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Summary

Weather forecast and climate models suffer from the difficulty to make accurate
predictions because many of the interconnected physical and chemical processes
over the diverse scales of atmospheric clouds are not yet well understood and pa-
rameterized. Such limitations exist, for example, in our knowledge on broadening
of droplet size for rain initiation or with respect to the collisional effectiveness of the
droplets or with respect to the processes that produce new cloud particles. This
PhD thesis elaborates the numerical investigation on two such topic, namely 1)
cloud droplet size broadening and the effect of collision in the cloud edge mixing,
and 2) aerosol activation in the wake of large precipitating cloud hydrometeors.

Atmospheric clouds and clear air interfaces create a turbulent mixing, which
plays an important role in the life of a cloud. The entrainment and detrainment of
the clear air and cloud volume leads to a turbulent mixing at the interface, which
results in broadening of the cloud droplet spectrum. In the first part of this thesis
(Chapter 2), the transient broadening of three initial mono-disperse cloud droplet
populations is studied in a turbulent cloud top interface. The numerical code uses
the pseudo-spectral direct numerical simulation (DNS) method along with the La-
grangian droplet equations, and also a model for the collision and coalescence of
the droplets. These simulations are initial value problems without the presence of
any turbulent forcing model. Therefore, the evolution of in-cloud turbulent kinetic
energy (TKE), temperature and the density of water vapor are of transient nature
which exhibit a transient decay it their turbulent mixing intensities. The clear air
and the cloudy volume mixing through the interface is observed to produce tur-
bulent fluctuations in the fields of the density of water vapor and temperature.
These turbulent fluctuations in the transported scalar quantities result in super-
saturation fluctuations, which influence the locally the cloud droplet population.
The small scale turbulence and the resulting local supersaturation conditions, along
with the gravitational forces influence the droplet population at different weights
depending on their sizes. This study finds that the larger droplet populations, with
the simulated initial 25 and 18 µm radii, show a significant growth as a result of
droplet-droplet collision and a higher rate of gravitational sedimentation as a re-
sult of comparatively larger size and a higher mass content. However, the simulated
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smaller droplet population, with initial 6 µm radius, does not show any droplet-
droplet collision. However, a large size distribution broadening is observed in this
population due to the differential condensation/evaporation induced by the super-
saturation fluctuations and turbulent mixing across the interface, and this droplet
population was not influenced by the gravity significantly.

On the other hand, the activation of aerosols inside clouds is still an open sci-
entific question which has significant influence in our understanding about the life
cycle of the clouds, their radiative properties and hydrological fluxes. Aerosol ac-
tivation produces new cloud particles which also contribute to the broadening of
particle size through condensation/collisions. Therefore, a detailed understand-
ing on the potentiality of any aerosol activation process is necessary for reliable
weather modeling and climate prediction. Recent laboratory experiments have
demonstrated that aerosols can potentially be activated in the wake of the pre-
cipitating hydrometeors, such as, rain drops, hails etc, because supersaturation
can be produced in the wake. However, many of the quantitative aspects of this
wake-induced activation of the aerosols in the wake-induced supersaturation of the
precipitating hydrometeors remain unclear. In the second part of this thesis, a de-
tailed numerical investigation is conduced in Chapter 3 to understand the evolution
of fluid and the transported scalar populations in the wake of such precipitating
spherical objects, which is later used in the Chapter 4 for a detailed quantification
on the parameter space for the wake-induced supersaturation and its impact on
the activation of the cloud aerosols that entrain inside the hydrometeor wake. It is
estimated by using the Lagrangian tracking of aerosols that a significant fraction of
aerosols are activated in the supersaturated wake. These ‘lucky aerosols’ are indeed
entrained in the vortices of the hydrometeor wake when the hydrometeor produces
oblique wake and therefore, these aerosols can reside in this supersaturated wake
environment for sufficiently long duration which is necessary for the aerosol activa-
tion. This presented study shows that the wake-induced activation of aerosols can
produce some significant concentration of new cloud particles that is similar to the
other well known secondary particle production processes.
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Chapter 1

Introduction

Atmospheric clouds play a significant role in both the local and global evolution
of the weather and the climate. The clouds control the energy and the hydrological
cycle by impacting the incoming and outgoing solar radiations and by affecting
the amount of precipitations [123]. Cloud are important for the transport of water
vapor, heat, and other advected scalars, e.g., the pollutant concentrations. Clouds
are omnipresent in our visible atmosphere and varies a lot in terms of location,
altitude, depth, moisture content, particle size distribution and many more [56].
Out of all these types of clouds, the low altitude stratocumulus and cumulus clouds
over the tropics and the subtropics cover a large portion of earth’s atmosphere and
therefore controls the earth’s radiative budget [153], however they mostly result
in light precipitation. While the deep convective clouds mostly result in high pre-
cipitation and dominates the global precipitation budget [97]. Studies have shown
that the warm rain accounts for approximately 31% of the total rainfall and about
72% of the total rain area in the tropics [84]. These low level warm clouds and
the deep mixed phased convective clouds are typically formed on top of the plane-
tary boundary layer. Although the importance of the atmospheric warm low level
clouds and the deep convective clouds on the evolution of the weather and climate
is well documented, a number of physical and chemical processes inside clouds are
still not well understood and parameterized [134]. Such processes which have a
direct impact on the cloud life cycle, however are still not well understood are for
example, the processes of droplet size broadening for the rain initiation [27], or the
collisional effectiveness of the droplet-droplet collision and the influencing factors
behind it [113], or the processes that produce new cloud particles inside a mature
cloud [25]. However, all such processes inside these clouds, which span over a wide
range of temporal and spatial scales [16], are important for our understanding of the
clouds, and for realistic weather and climate forecasting. Therefore, these processes
need to be carefully investigated to improve the weather predictions and climate
modeling (see Pruppacher and Klett (2010) [116], Stull (1988) [135] and Devenish
et al. (2012) [27]).
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1.1 Droplet Size Broadening in Cloud Turbulence
This section of the Introduction presents an overview, motivation and the state

of the art for investigations of the droplet size broadening within the clouds and
in the interface, with exposure to the cloud turbulence and mixing. Atmospheric
clouds contain a vast range of dynamically active scales which are interconnected
and therefore, adds a layer of complexity to the microphysical processes that are
relevant for the cloud droplet evolution. Droplet condensation/evaporation, pref-
erential concentration, dispersion, and the cloud transport processes are the most
important ones behind the microphysical evolution of the cloud droplets [27, 127].
However, the smallest scales of the flow [46] have dominance over these microphysi-
cal processes, which indeed can not be solved in the large scale simulations or in the
atmospheric circulation models. Therefore, such processes need to be parameter-
ized accurately for a realistic prediction by the models which solve the whole cloud
or much larger spatio-temporal extent [14, 89]. Therefore in order to investigate
the cloud droplet microphysical evolution in the dynamically significant scales of a
turbulent environment, the particle resolving direct numerical simulations (DNS)
have been used extensively to investigate some of the cloud microphysical processes,
however, using some idealized atmospheric flow configurations.

