0

σ(h)(x),
such that

{
limx→0 σ(x)σ(0) = 1,

limx→0 σ(x)σ(0) = g∗
g0

.
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Here g∗,0 = 〈1〉BCFT∗,0 are the disk partition functions in the respective BCFTs. The disk
partition functions will have different values if the D-brane configurations will have different
energies: this means that in general limx→0 σ(x)σ(0) 6= 1.
As an example of such operators, we can consider the translation of a D-brane in a certain
spacetime direction (X1) over a distance (d). In this case the boundary condition changing
operators are written as

σ(x) = eid(X0+X̃1)(x),

σ(x) = e−id(X0+X̃1)(x),

where X̃1 = X1(z)− X̄1(z̄)|z=z̄=x.
Another more interesting example is given by the creation of D-branes of codimension (2n):
Dp-D(p±2n). In these cases, the boundary condition changing operators are given in terms of
twist fields (∆,∆), which are needed to implement the change in the Xµ boundary conditions
and of (bosonised) spin fields, which instead account for the spinors ψ

σ(x) = ei
√

n
4
X0

∆ e
i
2

∑n
i=1Hi(x),

σ(x) = e−i
√

n
4
X0

∆ e−
i
2

∑n
i=1Hi(x).

The string fields obtained from the insertions of such operators can be added to theKBcγ2

algebra and satisfy, besides the already mentioned σσ = 1, σσ 6= 1, the following derivation
relations

Qσ = c∂σ + γδσ, Qσ̄ = c∂σ̄ + γδσ̄ (3.32)

and algebraic properties

[B, σ] = [B, σ̄] = 0, [c, σ] = [c, σ̄] = 0, [γ2, σ] = [γ2, σ̄] = 0,

[c, ∂σ] = 0, [c, ∂σ̄] = 0. (3.33)

The derivation relations ultimately follow from the expression of the BRST charge (2.49) and
from (2.31), where δσ is the supersymmetric partner of σ.

The explicit expression of the intertwining solution can be written in terms of the tachyon
vacuum (3.27) as

Ψ∗ =
√
F

(
c
B

H
c+Bγ2

)√
F −

√
Hσ

√
F

H

(
c
B

H
c+Bγ2

)√
F

H
σ
√
H +

√
HQσBFQσ

√
H

−
(
√
HQσB

√
F

H
c

√
F

H
σ
√
H + conj.

)
−
(
√
H

[√
F

H
c

√
F

H
, σ

]
B

√
F

H
c

√
F

H
σ
√
H + conj.

)

−
(
√
HQσBF

[
σ,

√
F

H
c

√
F

H

]
√
H + conj.

)
−
√
H

[√
F

H
c

√
F

H
, σ

]
BF

[
σ,

√
F

H
c

√
F

H

]
√
H,

(3.34)
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where "conj" indicates the reality conjugate of the term on the left. This operation is per-
formed by reading the corresponding term from right to left and by considering

K‡ = K, B‡ = B, c‡ = c;

(γ2)‡ = γ2;

σ‡ = σ, σ‡ = σ;

(Qσ)‡ = −Qσ, (Qσ)‡ = −Qσ. (3.35)

As an example, we can take

√
HQσB

√
F

H
c

√
F

H
σ
√
H

”conj”−→ −
√
Hσ

√
F

H
c

√
F

H
BQσ

√
H.

If one plugs in the explicit expression of Qσ, Qσ, the solution becomes

Ψ∗ =
√
F

(
c
B

H
c+Bγ2

)√
F −

√
Hc

1

H
σBFσ

1

H
c
√
H −

√
Hσ

√
F

H
Bγ2

√
F

H
σ
√
H

+
√
HγδσBFγδσ

√
H −

(√
HγδσBFσ

1

H
c
√
H + conj.

)
−
√
Hσ

[√
F

H
, c

]
B

H

[
c,

√
F

H

]
σ
√
H

+

(
√
Hc

B

H
σ

√
F

H

[√
F

H
, c

]
σ
√
H + conj.

)
−
(
√
HγδσB

√
F

H

[
c,

√
F

H

]
σ
√
H + conj.

)

+

(
√
Hc

B

H
σF

[
σ,

√
F

H

[√
F

H
, c

]]
√
H+conj.

)
+

(
√
HγδσBF

[
σ,

√
F

H

[√
F

H
, c

]]
√
H+conj.

)

+

(
√
Hσ

[√
F

H
, c

]
B

√
F

H

[
σ,

√
F

H

[√
F

H
, c

]]
√
H + conj.

)

−
√
H

[[
c,

√
F

H

]√
F

H
, σ

]
BF

[
σ,

√
F

H

[√
F

H
, c

]]
√
H, (3.36)

which, in the bosonic simple solution case reduces to the know expression [7].
The solution, written here in terms of a generic function F (K), must be well defined as a
string field and it cannot not lead to ambiguities when inserted in the equations of motion. In
the latter case, we observe that, as a consequence of the properties of the boundary condition
changing operators, depending on the choice of F (K), one may have associativity anomalies
of the star product. In particular, one needs to avoid expressions containing the triple product
σσσ, which leads to inconsistencies depending on how we perform the computation

g∗
g0
σ = (σσ)σ 6= σ(σσ) = σ.

For this reason, in the following section, we will focus on criteria capable of selecting consistent
choices of the function F (K), which ultimately means selecting consistent tachyon vacuum
solutions.
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4 Regularity conditions of the Intertwining solution

In this Section we motivate sufficient conditions on the starting tachyon vacuum to ensure
that the solution itself is well-defined and that ambiguous products do not appear in the equa-
tions of motion. This analysis is motivated by the fact that in the simple solution case, the
superstring solution (3.36) is ill-defined as it presents the collision of two boundary condition
changing operators, which causes problems in the equations of motion.

In order to do that, let us pick a representative class of tachyon vacuum solutions

F (K) =

(
1− 1

ν
K

)ν
=

(−ν)−ν

Γ(−ν)

∫ ∞

0
dt t−ν−1eνtΩt, , (4.1)

parametrised by a negative number ν < 0. This number represents the leading level in the
K → ∞ limit of F (K) and measures how identity-like a string field is. From a rigorous
point of view, this analysis is performed by making use of the dual L− level expansion [25]:
indeed, the eigenvalues of the operator 1

2L− = 1
2(L0 − L∗0), where L0 is the scaling generator

in the sliver frame and L∗0 is its BPZ conjugate, are ν, when acting on functions of K and the
conformal weight of the insertions, when acting on wedge states.
From (4.1) one sees that the contributions from states close to the identity string field, which
correspond to the t→ 0 limit, become increasingly suppressed as ν → −∞, as claimed.
As special cases of the above formula, we see that ν = −1 corresponds to the already discussed
simple solution, whereas ν = −∞ corresponds to Schnabl’s solution [6].
Being completely determined in terms of F (K), the homotopy string field can also then be
written as a sum of wedge states

H(K) =

∫ ∞

0
dt

Γ(−ν,−νt)
Γ(−ν)

Ωt. (4.2)

Since we want to consider both bosonic and supersymmetric bounds on the level ν and since
the bounds we derive in the two cases are different, we will specify it by using νboson and
νsuper. In light of the above discussion regarding the simple solution in the superstring case,
we already know that

νsuper < −1. (4.3)

The question is whether this bound is sufficient, or if it should be further strengthened.
In order to fully address these potential problems, we make the following assumptions

σ(s)σ(0) = regular, σ(s)δσ(0) = regular.

The first condition is satisfied by construction and the second one has been explicitly checked
in all the examples previously mentioned. As a consequence of these assumptions, one has
that

σ(s)∂σ(0) ∼ less singular than simple pole,

∂σ(s)∂σ(0) ∼ less singular than double pole,
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δσ(s)δσ(0) ∼ less singular than simple pole,

∂σ(s)δσ(0) ∼ less singular than simple pole.

We can then formulate the following rule.

Claim 1. Let O1 represent σ, ∂σ or δσ and O2 represent σ, ∂σ or δσ. Then the state

O1G(K)O2 (4.4)

suffers from no OPE divergence provided that its leading level in the dual L− level expansion
is less than or equal to 0 if the state is GSO even, and less than or equal to 1/2 if the state is
GSO odd.

To understand this claim, let us consider the following example

O1F (K)O2 =

∫ ∞

0
dtf(t)O1ΩtO2.

We are interested in the limit t → 0, where the OPE between the two operators becomes
relevant. It is clear that

O1(t)O2(0) ∼ th−h1−h2φ(h)(0),

for a generic field φ(h). Furthermore, by making use of the Schwinger integral, the leading
component of f(t) is t−ν−1. This means that in order for the integral to be finite in 0, we
need to have

−ν − 1 + h− h1 − h2 > −1
h>0
=⇒ ν + h1 + h2 ≤ 0.

Since this claim contains only two operators, it can be used to check if the solution, as a string
field, contains divergences.

In the first way of expressing the solution (3.34), we notice in particular two terms
√
HQσBFQσ

√
H,

√
HQσB

√
F

H
c

√
F

H
σ
√
H. (4.5)

Since ghosts can always be ignored in this analysis, as we are considering OPE divergences
coming from collision of two boundary condition changing operators, the matter sector com-
ponent of these states reduces to

∂σF∂σ ∼ ∂σKν∂σ,

∂σ
F

H
σ ∼ ∂σKν+1σ, K →∞.

These expressions do not suffer from OPE divergences if

ν ≤ −2 (no OPE divergences in (3.34)). (4.6)
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All remaining terms in the solution do not alter this bound, which then means that F (K) must
fall off as K−2 or faster to be certain that OPE divergences are absent from (3.34), in either
bosonic or supersymmetric cases. However, the original solution [7] was written in the simple
case and it is finite. This is due to the fact that the explicit form of the BRST variation of the
boundary condition changing operators cancels these OPE divergences. Indeed, by repeating
the same analysis on the solution (3.36), we see that it is much safer

νboson ≤ 0 or νsuper ≤ −1 (no OPE divergences in (3.36)). (4.7)

Now let us turn to issues concerning three boundary condition changing operators. These
do not affect the solution Ψ∗ by itself as a state, but they are related to the validity of the
equations of motion and in particular the quadratic term Ψ2

∗. For this reason, we formulate
the following claim.

Claim 2. Let O1,O2 and O3 represent three primary operators and consider the state

O1G1(K)O2G2(K)O3. (4.8)

Simultanous collision of all three operators do not render this state undefined provided that its
leading level in the dual L− level expansion is less than h, where h is the lowest dimension of
a primary operator which has nonvanishing contraction with the state.

To better understand this claim, we contract the above expression with a test state ΩOΩ∞,
where O is a primary operator. Its precise form is not crucial, as we are interested in the short
distance behaviour when O1,O2,O3 collide. Furthermore, we chose a test state containing the
sliver state Ω∞ to be able to perform the computation directly on the UHP, without needing
a conformal transformation from the Cylinder to the UHP. The obtained expression reads

Tr
[
Ω∞O1G1(K)O2G2(K)O3ΩO

]
=

∫ ∞

0
dt1dt2 g1(t1)g2(t2)

〈
O1(t1+t2)O2(t2)O3(0)O(−1)

〉
UHP

,

where g1 and g2 are the inverse Laplace transforms of G1 and G2. We now perform a change
of integration variables

L = t1 + t2, θ =
t2

t1 + t2
, (4.9)

together with a conformal transformation on the 4-point function f(z) = z
z+1

L+1
L , in such a

way that O1 is inserted at 1, O3 is inserted at 0, and O is inserted at infinity. This yields the
following expression

Tr
[
Ω∞O1G1(K)O2G2(K)O3ΩO

]
=

=

∫ ∞

0
dL

∫ 1

0
dθ Lg1(L(1− θ))g2(Lθ)

(
1

L

1

L+ 1

)h1 ( 1

L

L+ 1

(Lθ + 1)2

)h2 (L+ 1

L

)h3 ( L

L+ 1

)h

×
〈
O1(1)O2

(
L+ 1

Lθ + 1
θ

)
O3(0)I ◦ O(0)

〉

UHP

. (4.10)
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We are interested in the behaviour of the integrand towards L = 0, which is when O1,O2 and
O3 collide. For small L we have

g1(L(1− θ)) ∼ L−ν1−1(1− θ)−ν1−1, g2(Lθ) ∼ L−ν2−1θ−ν2−1, (4.11)

where ν1, ν2 are the leading levels of the dual L− expansion of G1 and G2. This means that
the whole integrand can be approximately expressed as

L−ν1−ν2−h1−h2−h3+h−1(1− θ)−ν1−1θ−ν2−1
〈
O1(1)O2(θ)O3(0)I ◦ O(0)

〉
UHP

. (4.12)

The θ-integration will be finite assuming that the OPE between O2 and O1, and between
O2 and O3, is sufficiently regular; whether this is the case is equivalent to the question of
whether the states O1G1(K)O2 and O2G2(K)O3 are separately finite, which is not our present
concern. Our interest is the convergence of the integration over L towards L = 0, which will
be unproblematic provided that

ν1 + ν2 + h1 + h2 + h3 < h, (4.13)

as claimed.
Before analysing the solution, let us consider a particular string field: σσσ. We already know
that this state is ambiguous due to the associativity anomaly and claim 2 does not seem to
apply as it assumes that the operators are separated by wedge states with strictly negative
L− level. However, this can be easily dealt with by rewriting it as

σσσ = −∂σ 1

1 +K
σ

1

1 +K
∂σ + (1 +K)σ

1

1 +K
σ

1

1 +K
∂σ

−∂σ 1

1 +K
σ

1

1 +K
σ(1 +K) + (1 +K)σ

1

1 +K
σ

1

1 +K
σ(1 +K).

The argument below claim 2 now applies to all terms and only the first one can be problem-
atic, as it seems to diverge as L→ 0, where for matter sector operators, the lowest conformal
dimension of a probe state is h = 0. However, the θ-integration exactly vanishes and the final
result is a product 0 × ∞, which is clearly ambiguous. Therefore, the first term is exactly
where the ambiguity of σσσ is hidden and this discussion further strengthens claim 2.

Coming back to the solution, we now analyse potential inconsistencies in the Ψ2
∗ term of

the equations of motion. For the superstring solution (3.36), the strongest bound is given by
the product of

√
Hσ

√
F

H
Bγ2

√
F

H
σ
√
H,

√
HγδσBFγδσ

√
H (4.14)

with √
Hc

1

H
σBFσ

1

H
c
√
H. (4.15)
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These products respectively read

√
Hσ

√
F

H
Bγ2

√
F

H
σσFσ

1

H
c
√
H,

√
HγδσBFγδσσFσ

1

H
c
√
H.

One can again strip off the ghosts and obtain the following expressions

σ
F

H
σσ ∼ σKν+1σσ,

δσFδσσ ∼ δσKνδσσ, (K →∞),

which in virtue of claim 2 impose the following bound

νsuper < −1. (4.16)

This means that the solution (3.36) is free from ambiguous terms provided that νsuper < −1
or νbosonic < 0, whereas the stronger bound ν ≤ −2 is needed for (3.34), for both bosonic and
fermionc string.

To clarify the obtained results, regarding both claims, we end with an observation re-
garding the commutators appearing in the solution (3.36): let

√
f/h(t) represent the inverse

Laplace transform of
√
F/H and write

[
c,

√
F

H

]
=

∫ ∞

0
dt
√
f/h(t)[c,Ωt]

=

∫ ∞

0
dt

∫ 1

0
dθ
(
t
√
f/h(t)

)
Ωt(1−θ)∂cΩtθ. (4.17)

Note the extra factor of t which appears in the integrand. This means, from the point of view
of separation of the matter sector boundary condition changing operators, the commutator
with c can be seen as equivalent to

[
c,

√
F

H

]
→ − d

dK

√
F

H
. (4.18)

As an example of this procedure, let us consider the term

√
Hσ

[√
F

H
, c

]
B

H

[
c,

√
F

H

]
σ
√
H, (4.19)

which from our point of view can be rewritten as

σ

(
d

dK

√
F

H

)2
1

H
σ ∼ σKνσ, (K →∞). (4.20)

This is the reason why terms involving commutators of c with
√
F/H do not require a stronger

bound than νsuper < −1 or νbosonic < 0.
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4.1 Discussion on the obtained results and future perspectives

We conclude Part I of this thesis focused on SFT, by commenting on the obtained results.
In the previous Section, we tried to understand how to generalise the bosonic intertwining
solution first introduced in [7] to the superstring case. The naive attempt to keep working in
the simple solution case proved to be inconsistent, because the new fermionic terms introduced
ambiguities in the solution.
We then focused on quantitatively measure if and how much one has to move away from
the simple solution case, by considering the most general function F (K) and by studying its
properties.
To do that, we introduced the level expansion ν and we formulated two rules allowing to
study the behaviour of the solution as a string field and when inserted into the equations of
motion. The best behaving solution required an upper bound νsuper < −1 to avoid all kind
of ambiguities.
This analysis, together with the discussion in [11] concerning the inner transformation φ of
the intertwining solution, which maps the solution for a given F (K) to the same solution
written in terms of another function φ ◦ F (K), confirms that the simple solution case is the
only upper bound on the superstring case solution.
Another approach to takle this problem could be to extend the possible range of string fields
by introducing the supersymmetric partner of K, a string field made of the insertion of the
fermion current TF (z) [26].
By paying the price of enlarging the algebra, it may be possible to cancel ambiguous terms
and to reach the simple solution case νsuper = −1. This is an interesting perspective that will
be analysed in the future.
In both cases, the interest in a superstring generalisation of the intertwining solution, derived
in the context of the Modified cubic approach, lies in the fact that it naturally leads to
the WZW-Berkovits’ approach, because, as we have shown, it can be considered a first step
towards finding solutions of the non-polynomial equations of motion.
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Part II

Supergravity

5 Geometrical approach

Supergravity is a direct generalization of General Relativity, differing from the latter for the
presence of local Supersymmetry. Both gravity theories can be described in a formal way
by making use of the powerful tools of Differential geometry: in this section we will give
a formulation of the so called Geometrical approach to gravity and Supergravity [27–30] by
making use of Lie groups, Lie algebras and Principal fiber bundles. In particular, in what
follows we will restrict to Lie (super)groups whose Lie algebra can be split as

G = K ⊕H = I ⊕ O ⊕H. (5.1)

Here I and O are the subalgebras of translations and supersymmetric transformations respec-
tively, whereas H is a gauge algebra containing the so-called Lorentz algebra so(1, D − 1).
For physical applications, we will be interested in the following algebra structure

[H,H] ⊂ H, [H, I] ⊂ I, [H,O] ⊂ O,
[I, I] ⊂ H, [I,O] ⊂ O, {O,O} ⊂ I ⊕H, (5.2)

which determines the role of Lorentz symmetry, translations and Supersymmetry transforma-
tions.
First of all, let us notice that Lie groups can only describe vacuum configurations, where field
dynamics is absent. Lie groups are indeed "rigid", since their (pseudo-)Riemannian geom-
etry is completely fixed in terms of the structure constants CCAB describing the Lie algebra
G: indeed, in the case of semisimple Lie groups, the Killing form actually becomes a metric,
defined by

gAB = CFAEC
E
BF ,

where A,B, . . . = 1, . . . , dim G label the generators of the Lie algebra {TA}.
For vacuum solutions, one identifies the forms dual to the generators of the subalgebras I to
the vielbein of the vacuum space.
Introducing dynamics, namely moving to a general situation in which the structure of space-
time/superspace is not fixed, requires a more complicated mathematical structure, the one of
Principal Bundles. See [31–33] for a review of the main ideas and results used in the following.

Definition 5.1. A Principal Bundle is a quadruple (P,M, π,G), where P is the total space,
M is the base manifold, the typical fiber F is diffeomorphic to the Lie group G and π : P →M
is a surjective map.

In particular, π−1(x) is diffeomorphic to G, ∀x ∈ M and each point p ∈ P is locally
expressed as a couple (x, g) through maps

tα : π−1(Uα)→ Uα ×G,
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called local trivializations, where {Uα} is an atlas on M defining local coordinates. In this
geometric construction,M will be a (super-)manifold representing spacetime or its supersym-
metric generalization, superspace.
The base space is immersed in the Principal fiber bundle in such a way that it is not possible,
in general, to single it out: this formalism is the key to introduce dynamics and can actually
be used to also describe vacuum configurations, if one considers a single point as the base
manifold.
In this framework, connections are fundamental concepts for both maths and physics: from
the former point of view, they are a choice of an equivariant horizontal space H ⊂ TP , satis-
fying HR̃gp

= R̃g∗Hp, where R̃g : P → P is the right action of g ∈ G on the Principal bundle,
whereas in physics they correspond to gauge fields and allow to consider covariant derivatives
in the associated bundles, where other physical fields like scalars and spinors are defined.
As we will shortly see, connections allow to decompose the tangent space TP into horizontal
and vertical spaces, the latter denoted by V P and containing all vector satisfying π∗(v) = 0.
This means that each vector v ∈ TP can be rewritten as a sum

v = vV + vH .

Moreover, there is a canonical isomorphism relating the vertical space VpP to the Lie algebra
G: indeed, for any v̂ ∈ G, corresponding to the group element g, meaning that v̂ = dg(s)

ds

∣∣
s=0

,
one can build the associated fundamental vector field

v(p) =
d(R̃g(s)p)

ds

∣∣∣∣
s=0

.

This is actually an isomorphism of vector spaces as they share the same dimension.
Connections can be defined in multiple ways, all reproducing the same features, but in this
formulation we will be interested in the following one.

Definition 5.2. A connection on a Principal Bundle (P,M, π,G) is a map

ω : TP → G,

satisfying

• ω(v) = v̂, where v ∈ V P and v̂ ∈ G are related by the canonical isomorphism between
V P and G,

• ω depends differentiably on p ∈ P ,

• R∗gωp(v) = ωR̃gp(R̃g∗v) = Adg−1(ωp(v)),

where Adg(γ) = (LgR
−1
g )∗(γ) is the adjoint representation of g ∈ G on γ ∈ G.
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We remark that the adjoint representation can be written in the usual way Adg(γ) = gγg−1

only in the case of the General Linear group or one of its subgroups.
With this definition, the horizontal subspace is obtained as

Hp = {v ∈ TpP : ωp(v) = 0} (5.3)

and satisfies the needed equivariance property. This means that the tangent vector space TP
is accordingly split as

TP = V P ⊕H = G ⊕H
and one can then choose a basis for such vector space. If {tA} are the fundamental vector
fields associated to the Lie algebra generators {TA}, one can then choose

TP = span{tA, uM},

where {uM} is a basis for the horizontal space defined by the connection, withM = 1, · · · , dimM.
In order to construct a basis for the cotangent space T ∗P , let us notice that, by definition of
connection, we have that

ω(tA) = TA.

This result can also be proved in the following way: take a local section σ : x ∈ Uα → p0 ∈ P
and define A ∈ Ω1(Uα)⊗ G as A = σ∗ω. The connection in p0 = σ(x) can be defined as

ω̄p0(v) = A(π∗v) + v̂V

and can be extended to a generic p = R̃gp0 ∈ P through the adjoint representation

ωp(u) = Ad(g−1)(ω̄p0(R̃−1
g∗ u)), ∀u ∈ TpP.

In order to apply the obtained connection to the basis of the vertical subspace {tA}|p, we first
compute

ωp0(R̃−1
g∗ tA|p) = A(π∗R̃

−1
g∗ tA|p) + ˜̂R−1

g∗ tA|p = Ad(g)(TA),

where we used that π∗R̃−1
g∗ tA = 0. We finally have

ωp(tA) = Ad(g−1)ω̄p0(R̃−1
g∗ tA) = Ad(g−1)(Ad(g)(TA)) = TA.

Since this whole evaluation is really independent of the chosen local section, we can conclude
that our claim holds. As a consequence, since ω is an element of Ω1(P )⊗G, it can be rewritten
as

ω = ωA ⊗ TA. (5.4)

In virtue of the property shown above, we must have ωA(tB) = δAB.Moreover, if the horizontal
vector uM is written as

uM =
∂

∂XM
+ uAM tA
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where XM = (xµ, θα) are the coordinates on superspace, then it is also true that ωA(uM ) = 0.
Therefore, one has to set −uAM = ωA( ∂

∂XM ) ≡ ωAM .
The final step needed to determine a basis of T ∗P is to consider the one-form

UM = dXM + UMA ω
A,

which behaves in the following way

UM (tA) = UMB δBA = UMA , UM (uN ) = δMN .

We see that by choosing UMA = 0, thus setting UM = dXM , we obtain a basis of the cotangent
space

T ∗P = span{ωA,dXM} ≡ span{µA}, A = {A,M}
obeying at the following rules

ωA(uN ) = 0, dXM (uN ) = δMN ,

ωA(tB) = δAB, dXM (tB) = 0. (5.5)

The connection can be used to define an important physical object, the curvature. To this
end, we first introduce the exterior covariant derivative of a r-form φ on P as

Dφ(v(1), · · · , v(r+1)) = dPφ(vH(1), · · · , vH(r+1)).

The curvature is then defined in the following way.

Definition 5.3. The curvature Ω of a connection ω is defined as the covariant exterior
derivative of the connection

Ω = Dω.

The curvature 2-form satisfies the Cartan structural equation

Ω = dPω + [ω,ω],

which can be rewritten in the more common way by making use of (5.4)

ΩA ⊗ TA =

(
dPω

A +
1

2
CABCω

B ∧ ωC
)
⊗ TA, (5.6)

where we exploited the bracket definiton [ω,ω] = (ωA ∧ ωA)⊗ [TA, TB].
The curvature two-form satisfies a set of identities, called Bianchi identities, which are a
consequence of the fact that the differential is nilpotent d2

P = 0: they read

DΩ = 0 ⇐⇒ ∇ΩA = dPΩA + CABCω
B ∧ΩC = 0. (5.7)

With all these tools at our disposal, we now define the transformation laws of the fields ωA

under an infinitesimal vertical automorphism generated by ε = εAtA. Vertical automorphisms,
which are active transformations that do change the point on the fiber bundle, can also
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be rewritten and interpreted in terms of passive transformations, by considering changes of
trivializations. In the former case, they act on the right with R̃g, whereas in the latter one
they are written in terms of left group multiplication. One usually refers to them as gauge
transformations. We then have

δωA ≡ LεωA

= (iεdP + dP iε)ω
A = dP ε

A + iε

(
dPω

A ± 1

2
CABCω

B ∧ ωB
)

= (dP ε
A + CABCω

BεC) + iεΩ
A ≡ ∇εA + iεΩ

A. (5.8)

Since ΩA is a two-form on P , it can be expanded along the basis as

ΩA = ΩA
BCµ

B ∧ µC

and in order to obtain the usual gauge transformations, one has to impose the following
conditions.

Physical Requirement 5.1. The curvature must satisfy the horizontality condition

itBΩA = 0,

which effectively requires it to be expanded as ΩA = ΩA
MNdXM ∧ dXN .

This last expression would be enough for usual gauge theories, where it is known that the
infinitesimal transformations of the gauge fields are given by the covariant derivative of the
gauge parameter. General Relativity and Supergravity are not ordinary gauge theories, as
this condition is not enough to reproduce the known transformations rules of the fields. These
theories, which are called natural theories, as opposed to gauge-natural ones, are characterised
by the strong importance assumed by the tangent space TM of the base manifold. In order
to correctly reproduce the physical transformation laws of the fields for these theories, one
has to introduce the following mechanism.
Principal bundle breakdown: consider the following linear map

θ : Tp ⊂ VpP → Tπ(p)M

where Tp is generated by the fundamental vector fields associated to the subalgebra of trans-
lations and supersymmetric transformations K in (5.1). In particular, if Pa are associated to
translations and Qα to supersymmetric transformations, we define

θ(Pa) = VM
a

∂

∂XM
= V µ

a ∂µ + V α
a

∂

∂θα
,

θ(Qα) = ΨM
α

∂

∂XM
= Ψµ

α∂µ + Ψβ
α

∂

∂θβ
. (5.9)

The relation that we are defining is actually an isomorphism of vector spaces, since dim Tp =
dim TM and since we are relating the bases of the two vector spaces. The same identification
can be performed for cotangent spaces: one indeed takes the map

θ∗ = T ∗p → T ∗π(p)M
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relating V a and Ψα, which are the one-forms ωA associated again to translations and super-
symmetric transformations, to dXM = {dxµ,dθα}.
This is the crucial step that allows to relate a subset of the gauge transformations to diffeo-
morphisms in superspace. Indeed, an infinitesimal vertical automorphism on the fiber of the
principal bundle along the direction Pa is now associated to a transformation on spacetime
itself. The name Principal bundle breakdown exactly refers to this fact: this linear map de-
stroys the verticality of some directions, by "pulling down" some fibers and projecting them
on superspace.
One could have clearly started by considering a Principal fiber bundle where only the true
gauge group is taken as the typical fiber, but the power of this construction lies in the ex-
pression (5.8), which allows to easily compute the transformation laws of all physical fields.
In particular, the identification we just defined reduces the dimension of the cotangent space
T ∗P : its basis has to be accordingly modified, as V a and Ψα are no longer linearly indepen-
dent from dxµ and dθα.
To obtain the physical transformation laws of General Relativity and Supergravity, one first
applies the Principal bundle breakdown to (5.8) by considering

ε = εaθ(Pa) + εαθ(Qα) + εÂtÂ

ΩA = ΩA
B̂Ĉ µ

B̂ ∧ µĈ , µÂ = {dXM ,ωÂ},

where in this context hatted indices exclude those directions generated by translations and
supersymmetric transformations and then imposes Physical Requirement 5.1.

As an example, let us compute the transformation laws of the spin connection ωab in
General Relativity, where all fermions are switched off: we start with (5.8) and we obtain

δωab = ∇εab + iεΩ
ab

= ∇εab + εefΩab
B̂Ĉ
µB̂(tef )µĈ + 2εeΩab

B̂Ĉ
µB̂(θ(Pe))µĈ

= ∇εab + 2εcdΩab
cd Ĉ

µĈ + 2εeΩab
µ Ĉ

dxµ(θ(Pe))µĈ

= ∇εab + 2εeΩab
µ Ĉ

dxµ(V ν
e ∂ν)µĈ

= ∇εab + 2εeΩab
eĈ
µĈ

= ∇εab + 2εeΩab
efV

f .

In order to obtain this result, which is indeed the known one, in the second line we expanded
the curvature only on Â directions, as mentioned, whereas in the fourth and sixth lines we used
the Physical Requirement 5.1. In the fourth line we also used the Principal bundle breakdown.

In virtue of this mechanism, the geometric approach to Supergravity treats Supersymme-
tries as diffeomorphisms on a base manifold having both bosonic and fermionic directions.
This proves to be extremely useful to construct Lagrangians, to perform computations and to
derive transformation rules of fields, but it introduces degrees of freedom, which are absent in
the standard spacetime formulation. Indeed, physical actions will be formulated on a bosonic
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submanifold M ofM determined by the condition θα = dθα = 0.
The procedure of extending the spacetime information to the whole superspace without in-
troducing new physical content is called rheonomic extension mapping : this can be achieved
by requiring that a field ωA(x, θ, y), where yÂ are the coordinates on the group, is uniquely
determined in terms of spacetime quantities.
To understand this idea, let us take a specific combination of θ(Pa) and θ(Qα) having only
supersymmetric component

ε = εα
∂

∂θα
.

We see that the field evaluated at (x, δθ, y) can be written as an infinitesimal transformation
along ε as

ωA(x, δθ, y) = ωA(x, 0, y) +∇εA(x, 0, y) + 2εαΩA
B̂Ĉ(x, 0, y) µB̂

(
∂

∂θα

)
µĈ(x, 0, y)

= ωA(x, 0, y) +∇εA(x, 0, y) + 2εαΩA
αĈ(x, 0, y) µĈ(x, 0, y)+

+ 2εαΩA
B̂Ĉ(x, 0, y) µB̂

(
∂

∂θα

)
µĈ(x, 0, y)

= ωA(x, 0, y) +∇εA(x, 0, y) + 2εαΩA
αM (x, 0, y) dXM (x, 0, y),

where in the last line we applied the Physical Requirement 5.1. As we mentioned before,
all terms in the last expression must be functions of spacetime only: we are then led to the
following requirement.

Physical Requirement 5.2. The components of the curvature along supersymmetric directions
must be expressed in terms of spacetime ones

ΩA
αM = C

A|µν
αM |BΩB

µν , (5.10)

where CA|µναM |B are constants.

In this way, it is possible to reconstruct the whole superspace, by starting from a bosonic
submanifold.
Before starting to talk about lagrangians and their building rules, let us comment on the
relation between Physical Requirement 5.2 and the Bianchi identities, which hold whenever
d2
P = 0. The compatibility of (5.10), which are conditions on the curvature, with the Bianchi

identities imposes conditions on the inner components ΩA
µν , which are none other than the

equations of motion.

The formalism we described so far works wonderfully for the construction of lagrangians for
pure Supergravities, where the only physical fields appearing in the theory are the one-forms
ωA. Let us now review this procedure by describing the following building rules:

a) Geometricity: the lagrangian must be a dim(M)-form constructed out of forms and
differential of forms. Since the Hodge operator of a form in spacetime is not well defined
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in superspace, one is allowed to use 0-form fields whose equations of motion effectively
reproduce the Hodge star.
The action is then obtained by integrating the lagrangian on the hypersurface M

S =

∫

M⊂P
L.

For this reason, the fields appearing in the lagrangian must be forms defined on space-
time/superspace: fields associated to the K subalgebra are already projected down
to the base manifold, thanks to the Principal bundle breakdown V a ≡ θ∗(V a) and
Ψα ≡ θ∗(Ψα), whereas fields associated to H can be pulled back through a local canon-
ical section σ, as σ∗ωÂ.

b) Gauge invariance: the lagrangian must be H-invariant.

c) Homogeneous scaling law: the decomposition of the algebra (5.1) allows for rescal-
ings of the generators, which are then transferred to the fields appearing in the la-
grangian. Each term in the latter must scale homogeneously under this scaling law:
this means that each term must scale as [w]dimM−2, the scale weight of the Einstein
term.

d) Vacuum: the equations of motion derived from the lagrangian must admit the solution
ΩA = 0, corresponding to the flat connection condition.

e) Physical requirements 5.1 and 5.2: the curvature components must satisfy

ΩA
B̂Ĉ = 0, ΩA

αM = C
A|µν
αM |BΩB

µν ,

which are both needed to ensure that transformation rules of the fields are well defined
and that the lagrangian does not contain too much information.

Now that the basic concepts of the geometric approach to Supergravity have been laid down,
we will focus on applications. The first one will be concerned with the construction of a
possibly predictive model of a 2-dimensional lattice material starting from a suitable vacuum
theory, whereas the second application will make use of the full power of this approach, as
we will deal with a dynamical theory, N = 2 pure Supergravity with negative cosmological
constant, for manifolds with a boundary.
In this second application, we will also be concerned with studying the asymptotic properties
of the obtained theory.

6 N -extended AdS4 vacuum theory: a model for graphene-like
materials

As a first application of the powerful approach formulated in the previous Section, we now
want to build a model capable of describing the electronic properties of (2 + 1)-dimensional
materials in a top-down approach [34].
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Gravity can surprisingly be used to build an analogy relating spacetime to condensed matter
systems living on a lattice. In this context, geometric quantities are linked to properties and
defects of the lattice [35]: for example, the curvature is associated to disclinations via the
Frank vector, whereas torsion is related to dislocations through the Burgers vector.
The introduction of fermionic matter on the gravity side is expected to further extend this
analogy to include the description of the electronic properties of these materials. However, the
gravitini, appearing in a pure Supergravity theory, are spin 3/2 massless particles and have
no counterpart on the condensed matter side: a substantial improvement in this direction has
been achieved in [36] and goes by the name of "Unconventional Supersymmetry". Indeed,
the authors managed to express the gravitini appearing in the Supergravity theory in terms
of a spin 1/2 field χA. Our purpose in this section will then be to construct a consistent
theory for these spinors, which, as we will argue, will have to obey a Dirac equation, while
simultaneously reproducing as many features of the lattices of these materials as possible.

To this end, having in mind possible applications of holography, where, as we will discuss
in the next Section, one performs appropriate asymptotic limits to study the properties of the
boundary theory, let us consider an AdS4 vacuum theory generated by G = OSp(N|4): as
said, in these cases everything is determined in terms of the chosen Lie group and its algebra,
as the only fields in the theory are those appearing in the Maurer-Cartan form ω. The fact
that we decided to use the same symbol ω to indicate both the connection on the Principal
fiber bundle and the Maurer-Cartan form is a consequence of the fact that the latter can be
considered a connection on a Principal fiber bundle in which the base manifold is a single
point.
The curvature associated to the chosen connection is flat, which means that

Ω = dPω + [ω,ω] = 0.

Notice that, for our purposes, it may be possible to consider more generic configurations: for
example, one could take fluctuations around the AdS4 vacuum, preserving the full symmetry
at radial infinity, where scalars and spin 1/2 fields, which would in general appear in the
gravitational multiplet, would be required to be frozen at their boundary value. We will keep
a conservative approach and consider only the vacuum configuration.

The OSp(N|4) Lie algebra is described by the following relations

[LAB, LCD] = ηADLBC − ηACLBD + ηBCLAD − ηBDLAC ,
[TAB, TCD] = δADTBC − δACTBD + δBCTAD − δBDTAC ,

[LAB, Q
α
A] = −1

2
(Γ̃AB)αβQ

β
A,

[TAB, Q
α
C ] = 2δD [AδB]CQ

α
D,

{QαA, QβB} =
1

2`
(Γ̃EFC5)αβδABLEF −

1

`
Cαβ5 TAB.

(6.1)

Here, the first two properties describe the bosonic subalgebra of the subgroup O(N )×SO(2, 3)
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where2

A,B, . . . = 0, 1, 2, 3, 4

A,B, . . . = 1, . . . ,N ,

ηAB = diag(+,−,−,−,+) ,

(6.2)

whereas the remaining ones extend the mentioned subalgebra to a supersymmetric one. In
particular, the fermionic generators QαA are Majorana spinors transforming in the fundamen-
tal representation of SO(N ) and in the spinorial representation of the Lorentz group, with
α, β, . . . = 0, 1, 2, 3, 4. We refer to the Appendix B for properties of gamma matrices and
spinors.
This algebra can be recasted in the (5.1) form by writing it in a manifestly covariant way
with respect to the D = 4 Lorentz group: this is achieved by defining A = (a, 4), where
a = 0, 1, 2, 3 and La4 := `Pa.
The chosen Lie algebra can also be expressed in terms of the Maurer-Cartan form

ω =
1

2
ω̂AB LAB +

1

2
ACD TCD + Ψ

A
α Q

α
A, (6.3)

where one identifies, as explained previously, ω̂a4 := `−1 V a with the vielbein of the vacuum
space AdS4 and ` with its radius. The structure equations are then obtained as

dω̂ab + ω̂ac ∧ ω̂cb −
1

`2
V a ∧ V b − 1

2`

(
Ψ
A ∧ ΓabΨA

)
= 0,

dV a + ω̂ab ∧ V b − i

2

(
Ψ
A ∧ ΓaΨA

)
= 0,

dACD +ACB ∧ABD +
1

`

(
ΨC ∧ΨD

)
= 0,

dΨA +
1

4
ω̂ab ∧ ΓabΨ

A +
i

2`
V a ∧ ΓaΨ

A +AAB ∧ΨB = 0,

(6.4)

where spinor indices have been omitted. In order to reproduce the known results of [37] and
to generalise the construction of [36], we now consider a local coordinate patch, in which the
boundary of AdS4 is locally AdS3: this means that

ĝ = − `
2

z2
dz2 +

`2

z2
gAdS3 ,

where gAdS3 is the metric of AdS3. Let us then study the equations (6.4) at the radial
boundary: for this reason, it is convenient to further split the rigid index a into a = (i, 3),
where i = 0, 1, 2 labels the boundary dreibein and a = 3 labels the vierbein along the radial
direction. The superalgebra is further decomposed in terms of SO(1, 1)×SO(1, 2) ⊂ SO(2, 3),
having L34 and Lij as their generators, respectively. By defining the following quantities

V i
± :=

1

2

(
`ω̂i3 ± V i

)
(6.5)

2Notice that we are going to relabel indices already used in the previous section, which however will not
be needed anymore, so this shouldn’t be source of confusion.
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and by decomposing the gravitini in their chiral components with the Γ3 matrix

ΨA = ΨA
+ + ΨA

− , Γ3ΨA
± = ±i ΨA

± , (6.6)

one can effectively write the algebra in a way in which the SO(1, 1)-grading is manifest. With
these definitions, The structure equations become

dω̂ij + ω̂ik ∧ ω̂kj +
4

`2
V

[i
+ ∧ V

j]
− −

1

`

(
Ψ
A
+ ∧ ΓijΨA−

)
= 0 ,

dV i
± + ω̂ij ∧ V j

± ∓
1

`
V i
± ∧ V 3 ∓ i

2

(
Ψ
A
± ∧ ΓiΨA±

)
= 0 ,

dV 3 − 1

`
(V i

+ + V i
−) ∧ Vi + Ψ

A
− ∧ΨA+ = 0 ,

dACD +ACM ∧AMD +
2

`

(
Ψ

[C
+ ∧Ψ

D]
−

)
= 0 ,

dΨMβ
± +

1

4
ω̂ij ∧

(
ΓijΨ

M
±
)β ± i

`
V i
± ∧

(
ΓiΨ

M
∓
)β ± 1

2`
V 3 ∧ΨMβ

± + δM [CδD]B A
CD ∧ΨBβ

± = 0 .

(6.7)

Since we are working in a vacuum configuration, these Maurer-Cartan equations hold ev-
erywhere, both in the bulk and at the boundary. In particular, one can perform a specific
asymptotic limit and study these equations projected on the cotangent space to the boundary.
To this end, let us consider the following scaling

V i
+(x, z) =

(
`

z

)
Ei(x) +O

(z
`

)
, V i

−(x, z) = −1

4

(
`

r

)
Ei(x) +O

(
`2

r2

)
,

ω̂ij(x, z) = ωijµ (x) dxµ + . . . , ÂAB(x, z) = AABµ (x) dxµ + . . . , (6.8)

where x are the local coordinates on AdS3. As for the spinors, we require them to behave in
the following way

ΨA
+µ(x, z) dxµ =

√
`

z

(
ψA(x)

0

)
+O

(√
z

`

)
,

ΨA
−µ(x, z) dxµ =

1

2

√
z

`

(
0

kABψB(x)

)
+O

((
`

r

) 3
2

)
, (6.9)

where kAB is a symmetric metric satisfying kAC kCB = δAB. If we restrict ourselves to the
cotangent space to the boundary, the third equation in (7.132) vanishes automatically, because
V 3 = dV 3 = 0 follows from the radial foliation that we are considering, ω̂3

i ∧ Ei = 0 due to
the general properties of the extrinsic curvature and the bilinear ψA ∧ ψA is automatically
zero.
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The remaining equations are rewritten as

dωij + ωik ∧ ωkj −
1

`2
Ei ∧ Ej − 1

2`

(
ψ
A ∧ γijkABψB

)
= 0 ,

dEi + ωij ∧ Ej −
i

2

(
ψ
A ∧ γiψA

)
= 0 ,

dACD +ACM ∧AMD +
1

`
ψ[C ∧ kD]BψB = 0 ,

dψA +
1

4
ωij ∧ γij ψA +

i

2`
Ei ∧ γi kABψB +AAB ∧ ψB = 0 .

(6.10)

Let us notice that the matrix kAB introduced in the asymptotic behaviour of the gravitini
allows to break the full R-symmetry group: indeed, one can always bring such metric into a
diagonal form

kAB =

(
1p×p 0p×q
0q×p −1q×q

)
(6.11)

through an O(N )/(O(p) × O(q)) rotation, where p + q = N . By doing so, the R-symmetry
is broken to O(N )→ O(p)×O(q), which means that a generic O(N ) index splits into A =
(a1, a2), where a1 = 1, . . . , p and a2 = p+ 1, . . . , N .
The condition (6.11) has strong consequences on the Maurer-Cartan equations for the bound-
ary gauge field ABC : the gauge fields Aa1a2 associated to the coset of rotations used to set
the kAB matrix in a block diagonal form decouple from spinors

dAa1b2 +Aa1c1 ∧Ac1b2 +Aa1c2 ∧Ac2b2 = 0

and must be set to zero in order to obtain consistent gravitini equations. The other structure
equations can be reproduced as equations of motion of the following lagrangian

L =− 1

2
Rij ∧ Ekεijk +

1

6L2
εijkEi ∧ Ej ∧ Ek −Ψ

a1 ∧ D[ω,A]Ψa1 −Ψ
a2 ∧ D[ω,A]Ψa2

− i

2L
Ψ
a1 ∧ Ei ∧ (γiΨa1) +

i

2L
Ψ
a2 ∧ Ei ∧ (γiΨa2)+

− L

2

(
Aa1b1 ∧ dAb1a1 +

2

3
Aa1b1 ∧Ab1c1 ∧Ac1a1

)
+

+
L

2

(
Aa2b2 ∧ dAb2a2 +

2

3
Aa2b2 ∧Ab2c2 ∧Ac2a2

)
, (6.12)

where Rij = dωij + ωikω
kj and D[ω,A]ψA = dψA + 1

4 ω
ij ∧ γij ψA +AAB ∧ ψB.

It is crucial to notice, though, that one can rearrange the fields in this theory in such a way
to describe the superalgebra

OSp(p|2)+ ×OSp(q|2)−.

The subscripts "±" used here and in the following do not refer to the SO(1, 1)-grading, but
they will be used to ease the notation and because they will play an important role in the
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physical interpretation of this model in terms of graphene-like materials.
By defining the following quantities

Ωi
(±) := ωi ± Ei

`
, ψ+ := (ψa1) , ψ− := (ψa2) , A+ := (Aa1b1) , A− := (Aa2b2) ,

D[Ω+, A+]ψ+ :=

(
dψa1 +

i

2
Ωi

+ ∧ γiψa1 +Aa1b1 ∧ ψβb1
)
,

D[Ω−, A−]ψ− :=

(
dψa2 +

i

2
Ωi
− ∧ γiψa2 +Aa2b2 ∧ ψb2

)
,

where ωi := 1
2 ε

ijk ωjk, one obtains a compact form of the Maurer-Cartan equations

R±
i := dΩi

± −
1

2
εijkΩ± j ∧ Ω± k = ± i

`

(
ψ± ∧ γiψ±

)
; (6.13a)

D[Ω±, A±]ψ± = 0 , (6.13b)

Fa1b1 := dAa1b1 +Aa1c1 ∧Ac1b1 = −1

`

(
ψ
a1 ∧ ψb1

)
, (6.13c)

Fa2b2 := dAa2b2 +Aa2c2 ∧Ac2b2 =
1

`

(
ψ
a2 ∧ ψb2

)
. (6.13d)

Let us notice that the definitions used above ignore the upper/lower position of the R-
symmetry indices: this is possible because such indices transform in the fundamental of
SO(N ). Moreover, the definition and properties of the 3-dimensional Levi-Civita symbol are
listed in Appendix A.
The action (6.12) can be then rewritten in a compact form

L = L(+) − L(−) −
1

2
d(Ω+k ∧ Ωk

−) ,

L(±) :=
1

2

(
Ω± idΩi

± −
1

3
εijk Ωi

± ∧ Ωj
± ∧ Ωk

±

)
+ Tr

(
A± ∧ dA± +

2

3
A± ∧A± ∧A±

)
±

± 2

`
ψ± ∧ D[Ω±, A±]ψ± ,

(6.14)

which exactly reproduces the result obtained in [37]: the action having the Maurer-Cartan
equations of the supergroup OSp(p|2)+×OSp(q|2)− as equations of motion can be written as
a difference of Chern-Simons lagrangians plus a boundary term. This exact term is actually
a Gibbons-Hawking-York term [38,39], as it can be rewritten as

− `
2

d(Ω+k ∧ Ωk
−) = d(ωi ∧ Ei) = −d(e2K dx2),

where e2 is the determinant of the vielbein at the boundary of AdS3, E2|T∂AdS3 = 0 and K
is the trace of the extrinsic curvature ωs2 = Ks

tE
t, with s, t = 0, 1. 3

We now discuss an interesting property which emerges from this formulation of the theory.
3Let us remark that the coordinate patch chosen in the 4-dimensional analysis describes only a part of the

full boundary. It then comes with no surprise that such boundary, AdS3 can itself have a boundary.
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Generalised Parity symmetry

Let us now consider a reflection along the y-axis, described by t → t, x → −x, y → y,
combined with a particular transformation acting on spinors and gauge fields.
Such transformation acts on vielbein and spin connection in the following way4

Ei → Oyij Ej , ωi → −Oyij ωj , =⇒ Ωi
± → −Oyij Ωj

∓, (6.15)

where Oy = diag(+1,−1,+1) and on the remaining fields as

ψ± → σ1 ψ∓ , A± → A∓ . (6.16)

This particular set of transformations maps theOSp(p|2)+×OSp(q|2)− model into aOSp(q|2)+×
OSp(p|2)− one: in general this is not a symmetry of the theory, but it becomes one in the
particular case p = q. Indeed, by making use of the following identities,

ψ± ∧ γiψ± → Oyij ψ∓ ∧ γjψ∓ ,
Ω± γ

iψ± → Ω∓ σ
1γiψ∓ ,

ψ±D[Ω± , A±]ψ± → −ψ∓D[Ω∓ , A∓]ψ∓ ,

(6.17)

one can prove that the equations of motion of the lagrangian, i.e. the Maurer-Cartan equa-
tions, are just shuffled between themselves, whereas the lagrangian L→ −L, as L(±) → L(∓).
Let us end this small paragraph with a comment on the role of this discrete symmetry: as
we said in the beginning of this section, our purpose is to model electronic properties of 2-
dimensional materials. The fact that this theory enjoys this symmetry is somewhat surprising,
as it allows to describe the parity properties of bipartite lattices, as we will argue. The case
p = q will then play an important role in what follows.
Notice that this property is a novelty even from the N = 2 point of view explored in [40],
where, in our current notation, the authors chose p = 0, q = 2.

Decomposition of the boundary gravitini

The key distinguishing feature of the Unconventional Supersymmetry [36] is given by the
following decomposition

ψ± = iγie
iχ±, (6.18)

in terms of a spin 1/2 particle and a bosonic driebein ei describing an AdS′3 space. Here un-
primed and primed quantities respectively refer to the distinction between the starting target
space and a new purely bosonic spacetime that we are introducing, which will be called world
volume.
From this point of view, the isometry group SL(2,R)′+×SL(2,R)′− of the tangent space to the
world-volume geometry and the bosonic subgroup SL(2,R)+ × SL(2,R)− of the gauge group

4Recall that the vielbein is a Lorentz vector, whereas ωi is a pseudo-vector.
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are in principle unrelated. A link between these two groups can be created if we provide
enough information: indeed one can first identify the index i of ei and Ei and then relate the
connection Ω′ i± = ω′ i ± ei/`′, written here in terms of a torsionless connection ω′i, with the
one of SL(2,R)±.This last step will be dealt with in the next paragraph.
Furthermore, gamma matrices should in principle be considered as intertwiners between
primed and unprimed groups, as the spinors χ± transform in the

(
1
2 , 0

)
or
(
0, 1

2

)
repre-

sentation of SL(2,R)′+ × SL(2,R)′−. This is another reason to lean towards the identification
between these groups, as it allows to avoid this complication.

Let us first analyse the effect of this decomposition on the bosonic structure equations in
(6.13):

Ri± = ±1

`
χ±χ±ε

ijk ej ∧ ek ,

D[Ω±]Ei = ∓1

`
εijk Ej ∧ Ek +

1

2
(χ+χ+ + χ−χ−) εijk ej ∧ ek ,

Fa1b1 = − i

`

(
χa1γiχb1

)
εijke

j ∧ ek , Fa2b2 =
i

`

(
χa2γiχb2

)
εijke

j ∧ ek ,

(6.19)

where χ+ := (χa1), χ− := (χa2). Since we are identifying the indices i, one can compute the
covariant derivative of the world volume vielbein with respect to the target space connections:
this can be split into

D[Ω±]ei = β±e
i + τ±ε

ijkej ∧ ek , (6.20)

where β± and τ± are 1- and 0-forms, respectively.
Notice that the decomposition (6.18) introduces a local scale invariance called Nieh-Yan-
Weyl (NYW) symmetry, which leaves the gravitino and therefore all target space quantities
invariant

ei → λ(x) ei , χ± →
1

λ(x)
χ± , λ 6= 0 . (6.21)

The expression (6.20) retains its form under a NYW rescaling provided that

β± → β± +
dλ

λ
, τ± →

1

λ
τ± . (6.22)

The transformation law of β± suggest that it is a connection under this local scale transfor-
mation.
To justify the name "world volume" given to the AdS′3 space, we impose a relation between
the two vielbeins in our theory, Ei = f i(e) and we choose in particular

Ei = f(x)ei. (6.23)

Let us now explore the implications of this simple ansatz: once the relation between the target
space and world volume has been defined, the covariant derivative (6.20), expressed in terms
of ωi, becomes

D[Ω±]ei = D[ω]ei ∓ f

`
εijkej ∧ ek
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= βei + τεijkej ∧ ek ∓
f

`
εijkej ∧ ek,

where in the last line we used D[ω]ei = β ∧ ei + τ εijkej ∧ ek. We are then led to the following
identifications

β+ = β− = β , τ+ +
f

`
= τ− −

f

`
= τ . (6.24)

The exterior derivative of (6.20) leads to constraints on β± and τ±, which are a consequence
of the fact that εijkR±jek = 0

dβ± = 0, dτ± + β±τ± = 0. (6.25)

This means that either τ± = 0 and β+ = β− is a generic closed form, or that τ± 6= 0 and
β± = −dτ±

τ±
= −dln|τ±|. Notice that this last relation can be interpreted by saying that

β± can be produced by the scale transformation ei → (τ±)−1ei. Therefore, at least locally,
β± = β can be gauged away to zero and correspondingly τ± can be set equal to constants. In
particular, one can fix one of them to a chosen value, while the other one will be consequently
obtained from (6.24). This can be globally achieved only in absence of topological obstruc-
tions.

Relations involving the function f(x) can instead be obtained by implementing (6.23) in
the second equation appearing in (6.19). By comparing it with (6.20), one obtains

df + βf = 0, (6.26)

f τ =
1

2
(χ+χ+ + χ−χ−) , (6.27)

where the first equation can be solved by choosing f = α± τ±, where α± are dimensionful
constants. This result can be used in the computation of the exterior derivative of Ri±, which
yields

d(χ±χ±) = −2β χ±χ±

and since β can be set to zero in a local patch, both bilinears χ±χ± must be constants. In
this specific case, they can then be related by a generic constant k

χ+χ+ = k χ−χ− . (6.28)

The whole discussion on the bosonic structure equations can be summed up in the following
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table

D[Ω±]ei
Ei=fei−−−−→

{
β+ = β− = β

τ+ + f
` = τ− − f

` = τ

D[Ω±]ei
d, τ± 6=0−−−−−→

{
dβ± = 0

β± = −dln|τ±|

D[Ω±]Ei
Ei=fei−−−−→

{
df + βf = 0,

f τ = 1
2 (χ+χ+ + χ−χ−)

Ri±
d, β=0−−−−−→ χ+χ+ = k χ−χ−.

Moving on to the fermionic structure equations, let us define a covariant derivative, in the
generic β case, including also the local NYW symmetry

D̂ = D + w β =⇒ D̂[Ω±, A±]χ± = D[Ω±, A±]χ± + β , (6.29)

where w is the NYW weight of the field (−1 for ei and +1 for χ±). This derivative can be
then used to express (6.13b) as

γ[iD̂j][Ω±, A±]χ± = τ± εijk γ
kχ± . (6.30)

This last equation actually contains key information, which can be retrieved by taking its
projections, i.e. by multiplying it by γij and γi. In the first case, one obtains two massive
Dirac equations

/D[Ω±, A±]χ± = −3 i τ± χ± , (6.31)

while in the second case we have

D̂i[Ω±, A±]χ± = −i τ± γiχ± . (6.32)

By inserting the decomposition (6.18) into the lagrangian (6.14), we see that the full set of
structure equations can be then derived as its equations of motion. Indeed we have

S =

∫ [
1

2

(
Ω+i ∧ dΩi

+ −
1

3
εijkΩ+i ∧ Ω+j ∧ Ω+k

)
− 1

2

(
Ω−i ∧ dΩi

− −
1

3
εijkΩ−i ∧ Ω−j ∧ Ω−k

)
+

+

(
Aa1b1 ∧ dAb1a1 +

2

3
Aa1b1 ∧Ab1c1 ∧Ac1a1

)
−
(
Aa2b2 ∧ dAb2a2 +

2

3
Aa2b2 ∧Ab2c2 ∧Ac2a2

)
−

− 2i

`
εijkχa1

{
γkD̂[Ω+, A

a1b1 ]χa1 + iτ+χa1ek

}
∧ ei ∧ ej−

− 2i

`
εijkχa2

{
γkD̂[Ω−, A

a2b2 ]χa2 + iτ−χa2ek

}
∧ ei ∧ ej −

1

2
d(Ω+k ∧ Ωk

−)

]
.
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Most notably, the introduction of the Unconventional Supersymmetry has led us to a theory
with spin 1/2 particles following massive Dirac equations. As we will see, this is the key devel-
opment towards the extension of the analogy between 2-dimensional graphene-like materials
and gravitational theories with the inclusion of fermionic matter.