In such simulations, not only all the turbulent scales down to the diffusive
scales must be solved, but also the motion [92] and the growth of every single cloud
droplet in the fluid flow need to be tracked. However, due to the computational
limitations and the computationally intensive nature of such DNS studies, only a
small portion of a cloud could be considered. The basic numerical model used in
all such works was introduced by Vaillancourt et al. (2001) [148]. In this model the
Navier-Stokes (NS) equations with the Boussinesq approximation [86] are solved
for the air phase on an Eulerian grid. The suspended cloud droplets are considered
as inertial variable-mass points. The cloud droplet model takes into account the
variation of the droplet size due to condensation or evaporation following the local
interpolated supersaturation conditions [116]. Such works on one hand, mostly
focused on the simulation of a small portion of the homogeneously mixed cloud-
core, and introduced an external forcing to reproduce the inflow of turbulent kinetic
energy as a result of the larger-scale cloud motions [149, 77, 81]. The other studies
on the other hand, have extended this methodology to investigate the effects of
non-uniformity in the underlying turbulent flow, and focused on its consequences
on the cloud droplet microphysical evolution. Such non-uniformity was introduced,
for example, in the form of a turbulent kinetic energy (TKE) gradient and a gradient
in the supersaturation distribution [44]. Götzfried et al. (2017) [44] and Kumar et
al. (2014, 2017) [78, 79, 80, 140] for example, considered the turbulent evolution
of a thin slice of the cloud layer with adjacent ambient clear air layers to analyze
the cloud edge affects on the cloud droplet population. Whereas, Andrejczuk et
al. (2004, 2006, 2009) [2, 3, 4] have considered the decaying moist turbulence with
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worm-like structures of supersaturated and subsaturated regions. Gao et al. (2018)
[41] investigated the differences between cloud microphysical evolution for various
initial configuration of cloud and clear air layers, both considering the presence and
the absence of turbulent forcing.

The interface between the turbulent cloud and non-turbulent/turbulent ambi-
ent results in entrainment/detrainment [94] and mixing in between supersaturated
and subsaturated air parcels. Such cloud edges for several last decades are con-
sidered to have significant influences on the size distribution of the cloud droplets
[27]. The broadening of the droplets through inhomogeneous mixing contributes
to enhance the collision and coalescence rate [116, 82]. Therefore, understanding
of the cloud droplet evolution inside the mixing zone will contribute to bridge the
gap known as the ‘condensation - coalescence bottleneck’ in between between the
condensational growth (effective for smaller droplets, below 10 µm radius) [34] and
the collisional growth (effective for larger droplets, above 40 µm radius) of the
cloud droplets [46, 147]. In the cloud edge mixing zones, two mechanisms influence
the droplet microphysics significantly: a) the presence of large fluctuations in the
supersaturation, which broadens the cloud droplet size distribution by the conden-
sation/evaporation of water vapor, and b) the large accelerations in some localized
regions of the clouds [127, 132], that result in occasional collisions between the
droplets. However, the efficacy of droplet-droplet collision is strongly dependent
on the droplet size distribution as well as the intensity of turbulent mixing [112].
Moreover depending on the location of entrainment and mixing, different physi-
cal processes are observed in the evolution of the droplet size distribution. The
droplet population may experience supersaturation conditions in between the two
limiting mixing situations: a) homogeneous mixing, where the entrained dry air
and the cloudy moist air quickly mix at the small scale, so that the entire droplet
population evaporate/condensate at the same time resulting in negligible droplet
size broadening [78], and b) inhomogeneous mixing, where only a portion of the
volume remains subsaturated/supersaturated and therefore, a part of the droplet
population therein quickly evaporate/condensate, whereas, the other parts of the
droplet population remains almost unaffected [85], and in combination together,
such differential mixing result in significant droplet size broadening.

The previously mentioned studies have detailed many aspects of the in-cloud
turbulence, cloud edge mixing, various cloud droplet microphysical processes and
their individual impact on the cloud droplet size broadening. However, a com-
prehensive study on the turbulent mixing through the cloud interface and an in-
vestigation on its impact on the various sizes of initial cloud droplet populations
and their collisional rate using the Lagrangian tracking of the individual cloud
droplets would reduce the gray area about the ‘condensation - coalescence bottle-
neck’. The presented study in the Chapter 2 aims to overcome this knowledge gap
by conducting a series of pseudo-spectral direct numerical simulations using the
Eulerian-Lagrangian model along with a collision detection algorithm for various
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initial monodisperse cloud droplet populations, which is also reported in Bhowmick
and Iovieno (2019) [9]. Following the investigation of transient dynamics of different
initial monodisperse droplet populations in the same initial background turbulent
interface conditions, a serious of simulations are conducted with the same initial
monodisperse population of 20 µm radius droplets in various initial saturation and
airflow stratification conditions to understand the impact of these flow configura-
tions on the droplet size broadening.

1.2 Impact of Aerosols in Cloud Interactions
In this section of the Introduction, an overview, motivation and the state of the

art for investigating the production process of secondary particles in the cloud are
presented. As previously mentioned, the processes that produce new cloud particles
inside a mature cloud [25] is an open area of research. Especially the activation of
aerosols and species therein controls the lifetime of a cloud [73] in which fractions
of cloud condensation nuclei (CCN) and ice nucleating particles (INP) develop into
new hydrometeors [8]. Physical processes contributing to the activation [35] within
a mature cloud can not explain the observed discrepancies between the measured
activation and the observed hydrometeor population, which is several orders of
magnitude higher than the expected activation [116, 58]. Moreover, since the su-
persaturation condition of such clouds are just nearly saturated [69], new aerosols
can not activate in it due to their activation barrier. One possible explanation of
this riddle might be the wake-induced supersaturation [39, 38, 20] and activation
of aerosols behind large precipitating hydrometeors, i.e. wake-induced nucleation
[114, 115]. However, the existence of supersaturation in the wake of a hydrom-
eteor was considered to have neglible impact on the activation of aerosols in the
earlier works by Nix and Fukuta (1974) [105], and Fukuta and Lee (1986) [38].
This overview, however, changed recently when the experimental investigation by
Prabhakaran et al. (2017) [114] on the falling drops (diameter of O(1) mm) in
near critical point conditions of pressurized sulfur-hexafluoride showed evidences of
homogeneous nucleation in the wake. However, homogeneous nucleation from pure
water vapor is extremely rare due to the very high nucleation barrier [24]. Prab-
hakaran et al. (2020) [115] conducted a follow-up experiment on heterogeneous
nucleation using sodium chloride and silver iodide aerosols under atmosphere-like
conditions. Warm droplets with a diameter of ∼ 2 mm were able to induce the ac-
tivation of aerosols into CCNs and INPs in their wake when precipitating through a
subsaturated colder environment. Recently, a numerical analysis of supersaturation
in the wake of a warmer hydrometeor moving through various colder environments
was performed by Chouippe et al. (2019) [20]. Their work confirms the existence of
a supersaturated region in the wake of a hydrometeor that settles through a colder
saturated environment. The maximum supersaturation observed in the wake was
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higher when the temperature difference between the hydrometeor and the ambient
was the larger. In a more recent study, Krayer et al. (2020) [72] extended their
earlier work [20] and explicitly estimated the influence of wake supersaturation on
the ice enhancement factor using a model based on a power law dependence of the
local supersaturation [60, 7] and concluded that the local ice nucleation enhance-
ment alone cannot produce a sufficient number of activated ice nuclei to solve the
observed number discrepancy that is stated previously.