A relation between connections of target space and world volume

As said in the previous paragraph, to completely identify the two groups under consider-
ation, one also has to establish a link between their connections. Since the world volume is a
bosonic space, one can consider a torsionless spin connection ω′i such that D[ω′]ei = 0.
Expressing such connection in terms of a target space one as

ω′i = Ωi
+ + τ+ e

i = Ωi
− + τ− e

i . (6.33)

means introducing the desired relation between the two groups. This particular choice de-
scends from the fact that D[ω′]ei = 0 is indeed zero if β = 0. We will therefore work under
this assumption. Furthermore, this identification of connections allows to interpret (6.20) as
the world volume torsion tensor.
Once the relation between the groups has been accomplished, one can compute the Dirac
equation in terms of the torsionless connection, which becomes

/D[ω′, A±]χ± = −3

2
i τ± χ± , (6.34)

where the mass term is given by

m± =
3

2
τ± (6.35)

and the Riemann tensor associated to such connection

Ri[ω′] =
1

2

(
f2

`2
+ τ2 +

kABχ
AχB

`

)
εijkej ∧ ek . (6.36)

We notice that, since we are working in the β = 0 case, the terms in the parenthesis are
constants and define an effective cosmological constant, which also receives contributions
from fermions. In particular, one can choose the residual NYW symmetry to identify the
radii of the two AdS3 spaces. Notice that, in this case, a generic identification of torsionful
connections

Ωi
(ξ) ≡ ωi +

ξ

`
Ei, Ω′i(ξ) ≡ ω′i +

ξ

`
ei,

parametrised by a constant ξ, is compatible with (6.33) provided that

τ =
ξ

`
(f − 1) , (6.37)

holds. This condition can be further rewritten as

ξ f (f − 1) =
`

2
(χ+χ+ + χ−χ−) . (6.38)
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When ξ = 0, we have ω′i = ωi, which means that ωi has to be torsionless: by looking at
(6.19), we see that this is possible only if

χ+χ+ = −χ−χ−,

which is the exact same condition that we obtain from (6.38). This relation can be also
achieved when f = 0, f = 1: the first case is a singular one, as the target space vielbein would
be zero, whereas the second case identifies the two vielbeins. Since Ei is a supersymmetric
vielbein, it comes with no surprise that the fermionic contribution to the torsion is required
to vanish.
Finally, when ξ = ±1, we have Ω′i± = Ωi

±: it turns out that by choosing f = 1/2 one can
require either τ+ or τ− to vanish, or equivalently χ+ or χ− to be massless.
This whole set of possibilities will be explored in the next paragraph, where we will try to
make contact with graphene-like materials and their properties.

Graphene-like materials and interpretation

In this paragraph, we will first state some of the properties that these materials share and
we will then interpret them in terms of the results that we have found up until now.
Graphene-like materials are characterised by a honeycomb 2-dimensional lattice, made of two
inequivalent sublattices, where A and B sites live, as it is shown in Figure 3. For example, pure
graphene is composed of six carbon atoms, but in other similar materials different elements
are also allowed, like in boron nitride.
In this analysis we will work in a regime where wave functions have long wavelength compared
to the characteristic lattice length: in this way, the charge carriers will feel the lattice as a
continuum and defects of the former as resulting from curvature or torsion of the latter.
In pure, isolated graphene the First Brillouin Zone (FBZ) is again a hexagonal lattice in
momentum space, rotated by π/2 with respect to the original lattice, in which the inequivalent
sites are called valleys K, K ′.

A reflection with respect to the y-axis exchanges both the A and B sites and the K and K ′

valleys provided that we combine it with a time-reversal transformation. This indeed allows
to obtain the transformation kx → kx , ky → −ky on a momentum vector.
Near these points, also called Dirac points, the pseudoparticles describing the charge carriers
behave in a relativistic way: this can be inferred from the linear dispersion relation between
the energy and the quasi-momentum. In these valleys, the conduction and valence band of
graphene, which correspond to the positive and negative eigenvalues of the Hamiltonian, touch
each other, forming the so called Dirac cones. This means that the charge carriers possess an
additional pseudo-spin number, associated to the two valleys.
In virtue of their relativistic behaviour, the pseudoparticles obey the Dirac equation, which
is massless if the graphene layer is pure and isolated. However, mass terms, which create a
gap between conduction and valence bands even at the Dirac points, can be introduced in
two different ways, as shown by Semenoff [41] and Haldane [42]. The Semenoff mass term is
introduced by considering an on-site staggered potential, which clearly breaks the symmetry
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The relativistic behavior of the charge carriers can be inferred, in the momentum space, from
the linear dispersion relation between the energy and the quasi-momentum at the vertices of the first
Brillouin zone. Close to the Fermi energy, the electrons in graphene have linear energy bands, like
relativistic massless particles and the three dimensional plot of these two dimensional bands produce
the so-called Dirac cones. For every momentum lying within the Brillouin zone, the Hamiltonian
has two eigenvalues with opposite signs: the positive (negative) eigenvalue corresponds to the
conduction (valence) band of graphene. The conduction and valence bands touch each other at
the conical apices, located at the corners of the hexagonal FBZ. The latter are then split into
two equivalence classes (referred to as “valleys") and, as a result, electrons in graphene possess an
additional pseudo-spin number, the valley. These properties are shared with other 2D graphene-like
materials, which further allow the inclusion of e�ective mass terms.

Consistently with our description of the honeycomb lattices (see figure above), the reflection
with respect to the Y-axis exchanges the A and B sites. The points K and K0 are mapped into each
other if the reflection is combined with a time-reversal transformation, so that the resulting e�ect
on a momentum vector is kx ! kx , ky ! �ky . As mentioned above, this symmetry, which is
present in pure graphene, is absent in 2D materials with inequivalent A and B sites. This feature
implies the presence, for such materials, of a parity-violating Semeno� mass term in the e�ective
Dirac equation.

In the absence of curvature, it is known that the Dirac equations in momentum space in the two
valleys, in our conventions, read (setting ~ = v� = 1) [25]:

K : Eq �K(q) =
⇣
↵1 q1 + ↵2 q2 + mK �

0
⌘
�K(q) ,

K0 : Eq �K0 (q) =
⇣
↵1 q1 � ↵2 q2 + mK0 �

0
⌘
�K0 (q) ,

(4.15)

where ↵` ⌘ �0 �` (` = 1, 2) and the two equations are computed in the two-momenta K + q and
K0 + q, with |q| ⌧ |K|, |K0|. The Hamiltonian matrices on the right hand sides of equations (4.15)
have eivengalues +|Eq | and �|Eq |. The above two equations, in configuration space, read:

K : i @t �K(x) =
⇣
�i↵1 @x � i↵2 @y + mK �

0
⌘
�K(x) ,

K0 : i @t �K0 (x) =
⇣
�i↵1 @x + i↵2 @y + mK0 �

0
⌘
�K0 (x) ,

(4.16)

18

Figure 3: The honeycomb lattice and the FBZ are characterised by two inequivalent sites,
belonging to two different sublattices.

under reflections, whereas the Haldane mass is generated by including periodic local magnetic
flux densities, with zero net flux over the lattice cell. The mass terms in the two Dirac points
are then obtained as

mK = M − 3
√

3 t2 sinϕ , m
K′ = M + 3

√
3 t2 sinϕ , (6.39)

whereM is the Semenoff staggered potential, t2 is the next-to-nearest hopping amplitude and
ϕ is an Aharonov-Bohm phase due to the local magnetic fluxes. The Semenoff mass term,
as said, is parity odd, while the Haldane one is parity even and this property will allow an
important identification in terms of gravity quantities.
The single-electron wave function around one valley is usually described as a two-component
complex spinor ζ

ζ =

( √
nA e

iαA
√
nB e

iαB

)
, (6.40)

associated to the gamma matrix basis

γ0 = −σ3 , γ1 = −i σ2 , γ2 = i σ1 . (6.41)

Here nA, nB are the probability densities for the electron in the π-orbitals, whereas αA, αB
are their wave function phases. One in particular has that

nA + nB = ζ†ζ , nB − nA = ζ̄ζ . (6.42)

The first quantity is the total electron probability density associated to a single valley, whereas
the second one describes the asymmetry between the probability densities.

In order to make contact with this description of graphene-like materials, we shall restrict
ourselves in our Supergravity model, to the case in which Supersymmetry is defined by even
integers p and q, since this allows to arrange the real spinors χ± into p/2 and q/2 Dirac
spinors.
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Furthermore, the reflection symmetry of the valleys is reminiscent of the parity symmetry of
the Supergravity model in the case p = q: for this reason, we will take the simplest choice
p = q = 2.
In this case the real spinors χ+ = χa1 and χ− = χa2 , with a1 = 1, 2, a2 =

.
1,

.
2, can be

rearranged to define complex spinors

χ̃+ = χ1 + iχ2, χ̃− = χ
.
1 + iχ

.
2, (6.43)

which will be associated to each valley through

χ̃+ =

√
`

2
U ζK , χ̃− =

√
`

2
U ζK′ . (6.44)

Here the matrix

U =
1√
2

(
1 1
−i i

)

relates the spinor basis used for χ to the one defined above for ζ through U †γiU = γi. By
then defining the 4-dimensional spinors

χ = χ̃+ ⊕ χ̃−, Z = ζK ⊕ ζK′ ,

one obtains that

χχ = χ+χ+ + χ−χ− =
`

2
(ZZ) =

`

2
(ζKζK + ζK′ζK′) =

`

2
(nKB − nKA + nK

′
B − nK

′
A )

This relation, together with (6.38) allows to obtain a lower bound on the total probability
densities of one of the two sublattices

ξ > 0 , nKA + nK
′

A = −4ξ

`2
f(f − 1) + nKB + nK

′
B ≥ −

4ξ

`2
f(f − 1) ≥ ξ

`2
,

ξ < 0 , nKB + nK
′

B =
4ξ

`2
f(f − 1) + nKA + nK

′
A ≥

4ξ

`2
f(f − 1) ≥ |ξ|

`2
.

(6.45)

In the ξ = 0 case, one has χ+χ+ = −χ−χ−, which implies that the total probability density
are the same in the two sublattices nKA + nK

′
A = nKB + nK

′
B .

At last, this discussion allows to finally understand the role of the labels ± in the Supergravity
theory: they have to be associated to the valleysK, K ′. Moreover, in the β = 0 case, which is
the one we decided to consider, χ±χ± are constants, which means that the difference nB−nA
in the probability densities of each valley is a constant index, which still has to be explored.
In light of this new understanding, let us discuss the role of the parity symmetry in the
Supergravity theory: since Ei = f ei, the action of the Oy-parity on Ei naturally extends to
ei:

ei → OY ij ej , (6.46)

provided that f is invariant. This requires the spinors χ± to transform as follows

χ± → −σ1χ∓ . (6.47)
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Under these transformations, the + sector is mapped into the − sector provided that

β → β , τ± → −τ∓ .

However, a specific choice of τ±, which characterises the world-volume background, remains
invariant provided that

τ+ = −τ− . (6.48)

In our conventions and with ~ = vf = 1, the description of the relativistic properties of the
charge carriers in a curved background, with a coupling to a gauge potential is given by

K : iDt[ω′, AK ]χK(x) =
(
−iα1Dx[ω′, AK ]− iα2Dy[ω′, AK ] +mK γ

0
)
χK(x) ,

K′ : iDt[ω′, AK′ ]χK′ (x) =
(
−iα1Dx[ω′, A

K′ ] + iα2Dy[ω′, AK′ ] +m
K′ γ

0
)
χ

K′ (x) ,

(6.49)

where α` ≡ γ0 γ` (` = 1, 2). These Dirac equations are invariant under the parity symmetry
discussed above and the spinors appearing here are identified to the ones appearing in our
model through

χK(xµ) = χ+(xµ) , χ
K′ (x

0, x1, x2) = σ1χ−(−x0, x1, x2) . (6.50)

From this last equation, one sees that, as said, the parity symmetry has to be combined with
a time reversal transformation. Furthermore, one has to consistently relate the gauge fields

AK = A+ , A
K′ = A− (6.51)

and the masses
mK = m+ =

3

2
τ+ , m

K′ = m− =
3

2
τ− . (6.52)

Interestingly, these masses can be associated to the ones of the macroscopic model. Indeed,
by rewriting τ± as

τ± ≡
1

2
(τ+ + τ−) ± 1

2
(τ+ − τ−) = τ ∓ 2

f

`
, (6.53)

where the second equal sign is a consequence of (6.24), we see that, in virtue of (6.48), the
first term is parity odd, while the second is parity even. This behaviour is also shared by the
Semenoff and Haldane masses, respectively. One can then conclude that

M =
3

2
τ ,

√
3 t2 sin(ϕ) =

f

`
. (6.54)

As a final comment, let us notice that, from a phenomenological point of view, the charge
carriers in the honeycomb lattice are "relativistic" in a peculiar way: indeed the Fermi velocity
vf plays the role of the speed of light in the Dirac equation, whereas the characteristic speed
appearing in (6.49) and (6.34) is defined by the only vielbein appearing there, ei and coincides
with the speed of light.
This problem can be dealt with in several ways: the first one would be to start with both
world volume and target space having as a numerical value of the speed of light the one of
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the Fermi velocity. Another possibility would be to have a target space with a standard light
speed and a world volume with a Fermi velocity: in this case one would need an ansatz more
generic than (6.23). Finally, both target space and worldvolume could have the same standard
value for the light speed: in this case one would need a mechanism to transform the vielbein
ei appearing in the Dirac equations of our model to effectively modify the light cone of the
theory and reproduce the "correct" Dirac equations. This third path will be the one analysed
in the following Subsection, in the pure GR case.

6.1 Dirac equations and metric structure

We now want to study a mechanism capable of changing the speed of light appearing in a
Dirac equation. This effectively means changing the light cone of the theory, which in turns
implies modifying the spacetime metric [43].
Let us notice that the obtained Dirac equations (6.34) are written in terms of a bosonic
vielbein, so it will be sufficient to understand the desired mechanism in a standard General
Relativity context. For the sake of simplicity, we will neglect the minimal coupling to gauge
fields and we will not necessarily restrict to AdS3. Indeed the construction that we are going
to illustrate is general and could have applications that exceed our graphene model.

From a mathematical point of view [44], the standard approach to the Dirac equations is
given in terms of spin structures and spin manifolds, the latter being spacetimes allowing the
construction of principal bundles with G = Spine(r, s) as a Lie group.

Definition 6.1. A spin structure over (M, g) is a pair (P,Λ), where P is a spin bundle
and Λ : P → SOe(M, g) is a vertical principal morphism with respect to the covering map
l : Spine(r, s)→ SOe(r, s).

This is equivalent to require the commutativity of the following diagrams

P SOe(M, g)

M M

Λ

Spine(r,s)p SOe(r,s)π̂

P SOe(M, g)

P SOe(M, g)

Λ

Rg Rl(g)

Λ

Here SOe(M, g) ⊂ L(M), where L(M) is the frame bundle, denotes the subbundle of oriented
orthonormal frames with respect to a specific metric g and (r, s) denotes its signature. Spinors
are then introduced by considering a representation λ̂ : Cl(r, s) × V → V of the Clifford
algebra on a (usually complex) vector space of dimension k = dim(V ), which restricts to a
representation λ : Spine(r, s) × V → V of the (connected component to the identity of the)
spin group. Spinors are then sections of the associated vector bundle

S(P ) = P ×λ V, (6.55)

called spinor bundle. The last ingredient needed to formulate the Dirac equations is a principal
connection on the spin bundle Ĥp ∈ TpP , which allows to compute covariant derivatives
on the associated bundle. In this context, automorphisms of the spin bundle will induce

57



transformations preserving the metric structure of the theory.
However, fixing a metric is not preferable for two reasons: from a general relativistic point
of view, one should avoid fixing a background metric and for our purposes, we need to be
able to find a mechanism capable of changing the metric structure. For this reason, we now
introduce the spin frames.

Definition 6.2. A spin frame over the spin manifold M is a pair (P, e), where P is a spin
bundle and e : P → L(M) is a vertical principal morphism with respect to the map i ◦ l :
Spine(r, s)→ GL(m,R).

In other words, we must require the commutativity of the following diagrams

P L(M)

M M

e

Spine(r,s)p GL(m,R)π

P L(M)

P L(M)

e

Rg Ri◦l(g)

e

As it is clear from the definition, no metric structure is required on the base manifold M . We
will now see how the metric structure arises from this definition.
Let Uα be an open cover of M and let

(α)
σ : Uα ⊂ M → P be a family of local sections of P ,

defined on each open of M . These local sections are enough to completely determine the spin
frame on the entire fiber, as the image can be extended by equivariance.
Furthermore, local sections on the spin bundle induces local sections on the frame bundle as

e(
(α)
σ ) =: (x,

(α)
e a), (6.56)

where a = 1, ..., dim M and
(α)
e a ∈ TxM . Since the frame bundle always allows the natural

section (x, ∂µ), induced by the local coordinates xµ on Uα ⊂ M , where µ = 1, ..., dimm, one
can express the induced local section with respect to such basis

(x,
(α)
e a) = (x, ∂µ)

(α)
e µa .

The metric structure emerges as a consequence of these frames in the following way.

Definition 6.3. Let (P, e) be a spin frame and p ∈ P a point in the spin bundle mapped into
e(p) = (x, εa) ∈ e(P ) ↪→ L(M). We define the induced metric as

g(εa, εb) := ηab. (6.57)

This intrinsic definition can be locally restated as

g = gµνdx
µ ⊗ dxν , gµν := εaµηabε

b
ν , (6.58)

We now prove that the conditions for the existence of spin frames coincide with the ones for
spin structures.

Theorem 6.1. A spin frame (P, e) over the manifold M exists if and only if there exists a
spin structure over (M, g) for some metric g on M .
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Proof. Given a spin frame (P, e) over M , one can consider the image e(P ) = {(x, ea) :
ea is a basis of TxM ∧ g(ea, eb) = ηab}, where we crucially remark that the metric appearing
here is the one induced by the spin frame. One can then define a spin structure as

P e(P )

M M

ê

p π|e(P )

P e(P )

P e(P )

ê

Rg Ri◦l(g)|SOe(r,s)=Rl(g)
ê

On the contrary, given a spin structure (P,Λ) over (M, g) one can define a spin frame (P, e =
ı̂ ◦ Λ): this is indeed a spin frame since

e ◦Rg = ı̂ ◦ Λ ◦Rg = ı̂ ◦Rl(g) ◦ Λ = Ri◦l(g) ◦ ı̂ ◦ Λ = Ri◦l(g) ◦ e.

This can be restated by saying that the following diagrams commute

P SOe(M, g) L(M)

M M M

Λ

p π̂

ı̂

π

P SOe(M, g) L(M)

P SOe(M, g) L(M)

Λ

Rg Rl(g)

ı̂

Ri◦l(g)

Λ ı̂

To reinforce the necessity of using spin frames, even if existence conditions between spin
structures and spin frames are equivalent, let us consider a one parameter family of spin
structures (P,Λt), where t ∈ R. They are maps from the spin bundle to a shared given
orthonormal frame bundle, each one differing by an orthogonal transformation.
A one parameter family of spin frames is instead a couple (P, et): the images of these maps
are different orthonormal frame bundles differing one another for the arising metric gt. All
these different bundles are related by a new set of transformations, that we define below.

Definition 6.4. Let (P, e) be a spin frame and Φ : L(M) → L(M) a vertical principal
automorphism of the frame bundle. We define (P, ẽ) as the transformed spin frame that makes
the following diagram commute.

L(M)

P L(M)

M

M M

π
e

ẽ

p

Φ

π

We will refer to the automorphism Φ as a spin frame transformation.
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To be concrete, let us remember that the action of such vertical automorphism is again
completely determined if we know how it acts on local sections of the frame bundle. Indeed,
consider the section induced by the spin frame (P, e): one then has

(x,
(α)

ẽ a) = ẽ(
(α)
σ ) = Φ(e(

(α)
σ )) = Φ(x,

(α)
e a) = (x,

(α)
e b)φ

b
a(x),

where φba is a GL(m,R)-matrix. The expression we have given here in terms of a right principal
action on local sections can be translated into a left action on the local expression of a generic
point e(p) = (x, εa) = (x,

(α)
e b)ε

b
a: indeed

(x,
(α)
e c)ε̃

c
a = ẽ(p) = Φ(e(p)) = Φ((x,

(α)
e b)ε

b
a) = Φ(x,

(α)
e b)ε

b
a = (x,

(α)
e c)φ

c
b(x)εba,

is locally expressed as

Φ :

{
x′ = x

ε̃ca = φcb(x)εba.
(6.59)

One can alternatively choose the natural section (x, ∂µ) and repeat this computation, which
yields

Φ :

{
x′ = x

ε̃µa = φµν (x)ενa,
(6.60)

where again φµν is a GL(m,R)−matrix.

These spin frame transformations, which are locally described by matrices φba, φ
µ
ν , are the

key to effectively change the metric structure of the theory. Let us remark that we are not
changing the local expression of the coefficients gµν, but we are really changing the metric
structure, as it is formally proved in [43]. The key idea is that Φ is a vertical automorphism
that does not change coordinates on the base manifold. This means that in every local patch
the local expression of the two metrics differs.
The new metric is indeed obtained from (6.57) and (6.58) as

g̃ = φ̄ρµ(x)gρσφ̄
σ
ν (x))dxµ ⊗ dxν ,

where φ̄µν is the inverse of φµν .
As said in the beginning of this Subsection, Dirac equations are formulated in terms of a
connection on the spin bundle. The same horizontal tangent subspace defined in (5.3) can be
also described in terms of horizontal lifts ω̂ : TM → Ĥ ⊂ TP by

Ĥp =
{
ω̂(v) = vµ(∂µ|p − ωabµ(x)σab|p), ∀v ∈ TxM,π(p) = x

}
, (6.61)

where σab are a set of vertical right invariant vector fields on P satisfying σ(ab) = 0. From
this point of view, it is crucial to notice that this connection is independent from spin frame
transformations, which act on L(M) and that the induced connections on the frame bundle
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He(p) := Tpe(Ĥp) and Hẽ(p) := Tpẽ(Ĥp) are expressed in terms of the same coefficients ωabµ,
when written in the two induced trivializations. Indeed

e(p) = (x,
(α)
e b)ε

b
a : Tpe(ω̂(v)|p) = vµ(∂µ|e(p) − ωabµ(x)ρab|e(p)),

ẽ(p) = (x,
(α)

ẽ b)ε̃
′b
a : Tpẽ(ω̂(v)|p) = vµ(∂µ|ẽ(p) − ωabµ(x)ρ̃′ab|ẽ(p)),

where ρab = εcd∂
d
[aηb]c and ρ̃

′
ab = ε̃′cd ∂̃

′d
[aηb]c are the vertical vector fields on Te(p)e(P ) and T ẽ(P )

respectively.
However, by starting from connections on the frame bundle and pulling them back onto the
spin bundle, one can obtain an explicit expression of ωabµ in terms of the induced metric
structures, to express the Dirac equation in terms of the metric structure of the theory.
Let us then start from a connection on the frame bundle H ∈ TL(M): in the natural trivial-
ization the horizontal lift can be written as

ω(v)|(x,εa) = vµ
(
∂µ|(x,εa) − ωαβµ(x)ρβα|(x,εa)

)
, (6.62)

where ρβα|(x,εa) = εβa∂aα are the right invariant vector fields on L(M) and ωαβµ are the coefficients
which characterise the chosen connection.

Lemma 6.2. Let H be a connection on L(M) and (P, e) a spin frame. H is tangent to
e(P ) = SOe(M, g) in a point (x, εa) (and hence in all of its points) if and only if

ω(ab)
µ := ηc(aωb)cµ = 0,

where the (ab) indicates that the indices are symmetrised and

ωbcµ(x) = ebα(x)
(
ωαβµ(x)eβc (x) + ∂µe

α
c (x)

)
. (6.63)

Proof. In order to prove this statement, let us express the horizontal lift of a vector on M in
the trivialization induced by the spin frame (P, e). By doing so, one obtains

ω(v)|(x,εa) = vµ(∂µ|(x,εa) − ωabµ(x)ρba|(x,εa)),

where ωabµ(x) is exactly given by (6.63) and ρba = ebβρ
β
αeαa . In this derivation, we suppressed

the index α labelling the local section
(α)
σ on P to ease the reading.

Since the right invariant vector fields on SOe(M, g) are

ρ[ab] = ηc[aρ
c
b], (6.64)

where [ab] indicates skew symmetric indices, the lifted vectors become

ω(v)|(x,εa) = vµ
(
∂µ|(x,εa) − ωabµ(x)ρab|(x,εa)

)

= vµ
(
∂µ|(x,εa) − ωabµ(x)(ρ(ab) + ρ[ab])|(x,εa)

)
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= vµ
(
∂µ|(x,εa) − ω[ab]

µ(x)ρ[ab]|(x,εa)

)
,

where in the last step we made use of the hypothesis. This is indeed an horizontal vector on
SOe(M, g).
On the contrary, take a horizontal vector of L(M)

ω(v)|(x,εa) = vµ
(
∂µ|(x,εa) − ωabµ(x)ρab|(x,εa)

)

= vµ
(
∂µ|(x,εa) − ω(ab)

µ(x)ρ(ab)|(x,εa) − ω[ab]
µ(x)ρ[ab]|(x,εa)

)
.

If we want it to be tangent to SOe(M, g), we need to require the coefficient of ρ(ab), which are
not right invariant vector fields on SOe(M, g), to vanish. We then get our thesis ω(ab)

µ(x) =
0.

This lemma can be then used to prove the following lemma, which constrains the vertical
part of the chosen connection to be in a specific form, if we want to project it on e(P ).

Theorem 6.3. Let H be a connection of L(M), v ∈ TM and {g} be the horizontal lift induced
by Levi-Civita connection of the metric g. H then projects on e(P ) = SOe(M, g) if and only
if

ω(v)|(x,εa) = ({g}(v) +K(v))|(x,ε̃a), (6.65)

where (x, εa) ∈ e(P ) and K(v) is defined as

K : TM → V (L(M))

v 7→ gαγKγβµv
µρβα,

in terms of the contorsion tensor whose coefficients are given by

Kγβµ =
1

2

(
g(∂β, T (∂µ, ∂γ)) + g(∂µ, T (∂β, ∂γ)) + g(∂γ , T (∂β, ∂µ))

)
.

Proof. The first part of theproof of this theorem consists on showing that, under our assump-
tions,

ωαβµ = {g}αβµ + gαγKγβµ, (6.66)

where {g}αβµ are the Christoffel symbols of the induced metric g. If the connection is pro-

jectable, then the previous lemma requires ω(ab)
µ = 0: this in turn implies that

ωabµ + ωbaµ = eaαω
α
βµe

βb + ebαω
α
βµe

βa + eaα∂µe
αb + ebα∂µe

αa

= eaαω
α
βµe

βb + ebαω
α
βµe

βa + eaα∂µe
αb + ebα∂µ(gαλeaλ) = 0.

The previous expression can be easily rewritten as

∂µgρσ = gσλω
λ
ρµ + gραω

α
σµ.
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We now cyclicly permute the indices and appropriately sum and subtract the obtained rela-
tions: by doing so, we get

−∂ρgσµ + ∂µgρσ + ∂σgµρ = gµλT
λ
ρσ + gσλT

λ
ρµ + gρλT

λ
µσ + 2gρλω

λ
σµ,

where T λαβ := ωλαβ − ωλβα is the torsion of the connection. It is skew symmetric in its lower
indices by construction. Then one easily gets

ωγσµ = {g}γσµ +
1

2
gγρ(gµλT

λ
σρ + gσλT

λ
µρ + gρλT

λ
σµ)

= {g}γσµ +
1

2
gγρ(Tµσρ + Tσµρ + Tρσµ),

which is our thesis.
Notice that, in virtue of the properties of the torsion, the contorsion tensor is skew symmetric
in its first two indices, meaning

K(αβ)γ = 0. (6.67)

Finally, if (6.65) is true, we have

ωabµ = eaα({g}αβµeβb + ∂µe
αb) + eaγKγβµe

βb =⇒ ω(ab)
µ = 0,

where the first term can be easily shown to be skew symmetric by explicitly writing the
Christoffel symbols, while the second is a consequence of (6.67). The connection is indeed
projectable.

We then see that the space projectable connections is modelled on contorsion-type tensors,
i.e. it is a submodule of dimension m2

2 (m−1) in the module of connections, which has instead
dimension m3.
Once a connection is projected on the subbundle e(P ), it is straightforward to pull it back to
the spin bundle through the spin frame (P, e): this procedure defines a connection Ĥ whose
horizontal vectors are given by

ω̂(v)|p = vµ(∂µ|p − ωabµ(x)σab|p), (6.68)

where the coefficients ωabµ (x) are

ωabµ(x) = eaα(x)
(

({g}αβµ + gαγKγβµ)eβc (x) + ∂µe
α
c (x)

)
ηcb. (6.69)

as a consequence of Theorem 6.3. As promised, the coefficients ωabµ of the connection on the
spin bundle are now expressed in terms of the induced metric structure.

Now suppose we have another connection H̃ ∈ L(M) and another spin frame (P, ẽ): in
virtue of Theorem 6.3, one can project it on ẽ(P ) and pull it back on the spin bundle. A
vector on the base manifold is then lifted as

{
ˆ̃ω(v)|p = vµ(∂µ|p − Ωab

µ(x)σab|p),
Ωab

µ(x) = ẽaα(x)
(

({g̃}αβµ + g̃αγK̃γβµ)ẽβc (x) + ∂µẽ
α
c (x)

)
ηcb,

(6.70)
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where g̃ is the new induced metric and K̃γβµ is the contorsion of the new connection, com-
pletely unconstrained.
If the two connections on the frame bundle are unrelated, the connections pulled back onto
the spin bundle will be different. However, this situation changes when we consider spin frame
transformations: take indeed the connection TΦ(H), where H is a projectable one on e(P ).
We now prove that the contorsion K̃αβγ of the obtained connection has to satisfy a certain
property in order for TΦ(H) to be projectable on ẽ(P ).
Indeed, the relation between the coefficient characterising the connection TΦ(H) and those of
H can be obtained by computing the push forward of horizontally lifter vectors. One obtains
that

ω̃αβµ(x) = φαγ (x)
(
ωγδµ(x)φ̄δβ(x) + ∂µφ̄

γ
β(x)

)
. (6.71)

This can be rearranged by writing

kαβµ := ω̃αβµ − ωαβµ = φαγ
ω
∇µφ̄γβ,

where
ω
∇µ indicated the usual covariant derivative with respect to ωαβµ.

Finally, one also needs an expression for the difference between the Christoffel symbols of the

two induced metrics: using that
{g}
∇ µgαβ = 0 and

{g̃}
∇ µg̃αβ = 0, one obtains

hαβµ := {g̃}αβµ − {g}αβµ = φαγ
{g}
∇ (βφ̄

γ
µ) + φαγ g

γδφλδ gρσφ̄
ρ
(β

{g}
∇ µ)φ̄

σ
λ − φαγ gγδφλδ gρσ

{g}
∇ λφ̄

ρ
(βφ̄

σ
µ).

The following theorem then holds

Theorem 6.4. Let H be a connection on the frame bundle, projectable on the subbundle e(P )
and take TΦ(H). The latter connection is projectable on ẽ(P ) if and only if its contorsion
satisfies

K̃(v)|(x,ε̃a) = (K(v) + k(v)− h(v))|(x,ε̃a)., (6.72)

where k(v)|(x,ε̃a) = vµkαβµρ̃
β
α and h(v)|(x,ε̃a) = vµhαβµρ̃

β
α

Proof. The proof of this statement is now straightforward, in light of previous results. Indeed

ω̃(v)|(x,ε̃a) = (ω(v) + k(v))|(x,ε̃a) = ({g}(v) +K(v) + k(v))|(x,ε̃a)

= ({g̃}(v) + K̃(v))|(x,ε̃a),

where in the second line we used the fact that TΦ(H) is projectable. From this we get

K̃(v)|(x,ε̃a) = (K(v) + k(v)− h(v))|(x,ε̃a).

Vice versa, recast (6.72) in the following way

K̃(v)|(x,ε̃a) = (K(v) + k(v)− {g̃}(v) + {g}(v))|(x,ε̃a)

=⇒ ({g̃}(v) + K̃(v))|(x,ε̃a) = ({g}(v) +K(v) + k(v))|(x,ε̃a) = (ω(v) + k(v))|(x,ε̃a) = ω̃(v)|(x,ε̃a).

We then see that TΦ(H) is projectable on ẽ(P ).
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This statement can clearly be written in a more explicit way as

K̃ρβµ = gαγφ̄
α
ρ

{g}
∇ [µφ̄

γ
β] − gαγφ̄

α
(β

{g}
∇ µ)φ̄

γ
ρ + gαγ

{g}
∇ ρφ̄

α
(βφ̄

γ
µ) + φ̄σρKσηµφ̄

η
β, (6.73)

which is indeed skew-symmetric in its first two indices, as can be seen by recasting it as

K̃ρβµ = φσλ
{g}
∇ µφ̄

λ
[β g̃ρ]σ − φσλg̃σ[ρ

{g}
∇ β]φ̄

λ
µ + g̃µσφ

σ
λ

{g}
∇ [ρφ̄

λ
β] + φ̄σ[ρφ̄

λ
β]Kσλµ.

As a consequence of Theorem 6.4, one has that the pullback of H and TΦ(H) on the spin
bundle coincides, as expected. This can be seen by computing the coefficients ωabµ and by
noticing that

ωabµ = eaα

(
[{g}αβµ + gαγKγβµ]eβc + ∂µe

α
c

)
ηcb = ẽaα

(
[{g̃}αβµ + g̃αγK̃γβµ(ẽ, φ,K)]ẽβc + ∂µẽ

α
c

)
ηcb,

which implies that the lifted vectors on P are

ω̂(v)|p = vµ(∂µ|p − ωabµσab|p). (6.74)

This conclusion was clearly expected and coincides with (6.61): however, as we argued previ-
ously, by starting from frame bundle connections, we managed to obtain two expressions of
ωabµ in terms of the metrics induced by the two spin frames. This will indeed prove to be
useful to formulate the Dirac equations in terms of the two different light cone structures.

Indeed, consider the triple (e, Ĥ, λ̂): if the covariant derivative on the associated spinor
bundle is given by Dµ[ω̂] = ∂µ + 1

4 ω̂
ab
µγab, the Dirac equation is then given by

ieµaγ
aDµ[ω̂]ψ + µψ = ieµaγ

aDµ[
◦
ω]ψ + µψ − i

4
eµaK

bc
µγ

a[γb, γc]ψ = 0, (6.75)

where the gamma matrices are those associated to the Clifford generators γa := ηabλ̂(eb),
◦
ωabµ is the torsionless connection generated by the Christoffel symbols of the induced metric
g and µ is a generic mass term.
A new spin frame, obtained from the first one from a spin frame transformation generates
then a new Dirac equation (ẽ, Ĥ, λ̂)

iẽµaγ
aDµ[ω̂]ψ + µψ = iẽµaγ

aDµ[
◦
ω̃]ψ + µψ − i

4
ẽµaK̃

bc
µγ

a[γb, γc]ψ = 0, (6.76)

where
◦
ω̃ is the torsionless connection generated by the Christoffel symbols of the new metric

g̃ and K̃αβγ is given by (6.73).
We have then developed a mechanism for changing the metric structure of a certain Dirac
equation, by extending the range of possible transformations acting on the theory. The mod-
ified Dirac equation is then written in terms of a new spin frame, inducing a new metric
structure: the price paid for this transformation is absorbed into the contorsion, which is now
a function of the spin frame transformation itself.
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Let us notice that even if we start from a torsionless connection Kαβγ = 0, after we change
spin frame, we generally end up with a term, K̃αβγ 6= 0, which describes the effect of an
interaction with the spacetime torsion.
It is then a matter of choosing the appropriate matrix φµν , depending on which metric struc-
ture one wants to obtain.
Let us now apply these results to the graphene model constructed previously.

Application to the graphene model

Let us compare the Dirac equations (6.34) with the ones in (6.75): we see that the torsion-
less connection ω′ has to coincide with the torsionless connection ◦ω. Furthermore, the spinors
ψ must be identified with χ± and the mass term µ has to be zero. In the graphene model,
the torsion, with respect to the torsionful connection Ω± is given by T i± = τ±ε

ijkej ∧ ek, in
the β = 0 case. Then

T i±µν = 2τ±ε
ijkejµekν

and the contorsion tensor is given by

K±λµν = τ±(εijkeλieµjekν + εijkeµieλjekν + εijkeνieµjekλ) =

= −τ±e′(3)ελµν , (6.77)

where e′(3) is the determinant of the metric induced by eiµ. This allows to compute the source
term appearing in the Dirac equation as

i

4
eνiK

jk
±νγ

iγjk =
i

4
K±λµνγ

νγλµ = − iτ±
4
e′(3)ελµνγ

νλµ = − iτ±
4
e′(3)ελµν iενλµ

1

e′(3)

=
3

2
τ±,

which exactly reproduces the results of (6.34). We see that in the graphene model the inter-
action with the torsion actually becomes a mass term, as it does not depend on fields or on
the spacetime point.
To understand if this this mechanism can be applied to our model, we need to check if the
transformed Dirac equation preserves the parity symmetry of the honeycomb lattice. In par-
ticular, the torsion interaction terms have to behave like τ± under reflections:

− i

4
ẽµi ẽ

ρ
j ẽ
β
kK̃ρβµγ

iγjk = − i

4
eλi e

σ
j e
τ
kφ

µ
λφ

ρ
σφ

β
τ

(
φηξ

{g}
∇ µφ̄

ξ
[β g̃ρ]η − φ

η
ξ g̃η[ρ

{g}
∇ β]φ̄

ξ
µ+

+ g̃µηφ
η
ξ

{g}
∇ [ρφ̄

ξ
β] + φ̄η[ρφ̄

ξ
β]Kηξµ

)
γiγjk

= − i

4
eλi e

σ
j e
τ
k

(
gσξ
{g}
∇ µφ̄

ξ
βφ

µ
[λφ

β
τ ] − gτξ

{g}
∇ µφ̄

ξ
βφ

µ
[λφ

β
σ]+
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+ gλξ
{g}
∇ µφ̄

ξ
βφ

µ
[σφ

β
τ ] + φµλKστµ

)
γiγjk

= U + V, (6.78)

where U is the sum of the first three terms and V is the last one. Let us first analyse the
latter, which can be rewritten as

V = −1

2
τ±φ

µ
µ −

1

2
τ±φ

µ
λe
λ
ae
b
µγ

a
b, (6.79)

by making use of (6.77). From this last expression, we see that this term indeed behaves like
τ± under the reflection symmetry and does not spoil the parity symmetry of the graphene.
The remaining U term also preserves the mentioned symmetry, as it contains three gamma
matrices.
As we noticed previously, in the starting Dirac equation the interaction term is actually a
constant mass term, as τ± does not depend on x, if β = 0: this in not the case for the
transformed equations, as both U and V depend on fields and ultimately on x. There are
then two possibilities: the first one would be to relate these terms to defects of the graphene
lattice, as it is known that torsion is indeed linked to dislocations. In this way, one would just
choose a spin frame transformation, thus determining a new metric structure and this same
choice would also manifest itself in the type of spacetime torsion interaction. The second
possibility would instead be to impose conditions on the spin frame transformation, in order
to make the U and V terms spacetime independent quantities: this would allow to interpret
them again as mass terms.
We end now with some comments and discussions on perspectives and future applications of
the obtained results.

6.2 Comments and discussion

The obtained model for graphene-like materials is a framework to investigate a huge range
of possible applications: indeed along this construction, we have made several choices, which
can be relaxed, if necessary. For example, right at the start, we decided to work in a vacuum
configuration, where scalars and vectors are frozen to the value they possess at the bound-
ary: the introduction of scalars could lead to complications, as one would need to consider
the construction used for gauged Supergravities, but it could also help to describe new phe-
nomenological effects.
More concretely, notice that have set β = 0 in any point of the manifold: there could be topo-
logical global obstructions to this condition. This idea is closely linked to the one of domain
walls, as one could have configurations in which the quantity χ±χ± has different constant
values in any single patch.
Furthermore, if the condition β = 0 is not valid for any point of spacetime, the mass terms in
the Dirac equation actually become spacetime dependent and have to be interpreted as source
terms. This theme also appears after we change the light cone structure of the Dirac equa-
tion and could lead to the description of impurities and defects in the 2-dimensional materials.
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The first version of this graphene model has been achieved in [40], in a p = 0, q = 2 case:
from a phenomenological point of view this setting is less appealing than the one chosen here
p = q = 2, as one loses the parity symmetry between K and K′ valleys. However, from a
Supergravity point of view it allows to work in less restrictive frameworks, as one can also
consider dynamical configurations, like asymptotically AdS spaces.
Going back to the key steps needed to obtain our model, we see that it is sufficient that the
Maurer-Cartan equations hold at least at the boundary and this proved to be the case in the
N = 2 pure Supergravity studied in [46]: in that paper the authors studied how to regularise
the action in presence of manifold with a boundary and found that the needed counterterm
require the Maurer-Cartan equations to be asymptotically satisfied.
This framework allows to study the theory from a holographic point of view: the idea is to un-
derstand if it is possible to retrieve the graphene model from a formal AdS/CFT perspective.
The first step in this direction will be performed in the next Section, where we will analyse if
the regularised theory leads to a consistent boundary theory.
The obtained model should also be considered as a preliminary result in view of the more
interesting p = q = 2 case, which would however require a regularised N = 4 pure Super-
gravity action, in presence of a cosmological constant, which has not been achieved yet, due
to complications related to the presence of scalars and spin 1/2 spinors in the gravitational
multiplet.

7 Holographic analysis of pure N = 2 AdS4 Supergravity

In this Section, we will perform a holographic analysis [45] of the results obtained in [46]: this
proves to be useful and interesting for two reasons. The first one regards the way the N = 2
theory has been regularised: as we will see, the authors managed to add specific boundary
terms with the aim of restoring the supersymmetry invariance of the action, broken by the
presence of a boundary. In doing so, the obtained action has been rewritten in a MacDowell-
Mansouri form [47].
The nature of the added counterterms and the obtained action have then been compared to
the results achieved in [48], in a pure AdS gravity context, where the authors managed to
regularise the divergences of the action, while rewriting the action again in a MacDowell-
Mansouri form.
From this point of view, it is then natural to ask if the obtained Supergravity theory is finite
and if it yields a consistent AdS/CFT duality, which requires to understand and study the
boundary theory, its symmetries, the currents and their Ward identities.
The second reason for our interest is linked, as mentioned at the end of the previous Section,
to the graphene model: studying the asymptotic limit of such a Supergravity theory would
help understanding if implementing the Unconventional Supersymmetry would allow to holo-
graphically obtain the model for two-dimensional materials.
We first start with a brief introduction on the AdS/CFT correspondence and the topologi-
cal renormalization method in the context of pure GR. We will then perform a preliminary
analysis in absence of fermions, whose contributions will be introduced later on.
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7.1 Essential notions on the gauge/gravity duality and holography

In its original formulation, the gauge/gravity duality was introduced by Maldacena in [49] as
a relation between a N = 4 super Yang-Mills theory and a type IIB Superstring theory on a
AdS5 × S5 background, where the chosen compact manifold is necessary to reach the critical
dimension of String theory.
In the limit in which the classical effective low-energy Supergravity description of the gravity
side can be trusted, the corresponding regime of the dual theory is strongly coupled, which
would be impossible to study with perturbative methods.
The holographic correspondence has been extended to more general backgrounds of the form
AdSD×Mint, possibly with less supersymmetry, which can be embedded in other string theo-
ries or M-theory, such as the maximally supersymmetric AdS4×S7 and AdS7×S4 solutions of
D = 11 Supergravity and variants thereof. A valuable approach to the study of holography on
a background of the form AdSD×Mint is to restrict to an effective D-dimensional low-energy
Supergravity originating from superstring/M-theory compactified on the internal manifold
Mint. The specific choice ofMint determines the amount of Supersymmetry preserved by the
theory and the general features of the effective theory.
This discussion can be summed up by stating that the AdS/CFT conjecture is a holo-
graphic relation between the AdSD (Super)gravity theory and a d = (D − 1)-dimensional
(super)conformal field theory at the boundary of the AdS geometry.
Most interestingly, the duality has been extended, on the gravity side, from global AdS to
backgrounds which have an AAdS geometry, reproducing the renormalization group flow of
the dual theory to an infrared (IR) conformal fixed point, the energy scale being fixed by the
radial coordinate on the D-dimensional background. Indeed, the essential ingredient for this
correspondence is the conformal structure of the boundary of AAdS spaces.

The relation between the gravitational theory and the CFT is implemented by identifying
the partition functions of the two theories in the following way [1]

Zgravity[Φi(0)] = ZCFT[J = Φi(0)], (7.1)

where Φi(0) are the boundary values of the gravity fields Φi, the former being identified with
the external sources in the CFT side. The generic partition function of a d-dimensional CFT
is given by

ZCFT[J ] = eiW [J ] =

∫
Dφ eiI[φ]+i

∫
∂M ddxO(φ)·J , (7.2)

where W [J ] is the quantum effective action, J are the sources for the operators O(φ) and
I[φ] is an already renormalised action, written in terms of some fields φ.
We therefore see that the boundary conditions on the gravity theory are mapped to the sources
on the CFT side. Furthermore, one also has to relate the symmetries of the two theories: local
symmetries on the gravity side correspond to global ones on the quantum field theory one.
The exact equivalence between the two partition functions means that, at least in principle,
if the gravity partition function is known, one can perform computations on the other side of
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the duality: for example, n-point functions for the conformal field theory can be computed as

〈O(x1) · · ·O(xn)〉CFT = Z−1
CFT[0]

δnZCFT[J ]

iδJ (x1) · · · iδJ (xn)

∣∣∣∣
J=0

. (7.3)

However, performing computations involving the String theory path integral can lead to com-
plications, which can be avoided at low energies, where such theory can be well approximated
by General Relativity and Supergravity: in this case, the path integral picks up the on-shell
contribution through the saddle point approximation. The defining relation (7.1) can then be
rewritten as

W [J ≡ Φi(0)] ' Ion−shell[Φi(0)] . (7.4)

In this thesis we will work from a gravity perspective: since the CFT action in (7.2) has
been properly renormalised from a UV point of view, divergences appearing in the action on
gravity side, due to the presence of a boundary, have to be consistently removed. This process
is called Holographic renormalization [50] and consists of adding suitable exact terms to the
starting action to take care of its divergent IR behaviour.

Let us now focus on the specific case of D = 4 AdS gravity: the local counterterms needed
to regularise the IR behaviour of the gravity action have been initially found in [51], but a
better understanding of their origin has been achieved in [48], where the authors proved that
the regularisation of the D = 4 AdS gravity action was due to the addition of topological
invariant counterterms.
The authors indeed showed that adding the Gauss-Bonnet term to the usual Hilbert-Einsten
action5

I = IHE + IGB =

= − 1

16πG

∫

M
d4x

√
ĝ

(
(R̂(ĝ) + 2Λ)− `2

4

(
R̂µ̂ν̂α̂β̂(ĝ)R̂µ̂ν̂α̂β̂(ĝ)− 4R̂µ̂ν̂(ĝ)R̂µ̂ν̂(ĝ) + R̂2(ĝ)

))
,

(7.5)

where Λ is the cosmological constant and ĝµν is the bulk metric, allows to retrieve the known
results. The full action can be rewritten in a MacDowell-Mansouri form [47] as

I =
`2

64πG

∫

M
d4x

√
ĝ Wµ̂ν̂α̂β̂W

µ̂ν̂α̂β̂, (7.6)

where W α̂β̂
µ̂ν̂ = R̂α̂β̂µ̂ν̂ (ĝ)− 1

`2
δ

[α̂β̂]
[µ̂ν̂] is the Weyl tensor, the curvature of the AdS group. Further-

more, the added boundary term can be rewritten as

IGB = 32π2χ(M) +

∫

∂M
d3xB3, (7.7)

5In this Section, hatted objects will refer to bulk quantities, whereas unhatted ones will indicate boundary
contributions.
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where χ(M) is the Euler characteristic and B3 is called Second Chern Form.
By making use of the Gaussian normal (radial) coordinates, described in Appendix C, the
latter contribution can be expressed as

B3 = −4
√
h δ

[λµν]
[ρστ ]K

λ
ρ

(
1

2
Rµνστ (h) +

1

3
Kµ
σK

ν
τ

)
, (7.8)

in terms of the extrinsic curvature Kµν = 1
2N ∂rhµν .

Finally, to make contact with the standard analysis of [51], by adding and subtracting the
Gibbons-Hawking-York term, one rewrites the starting action as

I = IHE +
1

8πG

∫

∂M
d3x
√
hK +

∫

∂M
d3xLct, (7.9)

where the Euler characteristic term, being a constant, has been omitted. From an asymptotical
point of view, Lct contains a single non vanishing contribution, which can be written as

Lct =
1

8πG

√
h

(
2

`
− `

2
R(h)

)
. (7.10)

This last expression exactly coincides with the one appearing in [51] for the AdS4 case and
correctly cancels the divergences of the bulk action.
We then see that by adding a single topological invariant term, we end up with a regularised
gravity theory, in which the Dirichlet problem is also well-defined.

Inspired by this analysis, the authors of [46] managed to provide the N = 2 pure AdS4

Supergravity action in presence of a boundary with local counterterms both preserving Su-
persymmetry and allowing the full action to be written in a MacDowell-Mansouri form. In
this thesis, we will focus on proving that the derived boundary theory is consistent and we
will be interested in matching the local symmetries of the gravity theory with the global ones
of the CFT, which in our approach match the residual asymptotic symmetries at radial in-
finity. At last, we will check that the obtained boundary theory reproduces the correct Ward
identities on the QFT side, which will be obtained by taking the variation of (7.4), namely
δW [J ≡ Φi(0)] ' δIon−shell[Φi(0)].

7.2 Asymptotic symmetries in Einstein AdS4 gravity

The analysis of asymptotic AdS spaces in D = d+1 dimensions is usually performed in terms
of local coordinates xµ̂ = (xµ, xd), where xµ (µ = 0, . . . d − 1) describe the boundary and
z = xd is the radial coordinate, which reaches the AdS boundary at z = 0.
One can choose a proper patch near z = 0 in such a way that the bulk metric can be written
in the Fefferman-Graham (FG) form

ds2 = ĝµ̂ν̂ dxµ̂dxν̂ =
`2

z2

(
− dz2 + gµν(x, z) dxµdxν

)
, (7.11)
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where gµν is a regular metric on the boundary admitting the following power-expansion in
the radial coordinate z

gµν = g(0)µν(x) +
z2

`2
g(2)µν(x) + · · · . (7.12)

Subleading components of the metric appear only in even powers, up until the order zd−1

and their precise expression in terms of g(0)µν can be obtained by solving order by order the
Einstein equations. As an example, g(2)µν is proportional to the Schouten tensor

g(2)µν = `2Sµν = `2
(
R̊µν −

1

2(d− 1)
g(0)µν R̊

)
, (7.13)

where R̊µνλσ(g(0)) is the boundary Riemann curvature and R̊µν and R̊ are the corresponding
Ricci tensor and Ricci scalar, respectively.
Moreover, when D is odd, a logarithmic term zd log z appears in the asymptotic expansion
of the metric and the mode g(d)µν cannot be resolved from the equations of motion, as it
is proportional to the holographic stress tensor of the theory [50, 52]. The FG form of the
metric is obtained by suitably gauge-fixing the spacetime coordinate frame and it is preserved
by a specific set of transformations [53], which include the Penrose-Brown-Henneaux (PBH)
transformations [54,55] and the asymptotic symmetries, whose parameters take value on the
boundary. More concretely,

δĝzz = 0 ⇒ ξ̂z = zσ(x) ,

δĝµz = 0 ⇒ ξ̂µ = ξµ(x) +
z2

2`
gµν(0)∂νσ +O(z4) , (7.14)

where ξµ(x) and σ(x) are arbitrary local parameters on the boundary. These transformations
reduce instead to Weyl transformations when acting on the leading order of the boundary
metric:

δg(0)µν = £ξg(0)µν − 2σ g(0)µν , (7.15)

where the first term is due to boundary diffeomorphisms, whereas the second one is generated
by radial ones. The asymptotic symmetries are of particular interest for our analysis, as they
produce conservation laws which are then mapped into the holographic Ward identities of the
boundary CFT.

Holographic gauge-fixing in first order formalism

When treating theD = 4 gravity theory in first order formalism, besides the known general
coordinate transformations, which define local translations, generated by the parameters pa =
ξ̂µ̂V a

µ̂, one introduces a local Lorentz invariance, described by the jab = −jba parameters. The
AdS gravity in first order formalism is invariant under the general transformations

δV a = D̂pa − jabVb + ipT̂
a ,

δω̂ab = D̂jab +
2

`2
p[aV b] + ipR̂

ab, (7.16)
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where D̂(ω̂) is the Lorentz-covariant derivative and T̂ a = D̂V a is the torsion 2-form. We also
introduced the AdS curvature R̂ab = R̂ab(ω̂)− 1

`2
V aV b = 1

2R̂
ab
µ̂ν̂dxµ̂dxν̂ , written here in terms

of the Lorentz curvature R̂ab(ω̂), whose contraction is given by ipR̂ab = pcV ν̂
cR̂

ab
ν̂µ̂dx

µ̂. When
fermions are absent, one can always choose a torsionless connection, which then implies that
ipT̂

a = 0. Contractions of curvatures are in general present when one studies spacetimes
which are not exactly globally AdS space.

First order formalism requires to fix some of the degrees of freedom of the vielbein and of
the spin connection: in order to do so, we have 10 local parameters (pa, jab) at our disposal to
choose. This holographic gauge-fixing has to be performed on the radial components of the
fields, as the radial evolution of gravity considers them as Lagrange multipliers, similarly as
the lapse and shift functions in the Arnowitt-Deser-Misner (ADM) formulation of gravity [56].
This choice must provide the radial expansion of both fields and parameters and must allow
for residual transformations inducing boundary Weyl dilatations. Furthermore, they have to
induce transformation laws of the boundary fields leading to conservations laws.
The immediate choice V a

z = 0, ω̂abz = 0 produces inconsistencies, as the vielbein becomes
non-invertible. A suitable gauge fixing for spacetime diffeomorphisms pa and Lorentz trans-
formations jab is

V a
z =

`

z
δa3 , ω̂abz = 0 . (7.17)

These conditions are in principle sufficient to determine local symmetries: however, in order to
reproduce the FG form of the metric (7.11), we choose an adapted frame, where the boundary
is orthogonal to the radial coordinate, meaning that

V 3
µ = 0 . (7.18)

With these choices, the vielbein of AAdS spaces becomes

V i
µ =

`

z
Êiµ(x, z) , (7.19)

where Êiµ is finite at the boundary z = 0. This means that is can be expanded in a power
series as

Êiµ = Eiµ +
z2

`2
Siµ +

z3

`3
τ iµ +O(z4) ,

Êµi = Eµi −
z2

`2
Sµi −

z3

`3
τ µ
i +O(z4) , (7.20)

where we defined Eµi as the inverse vielbein.
Strictly speaking, the inverse vielbein (E−1)µi ≡ E

µ
i has the property E

µ
i = gµν(0)ηijE

j
ν = Ei

µ

following from the invertibility and symmetry of the metric. It implies that one can overlook
the order of the indices in the vielbein and its inverse. Even if in principle the same argument
holds for the bulk vielbein V i

µ and its inverse V µ
i , this is not true for the higher-order terms

in the expansion that are not necessarily invertible. Therefore, we will be able to overlook
the order of indices for the boundary vielbein only.
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These two tensors, Êiµ and Eµi, project the indices between the boundary spacetime and its
tangent space and satisfy

e = det[V a
µ̂] =

`4

z4
ê3 , ê3 = det[Êiµ] , e3 ≡ det[Eiµ] . (7.21)

Let us notice that, as a consequence of the expansion (7.12), we see that g(1)µν = 0, which
implies that linear terms in z are absent in the expansion of Êiµ. Furthermore, both Sij =
SiµE

µj and τ ij = τ iµE
µj can be made symmetric by making use of the residual Lorentz

transformations generated by the parameter

jij = θij +
z

`
jij(1) +

z2

`2
jij(2) +

z3

`3
jij(3) +O(z4) . (7.22)

The absence of linear terms in Êiµ implies that jij(1) = 0, whereas from

δjS
i
µ = −θijSjµ − jij(2)Ejµ , δjτ

i
µ = −θijτjµ − jij(3)Ejµ . (7.23)

we see that the antisymmetric part is actually independent of θij(x). By then setting jij(2) =

jij(3) = 0, we can consistently choose

S[ij] = 0 , τ [ij] = 0 . (7.24)

This result actually extends to all coefficients in the expansion of V i
µ, which can be taken

to be symmetric E[ij]
(n) ≡ Eµ[jE

i]
(n)µ = 0 provided that jij(n+1) = 0 and n ≥ 1. In the end,

one is left with a Lorentz parameter jij = θij(x), which has a single term in the asymptotic
expansion, representing the asymptotic parameter corresponding a holographic symmetry, as
we will see.
These results and choices are consistent with the FG frame and with the known coefficients
of the metric

g(0)µν = EiνE
i
µ ,

g(2)µν = 2Sµν = `2Sµν ,
g(3)µν = 2τµν . (7.25)

provided that we identify Eiµ as the vielbein at the conformal boundary, Siµ = `2

2 Siµ as
proportional to the Schouten tensor and τ iµ as the holographic stress tensor.
Moreover, once the expression of the vielbein is known, in absence of Supersymmetry, the
expansion of the spin connection is completely determined from D̂V a = 0. Indeed from

ω̂abµ̂ = V ν̂b
(
−∂µ̂V a

ν̂ + Γ̂λ̂ν̂µ̂V
a
λ̂

)
, (7.26)

where Γ̂λ̂ν̂µ̂ is the affine Levi-Civita connection in the bulk, one can prove that ω̂abz = 0, as
discussed previously and

ω̂ijµ = Êνj
(
−∂µÊiν + ΓλνµÊ

i
λ

)
= ω̊ijµ (x, z) ,
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ω̂i3µ =
1

z
Êiµ −

1

2
kµνÊ

νi . (7.27)

Here ω̊ijµ (x, 0) = ω̊ijµ (E) is the torsionless spin connection on the boundary, Γλνµ = Γλνµ(g) is
the Levi-Civita connection at the boundary and

kµν ≡ ∂zgµν = O(z) , ∂zg
µν = −kµν . (7.28)

More explicitly, by expanding Êiµ

ω̂ijµ = ω̊ijµ (x, z) = ω̊ijµ (x) +
z2

`2
ωij(2)µ(S,E) +

z3

`3
ωij(3)µ(τ, E) +O(z4) ,

ω̂i3µ =
1

z
Eiµ −

z

`2
S̃iµ −

2z2

`2
τ̃ iµ +O(z3) , (7.29)

where
S̃iµ ≡ S i

µ = Siµ , τ̃ iµ ≡
1

4

(
τ iµ + 3τ i

µ

)
= τ iµ . (7.30)

As an important remark, we see that in pure AdS gravity, the tensors S̃iµ and τ̃ iµ can be
chosen symmetric and equal to Siµ and τ iµ: the same will not be true in presence of fermions,
where we will see that the group theoretic definition of the boundary Schouten tensor is
actually Siµ = 1

`2
(Siµ + S̃iµ), which correctly reduces to 2

`2
Siµ when (7.30) holds. To add

further details on the spin connection asymptotic expansion, from the vanishing of the torsion
one obtains

Ej ∧ ωij(2) = D̊Si , Ej ∧ ωij(3) = D̊τ i , (7.31)

which can both be solved in terms of ωij(2), ω
ij
(3), where D̊ denotes the covariant derivative with

respect to the connection ω̊ijµ (E).