Although the development of supersaturation was studied numerically, direct
computation of nucleation remained rather difficult as it depends on a very wide
range of parameters, including the size distribution of the sub-micrometer aerosol
particles [28], number concentration [8], chemical composition [75, 25], porosity or
solubility [67] of the aerosols, presence of other bio and ion species [24], and also on
few other factors. Processes responsible for entrainment of small aerosol particles
from the lower free troposphere to the boundary layer are also complex, which for
example, can happen during strong downdrafts created by convective precipitation
[151]. However, activation does not happen all the time despite the abundance of
sub-3 nanometer sized particles in the atmosphere throughout a diurnal cycle [76].
Moreover, studies have shown that the deactivation and reactivation of aerosols
result in droplet size broadening inside clouds [155]. Complexity in the nucleation
of an aerosol deepens further in mixed phase clouds containing both water and ice
phased hydrometeors. Ice-nucleation due to deposition and condensation-freezing
can happen on an aerosol during supersaturation with respect to ice phase at freez-
ing temperatures [95]. Activation of the aerosols through immersion freezing on a
CCN or by contact freezing on a supercooled water droplet is also witnessed [29, 67].
The activation of aerosols as a CCN or an INP happens through different physical
and chemical processes, which are active at different thermodynamic, cloud and
aerosol conditions. For example, Petters and Wright (2015) [111] evidenced that a
negligible concentration of INP exists at a cloud temperature higher than −5 ◦C,
while the concentration of INP at cloud temperatures between −5 ◦C to −15 ◦C
can vary up to 5 orders of magnitude. This variability in the number concentration
of INP decreases as the temperature of the clouds reduces [111, 49]. The review
by Hoose and Möhler (2012) [55] presents a general overview of the various INP
production processes, such as, immersion freezing, deposition nucleation, contact
nucleation, evidencing their strong dependence on the ambient temperature, super-
saturation condition and the aerosol species.

This study of the wake-induced supersaturation behind the precipitating hy-
drometeors is one of many engineering and scientific studies which need to under-
stand the nature of the wake, evolution of the fluid and the transported scalars
and the interactions behind the spherical/near-spherical objects in fluid flow [23,
96]. This flow past a sphere presents different regimes at different Reynolds num-
ber Re, based on the sphere diameter, the velocity of the incoming flow and the
viscosity. The steady axisymmetric structure of a wake at low Reynolds number,
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up to Re ∼ 210, was studied experimentally, for example by Teneda (1956) [139]
and numerically by Tomboulides and Orszag (2000) [142] among others [104]. The
steady axisymmetric regime is followed by a steady oblique wake structure, with
Re up to 280, which was observed experimentally by Magarvey and Bishop (1961)
[90] and numerically by Johnson and Patel (1999) [66] for example. An unsteady
structure of the wake appears at higher Re, and was reported by Fornberg (1988)
among others [36, 109]. The drag coefficient CD of a sphere, which varies with the
roughness of the sphere surface and Re, was studied in detail, for example, by Eich-
horn and Small (1964) and others experimentally [15, 122, 30, 146] and by Tabata
and Itakura (1998)[138], Birouk and Al-Sood(2007) [13] numerically. At present,
how the drag, lift and pressure coefficients vary both locally as well as globally with
respect to the sphere is well known [142, 13, 154]. The two dimensional structures of
the streamlines, vorticity and pressure contours along the orthogonal central planes
through the sphere are also well known over various studies, such as, Tomboulides
and Orszag (2000) [142] and others [66, 5].

Many engineering applications and natural processes, for example, the wake-
induced supersaturation behind the precipitating hydrometeors rely on understand-
ing the interactions between a sphere and the ambient, also involving the transport
of various scalar species, either passively advected by the ambient flow or interact-
ing actively with the flow through various physical processes, for example, through
evaporation and buoyancy. The rate of scalar transport, in particular the convec-
tive heat transfer from spherical objects at various Re, has been investigated both
numerically, for example, by Bagchi et al. (2000) [5] and Richter and Nikrityuk
(2012) [121] and experimentally by Kramers (1946), among others [71, 42, 157, 152]
to determine the heat transfer coefficient. Similar to the drag coefficient, attention
was given to the dependence of the local Nusselt number (a ratio of the convective
and the diffusive (conductive) heat transfer) on the sphere surface and its global
average for different Re [5, 152]. The profiles of the dimensionless temperature con-
tours along the central orthogonal plane for various Re have also been described in
the studies by Bagchi et al. (2000) [5] and Chouippe et al. (2019) [20]. A coupled
system involving an interplay between different scalars can also be present, for ex-
ample, in case of the phase change during droplets evaporation or freezing resulting
in heat and mass exchange with the ambient air. Such interaction has also been
studied both experimentally by Ranz and Marshall Jr. (1952) [120] and Friedlander
(1957) [37] and numerically by Dennis et al. (1973) [26] and Chouippe et al. (2019)
[20]. All these studies are mainly concerned with the average scalar flux at the sur-
face of the sphere, which determines the mass and temperature change rate of the
sphere. However, a detailed description of the wake regarding the spatial evolution
of the fluid velocity and scalar populations, including the scalar concentrations and
the convective fluxes, both in two and three dimensions for various steady Re, have
not been fully explored.
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Descriptive statistics on the spatial structure of the wake is of primary im-
portance if the extent of the wake with certain properties needs to be quantified.
Supersaturation in the wake of precipitating cloud water droplets, which have im-
portant implications for cloud life cycle as investigated by Bhowmick et al. (2020)
[11] and Krayer et al. (2020) [72], requires for example a detailed analysis of the
transported scalar population in the wake. In order to quantify the extent of the
supersaturated volume in the wake of a cloud hydrometeor, where aerosols can
grow by the deposition of the excess water vapor in the supersaturated wake and
can be activated due to sufficiently long exposure to supersaturation in the droplet
wake [11]; the details of the scalar population in the wake need to be known with a
quantification on the scalar transport and its population distribution. Therefore in
the Chapter 3, a comprehensive numerical study on the details of the momentum
and scalar transport in the wake of a sphere using a population density distribution
for the steady axisymmetric and oblique wake regimes is presented. Based on the
foundation of the scalar transport studies in the Chapter 3, a detailed investigation
on the parameter space of the wake-induced supersaturation behind precipitating
hydrometeors is conduced in Chapter 4. In the Chapter 4, the cloud aerosols are
also introduced as Lagrangian tracers due to their negligible Stokes number, and a
detailed analysis on the aerosol activation potential of the wake-induced supersat-
uration behind precipitating hydrometeors is being reported.

End of Chapter 1
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Chapter 2

Cloud Droplet Population in
Warm Cloud Top Interface

A part of this chapter is already published in Bhowmick, T. and Iovieno, M.
(2019), “Direct Numerical Simulation of a Warm Cloud Top Model Interface: Im-
pact of the Transient Mixing on Different Droplet Population”, Fluids, volume 4,
issue 3, article number 144 [9]. In this chapter, the transient evolution of cloud
water droplet populations inside a simplified top interface model of a warm cloud
is presented. The objective of this work is to investigate the differences in micro-
physical transient evolution of various cloud water droplet populations with sizes
which approach the lower bound of the size gap [15-40 µm radius] [46] and sizes
below the size gap, and their feedback on the surrounding air. Direct numerical
simulations (DNS) using the Eulerian-Lagrangian model along with a collision de-
tection algorithm (mostly neglected for this kind of studies) are used for this work
(see also Onishi et al. (2015) [107]). Various thermodynamic processes, such as,
supersaturation, buoyancy, phase change of water vapor to liquid water and cor-
responding latent heat production are interlinked by one-way coupling in between
the cloud droplets and the surrounding fluid velocity, and two-way coupling of the
cloud droplets with the air temperature and the water vapor density. This study
investigates the momentum and scalar transport inside a cloud interface charac-
terized by a strong kinetic energy gradient (see also Götzfried et al. (2017) [44]).
Such configuration generates a strong intermittent transient mixing layer [144, 62,
63] as a result of the entrainment/detrainment of fluid from/to the ambient re-
gions to/from the near interface cloud volume [63, 21]. This introduces non-trivial
complex behavior in the droplet velocity distribution as a result of the interplay
between larger scales and the gravity, with very little dependence on the simulated
Reynolds number [63]. Therefore, even if the simulated Reynolds number which can
be achieved in the direct numerical simulations is much smaller and not comparable
at all with the real life cloud Reynolds number which is in the order of 104−105, it is
considered that such low Reynolds number simulations still can provide information

9



2 – Cloud Droplet Population in Warm Cloud Top Interface

that can be useful to understand some of the real cloud phenomena. The present
simulations undergo a transient decay in the turbulent kinetic energy (TKE) [32,
2, 44, 21]. The methodology and the simulation set-up for this study is presented
in section 2.1 and 2.2. Results are presented in section 2.3 which include statis-
tics and visualizations on the transient evolution of the fluid flow and statistics
of the droplet populations. A discussion on the role of condensation/evaporation,
sedimentation, flow stratification conditions and droplet-droplet collisions on the
evolution of the different droplet populations is also presented in regards to the
mixing layer separating the lower cloudy region from the upper clear air region. A
summary and conclusions of this chapter is given in Section 2.4.