To be ready for understanding the transformation laws (7.16), one also needs the asymp-
totic expansion of the AdS curvature

R̂i3µν = −z Ciµν +O(z2) , R̂i3µz =
3z

`3
τ iµ +O(z2) ,

R̂ijµν = W ij
µν −

12z

`3
E

[i
[µτ

j]
ν] +O(z2) , R̂ijµz = −2z

`2
ωij(2)µ −

3z2

`3
ωij(3)µ +O(z3) ,

(7.32)

where Ci = 1
2 Ciµν dxµ ∧ dxν = D̊Si is three-dimensional Cotton tensor and

W ij = R̊ij − 2E[i ∧ S̊j] = 0 . (7.33)

is Weyl tensor, which vanishes in three dimensions. For this reason, the three dimensional
Bianchi identity yields

E[i ∧ Cj] = 0 , (7.34)

giving that the Cotton tensor is traceless, Ciij = 0.
Another consequence of the vanishing of the Weyl tensor in three dimensions is that we get
R̂ab
∣∣∣
z=0

= 0: the fact that both tangent and radial components of the curvature vanish in
the pure GR case will have to be relaxed in the Supergravity case, as we shall see in the next
Subsection.

75



Residual symmetries

The chosen gauge-fixing must be preserved by the transformations of the fields (7.16):
one then has to impose that the variation of such gauge fixing remains constant and this
constrains the form of the parameters. In the GR case, we have

0 = δV 3
z = ∂zp

3 , (7.35)

0 = δV i
z = ∂zp

i +
`

z
ji3 , (7.36)

0 = δV 3
µ = ∂µp

3 − ω̂i3µ pi + ji3Viµ , (7.37)

0 = δω̂i3z =
1

`z
pi + ∂zj

i3 + ipR̂
i3
z , (7.38)

0 = δω̂ijz = ∂zj
ij + ipR̂

ij
z , (7.39)

where the contractions of the AdS curvature is given by

ipR̂
i3
z = pj

(
3z2

`4
τ ij +O(z3)

)
,

ipR̂
i3
µ = −p3

(
3z2

`4
τ iµ +O(z3)

)
+ pj

(
z2

`
EνjCiµν +O(z3)

)
,

ipR̂
ij
z = pk

(
−2z2

`3
Eµkω

ij
(2)µ −

3z3

`4
Eµkω

ij
(3)µ +O(z4)

)
. (7.40)

By plugging in these expressions, we get

0 = ∂zp
3 , (7.41)

0 = ∂zj
i3 +

1

`z
pi +

3z2

`4
pj
(
τ ij +O(z)

)
, (7.42)

0 = ∂zp
i +

`

z
ji3 , (7.43)

0 = ∂µp
3 − ω̂i3µ pi + ji3Viµ , (7.44)

0 = ∂zj
ij + pk

(
−2z2

`3
Eµkω

ij
(2)µ −

3z3

`4
Eµkω

ij
(3)µ +O(z4)

)
, (7.45)

which are equations for the parameters of the theory. In particular, (7.41) can be solved as

p3 = −`σ(x) , (7.46)

with the boundary parameter σ(x) introduced as an integration constant, whereas the next
two ones, (7.42) and (7.43), can be decoupled by eliminating ji3 and finding the differential
equation in pi, whose solution reads

pi =
`

z
ξi +

z

`
bi +

z2

`2
ξjτ ij +O(z3) ,

ji3 =
1

z
ξi − z

`2
bi − 2z2

`3
ξjτ ij +O(z3) . (7.47)
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The parameters ξi(x) and bi(x) are new integration constants. At last, (7.45) can in principle
be solved by

jij = θij +
z2

`2
ξµωij(2)µ +

z3

`3
ξµωij(3)µ +O(z4) . (7.48)

However, we already have an expression for such parameter, jij = θij , meaning that one has
to accordingly set

ωij(2)µ = 0 , ωij(3)µ = 0 . (7.49)

Finally, one also has to make sure that the condition (7.44) remains satisfied after a transfor-
mation: this means that

0 = δV 3
µ = −`∂µσ +

2

`
ξiS

i
µ −

2

`
biEiµ +O(z2) , (7.50)

has to be solved: the condition at leading order can be satisfied provided that the parameter
bi is not independent, i.e.

bi = −`
2

2
Eµi∂µσ + Sjiξj . (7.51)

To sum up the analysis performed up until now, the expansion of the parameters is given by

p3 = −`σ(x) ,

pi =
`

z
ξi(x) +

z

`
bi +

z2

`2
ξjτ ij +O(z3) ,

ji3 =
1

z
ξi(x)− z

`2
bi − 2z2

`3
ξjτ ij +O(z3) ,

jij = θij(x) , (7.52)

where the independent boundary parameters σ(x), ξi(x), θij(x) are associated to dilatations,
diffeomorphisms and Lorentz transformations, respectively. We can here state the obtained
variation of the relevant fields appearing in the asymptotic expansion of vielbein and spin
connection:

δEiµ = D̊µξi + σEiµ − θijEjµ ,
δSiµ = D̊µbi − σSiµ − θijSjµ ,
δτ iµ = D̊µ

(
ξjτ ij

)
− 2στ iµ − θijτjµ

δω̊ijµ = D̊µθij − 2Eν[iEj]µ∂νσ +
4

`2

(
−ξkE[i

µS
j]k + ξ[iSj]µ

)
. (7.53)

To check that the obtained residual symmetries match the usual PBH transformations (7.15)
in metric formalism, one can try and understand if one obtains the correct transformation rule
for the coefficient of the metric g(d)µν . As an example, it is known that the third coefficient,
namely g(3)µν , being proportional to the holographic stress tensor, transforms homogeneously
and this is exactly what one gets using (7.53),

δg(3)µν = £ξg(3)µν − σg(3)µν , (7.54)

where one has to use D̊[µE
i
ν] = 0 and D̊[µτ

i
ν] = 0. Here the last identity is the consequence

of (7.31) and (7.49).
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Conservation law for conformal symmetry

In the AdS/CFT framework, the leading order fields Eiµ, ω̊
ij
µ appearing in Riemann-Cartan

AdS gravity remain arbitrary functions on the three-dimensional boundary and act as sources
in the dual field theory.
The quantum effective action W in first formalism is then given by

W [E,ω] = −i lnZ[E,ω] , (7.55)

where the (external) gravitational sources Eiµ and ωijµ are coupled to the energy-momentum
tensor Jµi and the spin current Jµij . The variation of W yields then

δW =

∫ (
δEi ∧ Ji +

1

2
δωij ∧ Jij

)
, (7.56)

where the 2-form currents J = 1
2 Jµν dxµ ∧ dxν are the Hodge dual of the usual Noether

currents 1-forms ∗J = Jµ dxµ

Jµ =
1

2e3
εµνλJνλ . (7.57)

Since the spin connection is not an independent source, we must have both in General Rela-
tivity and Supergravity that Jij = 0. Plugging this result in (7.56) and using the expression
of the variation of the vielbein, one obtains the following expression

0 = δW =

∫ [
−ξiD̊Ji +

(
σEi − θijEj

)
∧ Ji

]
, (7.58)

from which we can read the classical conservation laws of conformal symmetry in d = 3

ξi : 0 = D̊Ji , (conserved Jµν)

σ : 0 = Ei ∧ Ji , (traceless Jµν)

θij : 0 = Ei ∧ Jj − Ej ∧ Ji . (symmetric Jµν)

(7.59)

Note that we have the full Weyl symmetry on the boundary expressed in terms of the
Belinfante-Rosenfeld tensor Jµi, which can be written as Jµν = −(3/`) τµν by using the equa-
tions of motion. Notice that its tracelessness is not modified at the quantum level, because
there is no conformal anomaly in three dimensions.

At last, let us comment on the transformation laws of the Schouten tensor: in AdS gravity,
this expression can be computed both from the transformation rules of the vielbein and spin
connection and the results must coincide. The first expression is given in (7.16), whereas the
second one reads δSi = D̊bi−σSi − θijSj + `2

2 iξCi: they differ for a term proportional to
the contraction of the Cotton tensor, which appears rom the contraction of the curvature in
(7.53).
However, we have chosen a particular gauge fixing, which makes Sij symmetric and, at the
same time, implies ωij(2)µ = 0: from (7.31) we then see that this requirement implies that the
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Cotton tensor vanishes Ciµν = 0.
Our gauge fixing in fact restricts the asymptotic behaviour of spacetime to the one with
conformally flat asymptotic boundaries: in the Supergravity case, we will relax this confor-
mally flat boundary condition, because including fermions will naturally imply that S̃ij 6= Sij .

We could now compare the obtained conservation laws to the ones one would get by
treating ωij and Si as independent fields and by taking V 3

µ ∼ Bµ 6= 0. One would have to
add in the variation of the action (7.56) the special conformal current J(K)i and the dilatation
current J(D) via the respective couplings δSi ∧ J(K)i and δB ∧ J(D) and bi would have to be
treated as an independent parameter. They would read

ξi : DJi = B ∧ Ji +
2

`2
Sj ∧ Jij +

2

`
Si ∧ J(D) ,

σ : `dJ(D) = −Ei ∧ Ji + Si ∧ J(K)i ,

θij : DJij = 2E[i ∧ Jj] + 2S[i ∧ J(K)j] ,

bi : DJ(K)i =
2

`2
Ej ∧ Jij −

2

`
Ei ∧ J(D) −B ∧ J(K)i , (7.60)

whereD is the covariant derivative with respect to the Lorentz connection ωij = ω̊ij − 2B[i ∧ Ej] .
These expressions clearly reduce to (7.59), provided that Jij = 0, J(K)i = 0 and J(D) = 0.
This discussion simply shows that the full conformal structure is already encoded in (7.59),
even if some fields are composite. In other words, if some fields happen to be expressed in
terms of other boundary fields, their corresponding currents become zero and their associated
symmetries may be realised non-linearly, as it happens for bi. A similar situation will be
discussed in Subsection 7.7 for the superconformal group.
In the following Sections, we will extend the above analysis to the supersymmetric case.

7.3 Supergravity setting

In the geometric approach to the N = 2 Supergravity in four-dimensional spacetime, one
considers the Lie supergroup OSp(2|4), whose algebra behaves like (5.2). The bosonic gauge
algebra is given by the product so(2, 3) × so(2), where the first factor corresponds to the
isometry group of AdS4 and the second one describes the R-symmetry of the theory. The
physical fields, as described in Section 5, are the vielbein V a

µ̂ , the gravitino Ψµ̂A, the SO(1, 3)

spin connection ω̂abµ̂ and the graviphoton Âµ̂.
Here the indices A,B . . . = 1, 2 are in the fundamental representation of so(2) and, as men-
tioned previously, hatted quantities refer to bulk objects.
Since we are now studying a dynamical theory, one introduces a Principal bundle with
OSp(2|4) as the fiber: the curvatures, which are defined as in (5.6), read6

R̂ab = R̂ab − 1

`2
V aV b − 1

2`
δABΨAΓabΨB ,

6Let us notice that, in comparison with the previous Section, the gauge field has been here rescaled by a
factor 1

`
.
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R̂a = D̂V a − i

2
Ψ
A

ΓaΨA , (7.61)

ρ̂A = dΨA +
1

4
Γab ω̂

ab ∧ΨA −
1

2`
ÂεAB ∧ΨB − i

2`
δABΓaΨ

BV a ,

F̂ = dÂ− Ψ
A ∧ΨBεAB .

We refer, as done previously, to Appendix B for properties of spinors and gamma matrices.
The defined curvatures satisfy the Bianchi “identities”, which, as said, contain the information
of the equations of motion

D̂R̂ab =
2

`2
V [aR̂b] +

1

`
Ψ
A

Γabρ̂A ,

D̂R̂a = R̂a
bV

b + iΨ
A

Γaρ̂A ,

D̂ρ̂A =
1

2`
ÂεABρ̂B −

i

2`
ΓaV

aρ̂A +
1

4
R̂abΓ

abΨA −
1

2`
F̂ εABΨB +

i

2`
ΓaΨ

AR̂a ,

dF = 2εABΨAρ̂B .

(7.62)

These equations allow to completely determine the expansion of the OSp(2|4) curvatures in
Superspace: indeed, as a consequence of 5.1 and 5.2, the quantities in (7.61) must be expanded
in Superspace only and the coefficients along supersymmetric directions must be proportional
to the coefficients along the bosonic directions. By taking a generic ansatz and by plugging
it into the Bianchi identities, one obtains the following rheonomic parametrization

R̂a = 0 ,

F̂ = F̃abV
aV b ,

ρ̂A = ρ̃AabV
aV b − i

2
ΓaΨBV bF̃abε

AB − 1

2
Γ5ΓaΨBV b ∗F̃abε

AB , (7.63)

R̂ab = R̃abcdV
cV d −Θ

ab
A|cΨAV

c − 1

2
ΨAΨBεABF̃

ab − i

2
ΨAΓ5ΨBεAB

∗F̃ ab .

The Lagrangian for a manifold without boundary can be obtained by following the building
rules in Section 5. The result of such procedure is 7

Lbulk =
1

4
R̂abV cV dεabcd + Ψ

A
ΓaΓ5ρ̂AV

a +
i

2

(
F̂ +

1

2
Ψ
A

ΨBεAB

)
Ψ
C

Γ5ΨDεCD

− i

2`
Ψ
A

ΓabΓ5ΨAV
aV b − 1

8`2
V aV bV cV dεabcd

+
1

4

(
F̃ cdV aV bF̂ − 1

12
F̃lmF̃

lmV aV bV cV d

)
εabcd .

(7.64)

The zero-form F̃ ab appearing both in (7.63) and in the lagrangian above has been introduced
to effectively perform the Hodge operator of the field strength F̂ in superspace, as its equations
of motion exactly yield F̃ ab = F ab.
Let us notice that the very same lagrangian can be obtained by studying the effective theory

7In this Section we will often omit wedge symbols between forms in order to ease the reading.
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around a vacuum of the generic N = 2 Supergravity lagrangian coupled to vector multiplets
and hypermultiplets [57]. This vacuum, which is indeed an AdS vacuum, is obtained as a
maximum of the scalar potential V (φ): most notably, it admits a consistent truncation of the
theory, in which all massive fields can be set to zero. This indeed allows to retrieve the pure
Supergravity case and in particular the lagrangian (7.64)
Since the lagrangian has to be integrated on the base manifold, considered as embedded into
the Principal bundle, namely

S =

∫

M⊂P
Lbulk,

the fields appearing here must be forms in Superspace

V a(x, θ) = V a
µ̂(x, θ)dxµ̂ + V a

αA(x, θ)dθαA ,

ω̂ab(x, θ) = ω̂abµ̂ (x, θ)dxµ̂ + ω̂abαA(x, θ)dθαA ,

ΨA
α (x, θ) = ΨA

αµ̂(x, θ)dxµ̂ + ΨA
α|βB(x, θ)dθβB ,

Â(x, θ) = Âµ̂(x, θ)dxµ̂ + ÂαA(x, θ)dθαA .

(7.65)

Moreover, one can always restrict to a bosonic hypersurface M ⊂ M: this procedure allows
to restrict the fields to spacetime quantities

V a(x) = V a(x, θ)|θ=dθ=0 = V a
µ̂(x, 0)dxµ̂ ,

ω̂ab(x) = ω̂ab(x, θ)|θ=dθ=0 = ω̂abµ̂ (x, 0)dxµ̂ ,

ΨA(x) = ΨA(x, θ)|θ=dθ=0 = ΨA
µ̂ (x, 0)dxµ̂ ,

Â(x) = Â(x, θ)|θ=dθ=0 = Âµ̂(x, 0)dxµ̂ .

(7.66)

If the spacetime manifold has a boundary, one is forced to add exact terms to preserve
Supersymmetry invariance: let us review this procedure, by following the analysis performed
in [46].
When the lagrangian is integrated on the bosonic manifold M , considered as a submanifold
of the whole superspaceM, the supersymmetric variation of the action is given by

δεS =

∫

M
LεL =

∫

M
(iεdL+ diεL),

which implies

iεdL = 0, iεL|∂M = 0. (7.67)

The only possible total derivative terms compatible with the symmetries of the theory are

Lboundary = −`
2

8

(
R̂abR̂cdεabcd +

8i

`
ρ̂
A

Γ5ρ̂A −
2i

`
R̂abΨA

ΓabΓ5ΨA +
4i

`2
dÂΨ

A
Γ5ΨBεAB

)
,

(7.68)
which allow the total lagrangian L = Lbulk +Lboundary to satisfy the desired conditions (7.67),
provided that

R̂ab|∂M = 0 , ρ̂A|∂M = 0 , F̂|∂M = 0 . (7.69)
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Let us understand the origin of these constraints: to this end, first rewrite the full lagrangian
in terms of the OSp(2|4) curvatures in a MacDowell-Mansouri form

L = −`
2

8
R̂ab ∧ R̂cdεabcd − i`ρ̂

A
Γ5 ∧ ρ̂A +

1

4

(
F̃ cdV aV bF̂ − 1

12
F̃lmF̃

lmV aV bV cV d

)
εabcd.

This expression, since we are now in spacetime, can be rewritten as

Lspacetime = −`
2

8
R̂ab ∧ R̂cdεabcd − i`ρ̂

A
Γ5 ∧ ρ̂A +

1

4
F̂ ∧ ∗F̂ , (7.70)

where the Hodge dual in spacetime is defined in the standard way as

∗F̂ =
1

2
∗F̂µ̂ν̂ dxµ̂ ∧ dxν̂ =

e

4
εµ̂ν̂ρ̂σ̂ F̂ρ̂σ̂ dxµ̂ ∧ dxν̂ .

By taking the variation of (7.70) one obtains a bulk term, giving the equations of motion,
which we will discuss below and a boundary term, which reads

∫

∂M

(
`2

4
δω̂ab ∧Rcdεabcd − 2i`δΨ

A
Γ5 ∧ ρ̂A +

1

2
δÂ ∧ ∗F̂

) ∣∣∣∣
∂M

,

from which we conclude that (7.69) has to hold, if the variation of the fields at the boundary
is different from zero.
Let us notice that boundary terms (7.68) are the supersymmetric generalisation of the ones
appearing in (7.5) and actually reduce to the Gauss-Bonnet term, when fermions are switched
off. Moreover, the obtained action (7.70) is the direct generalisation of (7.6).

The equations of motion can be computed both from the bulk lagrangian and from (7.70):
the two results clearly coincide, as the two lagrangian differ for exact terms. In the following
analysis we will make use of both ways of computing the equations of motion, so we will state
here the result of both methods. By using the bulk lagrangian, one obtains

δω̂ab : V cR̂dεabcd = 0 ⇒ R̂a = 0 ,

δV a :
1

2
V bR̂cdεabcd −Ψ

A
ΓaΓ5ρ̂A + ∗F̃ab V

bF̂ − 1

12
F̃ ef F̃efV

bV cV dεabcd = 0 ,

δΨ
A

: 2ΓaV
aΓ5ρ̂A − εABΨB∗F̂ + iεABF̂Γ5ΨB = 0 , (7.71)

δÂ : d∗F̂ − 2iεABΨAΓ5ρ̂B = 0 .

whereas by taking the variation of the full lagrangian, only the equations of motion for the
spin connection and for the gravitino are modified and read

δω̂ab : − 1

2
D̂R̂cdεabcd + i Ψ

A
ΓabΓ5ρ̂A = 0 , (7.72)

δΨ
A

:
`

4
ΓabΨAR̂

cdεabcd − 2i`Γ5D̂ρ̂A + iΓ5ÂεABρ̂
B + ΓaV

aΓ5ρ̂A − εABΨB∗F̂ = 0 . (7.73)

82



We again stress out that these two result exactly match up, upon use of the Bianchi identities.

Let us observe that the outcome of this analysis resembles the results of the pure GR
case in [48]: in both cases the addition of counterterms allows to obtain a lagragian which is
quadratic in the curvatures. In absence of fermions, the counterterms also prove to be useful
for an asymptotical analysis of the theory and it is then natural to ask ourselves if the theory
is finite and well behaves also in the supersymmetric case. This will be the main goal of
the following Subsections and will heavily rely on the transformation rules of the fields: by
using (5.8), the rheonomic parametrization and by finally projecting the fields on the bosonic
hypersurface, one obtains

δV a = D̂pa − jabVb + i εAΓaΨA ,

δω̂ab = D̂jab +
2

`2
p[aV b] + 2 R̃abcdp

cV d + Θ
ab
A|cΨ

Apc +
1

`
εAΓabΨA −Θ

ab
A|cε

AV c

+εABF̃ abΨAεB + i εAB ∗F̃ abΨAΓ5εB ,

δΨA = −1

4
jabΓabΨ

A − i

2`
ΓaΨ

Apa + 2 ρ̃Aabp
aV b +

i

2
ΓaΨBp

bF̃abε
AB +

1

2
Γ5ΓaΨB

∗F̃ab p
bεAB

+
λ̂

2`
εABΨB + D̂εA − 1

2`
ÂεABεB +

i

2`
Γaε

AV a − i

2
εABF̃abV

bΓaεB

−1

2
εAB ∗F̃ab Γ5ΓaεBV

b ,

δÂ = dλ̂+ 2 εAΨBεAB + 2 F̃abp
aV b , (7.74)

where pa, jab, εA, and λ̂ correspond respectively to diffeomorphisms, local Lorentz transfor-
mations, supersymmetry and U(1) gauge transformations.
We now focus, as done for the AdS gravity case, on gauge fixings and asymptotical analysis
of the fields.

7.4 Near-boundary analysis of Supergravity fields.

In the present Section, we are going to apply the holographic techniques outlined in Section
7.2 to the 4D Supergravity theory presented in in the previous one.
The transformation laws of the fields now depend on the local parameters pa, jab, λ̂ and εA
and we will use this freedom to fix the radial components of the fields, which are unphysical,
either being Lagrange multipliers or non-dynamic variables.
In particular, we want to choose a suitable generalisation of the gauge fixing conditions (7.17):
the asymptotic behaviour of the vielbein remains the same as for gravity, because it is deter-
mined solely by the metric (7.11), whereas the behaviour of the spin connection can be eval-
uated from the vanishing of the supertorsion and receives also a contribution from fermions.
The gravitini also act as a source for the electromagnetic field, determining the fall-off of the
graviphoton connection.
We then first analyse the asymptotic behaviour of the gravitini: to this end, it is convenient to
express them in terms of the chiral components with respect to the matrix Γ3: Ψ = Ψ+ +Ψ−,
where the eigenstates Ψ± of the matrix Γ3 are defined by eq. (B.12).
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We are interested in gravitini whose fall-off is as given in (6.9), namely Ψµ± = O(z∓1/2)
and Ψz± = O(z±1/2): from a group theoretical point of view, the same result corresponds
to the request of covariance with respect to the OSp(2|4) group. In particular, the subgroup
SO(1, 1) ⊂ OSp(2|4) that parametrizes radial rescalings in the bulk and dilations on the
boundary defines a scaling (±1/2). This requirement can be better written as

ΨAµ± =
(z
`

)∓ 1
2
ϕAµ±(x, z) , ΨAz± =

(z
`

)± 1
2
ϕA±z(x, z) , (7.75)

where the Majorana fermions ϕAµ± and ϕAz± are regular functions at the boundary and can
be expanded as power series in z.
These relations are also consistent with the condition that singles out the spin 3/2 components
in the gravitini,

ΓaΨAµ̂ V
µ̂
a = 0 , (7.76)

which in the FG frame (7.11) reads
(
ΓiΨAµ

)
± V

µ
i +

(
Γ3ΨAz

)
± V

z
3 = 0 .

In this thesis, we will be interested in asymptotic behaviours consistent with (7.76); however,
let us notice that if we relax the conditions of FG metric, allowing instead for asymptotically
non vanishing V 3

µ , then more general asymptotics for the gravitini components ΨAz± can in
principle be considered.
Furthermore, since the supersymmetric transformation of the gravitini must be of the same
order in z as the gravitini themselves, one must have δεΨAµ± ∼ D̂µεA± ∼ εA±, namely

εA± =
(z
`

)∓ 1
2
HA±(x, z) . (7.77)

where HA±(x, z) is regular Majorana spinor.
With respect of the subgroup SO(1, 1), the bosonic fields ω̂ij and Â have zero scaling, whereas
V i, ωi3 can be combined as

V i
±µ̂ =

1

2

(
`ω̂i3µ̂ ± V i

µ̂

)
, (7.78)

having ±1 scaling. They asymptotically behave as

V i
±µ =

(z
`

)∓1
Ei±µ(x, z) , (7.79)

where the regular functions Ei± have the following power expansion in z

Ei+µ = Eiµ +
z2

`2
Siµ − S̃iµ

2
+
z3

`3
τ iµ − 2τ̃ iµ

2
+O(z4) ,

Ei−µ = −`
2

2
Siµ −

z

`

τ iµ + 2τ̃ iµ
2

+O(z2) . (7.80)
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In order to relate the behaviour of the gravitini to the one of the graviphoton and the
spin connection, we state for completeness the convention used in Appendix D and here-
after: unless stated differently, all regular functions on the boundary that appear here,
f = {wi, wij , ϕAµ±, ϕAz±, HA±, . . .}, are generically expanded in a power series

f(x, z) =
∞∑

n=0

(z
`

)n
f(n)(x) = f(0)(x) +

z

`
f(1)(x) +

z2

`2
f(2)(x) + · · · . (7.81)

Using these conventions, we turn to the behaviour of the Âz component of the graviphoton:
the appropriate way of performing this analysis is by computing the equations of motion at
various orders, as done in Appendix D.3. It turns out that there are only two possibilities, as
shown in (D.44): either one allows for a ϕAz− 6= 0 expressed in terms of a graviphoton, whose
radial expansion starts at diverging order O(z−1) or one consistently sets ϕA−z = Â(−1)z = 0.
Both choices lead to well-behaving equations of motion and transformation laws, but only
the second one can be coupled with the condition (7.76). In the following we will mainly be
interested in the choice

ΨA
z− = 0, (7.82)

keeping in mind that, by relaxing (7.76), one could allow for different asymptotic behaviours
of the fields: this could become relevant when dealing with graphene models and with the
decomposition (6.18), which is actually incompatible with (7.76) itself.
A stronger condition ΨAz± = 0 was considered in [58] in the context of N = 1 AdS4 Super-
gravity. An advantage of having ΨAz+ 6= 0 is to provide more freedom that could be used
to simplify complicated fermionic expressions. We will see, though, that the presence of this
particular field will not modify the asymptotic behaviour of the theory.

Finally, the asymptotic behaviour of the spin connection is computed in Appendix D.1,
where it is found (see eqs. (D.7)) that ω̂abz 6= 0, but it is still subleading on the boundary. The
behaviour of the spin connection will then be expressed in terms of the following functions

ω̂i3z = wi(x, z), ω̂ijz =
z

`
wij(x, z).

To sum up this discussion, the results of of Appendix D.1 and D.3 show that the gauge-
fixing conditions have the form

V 3
z =

`

z
, ω̂i3z = wi(x, z) , Ψ±Az =

(z
`

)± 1
2
ϕ±Az(x, z) ,

V i
z = 0 , ω̂ijz =

z

`
wij(x, z) , Âz =

`

z
A(−1)z(x) +

z

`
A(1)z(x) +O(z3) ,

(7.83)

where, for the sake of completeness, we distinguish the particular cases:

Ψz± 6= 0 ⇒ Âz = O(1/z) , wi = O(1) , wij = O(1) ,

Ψz− = 0 ⇒ Âz = O(z) , wi = O(z2) , wij = O(1) ,

Ψz± = 0 ⇒ Âz = O(z) , wi = 0 , wij = O(1) .

(7.84)

85



When dealing with bispinors, we will opt for avoiding heavy notation and we will give different
names to different orders in z, contrary to the convention chosen for quadrispinors (7.81): in
particular

ΨA
+z =

√
z

`
ϕA+z(x, z) =

√
z

`

[(
ψA+z

0

)
+
z

`

(
ζA+z
0

)
+O(z2)

]
,

ΨA
−z =

√
`

z
ϕA−z(x, z) =

√
`

z

[(
0

ψA−z

)
+
z

`

(
0

ζA−z

)
+O(z2)

]
. (7.85)

It is important to emphasize that we assume that the gauge-fixing functions do not trans-
form under local transformations. This is equivalent to the statement that their transforma-
tion law can always be reabsorbed in higher-order terms of the asymptotic transformations.
However, the quantities wi(x) and wij(x) are not gauge fixings, as they are obtained from the
vanishing of the supertorsion condition. It is straightforward to check by varying the super-
torsion that δwi, δwij 6= 0 and that we can set wi = 0 consistently (with δwi = 0). However,
if wi 6= 0, then δwi 6= 0 as well. The same is independently true for wij . Nonetheless, δwi and
δwij always appear at higher-order and they do not influence the near-boundary expressions.

The boundary fields are then expanded in the following way:

V i
µ =

`

z
Eiµ +

z

`
Siµ +

z2

`2
τ iµ +O(z3) ,

ω̂i3µ =
1

z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) ,

ω̂ijµ = ωijµ (x, z) = ωijµ +
z

`
ωij(1)µ +

z2

`2
ωij(2)µ +O(z3) ,

Âµ = Aµ(x, z) = Aµ +
z

`
A(1)µ +

z2

`2
A(2)µ +O(z3) , (7.86)

ΨA
µ+ =

√
`

z
ϕAµ+(x, z) =

√
`

z

[(
ψAµ+

0

)
+
z

`

(
ζAµ+

0

)
+
z2

`2

(
ΠA
µ+

0

)
+O(z3)

]
,

ΨA
µ− =

√
z

`
ϕAµ−(x, z) =

√
z

`

[(
0

ψAµ−

)
+
z

`

(
0

ζAµ−

)
+O(z2)

]
,

where all functions on the right hand side of the equations are finite at z = 0. Let us remark
that we are allowing for linear terms in the expansion of spin connection and graviphoton,
because in principle they could be switched on by fermions.
Moreover, since the spin connection cannot be completely determined by the vielbein, but also
receives contributions by gravitini, the subleading terms in the expansion of ω̂i3µ , S̃iµ and τ̃ iµ
are different from the Riemannian counterparts Siµ and τ iµ. The boundary super-Schouten
tensor is now defined as

Siµ =
1

`2
(Siµ + S̃iµ) (7.87)

and, as we will see, it is the gauge field associated to special conformal transformations. Sim-
ilarly, we will see that the combination −(τ iµ+2τ̃ iµ)/` becomes the holographic stress tensor,
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up to the fermionic terms. Let us observe that the super-Schouten tensor (7.87) is not just
the bosonic Schouten tensor computed in presence of a torsion coming from spinors, but it is
its supersymmetric generalisation, as we will see later.
Notice that there is now an obstruction to symmetrize Siµ and the holographic stress tensor
because the terms S̃iµ and τ̃ iµ are not a priori symmetric in presence of the gravitini.

Because of their importance in this discussion, let us concretely compute the antisymmetric
parts of both quantities, Siµ and τ iµ + 2τ̃ iµ and express them in terms of fermion bilinears.
To explicitly perform these computations, one needs the following quantities, which arise from
the asymptotic expansion

Sµν = EiµS
i
ν , τµν = Eiµτ

i
ν ,

S̃µν = EiµS̃
i
ν , τ̃µν = Eiµτ̃

i
ν , (7.88)

Sµν = EiµSiν .

From (D.6), in the case ϕAz− = 0, we have

S̃µν = Sνµ − ` ϕ(0)A+[µϕ
A
(0)−ν] + i` ϕ(0)A+(νΓµ)ϕ

A
(0)+z ,

τ̃µν =
τµν + 3τνµ

4
+
`

2

(
−ϕA+[µϕ

A
−ν] + iϕA+(µΓν)ϕA+z

)
(1)

. (7.89)

from which we see that fermions do act as an obstruction to the antisimmetrisation of such
coefficients

S̃[µν] = S[νµ] − ` ϕ(0)A+[µϕ
A
(0)−ν] ,

τ̃[µν] =
1

2
τ[νµ] −

`

2

(
ϕ(0)A+[µϕ

A
(1)−ν] + ϕ(1)A+[µϕ

A
(0)−ν]

)
. (7.90)

We finally see from the definition of the super-Schouten tensor (7.87) that

Sµν =
2

`2
S(µν) −

1

`
ϕ(0)A+[µϕ

A
(0)−ν] +

i

`
ϕ(0)A+(νΓµ)ϕ

A
(0)+z , (7.91)

which implies, as expected, that

S(µν) =
2

`2
S(µν) +

i

`
ϕ(0)A+(µΓν)ϕ

A
(0)+z ,

S[µν] = −1

`
ϕ(0)A+[µϕ

A
(0)−ν] . (7.92)

We observe that the antisymmetric part does not vanish for arbitrary fermions ϕAµ+: these
components must remain arbitrary and unconstrained if we want an interesting boundary
theory.
Similarly, at the next level in z, the combination τµν + 2τ̃µν behaves like

τµν + 2τ̃µν = 3τ(µν) + `
(
−ϕ(0)A+[µϕ

A
(1)−ν] − ϕ(1)A+[µϕ

A
(0)−ν]
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+ iϕA(0)+(µE
i
ν)Γiϕ(1)A+z + iϕA(0)+(µE

i
ν)Γiϕ(1)A+z

)
(7.93)

and it is not symmetric in general,

τ[µν] + 2τ̃[µν] = −`
(
ϕ(0)A+[µϕ

A
(1)−ν] + ϕ(1)A+[µϕ

A
(0)−ν]

)
. (7.94)

We can now safely discuss gauge-fixing choices and study under which conditions they are
preserved.

7.5 Gauge-fixing analysis

So far, we have chosen the radial components of the fields (7.83) in such a way that they
generate the asymptotic expansion of the fields (7.86). To perform the analysis of these
constraints, one needs the following observation.

Rheonomic parametrizations.

The transformation laws (7.74) explicitly depend on the contractions of the supercurva-
tures. The proper way to account for all contributions requires to know the near-boundary
behaviour of the rheonomic parametrizations appearing there. The simplest way to proceed
is to project the expressions (7.63) on spacetime and to identify their asymptotic behaviour
with the one of the spacetime projections of the supercurvatures. One has to start from the
U(1) field strength, whose parametrization takes value on the 2-vielbein component only. One
then proceeds to find ρ̃Aab from the curvature of the gravitino, which can be further used to
compute the coefficients Θab

A|c and R̃
ab
cd appearing in the last of (7.63).

By following this procedure, one can determine the asymptotic behaviour of all the su-
percovariant field-strengths, whose derivation is fully carried out in Appendix E. We sum up
here the main results obtained there: For the parameters F̃ab and ρ̃Aab

F̃ij = O(z3) , F̃i3 = − 1

2`

(z
`

)2
A(1)µE

µ
i +O(z3) ,

ρ̃Aij+ = O(z5/2) , ρ̃Ai3+ = − 1

2`

(z
`

) 3
2
Eµi ζ

A
µ+ +O(z5/2) ,

ρ̃Aij− = O(z5/2) , ρ̃Ai3− = O(z5/2) , (7.95)

which can be combined to express the radial power expansion of R̃abcd, which reads

R̃i3jk =
i

2`

(z
`

)2
Eµ[jE

ν
k]ψ

A
µ+

(
γiζAν+ + γlζAρ+ElνE

iρ
)

+O(z3) ,

R̃ijk3 = − 1

2`

(z
`

)2
Eµk

(
ωij(1)µ − iψ

A
µ+γ

[iEj]νζAν+

)
+O(z3) ,

R̃i3j3 = O(z3) , R̃ijkl = O(z3) . (7.96)

It is worthwhile noticing that all expansions (7.95) and (7.96) are subleading in z and, when
they are slower than O(z3), this is due to the linear terms in the connections, namely A(1)µ,
ωij(1)µ and ζAµ+.
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Residual symmetries.

We can now look for the residual symmetries that leave the gauge fixing unaltered:

δV a
z = 0 , δÂz = 0 , δΨ±Az = 0 , δω̂i3z = O(z2), δω̂ijz = O(z). (7.97)

As discussed previously, the gauge fixing conditions on the vielbein and gravitini actually
determine the behaviour of the spin connection: in particular, a transformation of the radial
components of the spin connection must not introduce new powers in the asymptotic expan-
sion.

The corresponding parameters can be expanded as in eq. (7.81), where we keep the same
notation for the leading orders of the bosonic parameters as in (7.52),

pi =
`

z
ξi +

z

`
pi(1) +

z2

`2
pi(2) +O(z3),

p3 = −`σ +
z

`
p3

(1) +
z2

`2
p3

(2) +
z3

`3
p3

(3) +O(z4),

jij = θij +
z

`
jij(1) +

z2

`2
jij(2) +

z3

`3
jij(3) +O(z4) ,

ji3 =
1

z
ξi +

z

`
ji3(1) +

z2

`2
ji3(2) +O(z3) ,

λ̂ = λ+
z

`
λ(1) +O(z2) ,

εA+ =

√
`

z
H+(x, z) =

√
`

z

(
ηA+
0

)
+

√
z

`

(
ηA(1)+

0

)
+O(z3/2) ,

εA− =

√
z

`
H−(x, z) =

√
z

`

(
0

ηA−

)
+
(z
`

) 3
2

(
0

ηA(1)−

)
+O(z5/2) . (7.98)

The subleading Lorentz parameters can be set to zero, as done in Subsection 7.2, by a proper
symmetrisation of the vielbein coefficients in the expansion. We therefore take

jij(1) = 0, jij(2) = 0, jij(3) = 0. (7.99)

The higher-order coefficients can also be cancelled out, but they do not influence our results so
we will not consider them here. The above conditions imply in (7.86) the following symmetry
properties of the vielbein components,

τµν = τνµ , Sµν = Sνµ . (7.100)

We start from the spin connection condition δω̂ijz = O(z), which means that the finite terms
must vanish. This computation yields

∂zj
ij − 1

`
ξµωij(1)µ +

i

`
ξµψ

A
µ+γ

[iEj]νζAν+ −
i

`
ηA+γ

[iEj]νζAν+ +O(z) = 0 , (7.101)
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which amounts to solving the following algebraic equation

ξµωij(1)µ = i
(
ξµψ

A
µ+ − ηA+

)
γ[iEj]νζAν+ . (7.102)

The leading order parameters ξi and ηA+ must remain arbitrary if we want a genuine and
interesting boundary theory: this is instead an equation for the subleading fields ωij(1)µ and

ζAµ+. Since we already know from Appendix D.1) that ωij(1)µ = 0, we choose a particular
solution

ζAµ+ = 0 , (7.103)

which also appears in [58], in N = 1 Supergravity. It is crucial that these fields remain zero
after a generic local transformation, namely δωij(1)µ = 0 and δζAµ+ = 0. This consistency
check will be performed later on.

Another constraint on the parameters arises from the fact that the FG coordinate frame
(7.11) does not admit finite terms in the expansions of V i

µ and ω̂i3µ . Local invariance preserves
this frame only if

0 = (δV i
µ)(0) = −1

`
Eiµ p

3
(1) ⇒ p3

(1) = 0 . (7.104)

As a side note, this is consistent with the fact that (δω̂i3µ )(0) = − 1
`2
Eiµ p

3
(1) must be zero as well.

On the other hand, the invariance of ΨA
±z under transformations yields at the leading

order

0 = δΨA
+z

order
√

`
z

=⇒ 0 =
1

`

(
ηA(1)+ − ξµζAµ+

)
, (7.105)

0 = δΨA
−z

order
√

z
`

=⇒ 0 =
1

`

(
ηA(1)−−ξµζAµ−

)
+

i

4`
εABA(1)µγ

µ (ηB+ − ξνψBν+) ,

which can be solved using eq. (7.103) as

ηA(1)+ = 0 , ηA(1)− = ξµζAµ−−
i

4
εABA(1)µγ

µ (ηB+ − ξνψBν+) . (7.106)

From the conservation of the graviphoton gauge-fixing, we observe that

0 = δÂz =
1

`
λ(1) −

1

`
A(1)µE

µ
i ξ

i +O(z) ⇒ λ(1) = A(1)µξ
µ . (7.107)

We finally turn to the analysis of δω̂i3z = O(z2) and δV i
z = 0: their finite order leads to

the expression

0 = δV i
(0)z = ` δω̂i3(0)z = ji3(1) +

1

`
pi(1) + wij(0) ξj + i η̄+Aγ

i ψA+z . (7.108)

There are two unknown parameters, pi(1) and ji3(1) and only one equation: this leads to an
arbitrary vector Ki(x) in the solution, which will be associated to the special conformal
transformations on ∂M, as we will prove later. The solution for the first order parameters is

pi(1) = `mi +
`2

2
Ki ≡ bi, (7.109)
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`ji3(1) = `mi − `2

2
Ki ≡ −b̃i ,

where mi(x) is a function that depends on the gauge fixing

mi(x) = −1

2

(
wij(0)ξj + i ηA+γ

iψAz+

)
. (7.110)

At linear order in z, by making use of the rheonomic parametrizations in Appendix E, one
gets

0 = δV i
(1)z = ji3(2) +

2

`
pi(2) + ni ,

0 = ` δω̂i3(1)z = 2ji3(2) +
1

`
pi(2) + si , (7.111)

where we denoted

ni(x) = wij(1)ξj + i η̄+Aγ
i ζA+z ,

si(x) = −1

`
ξµ(τ − 4τ̃)iµ + i η̄+Aγ

i ζA+z − ξµEiνψ̄+Aµζ
A
−ν − i ξµψ̄+Aµγ

iζA+z

− i

4
ξµEiνεABψ

A
µ+γ

ρψBν+A(1)ρ + EiµηA+

(
i

4
εABγ

ρψB+µA(1)ρ + ζA−µ

)
,(7.112)

where the expression for the function wij(1) can be substituted from the vanishing supertorsion
equation (D.13) in Appendix D.2,

wij(1) = − 2

`
(τ − τ̃)ij − iEµjψ+Aµγ

i ζA+z . (7.113)

The solution for the second order parameters pi(2) and ji3(2) is unique,

pi(2) =
`

3

(
si − 2ni

)
,

`ji3(2) =
`

3

(
ni − 2si

)
. (7.114)

In our computations, we will only need the following combination of the parameters,

`ji3(2) − pi(2) = `
(
ni − si

)
= −ξµ(τ + 2τ̃)iµ + `ξµEiνψ̄+Aµζ

A
−ν (7.115)

+
i`

4
ξµEiνεABψ

A
µ+γ

ρψBν+A(1)ρ − `EiµηA+
(

i

4
εABγ

νψB+µA(1)ν + ζA−µ

)
.

After all the above considerations, the residual local parameters can be written as

p3 = −`σ +O(z2) ,

pi =
`

z
ξi +

z

`
bi +

z2

`2
pi(2) +O(z3) ,
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ji3 =
1

z
ξi − z

`2
b̃i+

z2

`2
ji3(2) +O(z3) ,

jij = θij +O(z2) , (7.116)

λ̂ = λ+
z

`
A(1)µξ

µ +O(z2) ,

εA+ =

√
`

z

(
ηA+
0

)
+O(z1/2) ,

εA− =

√
z

`

(
0

ηA−

)
+O(z3/2) ,

where the pi(2) and ji3(2) terms will play a role in cancellation of terms in the next step, but
it will not influence the transformation law of the holographic fields. We also expect the
conservation laws not to depend on mi because it is a gauge-fixing function. Without the
gravitini, we have bi = b̃i = `2

2 K
i, wij = 0 and the result coincides with the pure AdS case

(7.52).

We therefore see that the independent residual parameters in N = 2 AdS4 Supergravity
are

σ(x), ξi(x), θij(x) , λ(x) , ηA±(x)

and they are associated, respectively, to the dilatations, diffeomorphisms, Lorentz, Abelian
and supersymmetric transformations in the holographically dual theory.
Let us notice that the parameters bi and b̃i are not on the same level as the others, because
bi − b̃i = 2`mi is nonphysical and bi + b̃i = `2Ki is not independent due to the condition

0 = δV 3
µ = −`∂µσ − `EiµKi + `ξiSiµ + ηA+ψ−Aµ − ηA−ψ+Aµ +O(z) , (7.117)

which allows to solve the finite term for Ki as

Ki =
1

`
Eiµ

(
−`∂µσ + `ξj Sjµ + ηA+ψ

A
−µ − ηA−ψA+µ

)
. (7.118)

This confirms that Ki is not an independent asymptotic parameter.
This last step completes the analysis of the gauge fixing conditions and we can now study the
transformation laws of the holographic fields.

7.6 Transformation laws of the holographic fields

Determining the transformation laws of the boundary fields is a fundamental step in order to
identify them as the sources of the boundary CFT and to obtain the Ward identities of the
dual theory.
They analysis performed in the previous Subsection left us with the following power expansion
of the fields

V i
µ =

`

z
Eiµ +

z

`
Siµ +

z2

`2
τ iµ +O(z3) ,
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ω̂i3µ =
1

z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) ,

ω̂ijµ = ωijµ +
z2

`2
ωij(2)µ +O(z3) ,

Âµ = Aµ+
z

`
A(1)µ +

z2

`2
A(2)µ +O(z3) , (7.119)

ΨA
µ+ =

√
`

z

[(
ψAµ+

0

)
+
z2

`2

(
ΠA
µ+

0

)
+O(z3)

]
,

ΨA
µ− =

√
z

`

[(
0
ψAµ−

)
+
z

`

(
0
ζAµ−

)
+O(z2)

]
.

From the bulk transformation law (7.74) and by writing the result in terms of boundary
1-forms in a basis dxµ of ∂M , we find

δEi = Dξi + σEi − θijEj + i ηA+γ
iψ+A ,

δωij = Dθij + 2ξ[iSj] + 2K [iEj] +
1

`
ηA+γ

ijψ−A +
1

`
ηA−γ

ijψ+A ,

δA = dλ+ 2εAB η
A
+ψ

B
− + 2εAB η

A
−ψ

B
+ , (7.120)

for the bosonic fields and for the gravitino

δψ+A = DηA+ +
i

`
EiγiηA− −

i

`
ξiγiψ−A +

1

2
σψ+A

−1

4
θijγijϕA+ +

1

2`
λεAB ψ

B
+ −

1

2`
A εABη

B
+ . (7.121)

Now, as a consequence of (7.69), the OSp(2|4) supercurvatures vanish at the boundary. These
conditions can be asymptotically expanded and read

Rij − 2E[i ∧ Sj] − 1

`
ψA+ ∧ γijψA− = 0 ,

∇ψA+ +
i

`
Ei ∧ γiψA− = 0 . (7.122)

The first equation can be interpreted as saying that the supersymmetric generalisation of the
Weyl tensor W ij = Rij − 2E[i ∧ Sj] vanishes on the boundary and can be solved in terms of
the super-Schouten tensor as

Sµν = Rµν−
1

4
gµνR−

1

`

(
ψ+Aργ

ρ
µψ−Aν − ψ+Aνγ

ρ
µψ−Aρ −

1

2
gµνψ+Aργ

ρλψ−Aλ

)
. (7.123)

The above expression confirms the previous discussion regarding the difference between Schouten
tensor and super-Schouten tensor.
The second equation can instead be solved in terms of ψAµ− as

ψ−Aµ = − `

2e3
ελνργλγµ∇νψ+Aρ , (7.124)
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by using the gamma matrix relation γµν = γµγν − gµν .
These results show that Siµ and ψ−Aµ are not independent fields since they can be expressed
in terms of the supervielbein (Eiµ, ψ+Aµ) and their curvatures.
Their transformation laws are therefore on a different level with respect to the other non-
composite fields, as they also appear at a subleading order compared to the other fields:

δSi = DKi − σSi − θijSj +
2i

`2
ηA−Γiψ−A + E i ,

δψ−A = DηA− +
i`

2
SiγiηA+ −

i`

2
Kiγiψ+A −

1

2
σψ−A

−1

4
θijγijϕ−A +

1

2`
λεABψ

B
− −

1

2`
AεABη

B
− + ΣA . (7.125)

Eqs. (7.120)–(7.125), together with the transformation law of B ≡ V 3
µdxµ given by eq. (7.117),

define the full set of N = 2 superconformal transformations on the boundary 1-forms Ei,
B, Si, ωij , A, ψ±A. The factors ` ensure dimensional consistency of the equations with
[V i

µ] = L0, [Siµ] = L−2, [ψA±µ] = L−1/2, [ξµ] = [ξi] = L and [η] = L1/2.
The contributions E i = E iµ dxµ and ΣA = ΣA

µ dxµ come from the contraction of the curvatures
and read

E iµ =
2

`
R̃i3(3)jkξ

kEjµ +
1

`
Θ
i3
(5/2)−A|j

(
ηA+E

j
µ − ψA+µξj

)

= 2ξν
(
D[νSiµ] −

i

`2
ψ
A
ν−γ

iψµA−

)
− 1

`
Θ
i3
A|j−(5/2)(ξ

νψAν+ − ηA+)Ejµ,

ΣA
µ = 2Eν[iE

λ
j]

(
∇νψAλ− +

i`

2
SkνγkψAλ+

)
ξiEjµ , (7.126)

where we have used the expressions of the rheonomic parameters in Appendix E.
The spinor ΣA

µ is the contraction of the Cottino, which is the leading term in the expansion
of ρ̂A−:

ρ̂A−µν =

√
z

`

(
0

ΩA
µν

)
+O(z3/2) , (7.127)

with ΩA
µν = 2∇[µψ

A
−ν]−i` γiψ

A
+A[µSiν] . The tensor E iµ can be compared to the result described

in the pure gravity case: the first term is the contraction of the super Cotton tensor

Ciµν = 2D[µSiν] −
2i

`2
ψ
A
−[µγ

iψ−A|ν] (7.128)

whereas the second term contains the contraction of the Cottino and of the curvature ρ̂A(1/2)µz+,
as shown by

Θ
i3|j
(5/2)−A = −2iγ(iρ̃

j)3
(5/2)A+ +

1

2
EiµEjνΩA

µν . (7.129)

In the end we get

ΣA = iξΩ
A ,
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E i = iξCi +
1

`

(
ηA+ − ψ+Aνξ

ν
)

Θi3
(5/2)−A|j E

j . (7.130)

We now observe that we could in principle fix the value of ΠA
µ+ by solving ρ̂A(1/2)µz+ = 0 and

we could fix its form by suitably solving δΠA
µ+ = 0 in terms of the subleading parameter ηA(2)−.

However, the result does not have observable consequences near the boundary, thus we will
not proceed in this direction.

If we restrict the set of fields to Eiµ, ψ+Aµ, ω
ij
µ , Aµ and the parameters to ξi, η+A, θij

and λ, we see that Eiµ transforms as a boundary vielbein, ωijµ as a boundary spin-connection
and ψ+Aµ as a boundary gravitino, charged with respect to the SO(2) R-symmetry connec-
tion Aµ. Correspondingly, the parameters ξi, η+A, θij and λ are associated to boundary
diffeomorphisms, supersymmetry, Lorentz and SO(2) gauge transformations, respectively.

On the other hand, the boundary function σ, with respect to which all the above fields
have definite weight (1 for Eiµ, 1/2 for ψ+Aµ, and 0 for ωijµ an Aµ), is identified with the local
parameter associated to Weyl dilatations because it produces rescaling of the vielbein, and
therefore of the metric.

In the same fashion, the superconformal transformation is characterized by the local pa-
rameter η−A, with the corresponding gauge field ψA−. The parameter Ki, although not inde-
pendent within the gauge choice V 3

µ = 0, corresponds to special conformal transformations,
whose associated gauge connection is the super-Schouten tensor.

Let us conclude with a comment on the obtained transformation laws: the variations of
the super-Schouten and of the conformino fields contain additional terms coming from the
contraction of the curvatures. If we had chosen a gravity theory on global AdS these terms
would be absent.
As we recall from the review of the geometric approach, their presence indicates that we are
indeed studying a dynamical theory and that the theory is only locally invariant under the
OSp(2|4) group. This is perfectly analogous to what happens in GR without cosmological
constant, which only locally is a Minkowski space having the Poincaré group as the symmetry
group.
We will further discuss on this matter in the following Subsection 7.7.

Consistency of the sub-leading gauge fixings.

On top of the previous analysis of the asymptotic parameters, it remains to look for
potential inconsistencies in having some linear terms vanishing, in particular V 3

(1)µ = ωij(1)µ =

ζAµ+ = 0.
From (D.11) we see that we can solve δωij(1)µ in terms of δζAµ+

δωij(1)µ = iEνiEλjEkµ δζ
A
+[νγ

kψAλ]+ − 2iEν[iδζ+A[µγ
j]ψAν]+ .

It is then sufficient to look at δV 3
(1)µ and δζAµ+: the first relation reads

δV 3
(1)µ =

(
−1

`
pi(2) + ji3(2)

)
Eiµ +

1

`
(τ + 2τ̃)iµξi + ηA+ζµ−A − ηA(1)−ψµ+A
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=
2

`
ξν(τ + 2τ̃)[νµ] + 2ξνψ

A
+[νζµ]−A = 0,

in virtue of (7.94). The remaining condition reads

δζAµ+ = − i

`
γiζ

A
−µξ

i − 1

2`
ψAµ+p

3
(1) + 2ρ̃A(5/2)+ijξ

iEjµ −
1

4`
ξρA(1)ρε

ABψBµ+

+
i

4`
γiψB+µεijkA(1)ρE

kρξj +
λ(1)

2`
εABψB+µ +

i

`
γiη

A
(1)−E

i
µ −

1

2`
A(1)µε

ABηB+

+
1

4`
A(1)µε

ABηB+ −
i

4`
εABεijkγ

iηB+E
j
µA(1)ρE

kρ = 0,

as all terms proportional to A(1)µ and ζµ− incredibly cancel out, by plugging in the expressions
of ρ̃Aij , λ(1) and ηA(1)−.

7.7 Superconformal currents in the holographic quantum theory

The asymptotic symmetries obtained in pure N = 2 AdS4 Supergravity are given by the
three-dimensional superconformal transformations. According to the AdS/CFT correspon-
dence, these are also asymptotic symmetries underlying the dual SCFT.
These transformations are expressed in terms of the local parameter θij (associated to Lorentz
transformations), Ki (special conformal transformations), ηA+ (supersymmetric transforma-
tions), ηA− (special superconformal transformations) and λ (R-symmetry). The associated
fields are the spin connection ωijµ , the vielbein Eiµ, the dilatation gauge field Bµ, the super-
Schouten tensor Siµ, the gravitino ψA+µ, the conformino ψA−µ and the graviphoton Aµ.

The structure described above is summed up in the following table, where we also associate
to each symmetry the corresponding quantum operator on the SCFT side.

Transformation Local parameter Source Current
Lorentz θij ωijµ Jµij = 0

Translation ξi Eiµ Jµi
Dilatation σ Bµ = 0 Jµ(D) = 0

Special conformal Ki Siµ Jµ(K)i = 0

Abelian R-symmetry λ Aµ Jµ

Supersymmetry ηA+ ψA+µ JµA+

Superconformal ηA− ψA−µ JµA− = 0

When all boundary fields (sources) are independent, the quantum operators are all non
vanishing. However, when the sources are expressed in terms of other boundary fields, they
become composite fields and the associated quantum operator vanish. In our case, the spin
connection is completely determined by a constraint on the translation curvature (super-
torsion), whereas the super-Schouten tensor and the conformino are expressed in terms the
boundary conditions (7.123) and (7.124). At last, we fixed Bµ = V 3

µ = 0, which effectively
eliminates the dilatation gauge field and the corresponding quantum operator.
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As explained in the bosonic analysis, the fact that some currents are vanishing simply means
that a part of the symmetry group is realised non-linearly. We now describe the properties of
the three-dimensional superconformal group osp(2|4) [59] and from this discussion we will be
able to better understand our specific case.

The full OSp(2|4) superalgebra describes the symmetries of the vacuum bulk theory and
of its dual SCFT. From a gravity point of view, it is encoded in the definition of the vanishing
curvatures R̂Λ = {R̂ab, R̂a, ρ̂A, F̂},

R̂Λ ≡ dµΛ +
1

2
CΣΓ

ΛµΣ ∧ µΓ , (7.131)

where CΣΓ
Λ are the osp(2|4) structure constants and µΛ= {ω̂ab, V a, ΨA, Â} the Cartan 1-

forms. These curvatures can be expressed as

R̂ij = R̂ij +
4

`2
V

[i
+ ∧ V

j]
− −

1

`
Ψ
A
+ ∧ ΓijΨA− ,

R̂i
± = D̂V i

± ∓
1

`
V i
± ∧ V 3 ∓ i

2
Ψ
A
± ∧ ΓiΨA± ,

R̂3 = dV 3 +
2

`
V i

+ ∧ V−i + Ψ
A
− ∧ΨA+ , (7.132)

F̂ = dÂ− 2εAB ΨA
+ ∧ΨB

− ,

ρ̂A = D̂ΨA
± ±

i

`
V i
± ∧ ΓiΨ

A
∓ ±

1

2`
V 3 ∧ΨA

± −
1

2`
εABÂ ∧ΨB

± ,

where V 3 is the 1-form associated with the Weyl transformations, V i
+ the ones associated with

the spacetime translations, V i
− with the conformal boosts, ΨA

+ with the supersymmetries, ΨA
−

with the superconformal transformations [60,61].
The very same algebra can be expressed in terms of the Cartan 1-forms describing the su-
perconformal algebra in d = 3, which can be obtained as the leading order 1-form in the
z-expansion of the above bulk quantities.
Let us summarize below the correspondence between the D = 4 gauge field and d = 3 super-
conformal field in the table below

ω̂ij → ωij Lorentz symmetry ,
V 3 → B Weyl symmetry ,
V i

+ → Ei spacetime translations ,
V i
− → Si conformal boosts ,

ΨA
+ → ψA+ supersymmetry ,

ΨA
− → ψA− superconformal symmetry ,

Â → A SO(2) R-symmetry .

Indeed, if we define

B =
1

`

(
V 3 − `dz

z

)
= Bµ(x) dxµ , (7.133)
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which is non vanishing only for generalisations of the FG parametrization (7.11) and after
rescaling the various fields by z/` factors according to their O(1, 1) gradings one can rewrite
the algebra in terms of SCFT quantities as

Rij = Rij − 2E[i ∧ Sj] − 1

`
ψ
A
+ ∧ γijψA− ,

Ri
+ = DEi +B ∧ Ei − i

2
ψ
A
+ ∧ γiψA+ ,

Ci ≡ − 2

`2
Ri
− = DSi −B ∧ Si − i

`2
ψ
A
− ∧ γiψA− ,

R = dB − Ei ∧ Si +
1

`
ψ
A
− ∧ ψA+ ,

F = dA− 2εAB ψ
A
+ ∧ ψB− , (7.134)

ρA+ = DψA+ +
1

2
B ∧ ψA+ +

i

`
Ei ∧ γiψA− −

1

2`
εABA ∧ ψB+ ,

ΩA ≡ ρA− = DψA− −
1

2
B ∧ ψA− +

i`

2
Si ∧ γiψA+ −

1

2`
εABA ∧ ψB− ,

where D is the usual Lorentz-covariant derivative. Notice that each D always appears in
the combination D + ∆B of the Weyl-covariant derivative, as naturally expected from a the-
ory with local Weyl symmetry, where ∆ is the scaling dimension of the corresponding field,
∆(Ei±) = ±1, ∆(ψA±) = ±1

2 , ∆(Si) = −1 and ∆(ωij) = ∆(A) = ∆(B) = 0. This is a useful
feature that can allow to reconstruct the B-term in the transformation laws (7.120)–(7.125),
in the same way as it was done in the pure AdS gravity given by eqs. (7.60).
We notice that the curvatures in (7.134) are not all zero in our case: indeed we can recognise,
in the B = 0 case, the non-vanishing super Cotton and the Cottino tensors, which appear in
the variations of the boundary fields. From the above analysis, these additional terms can
really be understood as contractions of curvatures and they signal that the dual quantum
theory is a deformation of a theory truly invariant under the global OSp(2|4) group.