2.1 Details of the Physical Model
This study simulates the interactions in between the low altitude warm cloud

top and the above-lying ambient clear air regions, and investigates its impact on the
cloud water droplets by using the DNS. Two cubic boxes, each of 0.2563 m3 volume;
one representing the warm cloud and the other representing the associated clear
air region with different turbulent and thermodynamic properties are combined
together, to create the simulation domain (see Figure 2.1(a)). The portion of the
domain representing the cloudy air is seeded with a cloud droplet population of
mono-disperse size distribution. The airflow is modeled with the incompressible
fluid flow conditions along with the Boussinesq approximation for the computation
of the buoyancy feedback to the fluid flow.

In this physical model, the cloud droplets are considered as point-particles, with
variable mass as one of its attributes. This simplification avoids the necessity to
solve the details of the fluid flow around each single droplet, and therefore, makes
this approach feasible for the simulations of more than a few droplets. However,
there are justifications associated to it. 1.) One has to assume that the sizes of the
particles are much smaller than the smallest flow scale which is the Kolmogorov
scale in a turbulent flow. In this study, the diameter of the cloud droplets are in
µm range, while the Kolmogorov scale is in mm range, and therefore it is justi-
fied to use the point-particles model. 2.) Also the concentration of the particles
must be small in the ambient fluid, so that one particle does not interact directly
with another neighboring particle. This means that the regions perturbed by the
different particles do not overlap, so that each particle does not directly see the
perturbation in the flow, which is induced by other particles. Basically, in case of
a volume fraction of the particles less than 10−6 of the ambient fluid, the point-
particles with one-way coupling is a valid model, and for a volume fraction less
than 10−3, one should consider point-particles with two-way coupling, according to
Elghobashi (1991) [31]. The governing equations for the airflow which is the carrier
fluid and the cloud droplets which are the dispersed medium, are presented below.
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2.1 – Details of the Physical Model

2.1.1 Equations for Solving the Flow Field
The numerical model for the evolution of the fluid flow considers Navier-Stokes

(NS) equations for humid air. This model is coupled with the individual Lagrangian
tracking of cloud water droplets, which are introduced in the initial condition. The
numerical model of this study follows the similar model used by Vaillancourt et al.
(2001) [148], which is later also used by Kumar et al. (2014) [78], Gotoh et al. (2016)
[43], Götzfried et al. (2017) [44], Gao et al. (2018) [41]. The air phase equations use
a Boussinesq-like approximation [86]. The fluid flow model include the continuity
and the momentum balance equations for the airflow velocity u = (u1, u2, u3), and
the temperature T and the water vapor density ρv equations, known as Advection-
Diffusion (AD) equations. Temperature and water vapor density are modeled as
advected active scalars, which interact with the fluid flow through the buoyancy
feedback. The fluid flow equations are:

∇ · u = 0 (2.1)
∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u − Bg (2.2)

∂T

∂t
+ u · ∇T = κ∇2T + L

ρ0cp

Cd (2.3)

∂ρv

∂t
+ u · ∇ρv = κv∇2ρv − Cd (2.4)

where ∂/∂t is the temporal derivative, ρ0 is reference mass density of air at temper-
ature T0 and pressure p0, ∇p is the pressure gradient, ν is the kinematic viscosity,
g = (0,0, −g) is the gravitational acceleration, κ is the thermal diffusivity of air, L
is the latent heat for condensation of water vapor, cp is the specific heat at constant
pressure, and κv is the water vapor diffusivity. The buoyancy B in the momentum
balance equation (2.2) is the “source” term which represents the buoyancy force
per unit volume due to small variations of temperature and water vapor density
in the humid air. In the temperature or the enthalpy (2.3) and the humidity (2.4)
equations, the source term Cd represents the condensation rate of the water vapor,
that is, the local condensating or evaporating water mass per unit time and unit
volume.

These source terms are expressed as:

B = T − T0

T0
+ ϵ

ρv − ρv,e

ρ0
(2.5)

Cd = 1
V

∑
i

dmi

dt
= 1

V

∑
i

4πρLr2
i

dri

dt
(2.6)

where T0 is the reference temperature, ρv,e is the reference density of the water
vapor, ϵ = Rv/Ra − 1 = 0.608 is a constant dependent on the gas constants Rv and
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2 – Cloud Droplet Population in Warm Cloud Top Interface

Ra of the water vapor and the air respectively, ρL is the density of liquid water,
and ri is the radius of the i-th cloud droplet. The sum in the feedback term Cd

is calculated on the droplets only within the (small) local volume V , where mi

is the mass of the i-th droplet. In the simulations, this volume V is the volume
of a computational grid cell. Droplet volume fraction, which is the ratio of the
volume of droplets to the volume of carrier fluid, for the largest initial droplet
population with the initial radius, rin = 25 µm, is 1.12 × 10−6. This is considered
as a dilute suspension by Elghobashi (1991) [31], where the momentum feedback
from the droplets in form of the two-way momentum coupling can be neglected.
Therefore, in the computation of the buoyancy force, no momentum feedback is
considered from the droplets to the fluids. In case of the dilute suspension, one-
way coupling is sufficiently accurate to capture the interactions in between the
droplets and the surrounding fluid [31]. The numerical model of Vaillancourt et al.
(2001) [148] considers water vapor mixing ratio qv = ρv/ρd (ρd is the mass density
of the dry air) as the transported active scalar instead of the density of water vapor
ρv. However, due to negligible changes in the ρd for the considered temperature
and relative humidity conditions, the equations of ρv and qv are analogous, with
appropriate changes in the feedback term Cd.

2.1.2 Equations for Cloud Droplets as Lagrangian Particles
The Lagrangian descriptions of the cloud droplets consider them as inertial

point particles driven only by gravity and the Stokes drag [158]. Since the droplet
density is much higher than air density (ρL/ρ0 ∼ 103) and the Reynolds number of
the droplet relative velocity with respect to the surrounding air is very small (after
Pruppacher and Klett (1978) [116] pg 575 and Vaillancourt et al. (2001) [148],
usually below 0.1), the Stokes drag model is used. Moreover, their sizes change due
to the condensation/evaporation of the water vapor, which is driven by the local
heat and water vapor diffusion around the droplets. The equations for the i-th
droplet are presented below:

dxi

dt
= vi (2.7)

dvi

dt
= −vi − u(xi, t)

τi

+ g (2.8)

dri

dt
= C

φ(xi, t) − 1
ri

, φ(xi, t) = ρv(xi, t)
ρvs(T )(xi, t) (2.9)

where xi is the droplet position, vi is the droplet velocity, φ is the local relative
humidity, ρvs is the density of saturation vapor, and τi is the droplet response time,
which is:

τi = 2
9

ρL

ρ0

r2
i

ν
. (2.10)

12



2.2 – Details of the Numerical Method in DNS

The droplet growth rate equation (2.9) is dependent on the condition of sur-
rounding relative humidity (Pruppacher and Klett (1978) [116] pg 511), and the
proportionality coefficient C is defined as:

C = κv
ρvs(T0)

ρL

(
1 + L2ρvs(T0)

RvT 2
0

κv

λT

)−1

where λT is the thermal conductivity of the air. As in Kumar et al. (2013) [77],
L/(RvT ) is approximated as ≫ 1 in the definition of C. A details on the derivation
of the dimensionless equations can be found in the Appendix A of this thesis.