We are now ready to explore the quantum symmetries in the theory dual to Supergravity.

Superconformal currents

In the AdS/CFT framework, the obtained boundary fields J Λ(x) = {Eiµ(x), ωijµ (x),
ψ+Aµ(x), Aµ(x)} become sources for the corresponding operators in the dual quantum the-
ory JµΛ = {Jµi, J

µ
ij , J

µ
A+, J

µ}. The latter are the energy-momentum tensor, spin current,
supercurrent and U(1)-current, respectively and are identified with the expectation values of
the Noether currents associated with the residual symmetries of the boundary action. How-
ever, we shall refrain from writing explicitly the expectation value symbol 〈. . .〉.
According to the AdS/CFT correspondence, the bulk action in classical Supergravity approx-
imation is identified with the effective action of the dual boundary theory as

Ion−shell[E
i, ωij , ψA+, A] = W [Ei, ωij , ψA+, A] = −i ln(Z[Ei, ωij , ψA+, A]) . (7.135)
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This identification allows to obtain the explicit expression of the currents and conservation
laws that they have to satisfy. Let us start from the currents: in the derivation it is convenient
to retain a four-dimensional notation. Indeed, by taking the variation of the above formula,
we obtain

δW = δIon−shell =

∫

∂M

(
−`

2

4
δω̂abR̂cdεabcd − 2i`δΨ

A
Γ5ρ̂A +

1

2
δÂ ∗F̂

) ∣∣∣∣
on-shell

z=dz=0

. (7.136)

We can now asymptotically expand all fields in the above formula and write only the finite
contributions, as all other contributions vanish when we set z = dz = 0. The result has to be
compared to the variation of the left hand side, which reads

δW =

∫

∂M

δJ Λ ∧ JΛ =

∫

∂M

(
δEi ∧ Ji +

1

2
δωij ∧ Jij + JA+ ∧ δψA+ + J ∧ δA

)
. (7.137)

This procedure yields the explicit form of the currents

Ji =
1

2
εijk

[
2

`
Ej∧(τk + 2τ̃k) + ψ

A
+∧γjkζA−

]
,

Jij = 0 ,

J =
1

2
εijk F̃

i3 V j∧V k

∣∣∣∣
z=0

,

JA+ = −2 iEi∧γiζA− +A(1) ∧ εAB ψB+ . (7.138)

Here we find that the current associated to Lorentz transformation Jij vanishes, because the
spin connection is a composite field, as we expect. The other composite fields (Siµ and ψA−µ)
have not been taken into account as sources.
The Hodge dual of the obtained expressions yields the Noether currents

Jµi = −1

`

(
(τµi + 2τ̃µi)− E

µ
i(τ

k
k + 2τ̃kk)

)
+

i

e3
εµνρ ψ̄A+νγiζA−ρ ,

JµA+ = − 2i

e3
εµνργνζA−ρ +

1

e3
εµνρA(1)νεAB ψ

B
+ρ ,

Jµ = −gµν(0) F̃νz =
1

2`
gµν(0)A(1)ν , (7.139)

where in the first equation the traces τkk, τ̃kk are defined using the vielbein tensor (e.g.
τkk ≡ τkµEµk).
Let us conclude this analysis by recognising the holographic stress tensor Jµν = JµiE

i
ν : as a

consistency check, we remember that in the bosonic case this quantity is traceless and this is
confirmed by setting fermions to zero. In the supersymmetric case, the trace of τµν + 2τ̃µν is
not necessarily zero and it has to be computed from the conservation law of the local Weyl
symmetry. We now move on to the computation of the conservation laws that these operators
must obey.
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Conservation laws

We now derive the explicit form of the conservation laws that the quantum operators have
to satisfy. In the next paragraph we will prove that they are satisfied. The variation of the
quantum action evaluated on the corresponding symmetry transformation of the fields must
vanish: an integration by parts yields the following conservation laws

DJi = Sj Jij −
i

`
JA+γiψA− + Ski Jkj Ej −

i`

2
Sj i JA−γjψA+ ,

DJij = 2E[i Jj] −
i

2
JA+γijψA+ −

i

2
JA−γijψA− ,

0 = ∂µ

[
Eµi

(
Jij E

j − i`

2
JA−γiψA+

)]
+ Ei Ji +

1

2
JA+ ψA+ −

1

2
JA− ψA− ,

dJ =
1

2`
εAB

(
JA+ ψB+ + JA− ψB−

)
,

∇JA+ =
1

2`
γijψA− Jij + i γi ψA+ Ji −

i`

2
Si γi JA− + 2 εAB ψB− J +

1

`
ψiA− Jij E

j

− i

2
ψiA− JB−γiψB+ , (7.140)

∇JA− =
1

2`
γijψA+ Jij + 2 εAB ψB+ J −

i

`
Ei γi JA+ −

1

`
ψiA+ Jij E

j +
i

2
ψiA+ JB−γiψB+ .

The above conservations laws reduce to the bosonic ones (7.59), as it can be checked in the
absence of fermions and of the U(1) gauge field. Moreover, we can notice that fermions are
sources for the electromagnetic current J .
Let us now comment on the third equation in (7.140): since Jij = JA− = 0, we have

Ei ∧ Ji = −1

2
JA+ ∧ ψA+ . (7.141)

By plugging in the explicit expression of the currents, we find the trace of the bosonic part
of the holographic stress tensor, namely

(2τ̃ + τ)l l = −i ` εijkψ̄A+jγiζA− k , (7.142)

which can be proven to be consistent with the results achieved in [58]. We notice that the
trace of the bosonic part is different from zero, but this is to be expected from the structure of
the superalgebra. This does not mean that we have an anomaly, because an anomaly would
imply having different contributions to J i ∧ Ei than the one given in eq. (7.141).

Similarly, both Jµν and τµν + 2τ̃µν are not symmetric: the second conservation law gives
the antisymmetric part as E[i ∧ Jj]= i

4J+γij ∧ψ+. This indicates that, with our gauge fixing
choice, Jµν is not, as in pure gravity, the traceless Belinfante-Rosenfeld stress tensor. However,
we know that, in principle, it is possible to use an ambiguity in definitions of Noether currents
to construct so-called ‘improved’ stress tensor which would be symmetric and traceless.
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The Ward identities

We now prove that the Ward identities are indeed satisfied, by requiring the effective
action to be invariant under the superconformal transformations. It is important to notice
that even if all the expressions are evaluated on shell in the bulk Supergravity, they will yield
off shell identities for the QFT side, computed on the curved background.
This result will be achieved by noticing that we can identify the variation of the effettive action
with the bulk/boundary gauge transformations written in terms of the gauge parameters
Λ̂(x, z) = {jab, pa, εA±, λ̂} and Λ(x) =

{
θij , ξi, σ, ηA±, λ

}
, namely

δW ≡ δΛW = δΛ̂W
∣∣on-shell
z=dz=0

. (7.143)

The above expression vanishes provided that the coefficient of the independent symmetry pa-
rameters vanish as well. This method will thus allow to obtain the four dimensional expression
of the Ward identities and clearly makes use of an already renormalised quantum effective
action.
Let us start by integrating (7.136) by parts

δW =

∫

∂M

[
`2

4
jabDR̂cdεabcd −

`2

4

(
2

`2
paV b +

1

`
εAΓabΨA

)
R̂cdεabcd + 2i`εAΓ5Dρ̂A

− 2i`

(
1

4
jabΨ

A
Γab +

i

2`
paΨ

A
Γa +

1

2`
λεABΨB −

1

2`
ÂεABεB −

i

2`
εAΓaV

a

)
Γ5ρ̂A

− 1

2
λ d ∗F̂ + εAΨBεAB

∗F̂

]∣∣∣∣
on-shell

z=dz=0

. (7.144)

By making use of the Bianchi identities (7.62), we obtain

δW =

∫

∂M

[
`

4
jabΨ

A
Γcdρ̂Aεabcd −

`2

4

(
2

`2
paV b +

1

`
εAΓabΨA

)
R̂cdεabcd

+ 2i`

(
1

2`
ÂεABεAΓ5ρ̂B −

i

2`
εAΓ5Γaρ̂AV

a +
1

4
R̂abεAΓ5ΓabΨA −

1

2`
εABF̂ εAΓ5ΨB

)

− 2i`

(
1

4
jabΨ

A
Γab +

i

2`
paΨ

A
Γa +

1

2`
λεABΨB −

1

2`
ÂεABεB −

i

2`
εAΓaV

a

)
Γ5ρ̂A

− 1

2
λ d∗F̂ + εAΨBεAB

∗F̂

]∣∣∣∣
on-shell

z=dz=0

. (7.145)

Let us start from the Lorentz transformations: the coefficient in front of jab is given by

`

4
jabΨ

A
Γcdρ̂A εabcd −

i`

2
jabΨ

A
ΓabΓ5ρ̂A = 0 (7.146)

and identically vanishes, due to the identity (B.7) of four-dimensional gamma matrices.
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As for the terms containing pa, one finds, up to terms which vanish in the z → 0 limit,

−1

2
paV bR̂cdεabcd + paΨ

A
ΓaΓ5ρ̂A . (7.147)

The above expression disappears at the boundary by effect of the equations of motion (see
(7.71)),

−1

2
paV bR̂cdεabcd + paΨ

A
ΓaΓ5ρ̂A =

1

2
paεabcdV

b

(
F̂ cdF̂ − 1

6
F̂ef F̂

efV cV d

)
, (7.148)

since the two terms on the right hand side are zero at z = 0.

The terms involving the parameter εA are given by

iÂεABεAΓ5ρ̂B + εAΓ5Γaρ̂AV
a +

i`

2
R̂abεAΓ5Γabρ̂A − iεABF̂ εAΓ5ΨB

− `

4
εAΓabΨAR̂

cdεabcd + iÂεABεBΓ5ρ̂A − εAΓaΓ5ρ̂AV
a + εAΨBεAB

∗F̂

= εA(−2ΓaV
aΓ5ρ̂A + εABΨB ∗F̂ − iεABF̂Γ5ΨB) (7.149)

and all vanish as a consequence of the equations of motion of the gravitino (7.71).

Finally, the terms depending on λ̂ and find

λ̂

(
−1

2
d∗F̂ − iεABΨBΓ5ρ̂A

)
, (7.150)

which vanishes by virtue of the gauge field equations of motion in (7.71).

This concludes the proof of δW = 0, which, as said, corresponds to proving that the equa-
tions (7.140), which were derived from δW = 0 in the three-dimensional notation, are indeed
satisfied. This can be seen as a consequence of the absence of any anomaly, in particular
conformal anomaly, in d = 3.
Note that, in the above derivation, we have neglected the curvature-contraction terms occur-
ring in the general expression of the symmetry variations of the fields which one can check to
give vanishing contributions at the boundary.
We now conclude this Section with some comments on the obtained results and on the possible
future developments.

7.8 Discussion

In this Section we developed in detail the holographic framework for a N = 2 pure AdS4 Su-
pergravity in first order formalism, including all the contributions in the fermionic fields. This
analysis generalises the results of [58, 62, 63] and includes a general discussion of the gauge-
fixing conditions on the bulk fields, which then lead to the asymptotic symmetries at the
boundary. The corresponding currents of the boundary theory are constructed and shown to
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satisfy the associated Ward identities, once the field equations of the bulk theory are imposed.

We then conclude that the boundary terms originally introduced in [46] to restore the
Supersymmetry invariance of the action also manage to regularise the theory from an asymp-
totic point of view. In this sense, the vanishing of the curvatures at the boundary (7.69),
which is a direct consequence of the way the theory has been regularised, proved to be the
key to obtain a finite resulting dual theory. They indeed cancel all diverging terms appearing
in (7.136) and allow to derive the super-Schouten tensor, genearlising the bosonic expression
and the conformino.
These results then prove that this procedure actually generalised the topological regularisa-
tion to the supersymmetric case.

By working in first order formalism, we were able to keep the full superconformal structure
of the vacuum theory manifest in principle, even if only a part of it is realized as a symmetry
of the theory on ∂M , as the rest appears as a non-linear realization on ∂M .
It would be now interesting to choose specific solutions on the gravity side: for example
we could consider a special choice for which ψA−µ ∝ ψA+µ. We expect the dual theory to
describe fluctuations around a maximally symmetric three dimensional background, AdS3,
dS3 or Mink3 depending on the explicit form of Schouten tensor and conformino. Such theory
would be obtained as a suitable projection on the OSp(2|4) asymptotic symmetry group. This
research line would be interesting for including the mentioned Unconventional Supersymmetry
in the gauge/gravity duality framework.
For this specific reason, we also refrained from imposing γµψ±µ = 0 in the dual theory,
because this would mean setting the spin-1/2 field χ to zero. We shall pursue this objective
in a future investigation, where it may be necessary to generalise the FG choice, which at the
same time could allow for non vanishing spin-1/2 fields and which would put special conformal
transformations on the same level as other transformations.
Furthermore, as anticipated, the results presented in this Section are a first step towards an
extension to N > 2 bulk Supergravity, which would be relevant for extending the work [34]
to a holographic context.

103



A Differential form conventions and Levi Civita symbol

In this Appendix we state some useful formulas used throughout the text involving differential
forms. Given a smooth m-dimensional manifold M , a p-form is locally expressed in terms of
differentials dxµ in the following way

ω(p) =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp , (A.1)

where the Einstein summation convention is understood. If the starting manifold is endowed
with a metric structure, the Hodge dual is a map ∗ : Ωp(M)→ Ωm−p(M) can be defined as

∗ω =

√
g

p!(m− p)!εµ1...µmω
µ1...µpdxµp+1 ∧ . . . ∧ dxµm .

The Levi-Civita Symbol appearing in the above definition and in Part II of this thesis is
defined as

ε0123 = −ε0123 = 1 (A.2)

and it is related to the d = 3 symbol in the following way

εijk := εijk3, εijk := −εijk3 =⇒ ε012 = ε012 = 1. (A.3)

B Gamma matrices and spinors conventions

In this Appendix, we clarify the convention used for spinors and gamma matrices, appearing
in the text. The D = 5 gamma matrices and charge conjugation matrix appearing in (6.1)
are defined as

Γ̃a := iΓaΓ5, Γ̃4 := Γ5, C5 := Γ̃0Γ̃4 = Γ0, (B.1)

in terms of the D = 4 gamma matrices, which are given here in terms of the Pauli matrices
as

Γi = σ1 ⊗ γi , γ0 = σ2 , γ1 = iσ1 , γ2 = iσ3 ,

Γ3 = iσ3 ⊗ 1 , Γ5 = iΓ0Γ1Γ2Γ3 = −σ2 ⊗ 1 =

(
0 i12

−i12 0

)
.

(B.2)

Here ηab = diag(+,−,−,−) and a, b, . . . = 0, 1, 2, 3 and the Clifford algebra is given by

{Γa,Γb} = 2ηab14×4. (B.3)

The matrices defined in (B.1) satisfy the following relations

Γ̃ab = Γab, Γ̃a4 = iΓa, C5 = C−1
5 = −Ct5 = −C∗5 , C−1

5 Γ̃AC5 = (Γ̃A)T , (B.4)
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where A = (a, 4). In particular, the five dimensional charge conjugation matrix C5 acts on
four dimensional gamma matrices in the usual way

C−1
5 ΓaC5 = −(Γa)

T . (B.5)

In these cases we will just indicate the charge conjugation matrix as C. These last relation
allows to derive a general property of the antisymmetric product of k gamma matrices

(CΓa1...ak)T = −(−1)
k(k+1)

2 CΓa1...ak , (B.6)

which is particularly useful, when ones exchanges the order of spinors in bilinears. Since in
four dimensions one cannot have more than 4 antisymmetrised different gamma matrices, one
has the following important relation

1

2
εabcd Γcd = iΓabΓ5 , (B.7)

where the Levi-Civita symbol has been defined in the previous Appendix.

Let us now focus on the spinor conventions: the Dirac conjugate of a four dimensional
spinor is given by

Ψ̄ := Ψ†Γ0 = −iΨ†Γ̃0Γ̃4, (B.8)

whereas Majorana spinors satisfy the reality condition

Ψ = Ψ∗ = −C5Ψt. (B.9)

Gravitini are Majorana spinors, which are also 1-forms, which have to be expanded along
both bosonic and fermionic direction of superspace, after the Principal bundle breakdown has
been performed.
Let us state here properties of bilinears involving gravitini: they descend from (B.6) and read

ΨAΦB = −ΦBΨA,

ΨAΓaΦB = ΦBΓaΨA

ΨAΓabΦB = ΦBΓabΨA

ΨAΓaΓ5ΦB = −ΦBΓaΓ5ΨA

ΨAΓ5ΦB = −ΦBΓ5ΨA,

(B.10)

where A,B are R-symmetry indices.
For the purposes of this thesis, gravitini are decomposed with respect to the Γ3 matrix, instead
of the usual Γ5: this is due to the fact that we always consider asymptotic limits along the
radial direction identified by the a = 3 component. We define the projectors

P± =
1∓ iΓ3

2
⇒ P±Ψ± = Ψ± , Ψ± = Ψ±P∓ , (B.11)
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provided that Γ3 has eigenvalues

− iΓ3Ψ± = ±Ψ± . (B.12)

For the sake of completeness, we state here the D = 3 relation corresponding to (B.7)

γij = iεijkγk, (B.13)

where i, j = 0, 1, 2.

C Radial foliation and Gaussian coordinates

Let us consider a pseudo Riemannian spacetime manifold M and introduce a radial foliation
(Σr)r∈R in such a way that each hypersurface is described by some coordinate system xµ and
that xµ̂ = (r, xµ) is a well-behaved local coordinate system on M [64]. This choice introduces
a natural basis on TpM

∂r, ∂µ,

whose dual basis on T ∗pM is dxµ̂. In particular, we have dr(∂r) = 1. We now write the
following vector identity

∂r = Nn + β, (C.1)

where n is a normal spacelike vector whose norm is g(n,n) = −1, N is a positive real function
called lapse and β = βµ∂µ is a vector tangent to Σr called shift vector. The identity (C.1)
states that the normal vector Nn and the vector induced by the radial coordinate r in general
differ by an horizontal vector β. They only coincide if the coordinates of the foliation satisfy
xµ = const.
We can now compute the components of the metric:

grr = g(∂r,∂r) = −N2 + βµβµ,

grµ = g(∂r,∂µ) = βµ, (C.2)
gµν = g(∂µ,∂ν) ≡ γµν .

The obtained metric is then

gµ̂ν̂ =

(
grr grr
grr gµν

)
=

(
−N2 + βµβµ βµ

βµ γµν

)
, (C.3)

which can be equivalently rewritten as

g = −N2 dr2 + γµν(dxµ + βµdr)(dxν + βνdr). (C.4)

The lapse function and the shift vector are a redundancy of the theory, as the choice of the
foliation is arbitrary. The metric written above can be further simplified by choosing the
gauge fixing β = 0 and N = 1. This means that ∂r truly coincides with the unit normal
vector n. The obtained coordinates are called Gaussian normal (radial) coordinates and the
spacetime metric tensor can be simplified to

g = −dr2 + γµνdxµdxν . (C.5)
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D Asymptotic expansions

D.1 Spin connection

In pure AdS4 gravity, a spin connection ω̊abµ̂ (x, z) satisfies the torsion constraint T̂ aµ̂ν̂ =

D̊µ̂V a
ν̂ − D̊ν̂V a

µ̂ = 0. In the supersymmetric case, the vielbein satisfies instead the super-
torsion constraint R̂a

µ̂ν̂ = D̂µ̂V a
ν̂ − D̂ν̂V a

µ̂ − iΨA[µ̂ΓaΨAν̂] = 0, where the contribution of the
gravitini can be taken into account as a contorsion term in the spin connection

ω̂ab = ω̊ab + Cab , Cab = Cabµ̂ dx
µ̂ . (D.1)

We now explicitly evaluate this contribution: from the decomposition

D̂µ̂V a
ν̂ = D̊µ̂V a

ν̂ + Caν̂µ̂ , (D.2)

we find the following expression

R̂a
µ̂ν̂ = 0 ⇔ Cλ̂[µ̂ν̂] = − i

2
Ψ
A
µ̂Γλ̂ΨAν̂ .

The solution is obtained by taking different permutations of the expression above

Cλ̂µ̂ν̂ =
i

2
Ψ
A
λ̂Γµ̂ΨAν̂ −

i

2
Ψ
A
µ̂Γλ̂ΨAν̂ +

i

2
Ψ
A
λ̂Γν̂ΨAµ̂ , (D.3)

which can be restated in the following way

Cabµ̂ =
i

2
V aν̂Ψ

A
ν̂ ΓbΨAµ̂ −

i

2
V bν̂Ψ

A
ν̂ ΓaΨAµ̂ +

i

2
V aν̂V bλ̂Vcµ̂ Ψ

A
ν̂ ΓcΨAλ̂ . (D.4)

Note that, since Ψ
A
ν̂ ΓcΨAλ̂ = −Ψ

A
λ̂ΓcΨAν̂ , the tensor Cabµ̂ is explicitly antisymmetric in ab.

The various components of the contorsion asymptotically depend on fermions in the fol-
lowing way

Ci3z = Êiµ
(
ϕA+µϕA−z −

z2

`2
ϕA−µϕA+z

)
+

i

2

(
ϕA−zΓ

iϕA−z +
z2

`2
ϕA+zΓ

iϕA+z

)
,

Cijz =
iz

`
Êµ[i

(
ϕA+µΓj]ϕA+z + ϕA−µΓj]ϕA−z

)
+

z

2`
Êiµ Êjν

(
ϕA−µϕA+ν − ϕA+µϕA−ν

)
,

Ci3µ =
z

2`
Êiν

(
ϕA+νϕA−µ − ϕA−νϕA+µ

)
+

iz

2`

(
ϕA+zΓ

iϕA+µ + ϕA−zΓ
iϕA−µ

)

− iz

2`
ÊiνÊjµ

(
ϕA+νΓjϕA+z + ϕA−νΓjϕA−z

)
, (D.5)

Cijµ = iÊν[i

(
ϕA+νΓj]ϕA+µ +

z2

`2
ϕA−νΓj]ϕA−µ

)
+

i

2
ÊiνÊjλÊkµ

(
ϕA+νΓkϕA+λ +

z2

`2
ϕA−νΓkϕA−λ

)

and from eq. (7.27) for the full spin-connection we obtain

ω̂i3z =

(
ϕAi+ +

i

2
ϕA−zΓ

i

)
ϕA−z +

z2

`2

(
−ϕAi− +

i

2
ϕA+zΓ

i

)
ϕA+z ,
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ω̂ijz =
z

`

(
iϕ
A[i
+ Γj]ϕA+z + iϕ

A[i
− Γj]ϕA−z + ϕ

A[i
− ϕ

j]
A+

)
,

ω̂i3µ =
1

z
Êiµ −

1

2
kµνÊ

iν +
z

2`

(
ϕAi+ ϕA−µ − ϕAi− ϕA+µ + iϕA+zΓ

iϕA+µ

− iϕAi+ ΓµϕA+z + iϕA−zΓ
iϕA−µ − iϕAi− ΓµϕA−z

)
, (D.6)

ω̂ijµ = ω̊ijµ + iϕ
A[i
+ Γj]ϕA+µ +

i

2
ϕAi+ Γµϕ

j
A+ +

z2

`2

(
iϕ
A[i
− Γj]ϕA−µ +

i

2
ϕAi− Γµϕ

j
A−

)
.

We see that the O(1/z) term of ω̂i3µ is not modified by the fermions and this is consistent
with the asymptotically AdS behaviour of the extrinsic curvature.
The most general gauge fixing with Ψ±z 6= 0, is

ω̂i3z = wi(x, z) ,

ω̂ijz =
z

`
wij(x, z) , (D.7)

where wi, wij = O(1) and the boundary fields are

ω̂i3µ =
1

z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) ,

ω̂ijµ = ωijµ +
z

`
ωijµ(1) +

z2

`2
ωij(2)µ +

z3

`3
ωij(3)µ +O(z4) , (D.8)

where now Siµ 6= S̃iµ, τ iµ 6= τ̃ iµ and ωijµ 6= ω̊ijµ .
As particular cases, let us notice that when ΨA

−z = 0 and ΨA
+z 6= 0, the behaviour (D.6)

yields wi = O(z2) and all other components remain the same. Furthermore, if we set to zero
both components ΨA

±z = 0, we have exactly wi = 0.
This behaviour of wi and wij that we just described is summed up in the table (7.84).

D.2 The supercurvatures

In this Subsection we evaluate, without imposing any gauge fixing conditions on the radial
components of the gravitini ΨA

z±, the first contributions in the asymptotic expansion of the
super field strengths, decomposing them with respect to a world-volume basis on the four-
dimensional spacetime. Let us generically denote by R̂Λ = {R̂ab, R̂a, ρ̂A, F̂} any 2-form field
strengths given by eq. (7.61),

R̂Λ =
1

2
R̂Λ
µ̂ν̂dxµ̂ ∧ dxν̂ =

1

2
R̂Λ
µνdxµ ∧ dxν + R̂Λ

µzdx
µ ∧ dz . (D.9)

We use the following notation for the supercurvature expansion

R̂Λ
µ̂ν̂ =

∞∑

n=nmin

(z
`

)n
R̂Λ

(n)µ̂ν̂ . (D.10)

where nmin denotes the minimal power of z
` in the expansion, that is the order of the most

divergent term.
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From the supertorsion constraint R̂a
µ̂ν̂ = 2 D̂[µ̂V

a
ν̂] − iΨ

A
µ̂ΓaΨA

ν̂ = 0, with nmin = −1, we
find the following expansion coefficients in terms of the boundary quantities

R̂i
(−1)µν = 2D[µE

i
ν] − iψ

A
+[µγ

iψAν]+ = 0 ,

R̂i
(0)µν = 2ωij(1)[µEj|ν] − 2 i ζ

A
+[µγ

iψAν]+ = 0 , (D.11)

R̂i
(1)µν = 2D[µS

i
ν] + 2ωij(2)[µEj|ν]

−i
(
ζ
A
+[µγ

iζAν]+ + 2 Π
A
+[µγ

iψAν]+ + ψ
A
−[µγ

iψAν]−

)
= 0 ,

R̂i
(2)µν = 2D[µτ

i
ν] + 2ωij(1)[µSj|ν] + 2ωij(3)[µEj|ν]

−2 i
(
ζ
A
+[µγ

iΠA
ν]+ + ∆

A
+[µγ

iψAν]+ + ζ
A
−[µγ

iψAν]−

)
= 0 ,

where we identified ∆A
+µ = ψA(3)+µ. Note that the last equation gives the expression for ωij(3)µ

in the supersymmetric case. The next supertorsion components to be expanded are R̂i
µz,

which behave as

R̂i
(0)µz =

1

2`

(
S̃iµ − Siµ

)
− 1

2
wij(0)Ejµ

− i

2

(
ψA+µγ

iψA+z + ψA−µγ
iψA−z

)
= 0 , (D.12)

R̂i
(1)µz =

1

`

(
τ̃ iµ − τ iµ

)
− 1

2
wij(1)Ejµ −

i

2

(
ψA+µγ

iζA+z

+ ψA−µγ
iζA−z + ζA+µγ

iψA+z + ζA−µγ
iψA−z

)
= 0 . (D.13)

The R̂3 components of the supertorsion start at nmin = 0 and in the vicinity of the boundary
read

R̂3
(0)µν = −2

`

(
S[µν] − S̃[νµ]

)
− 2 iψA+[µψA−ν] = 0 ,

R̂3
(1)µν = −2

`

(
τ[µν] − 2 τ̃[νµ]

)
− 2 i

(
ψA+[µζA−ν] + ζA+[µψA−ν]

)
= 0 , (D.14)

while the projected to dz ∧ dxµ are

R̂3
(−1)µz =

1

2
wi(0)Eiµ −

i

2
ψA+µψA−z = 0 ,

R̂3
(0)µz =

1

2
wi(1)Eiµ −

i

2

(
ψA+µζA−z + ζA+µψA−z

)
= 0 ,

R̂3
(1)µz =

1

2
wi(0)Siµ +

1

2
wi(2)Eiµ −

i

2
ψA−µψA+z

− i

2

(
ψA+µΠA−z + ζA+µζA−z + ΠA+µψA−z

)
= 0 , (D.15)

where ΠA
−z = ψA(2)−z. The last equation gives the expression for wi(2).
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Focusing now on the AdS supersurvature R̂ij = Rij+ 4
`2
V

[i
+V

j]
− −1

`

(
Ψ
A
+ΓijΨA

− + Ψ
A
−ΓijΨA

+

)
,

which starts at nmin = 0, we get

R̂ij
(0)|µν = 2Rijµν − 4E

[i
[µS

j]
ν] −

2

`
ψ
A
−µγ

ijψA+ν = 0 , (D.16)

R̂ij
(1)µν = 2D[µω

ij
(1)|ν] −

4

`2
E

[i
[µ(τ

j]
ν] + 2τ̃

j]
ν])

−2

`

(
ψ
A
−[µγ

ijζA+ν] + ψ
A
+[µγ

ijζA−ν]

)
,

R̂ij
(−1)µz = E

[i
µw

j]
(0) −

1

2`
ψ
A
+µγ

ijψA−z ,

R̂ij
(0)µz = − 1

2`

(
−2`E

[i
µw

j]
(1) + ωij(1)µ + ψ

A
+µγ

ijζA−z

)
,

R̂ij
(1)µz =

1

2
Dµwij(0) −

1

`
ωij(2)µ − S̃

[i
µw

j]
(0)

− 1

2`

(
ψ
A
−µγ

ijψA+z + ψ
A
+µγ

ijΠA
−z + Π

A
+µγ

ijψA−z

)
.

Next, from R̂i3 = D̂ωi3 − 1
`2
V iV 3 − i

2`

(
Ψ
A
+ΓiΨA

+ −Ψ
A
−ΓiΨA

−

)
, we find nmin = 1 and

R̂i3
(1)µν = −2

`
D[µS̃

i
ν]+

2

`
ωij(2)[µEj|ν] +

i

`

(
ψ
A
−[µγ

iψA−ν] − ζ
A
+[µγ

iζA+ν]

−2 Π
A
+[µγ

iψA+ν]

)
,

R̂i3
(0)µz =

1

2
Dµwi(0) +

i

`
ψ
A
−µγ

iψA−z ,

R̂i3
(1)µz =

1

2
Dµwi(1) + ω(1)|ij

µ w(0)|j +
1

2 `2
(2τ̃ iµ + τ iµ) +

1

2`
wij(0)Sj|µ

+
i

`

(
ψ
A
−µγ

iζA−z + ζ
A
−µγ

iψA−z

)
, (D.17)

where we have also exploited the vanishing supertorsion equations (D.12) and (D.13).
As regards to the graviphoton super field strength F̂ = dÂ − 2 εABΨ+AΨ−B, we obtain

nmin = 0 and

F̂(0)µν = 2 ∂[µAν] − 4 εABψ
A
+[µψ

B
−ν] = 0 , (D.18)

F̂(1)µν = 2 ∂[µA(1)ν] − 4
(
ψ
A
+[µζ

B
−ν] + ζ

A
+[µψ

B
−ν]

)
εAB ,

F̂(−1)µz =
1

2
∂µA(−1)z − ψ

A
+µψ

B
−zεAB ,

F̂(0)µz =
1

2
∂µA(0)z −

1

2`
A(1)µ − ψ

A
+µζ

B
−zεAB ,

F̂(1)µz =
1

2
∂µA(1)z −

1

`
A(2)µ −

(
ψ
A
−µψ

B
+z + ψ

A
+AµΠB

−z

)
εAB .

At last, we analyse the gravitini supercurvatures: the positive chirality reads ρ̂+A =
dΨ+A + 1

4 ω̂
ijΓijΨ+A − 1

2` εABÂΨ+B + i
` V

i
+ΓiΨ−A − 1

2` Ψ+AV
3 which starts at nmin = −1/2
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and leads to

ρ̂(−1/2)+Aµν = 2∇[µψ
A
+ν] +

2i

`
γ[µψ

A
−ν] = 0 , (D.19)

ρ̂(1/2)+Aµν = 2∇[µ]ζ+Aν] +
2

`
γ[µζ−Aν] +

1

2
γijω

ij
(1)[µψ+Aν] −

1

`
A(1)[µψ+Bν]εAB ,

ρ̂(−3/2)+Aµz =
i

2`

(
γµψ−Az −

i

2
A(−1)zψ+BµεAB

)
,

ρ̂(−1/2)+Aµz =
i

2`
γµζ−Az +

1

4`

(
A(0)zψ+Bµ +A(−1)zζ+Bµ

)
εAB −

1

2`
ζ+Aµ ,

ρ̂(1/2)+Aµz =
1

2
∇µψ+Az −

1

8
wijγijψ+Aµ +

i

4`

(
Siµ − S̃iµ

)
γiψ−Az −

1

`
Π+Aµ

− i

4
wiγiψ−Aµ +

i2`

2`
γµΠ−Az+

1

4`

(
A(1)zψ+Bµ +A(−1)zΠ+Bµ +A(0)zζ+Bµ

)
εAB .

Finally, the negative chirality gravitino curvature ρ̂−A = dΨ−A+1
4 ω̂

ijΓijΨ−A− 1
2` εABÂΨ−B−

i
`V

i
−ΓiΨ+A + 1

2` Ψ−AV
3 has nmin = +1/2 and reads

ρ̂(1/2)−Aµν = 2∇[µψ−Aν] − i ` γiψ+A[µSiν] ,

ρ̂(3/2)−Aµν = ∇[µζ−Aν] −
i

2
` γiζ+A[µSiν] +

1

4
ωij(1)|[µγijψ−Aν]

− 1

2`
A(1)[µψ−Bν]εAB +

i

2`

(
τ i[µ + 2 τ̃ i[µ

)
γiψ+Aν] ,

ρ̂(−1/2)−Aµz =
1

2
∇µψ−Az +

1

4`
A(−1)z εABψ−Bµ +

i

4
γiw

i
(0)ψ+Aµ ,

ρ̂(1/2)−Aµz =
1

2
∇µζ−Az +

1

4`
A(0)z εABψ−Bµ +

i

4
γiw

i
(1)ψ+Aµ

− 1

2`
ζ−Aµ +

1

4`
A(−1)zζ−BµεAB . (D.20)

We observe that the R̂Λ
(nmin)µν components of R̂Λ = {R̂ab, R̂a, ρ̂A, F̂} define the curvatures

{Rij ,Ri,ρA,F, Ci,ΩA} of the N = 2 superconformal group OSp(2|4) discussed in Subsection
7.7 and given by eqs. (7.134). These expressions would all vanish in a vacuum theory having
OSp(2|4) isometries, but in our case the negative grading curvatures R̂i3

µν and ρ̂−Aµν do not
vanish and lead to contraction terms in the variation of the boundary fields, as we see in the
main text.

D.3 Equations of motion of the graviphoton

Here we analyse the relation between gauge fixing and asymptotic behaviour of the fields by
using radial field equations. In Appendix D.1, a similar problem was discussed for the spin
connection using the vanishing of the supertorsion.

Radial evolution of the graviphoton is given by the respective field equation in (7.71) that,
in components has the form

D̂ν̂F̂ν̂µ̂ =
i

e
εµ̂ν̂λ̂ρ̂ Ψ

A
ν̂ Γ5ρ̂B

λ̂ρ̂
εAB . (D.21)
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Using the conventions (A.3) and (7.21), the component µ̂ = µ acquires the form

D̂νF̂νµ + D̂zF̂zµ = − i

e
εµνλ

(
2Ψ

A
ν Γ5ρ̂

B
λz + Ψ

A
z Γ5ρ̂

B
νλ

)
εAB . (D.22)

For convenience, we factorise the relevant field strength components as

F̂zµ = −
(
z
`

)4
gµνF̂zν , ρ̂Aµz± =

(
z
`

)± 1
2 ΞAµ± ,

F̂µν =
(z
`

)4
Fµν , ρ̂Aµν± =

(
z
`

)∓ 1
2 ΞAµν± ,

(D.23)

where F̂µν = Fµν and the tensors F̂zµ, Fµν , ΞAµ± and ΞAµν± have to be expanded in power
series in z. The metric gµν(x, z) and its inverse gµν rise and lower the spacetime indices on
∂M. Recalling the FG metric (7.11) and the tensor kµν = ∂zgµν introduced by eq. (7.28), as
well as using the Christoffel symbols

Γ̂µνz = −1

z
δµν +

1

2
kµν , Γ̂µzz = 0 = Γ̂zzµ ,

Γ̂zµν = −1

z
gµν +

1

2
kµν , Γ̂zzz = −1

z
,

(D.24)

the radial graviphoton equation becomes

DνF νµ −
(
kµν − k

2
gµν
)

F̂νz + gµν∂zF̂νz (D.25)

= − i

ê3
εµνλ

(
2ϕA+νΓ5ΞBλ+ + 2ϕA−νΓ5ΞBλ− + ϕA+zΓ5ΞBνλ+ + ϕA−zΓ5ΞBνλ−

)
εAB .

Now we calculate F̂µz, ΞAµ± and ΞAµν± defined in (D.23). Evaluation of the components

F̂µ̂ν̂ = ĝµ̂α̂ĝν̂β̂
(
∂α̂Âβ̂ − ∂β̂Âα̂ − 2εAB Ψ

A
α̂ΨB

β̂

)
,

ρ̂Aµ̂ν̂ = 2D̂[µ̂ΨA
ν̂] −

1

`
εABÂ[µ̂ΨB

ν̂] −
i

`
ΓaΨ

A
[µ̂V

a
ν̂] (D.26)

leads to

F̂µz = ∂µÂz − ∂zAµ −
2`

z
εAB ϕ

A
+µϕ

B
z− −

2z

`
εAB ϕ

A
−µϕ

B
z+ ,

Fµν = gµαgνβ
(
Fαβ − 4εAB ϕ

A
+αϕ

B
−β
)

= 0 (D.27)

and, by means of the rescalings (7.79), we get

ΞAµ± = DµϕA±z −
1

4

(z
`

)1∓1
wijΓijϕ

A
±µ −

(z
`

)∓1
∂zϕ

A
±µ −

1

2`
εAB Aµϕ

B
±z

∓ i

2
wiΓiϕ

A
∓µ +

1

2`

(z
`

)∓1
εAB Âzϕ

B
±µ ±

i

`

(z
`

)∓2
Ei±µΓiϕ

A
∓z ,

ΞAµν± = 2D[µϕ
A
ν]± ±

2i

`
Ei±[µΓiϕ

A
ν]∓ −

1

`
εAB A[µϕ

B
ν]± . (D.28)
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We also assume that the gauge-fixing functions are

Âz =
`

z
A(−1)z +A(0)z +

z

`
A(1)z +O(z3) ,

Âµ =
`

z
A(−1)µ +Aµ +

z

`
A(1)µ +

z2

`2
A(2)µ +O(z3) ,

ϕA+µ = ϕA(0)+µ +
z

`
ϕA(1)+µ +O(z2) , (D.29)

in general allowing the linear terms (in contrast to eq. (7.86) valid in pure gravity), where E±
expand as (7.80), and we find

F̂µz =
`

z2
A(−1)µ +

`

z

(
∂µA(−1)z − 2εAB ϕ

A
(0)+µϕ

B
(0)z−

)
+O(1) ,

ΞAµ+ =
`

2z2

(
A(−1)z ε

AB ϕB+µ + 2iEiµΓiϕ
A
(0)−z

)
+

1

z

(
1

2
εAB A(0)zϕ

B
(0)+µ − ϕA(1)+µ

)
+O(1) ,

Fµν , ΞAµ−, ΞAµν± = O(1) . (D.30)

Remembering that kµν = O(z), the graviphoton equation (D.25) then yields

`

z3
: A(−1)µ = 0 ,

`

z2
: ∂µA(−1)z =

(
2ϕA(0)+µ −

1

e3
g(0)µσ ε

σνλEiλϕ
A
(0)+νΓ5Γi

)
εABϕ

B
(0)−z ,

1

z
: 0 = εµνλ ϕA(0)+νΓ5

(
1

2
A(0)zϕ

A
(0)+µ + ϕB(1)+µεAB

)
(D.31)

and all other terms are finite. We used the fact that the term ϕA+νΓ5ϕA+λ is symmetric in (νλ)
so it vanishes when contracted with εσνλ. From the last equation in (D.31), when ϕA(0)+µ 6= 0

(and otherwise), we can choose a particular solution A(0)z = 0, ϕA(1)+µ ≡
(ζAµ+

0

)
= 0, which is

in agreement with eq. (7.103) obtained in the main text. This choice was also taken in [58]
in the context of N = 1 Supergravity. Then (D.29) implies

Âz =
`

z
A(−1)z +

z

`
A(1)z +O(z3) ,

Âµ = Aµ +
z

`
A(1)µ +

z2

`2
A(2)µ +O(z3) ,

ϕA+µ = ϕA(0)+µ +O(z2) . (D.32)

We also conclude that the gauge-fixing functions A(−1)z and ϕB(0)−z are correlated, which
is consistent with the table (7.84). In addition, the boundary graviphoton does not acquire
divergent terms of the form 1/z even when ϕA(0)z− 6= 0. We have not considered the logarithmic
terms here.

The graviphoton curvature behaves in the following way on the boundary,

F̂µz =
`

z

(
∂µA(−1)z − 2εAB ϕ

A
(0)+µϕ

B
(0)−z

)
− 1

`
A(1)µ +O(z) ,
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F̂µν = Fµν − 4εAB ϕ
A
+[µϕ

B
−ν] = 0 . (D.33)

This shows that it is possible to have the components F̂µz 6= 0 on the boundary z = 0,dz = 0,
with a suitable gauge choice which changes the asymptotics.

D.4 Equations of motion of the gravitini

The equation of motion that describes the dynamics of gravitini (7.71) in components has the
form

0 = εµ̂ν̂λ̂τ̂
(
V a
µ̂ ΓaΓ5ρ̂Aν̂λ̂ +

i

2
εABF̂µ̂ν̂Γ5ΨB

λ̂

)
+ e εABΨB

λ̂
F̂λ̂τ̂ , (D.34)

where the expression of the Hodge dual was used. The radial expansion of the gravitini is
given by the components τ̂ = µ which, with the conventions in Appendix A and (7.21), leads
to

0 = εµνλ
(
−V 3

z Γ3Γ5ρ̂Aνλ − 2V i
νΓiΓ5ρ̂Azλ +

i

2
εABF̂νλΓ5ΨB

z + i εABF̂zνΓ5ΨB
λ

)

+e εAB

(
ΨB
z F̂zµ + ΨB

ν F̂νµ
)
. (D.35)

Projecting the last expression along the two chiralities through the projector P± defined in
(B.11), we find

0 = εµνλ
(
∓iV 3

z Γ5ρ̂∓Aνλ − 2V i
νΓiΓ5ρ̂±Azλ +

i

2
εABF̂νλΓ5ΨB

∓z + i εABF̂zνΓ5ΨB
∓λ

)

+e εAB

(
ΨB
±z F̂zµ + ΨB

±ν F̂νµ
)
. (D.36)

Now we can use eqs. (D.23), (7.21), (7.83) and (7.119), to obtain the equation expressed in
terms of the auxiliary quantities with known asymptotic behaviour,

0 =
(z
`

)± 1
2
−1

εµνλ
(
∓i Γ5ΞAνλ∓ + 2ÊiνΓiΓ5ΞAλ±

)

+
(z
`

)± 1
2
εAB

(
−i εµνλΓ5ϕ

B
∓λ + e3 g

µνϕB±z

)
F̂νz

+
(z
`

)∓ 1
2
εAB

(
i

2
εµνλFνλΓ5ϕ

B
∓z + e3 F

νµϕB±ν

)
. (D.37)

All tensors appearing above are finite, except F̂µz and ΞAµ+. With this at hand, we identify
the leading orders of the z-component of the gravitini equations of motion (looking at the two
projections separately). By requiring the most divergent terms to vanish (that are (`/z)5/2

and (`/z)3/2 in the two chiralities), we get

0 = εijk
(
A(−1)z εAB Γiϕ

B
(0)+µE

µ
j + 2iΓijϕA(0)−z

)
,

0 = εµνλ
(

i ΞA(0)νλ+ − 2EiνΓiΞ
A
(0)λ−

)
(D.38)
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+εAB

(
−i εµνλϕB(0)+λ + e3(0) g

µν
(0)Γ5ϕ

B
(0)−z

)(
∂νA(−1)z − 2εAC ϕ

A
(0)+νϕ

C
(0)−z

)
,

where we multiplied the equations by Γ5. Since ∂νA(−1)z is correlated with ϕA(0)−z through
the condition (D.31), it can be used in the second equation.

It turns out that we can solve the gauge fixing functions from the first equation in (D.38),
in terms of the dynamic fields. Contracting it by εki′j′ , it acquires an equivalent form

0 = −A(−1)z εAB E
µ
[iΓj]ϕ

B
(0)+µ + 2iΓijϕA(0)−z . (D.39)

We can contract the above equation by Γij and use the contractions of the gamma matrices,
which in this case become ΓiΓ

i = 3, ΓijΓj = 2Γi and ΓijΓij = −6. As a result, we obtain a
solution which relates the gauge fixing ϕA(0)−z with the gauge fixing A(−1)z,

ϕA(0)−z =
i

6
A(−1)zε

AB ΓiϕB(0)+µE
µ
i . (D.40)

Then second equation in (D.31) becomes a linear differential equation in A(−1)z. One possible
solution is A(−1)z = 0 that, from eq. (D.40), yields ϕA(0)−z = 0. On the other hand, when
A(−1)z 6= 0, we can solve ϕA(0)+µ from the first equation in (D.38) as

A(−1)zϕ
A
(0)+µ = 2iEiµΓiϕ

B
(0)−zεAB (D.41)

and the differential equation becomes

A(−1)z∂µA(−1)z = 2iEkµϕ
A
(0)−z

(
2Γk + εijkΓ5Γij

)
ϕA(0)−z = 0 , (D.42)

where the last zero is due to antisymmetry of the fermionic bilinears, namely ϕA(0)−zΓ
kϕA(0)−z ≡

0 and ϕA(0)−zΓ5Γijϕ
A
(0)−z ≡ 0 so that each term in the sum vanishes independently. The only

solution of the above equation is A(−1)z = const.
Let us observe that taking A(−1)z = 0 and plugging ϕA(1)µ = 0 into the last equation in

(D.31), we are left with A(0)z = 0, meaning that, in this case, A(0)z = 0, ϕA(1)+µ = 0 is actually
the only solution to the aforesaid equation.
On the other hand, if we take A(−1)z 6= 0 and use (D.41) and ϕA(1)+µ = 0 into the last equation
of (D.31), we obtain

A(0)zE
λ
k ϕ

A
(0)−zΓ

kϕA(0)−z = 0 , (D.43)

which is identically satisfied since ϕA(0)−zΓ
kϕA(0)−z = 0. In particular, this means that, in this

case, the last equation in (D.31) is solved by (D.41) and ϕA(1)+µ = 0, without forcing A(0)z to
vanish.

Summing up the results, the following gauge fixings for Az and ϕA−z are allowed:

A(−1)z = 0 , A(0)z = 0 , ϕA(0)−z = 0 ,

A(−1)z = const , A(0)z 6= 0 , ϕA(0)−z = i
6 A(−1)z ε

ABΓµϕB(0)+µ ,
(D.44)
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where the first line can be seen as a special case of the general solution given in the second
line. If one imposes the condition Γµ̂Ψµ̂ = 0 as in [58], then eq. (D.40) implies ψ−z = 0 and
therefore A(−1)z = 0 as the only solution.

In this text, we mostly focus on the case ϕA(0)−z = 0 and we actually take the whole gauge-
fixing function ΨA

−z to vanish.
At the end, let us recall that, in our approach, the gauge-fixing functions are invariant under
the gauge transformations (δÂz = 0). Thus, the above solutions are consistent because, since
A(−1)z is constant, it also implies δA(−1)z = 0 for the asymptotic transformations.

E The rheonomic parametrizations

In this Section we presentWe finally study the asymptotic expansion of the rheonomic parametriza-
tions R̃abcd, ρ̃

A
ab and F̃ab. The procedure is the one described in the main text the applied

gauge fixing corresponds to A(−1)z = 0 and ΨA
z− = 0.

We start from the graviphoton field strength

F̂ = dÂ− ΨAΨBε
AB = F̂abV

aV b. (E.1)

By expanding both sides of this equation onto the basis dxµ̂∧dxν̂ , one can derive the explicit
expression of the rheonomic parametrizations

F̃ij =
(z
`

)3
Eµ[iE

ν
j]

(
∂µA(1)ν − 2εABψ

A
µ+ζ

B
ν− − 2εABζ

A
µ+ψ

B
ν−

)
+O(z4),

2F̃i3 = −1

`

(z
`

)2
A(1)µE

µ
i +

(z
`

)3
(
∂µA(1)z −

2

`
A(2)µ + 2εABψ

A
z+ψ

B
µ−

)
Eµi +O(z4), (E.2)

where we have used that F̂µν = O(z).

We now focus on the curvature of the gravitini. The analysis is the same as for the gauge
field strength: we take the expression of the curvature and its rheonomic expansion

ρ̂A = dΨA +
1

4
Γabω̂

abΨA − 1

2`
ÂεABΨB −

i

2`
ΓaΨ

AV a

= ρ̃AabV
aV b − i

2
ΓaΨBV

bF̃abε
AB − 1

4
Γ5ΓaΨBV

bF̃ cdεABεabcd (E.3)

and expand this relation onto the basis dxµ̂ ∧ dxν̂ to obtain

ρ̃Aij+ =
(z
`

) 5
2
Eµ[iE

ν
j]

(
∇µζAν+ +

i

`
Ekµγkζ

A
ν− +

1

4
ωkl(1)µγklψ

A
ν+−

1

4`
A(1)µψν+Bε

AB

+
i

4`
εlmnγ

lψBµ+E
m
ν E

ρnA(1)ρε
AB

)
+O(z7/2),

2ρ̃Ai3+ = −1

`

(z
`

) 3
2
Eµi ζ

A
µ+ +

(z
`

) 5
2
Eµi

(
∇µψAz+ −

1

4
wjk(0)γjkψ

A
µ+ +

1

2`
εABA(1)zψBµ+
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− 2

`
ΠA
µ+

)
+O(z7/2),

ρ̃Aij− =
(z
`

) 5
2
Eµ[iE

ν
j]

(
∇µψAν− +

i`

2
SkµγkψAν+

)
+O(z7/2)

2ρ̃Ai3− = −
(z
`

) 5
2
Eµi

(
1

`
ζAµ− +

i

4`
εABγjψBµ+A(1)νE

ν
j

)
+O(z7/2), (E.4)

where we used that ρ̂Aµν = O(z1/2).
This result allows to compute the spinor-tensor

Θ
ab|c
A = −2iΓ[aρ̃

b]c
A + iΓcρ̃abA , (E.5)

as an intermediate step necessary to find the remaining parametrizations. In particular we
obtain

Θ
ij|k
A+ = i

(z
`

) 5
2
(
−γiE[jµEk]ν + γjE[iµEk]ν + γkE[iµEj]ν

)(
∇µψAν− +

i`

2
S lµγlψAν+

)

+O(z7/2),

Θ
ij|3
A+ = −i

(z
`

) 5
2
γ[iEj]µ

(
1

`
ζAµ− +

i

4`
εABγ

kψBµ+A(1)ρE
ρ
k

)
−
(z
`

) 5
2
E[iµEj]ν

(
∇µζAν+

+
i

`
EkµγkζAν− +

1

4
ωkl(1)µγklψAν+−

1

4`
A(1)µψν+Bε

AB +
i

4`
εklmγ

kψBµ+E
l
νE

ρmA(1)ρεAB

)

+O(z7/2),

Θ
i3|j
A+ = i

(z
`

) 5
2
γ(iEj)µ

(
1

`
ζAµ− +

i

4`
εABγ

kψBµ+A(1)νE
ν
k

)
−
(z
`

) 5
2
E[iµEj]ν

(
∇µζAν+

+
i

`
EkµγkζAν− +

1

4
ωkl(1)µγklψAν+−

1

4`
A(1)µψν+Bε

AB +
i

4`
εklmγ

kψBµ+E
l
νE

ρmA(1)ρεAB

)

+O(z7/2),

Θ
i3|3
A+ = −1

`

(z
`

) 3
2
ζAµ+E

µi +
(z
`

) 5
2
Eiµ
(
∇µψAz+ −

1

4
wjk(0)γjkψAµ+ +

1

2`
εABA(1)zψ

B
µ+

− 2

`
ΠAµ+

)
+O(z7/2),

Θ
ij|k
A− = i

(z
`

) 5
2
(
−γiE[jµEk]ν + γjE[iµEk]ν + γkE[iµEj]ν

)(
∇µζAν+ +

i

`
ElµγlζAν−

+
1

4
ωlm(1)µγlmψAν+−

1

4`
A(1)µψν+Bε

AB +
i

4`
εlmnγ

lψBµ+E
m
ν E

ρnA(1)ρεAB

)
+O(z7/2),

Θ
ij|3
A− = − i

`

(z
`

) 3
2
γ[iEj]µζAµ+ + i

(z
`

) 5
2
γ[iEj]µ

(
∇µψAz+ −

1

4
wkl(0)γklψAµ+

+
1

2`
εABA(1)zψ

B
µ+ −

2

`
ΠAµ+

)
+
(z
`

) 5
2
E[iµEj]ν

(
∇µψAν− +

i`

2
SkµγkψAν+

)
+O(z7/2),

Θ
i3|j
A− =

i

`

(z
`

) 3
2
γ(iEj)µζAµ+ − i

(z
`

) 5
2
γ(iEj)µ

(
∇µψAz+ −

1

4
wkl(0)γklψAµ+ +

1

2`
εABA(1)zψ

B
µ+
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− 2

`
ΠAµ+

)
+
(z
`

) 5
2
E[iµEj]ν

(
∇µψAν− +

i`

2
SkµγkψAν+

)
+O(z7/2),

Θ
i3|3
A− =

(z
`

) 5
2
Eiµ

(
1

`
ζAµ− +

i

4`
εABγ

jψBµ+A(1)ρE
ρ
j

)
+O(z7/2).

We are now ready to compute the rheonomic parametrization of the curvature R̂ab. Since

R̂ab = dω̂ab + ω̂acω̂c
b − 1

`2
V aV b − 1

2`
ΨAΓabΨA

= R̃abcdV
cV d −Θab

A|cΨAV
c − 1

2
ΨAΨBεABF̃

ab − i

4
εabcdΨAΓ5ΨBεABF̃cd, (E.6)

applying the usual procedure yields

R̃i3jk =
i

2`

(z
`

)2
Eµ[jE

ν
k]ψ

A
µ+γ

iζAν+ +
i

2`

(z
`

)2
Eµ[jE

ν
k]ψ

A
µ+γ

lζAρ+ElνE
iρ

+
1

`

(z
`

)3
Eµ[jE

ν
k]

{
−DµS̃iν + ωi(2)lµE

l
ν − iΠ

A
µ+γ

iψAν+ −
i

2
ζ
A
µ+γ

iζAν+

+
i

2
ψ
A
µ−γ

iψA−ν + ψ
A
µ+Elν

[
− iγ(iEl)ρ

(
∇ρψAz+ −

1

4
wmn(0) γmnψAρ+

+
1

2`
εABA(1)zψ

B
ρ+ −

2

`
ΠAρ+

)
+ E[iρEl]σ

(
∇ρψAσ− +

i`

2
SmργmψAσ+

)]}
+O(z4),

2R̃i3j3 =
(z
`

)3
Eµj

{
− 1

`
wi(1)kE

k
µ +

1

`2
(
4τ̃ iµ − τ iµ

)
− i

`
ζ
A
µ+γ

iψAz+ −
i

`
ψ
A
µ+γ

iζAz+

+
1

`
ψ
A
µ−ζAν+E

νi − ψAµ+E
iν

(
1

`
ζAν− +

i

4`
εABγ

lψBν+A(1)ρE
ρ
l

)}
+O(z4), (E.7)

R̃ijkl =
(z
`

)3
Eµ[kE

ν
l]

{
∂µω

ij
(1)ν + ωi(1)mµω

mj
ν + ωimµω

mj
(1)ν −

2

`2
(τ [i
µ + 2τ̃ [i

µ )Ej]ν

− 1

`

(
ψ
A
µ+γ

ijζAν− + ζ
A
µ+γ

ijψAν−

)
+ iEmνψ

A
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(
− γiE[jρEm]σ + γjE[iρEm]σ

+ γmE[iρEj]σ
)(
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i

`
Enρ γnζAσ− +

1

4
ωnp(1)ργnpψAσ+

− 1

4`
A(1)ρψ

B
σ+εAB +

i

4`
εnpqγ

nψBρ+E
p
σE
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)}
+O(z4),

2R̃ijk3 = −
(z
`

)2
Eµk

(
1
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ωij(1)µ −

i
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ψ
A
µ+γ

[iEj]νζAν+
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+
(z
`
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Eµk

{
∂µw

ij − 2
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ωij(2)µ + ωilµw

lj
(0) − w

i
lω
lj
µ +

1

`

(
Eiµw

j
(0) − w

i
(0)E

j
µ

)

+
1

`
ψ
A
z+γ

ijψAµ− − ψAµ+

[
iγ[iEj]ν

(
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1

4
wlm(0)γlmψAν+ +

1

2`
εABA(1)zψ

B
ν+

− 2

`
ΠAν+

)
+ E[iνEj]ρ

(
∇νψAρ− +

i`

2
S lνγlψAρ+

)]}
+O(z4).
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To obtain the above formulas, we used R̂ab
µν = O(z) and that the supertorsion is zero (see, in

particular, (D.12)).
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