2.2 Details of the Numerical Method in DNS
Model equations for the fluid flow phase are solved using the Fourier–Galerkin

(FG) pseudo-spectral method as in Iovieno et al. (2001) [61]. The temporal ad-
vancement is approximated using a low storage second order Runge-Kutta (RK2)
method with exponential integration of the diffusive terms [53]. The numerical
code uses one dimensional (1D) slab parallelization using Massage Passing Interface
(MPI) libraries. De-aliasing is carried out during the data transposition. Discrete
Fourier Transforms (DFT) are computed using the FFTW subroutine library. On
the other hand, the Lagrangian model equations for the droplets are solved in the
physical space using the same RK2 method for the temporal integration. After
every time-step, droplets are exchanged among neighbouring processors/tasks ac-
cording to their current respective positions. The fluid velocity, temperature and
vapor density at particle positions are computed through a trilinear interpolation
within each mesh cell. This trilinear interpolation is expected to be sufficient in
the Lagrangian droplet model when kmaxη ≳ 2. The feedback term Cd is computed
through the cell averaging (particle-in-cell method). A higher order interpolation
methods, e.g. third order B-spline method would be optimal according to van Hins-
berg et al. (2013) [52], in the sense that the interpolation error of the third order
B-spline method would be less than the discretization error. However, as outlined
by Sundaram and Collins (1996) [137], the interpolation and the reverse interpo-
lation schemes must be symmetric in order to guarantee the energy conservation
in the domain. Therefore, the linear particle-in-cell reverse interpolation should
be replaced with an equivalent higher order method (see for example Carbone and
Iovieno (2018) [18]).

The pseudo-spectral code used triply-periodic boundary conditions for all the
fluid flow variables. A non-periodic temperature profile is introduced in the vertical
direction by the decomposition of T as Γx3 +T ′; where, the field T ′, which contains
the temperature fluctuations, is triply periodic, but the full temperature field T is
not periodic in the vertical direction. The initial condition for T ′ increases linearly
from the reference temperature T0 = 283.16 ◦C to 285.16 ◦C in the cloudy part of
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2 – Cloud Droplet Population in Warm Cloud Top Interface

the domain, while it drops at the interface near x3/Lx3 = 0 by 4 ◦C (see Figure
2.1(d)), and again increases linearly from 281.16 ◦C to 283.16 ◦C inside the clear air
part of the domain. Therefore, the temperature field T has only one interface at
x3/Lx3 = 0. Sign of temperature gradient Γ = ∆T/Lx3 determines the stability of
the flow. With this decomposition, domains can be simulated for stable, unstable
or neutrally stratified airflow conditions. Such decomposition of the temperature
field modifies the temperature equation (2.3) into:

∂T ′

∂t
+ u · ∇T ′ = κ∇2T ′ + L

ρ0cp

Cd − Γu3. (2.11)

The code also includes a detection module for the droplet-droplet binary colli-
sion. This module implements coalescence of the colliding droplet masses. After
each time-step, the algorithm looks for if the distances between the pairs of droplet
centers become smaller or equal to the sum of their redii, by assuming a linear
in time variation of radius and position within the each time-step. A collision
between droplet i and j is considered to have occurred, if the first solution of
|xi(t) − xj(t)|2 − (ri(t) + rj(t))2 = 0 lies between t and t + ∆t, and their relative
velocity acts inward. Since the droplet Weber numbers, which are the ratios be-
tween the droplet kinetic energy and droplet surface energy, are very small (≪ 1),
each collision is modeled as a successful coalescence. This is in agreement with the
experimental investigation of water droplet collisions by Rabe et al. (2010) [118].
Conservation of the mass and the momentum are then used to determine the size,
position and the velocity of the new droplet which emerges from the collision.

2.2.1 Details of the Simulation Setup
The simulation domain replicates a small portion of a warm cloud top and a

layer of clear air above it. All the interactions in between the cloud and the clear air
happens through the interfaces which are formed at the edges of both the cloud and
the clear air regions. Simulation parameters, constants and domain specifications
used in our simulations are tabulated in Table 2.1. The values of the basic referred
states correspond to the reference height Href of 763 m, which is a typical height
for the low altitude warm clouds as described in Jen-La Plante et al. (2016) [65].

Table 2.2 summarizes the details of the simulation runs. In the simulation setup,
an initial population of mono-disperse cloud droplets of three different droplet size
distributions are introduced in the cloudy volume of the simulation domain. These
simulation runs are R25, R18 and R6. Whereas, the carrier airflow initial con-
ditions remained the same for all these simulations. The droplets (which have a
different initial size in each simulation) evolve affected by the momentum, thermal
energy and the water vapor density of its surrounding airflow, and these popula-
tions undergo various microphysical processes such as gravitational sedimentation,
preferential concentration, evaporative reduction or condersational growth in size,
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2.2 – Details of the Numerical Method in DNS

and growth by collision and coalescence. A sketch of the simulation domain is
shown in Figure 2.1(a). The gravitational force (as presented in Figure 2.1(a)) acts
both on the fluid flow (in form of buoyancy forces B in equation (2.2)) and on
the momentum of the cloud droplets in equation (2.8). In this cloud top simula-
tion setup, gravity therefore acts in downwards direction (0,0, −g), causing heavier
droplets to settle down towards the bottom boundary of the cloudy volume.

Table 2.1: Simulation parameters, constants and domain specifications used for
simulation setup.

Quantity (Symbol) Value Unit

Reference temperature (T0) 283.16 K
Reference atmospheric pressure (p0) 92.4 kPa
Reference air density (ρ0) 1.13 kg m−3

Reference kinematic viscosity (ν) 1.56 · 10−5 m2 s−1

Gravitational acceleration (g) 9.8 m s−2

Thermal conductivity of the air (λT ) 2.5 · 10−2 J K−1 m−1 s−1

Thermal diffusivity of air (κ) 2.2 · 10−5 m2 s−1

Diffusivity of water vapor (κv) 2.54 · 10−5 m2 s−1

Specific heat of air at constant -
pressure (cp) 1005 J kg−1 K−1

Latent heat for condensation of -
water vapor (L) 2.5 · 106 J kg−1

Gas constant for water vapor (Rv) 461.5 J kg−1 K−1

Gas constant for air (Ra) 286.84 J kg−1 K−1

Density of liquid water (ρL) 1000 kg m−3

Saturated water vapor density -
at T0 temperature (ρvs(T0)) 9.4 · 10−3 kg m−3

Constant in equation (2.9) (C) 9.22 · 10−11 m2 s−1

Simulation grid step (∆x) 0.001 m
Simulation domain discretization -
(N1 × N2 × N3) 256 × 256 × 512
Simulation domain size -
(Lx1 × Lx2 × Lx3) 0.256 × 0.256 × 0.512 m3

2.2.2 Details of the Initial Setup for the Flow Field
In field measurements of the cloud turbulent properties and associated clear air

properties show varying turbulent intensities. This produces TKE gradients across
the interfaces. Velocity fluctuations inside the cloudy regions [129] mostly show
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2 – Cloud Droplet Population in Warm Cloud Top Interface

higher TKE than that of the clear air region as shown in Figure 2.2(a) (see also
[65, 91, 131]). This happens mainly due to the instability of the moist air-mass,
developed due to the buoyant updraft which results in shear layer formation inside
the clouds [45]. This difference in kinetic energy is replicated by the average of
velocity fluctuation root mean square (rms) distribution u′ in the initial condition
(Figure 2.1(c)) of the present simulations. The clear air region of the simulation
domain, shown in the right side region of the Figure 2.1(c) have lesser energy
than the associated cloudy region (left side of the domain). The kinetic energy
ratio between the cloudy domain and the clear air domain has been chosen to be
around 20, which is in the range of the values which can be deduced from in-cloud
measurements of [65, 91] in Figure 2.2(a).

Table 2.2: Details of simulation runs

Simulation IDs

Quantity R25 R18 R6

Initial Droplet Radius rin [µm] 25 18 6
Total number of initial droplets 286,240 286,240 286,240
Initial droplet number -
density Nd(0) [cm−3] 17 17 17
Initial liquid water -
content lwc [gm m−3] 1.12 0.42 0.02
Initial Stokes number St 1.59 0.82 0.09
Initial rms of velocity -
fluctuations u′ in cloud [m s−1] 0.268 0.268 0.268
Initial energy ratio Ecloud/Eair 20 20 20
Temperature difference between -
cloudy and clear air ∆T [K] 4 4 4
Initial integral scale L -
of cloud and air [m] 0.0235 0.0235 0.0235
Initial Taylor micro-scale -
Reynolds no. Reλ of cloud 90 90 90
Initial Taylor micro-scale -
Reynolds no. Reλ of air 20 20 20
Simulation time-step ∆t [s] 1.224 · 10−4 1.224 · 10−4 1.377 · 10−5

Total simulation duration [s] 2.1 2.1 2.1

The thickness of the initial velocity fluctuations interface, measured as the dis-
tance between the horizontal planes where the difference of the TKE is 90% of
the difference of kinetic energy between the cloudy and clear air regions, is about
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Figure 2.1: Simulation setup:(a) scheme of the three dimensional simulation domain
and the boundary conditions; (b) comparison between the TKE spectrum E(k) of
present simulation with the infield measurements; (c) initial distribution of the
rms of velocity fluctuations u′ and TKE dissipation rate ⟨ε⟩; and (d) simulated
initial profile of temperature ⟨T ⟩ and water vapor density ⟨ρv⟩. The plots in panels
(c) and (d) present the horizontal plane averaged quantities (directions (x1, x2))
varying along the vertical direction x3.

0.006 m (see Figure 2.1(c)). Figure 2.1(b) presents few examples of spatial one-
dimensional TKE spectra from infield measurements by Biona et al. (2001) [12],
Katul et al. (1998) [68], Radkevich et al. (2008) [119], Lothon et al. (2009) [88]
and Siebert et al. (2015) [130], to which the one dimensional initial TKE spectrum
of the present simulations in the wave-number space k has been superimposed (the
three dimensional TKE spectrum is shown in the inset). In a DNS, the Kolmogorov
micro-scale η needs to be resolved, which plays an important role for the microphys-
ical evolution of cloud droplets [27, 46]. Therefore, only a fraction of the inertial
sub-range and the dissipation range (up to the last three decades of TKE spectrum
in logarithmic wave-number space) can only be reproduced. The initial velocity
field is generated by the superposition of the Fourier modes with random phases.
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The amplitudes of these Fourier modes are determined from the following model
3D-spectrum:

E(k) = A
(k/k0)α

1 + (k/k0)α+5/3 f(k/kmax).

Coefficient α controls the low wavenumber slope of the spectrum (α = 2 in present
work). Coefficients A and k0 control the variance and the initial correlation length
and f(k/kmax) produces the exponential tail in the highest simulated wavenumbers
approaching kmax = π/∆x. The initial one and three-dimensional TKE spectra
in Figure 2.1(b) plot the spectra of the initial homogeneous isotropic turbulence
(HIT) field of the cubic domain, where k0 is defined as 2kmin (kmin is the lowest
wavenumber) and an exponential tail is created for wavenumbers k ≥ 2kmax/3.
Transition of initial fluctuations for airflow velocity from higher values inside the
cloudy region uc to the lower values inside the clear air region ua of the domain is
carried out using a hyperbolic tangent function p(x3) in the vertical direction x3 for
the linear superposition of the two initial cloudy and clear air isotropic fields (see
Tordella and Iovieno, (2006) [143], supplemental material of Tordella and Iovieno,
(2011) [144], and Iovieno et al. (2014) [62]) as,

u(x3) = uc(x3)p(x3) + ua(x3)(1 − p(x3)2)0.5,

p(x3) = 1
2

[
1 + tanh

(
80π

x3

Lx3

)
tanh

(
80π

(
x3

Lx3

− 1
2

))
tanh

(
80π

(
x3

Lx3

− 1
))]

.

Generally in the numerical experiments, the localized sources of turbulence in
stratified environments were created in many different ways, for example, by im-
pulsive or continuous forcing, with or without mean flow. However, all these ways
exhibit a common behavior, that the initial vertical growth rate of the turbulent
patch is almost unaffected by the stratification. And it reaches a maximum verti-
cal extent on a time scale proportional to the Brunt-Väisälaa frequency N of the
ambient fluid,

N2 = − g

ρ0

dρ(x3)
dx3

,

where g is the gravity acceleration and ρ0 the reference density. The interface
thickness has been observed to reduce while the frequency increases.

For this study, an unstably stratified temperature profile is selected, which can
also be locally observed from the small scale local temperature profiles obtained
from in-cloud measurements as shown in Figure 2.2(b) (see also Figure 2 of Ref.
[65]). It must be noted that the in-cloud measurements shown in Figure 2.2 show
the inclined descent of the measurement aircraft, and therefore are not indicative
of an actual vertical profile. However, for the purpose of defining the tempera-
ture inside the cloud core of the simulation domain and the temperature of the
abovelying clear air zone, the data of Figure 2.2 provide important insights. Initial
temperature and water vapor fields are all uniform on the horizontal planes, but
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Figure 2.2: In-cloud measurements: (a) the measurements of velocity fluctuations
u′ at cloud top interface [65] and (b) the measurements of temperature T and water
vapor mixing ratio qv at cloud top interface [65].

varying in the vertical x3 direction. No fluctuations for the temperature and the
water vapor density have been introduced in the initial conditions. Therefore, the
transient supersaturation fluctuations are generated only due to the mixing or due
to the condensation/evaporation of the droplets to a minor extent. As a result,
any particle size broadening can be attributed to the non-uniform supersaturation
field, generated by the mixing process due to the gradient of TKE across the in-
terface. The constants T0 and ρv,e in the equation (2.5) are chosen as the mean
values of T and ρv over the whole domain as in the initial conditions. The thickness
of the initial mean temperature and the mean density of water vapor interface is
slightly wider, which is around 0.007 m (Figure 2.1(d)). The initial mean density of
the water vapor and the unstable mean temperature distribution inside the domain
simulate the supersaturated (relative humidity (RH) φ = 1.1, 10% supersaturation)
condition for the cloudy volume and a subsaturated (φ = 0.6, 40% subsaturation)
condition for the clear air volume conditions. The supersaturated condition inside
the cloudy region of the simulation domain will help the local cloud water droplets
to grow by the deposition of water vapor on them in form of condensational growth.
Whereas, the entrainment of the subsaturated clear air inside the cloudy volume
will result in subsaturation, and will result in an evaporative size reduction of the
cloud droplets. These mean values of the supersaturation are around the upper
bound of the atmospheric measurements by Siebert and Shaw, (2017) [128].

2.2.3 Details of the Initial Setup for the Droplets
Three different mono-disperse populations of cloud water droplets of initial 25

µm, 18 µm, and 6 µm radii are initially introduced for the three simulations. The
droplets are seeded at random positions inside the cloudy part of the domain, that
is, in the supersaturated region of the domain. Initial velocity of the droplets is set
to be equal to the interpolated flow velocity at the droplet position.
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Boundary conditions for the cloud droplets also follow periodic boundary con-
ditions in the two horizontal directions. This means that the droplets which exit
the domain from horizontal boundaries, will re-enter from the opposite side with
the same velocity like the fluid flow. However, the droplets which are settling on
the bottom boundary of the simulation domain, are removed from the simulation.
This is done to consider that those droplets are no longer present inside the cloudy
volume. In this way, these settling droplets can not re-enter the simulation domain
from the top in the clear air region above the cloud. This choice has both some pos-
itive as well some negative impacts on the simulated cloud droplet statistics. Due
to gradual removal of the heavier droplets from the cloudy portion of the domain,
the number of samples for the averaged droplet quantities were reduced near the
bottom boundary of the cloudy volume. However, this removal setup simultane-
ously prevented the cloud droplets from reappearing inside the clear air part of the
domain, as a result of the periodic boundary conditions. Therefore any spurious
droplet feedback is removed for the fluid volume near the top of the clear air region.
In the simulation, size reduction happens for the droplets only due to the evapo-
ration of the liquid water from their individual masses. In case of a droplet, which
reduces below 4% of their initial radius, it is assumed that the droplet is completely
evaporated within the next one time-step. This is implemented to avoids the nu-
merical instability of the small droplets, which have the time-scales much smaller
than the Kolmogorov time-scale.

2.3 Simulation Results

2.3.1 Transient Evolution of the Flow Field
The evolution of the cloud interface is simulated as an initial value problem,

without presence of any kind of volume forcing. Therefore, the only force that
can amplify the velocity of the fluid flow is the buoyancy force generated by the
variations of temperature and water vapor density in the humid air. Transient
evolution of the various volume averaged quantities, such as TKE E, its dissipation
rate ε, Taylor micro-scale Reynold’s number Reλ, and integral length scales L
exhibit transient decay or growth with time as shown in Figure 2.3. Turbulent
fluid statistics along the anisotropic x3 direction is carried out by plane averaging
⟨·⟩ across homogeneous (x1, x2) horizontal planes. For the computation of the
volume averaged turbulent quantities ⟨·⟩V , the plane averaged quantities ⟨·⟩ are
again averaged over the bulk of the cloudy region, which is [1/8 ≤ x3/Lx3 ≤ 3/8],
and the bulk of the clear air region, which is [5/8 ≤ x3/Lx3 ≤ 7/8]. The definitions
for E, ε, λ, Reλ and L are given as:

⟨E⟩ = 1
2

3∑
i=1

⟨u′2
i ⟩; ⟨ε⟩ = 1

2ν
3∑

i,j=1
⟨( ∂u′

i

∂xj

+
∂u′

j

∂xi

)2⟩;
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Figure 2.3: Transient evolution of the flow inside the clear air and cloudy region:(a)
decay of TKE E and dissipation rate ε; (b) Taylor micro-scale Reynolds number
Reλ; (c) longitudinal and transversal integral length scales L; and (d) average
cloud droplet Stokes number St and settling parameter Sv of the different droplet
populations. Plots (a-c) are from the simulation R25. Differences are small among
the three simulations. The plots in panels (a), (b) and (c) present volume averaged
quantities for both the cloudy and clear air regions of the simulation domain.

u′2
avg = 1

2(⟨u′2
1 ⟩ + ⟨u′2

2 ⟩); λ = u′
avg

√
15ν

⟨ε⟩
; Reλ =

u′
avgλ

ν
;

B(r) = ⟨u′
i(xi)u′

i(xi + r)⟩; L = 1
B(0)

∫ ∞

0
B(r)dr;

where u′
avg is the average of the rms velocity fluctuations along two homogeneous

directions (x1, x2) along which flow should remain homogeneous and isotropic. This
is because the only sources of in-homogeneity and anisotropy are gravity and en-
ergy/temperature/density of water vapor gradient, which are all acting along ver-
tical x3 direction. B(r) is the velocity correlation function [99]. The evolution of
E and ε is plotted using logarithmic scale in the both axes in Figure 2.3(a). In
order to use logarithmic scale, the initial time in the Figure 2.3(a) is set equal to
first saving instance (0.043 seconds), which is used also for the other three plots of
Figure 2.3. More than the half of the initial E and ε inside the cloudy region is
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2 – Cloud Droplet Population in Warm Cloud Top Interface

decayed during the first 0.3 seconds. After that the evolution of the E and ε follows
a power-law scaling with time (with scaling exponent of -1.25 for E, and -2.25 for
ε).

Figure 2.3(b) presents time evolution of the Reλ, which shows two phases in its
evolution inside the cloudy region. During the first phase of initial transient till
0.3 seconds, turbulence develops from the initial random conditions. Initially an
increase is observed in Reλ due to the rapid increase in spatial scales (such as λ, L)
which is dominant compared to the decrease in E with time. This is followed by the
second phase where a sharp decrease in Reλ is observed, due to the rapid decrease in
E with time which dominates over the the increase in λ. During the second phase,
E decays at t−1.25 while the λ grows as t0.5. Therefore, altogether a gentle decay of
Reλ at t−0.125 is observed. Since the decrease in E is much slower inside the clear
air region than the increase in its spatial scales, and the detrainment of E happens
towards the clear air region from the cloudy volume. Therefore, the evolution of
Reλ shows an increment for little longer duration in the clear air compared to the
cloudy region, which is rather followed by a slow decrease.

For calculation of the integral length scales L, both the longitudinal and the
transversal integral scales are computed along the two homogeneous directions,
and they are averaged. In Figure 2.3(c), the transversal length scales are seen
not to be exactly one half of the longitudinal length scales, which indicates an
anisotropic evolution of the flow across the domain with time. Since the scales
can not grow beyond the domain size, the effect of the numerical boundary of the
domain also influenced this anisotropic evolution of the integral scale. The decay
in the turbulent kinetic energy also produces a growth of the Kolmogorov micro-
scale η = 4

√
ν3/⟨ε⟩. Since kmaxη varies from 1.0 at the beginning to 3.7 at the end

of the simulation inside the cloudy region of the domain (inside clear air region,
kmaxη ≥ 2 always), the resolution of the simulation increases with time (see also
Elghobashi and Truesdell (1992) [32]). The growth of the η also produces a transient
evolution in the average droplet Stokes number St and the settling parameter Sv

for the different droplet populations inside the domain, which is shown in Figure
2.3(d). St is a ratio between the droplet response time τi in equation (2.10) and
the Kolmogorov time scale τη =

√
ν/⟨ε⟩. Sv is a ratio between vp and uη, where

vp = τig is the terminal velocity of a droplet, and uη = (⟨ε⟩ν)1/4 is the Kolmogorov
velocity. Due to a decay in the kinetic energy and the corresponding growth in η in
the domain, the droplets become gradually less and less sensitive to the turbulence,
which is indicated by the transient growth of the Sv parameter. Whereas, the
droplet Stokes number St gradually reduces.

Figure 2.4 presents the time evolution of the fluid/air statistics. Time has been
re-scaled using an initial eddy turnover time τ0 = L/u′ =0.115 seconds, which is
taken at t =0.043 seconds (the first saving instance). This shift in time τ0 is done
in order to reduce the influences of the initial evolution phase of the flow, when
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Figure 2.4: Transient evolution of flow statistics:(a) TKE ⟨E⟩; (b) kurtosis of ver-
tical velocity fluctuations K(u′

3) ; (c) mean water vapor density ⟨ρv⟩ ; (d) mean
temperature ⟨T ⟩; (e) variance of water vapor fluctuations ⟨ρ′2

v ⟩; (f) variance of tem-
perature fluctuations ⟨T ′2⟩; (g) skewness of water vapor fluctuations S(ρ′

v); and (h)
skewness of temperature fluctuations S(T ′) evolution. All plots present horizontal
plane averaged quantities as in Figure 2.1(c) and (d). The presented data are from
simulation R25. Differences are small among the three simulations.
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Figure 2.5: Transient evolution of supersaturation:(a) mean of supersaturation ⟨S⟩;
(b) variance ⟨S ′2⟩; (c) skewness S(S’); and (d) kurtosis K(S’) of supersaturation
fluctuations. All plots present horizontal plane averaged quantities.

turbulence develops from the initial random quantities. Since all the three different
simulations were initialized with the same initial background fluid flow conditions,
similar transient evolutions are observed for various fluid turbulent quantities. In
transient evolution of ⟨E⟩ in Figure 2.4(a), a detrainment of the TKE to the clear
air region of the domain can be observed which happen through the initial inter-
face (dotted line in the middle). Some detrainment also happen through the top
boundary on top of the clear air region of the domain due to periodic boundary
condition, which generates a secondary inhomogeneous layer. Detrainment of the
TKE and the widening of the TKE interface towards the clear air region of the
domain can be recognized by following the positions of the peaks in the kurtosis
for the vertical component of the fluid velocity u3 in the Figure 2.4(b). These
peaks move toward the core of the clear air region. Skewness S(·) = ⟨(·)3⟩/⟨(·)2⟩3/2

and kurtosis K(·) = ⟨(·)4⟩/⟨(·)2⟩2 of the fluid quantities are computed using the
horizontal plane averages ⟨·⟩, and expressed as a function of vertical direction x3.
Large values for the skewness and kurtosis indicate heavy-tailed distributions of
the fluctuating quantities, which can be observed at the interface region as a re-
sult of the anisotropic mixing in between the cloudy and clear air regions of the
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domain, driven by the initial TKE gradient. After 6 initial eddy turnover time
(t/τ0 = 6), the overall TKE and the amplitude of the kurtosis peaks are observed
to become significantly small, indicating a quasi-homogenized condition. During
the final stage of the simulation (t/τ0 = 18), it can be seen that a negligible amount
of TKE is left inside the fluid motion. The smaller peaks of the kurtosis represent a
well mixed stage in the distribution of the rms of the velocity fluctuations through-
out the domain. Decay rate in the kinetic energy at this stage is reduced by the
production of buoyancy inside the mixing layer. The unstably stratified tempera-
ture profile in the vertical direction amplifies the vertical motion further (see also
Gallana et al. (2014) [40]), and the fluctuations of ρv and T produce buoyancy
fluctuations (equation (2.5)). Both these physical processes introduce energy into
the vertical motion (equation (2.2)). This cumulative effect becomes visible only
after t/τ0 = 6 (see the growth of ⟨E⟩ in the mixing region in Figure 2.4(a)), when
the flow has lost most of its initial turbulent kinetic energy. This additional source
of kinetic energy accelerates the growth of the mixing layer, and reduces the extent
of the undiluted regions as well. During the later stage of the evolution, t/τ0 > 12,
the initial configuration of two different regions is almost no more distinct, and the
flow begins to approach a homogenized state.

Figure 2.4(c) and (d) present the time evolution of the mean of the water vapor
density ⟨ρv⟩ and the temperature ⟨T ⟩ respectively. Mean of both the density of
water vapor and the temperature decrease inside the cloudy region of the domain,
whereas, it increase inside the clear air region. The resulting profile of mean su-
persaturation ⟨S⟩ (which is initialized with a magnitude of 10% inside the cloudy
region and -40% inside the clear air region) shows a decrease in its magnitude inside
the supersaturated cloudy region and an increase inside the subsaturated clear air
region (Figure 2.5(a)). The mixing process tends to homogenize and produce a uni-
form supersaturation profile. Therefore, the mean supersaturation value remains
positive (⟨S⟩ > 0) only in the central part of the cloudy region during the final stage
(t/τ0 = 18). Whereas, most of the domain remains subsaturated (⟨S⟩ < 0). Figure
2.4(e) and (f) present the time evolution of the variance of water vapor fluctuations
⟨ρ′2

v ⟩ and the temperature fluctuations ⟨T ′2⟩. Variance in the plane averaged su-
persaturation fluctuations ⟨S ′2⟩ as a result of the water vapor density fluctuation
and the temperature fluctuation is shown in Figure 2.5(b). Although in the initial
condition, no fluctuations are introduced for the temperature and the density of
water vapor fields, fluctuations are actually generated by the mixing in the interface
region, which propagated inside the undiluted core of the cloudy or the clear air
region gradually during the spreading of the mixing region. There is also a minor
source for the fluctuations in the fluid flow quantities, in form of the droplet feed-
back term Cd in equations (2.3) and (2.4). However, since the mean condensational
time-scale is much larger than the initial eddy turnover time-scale, Cd could only
give an overall small contribution for generating the fluctuations. In Figure 2.4(e)
and 2.5(b), two peaks are observed in the fluctuations of the density of water vapor
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2 – Cloud Droplet Population in Warm Cloud Top Interface

and supersaturation, one of which is in the interface in the middle of the domain,
and other one is near the bottom and the top boundaries, due to periodicity in
the initial density of water vapor condition. However, the initial temperature is
non-periodic in the vertical direction, and varies only at the mixing interface in the
middle of the domain. Therefore, Figure 2.4(f) shows only one peak in the variance
of the temperature fluctuations. Temporal growth of the scalar (density of water
vapor, temperature, and supersaturation) mixing layers, and the widening of the
scalar interfaces become evident from the shift in the peaks of the skewness and
the kurtosis of the scalars towards the undiluted central regions as shown in Figure
2.4(g and h), and Figure 2.5(c and d), which gradually decrease in magnitude with
the mixing spreading all across the domain.

Figure 2.6 presents the time evolution of one dimensional (1D) horizontal/
transversal (x1, x2) spectrum of the three components of air velocity Eu′

1
(k), Eu′

2
(k)

and Eu′
3
(k) in the wavenumber space k, sampled at the middle horizontal plane of

the initial configuration of the cloudy region, and at the middle plane of the initial
interface region (with 3 adjacent plane averaging in both cases). The 1D spectra
in wavenumber space Eu′

1
(k), Eu′

2
(k) and Eu′

3
(k) distributed in the homogeneous

x1, x2 directions are computed as:

Eu′
1
(k) = 1

N2

N2−1∑
j=0

| û1(xj
1, k, x3) |2;

Eu′
2
(k) = 1

N1

N1−1∑
j=0

| û2(k, xj
2, x3) |2;

Eu′
3
(k) = 1

2

[
1

N1

N1−1∑
j=0

| û′
3(k, xj

2, x3) |2 + 1
N2

N2−1∑
j=0

| û′
3(xj

1, k, x3) |2
]

where Ni is the number of grid points in xi direction, f̂ is the Fourier transform
of quantity f . Initially the cloudy and the clear air region were initialized with
two homogeneous and isotropic turbulent cubic domains [64] with a TKE ratio of
20 in between the two regions. Therefore, the initial 1D transversal spectra for all
the three components of velocity fluctuations look almost similar (some differences
can be observed in the lowest wavenumbers due to the smaller number of samples).
The interface region in the initial condition, however, contains lower TKE than
that of the cloudy region of the domain, which is due to the linear interpolation
in TKE magnitudes in between the cloudy and the clear air region. This can also
be observed in the initial TKE spectra of the interface region showing a vertical
shift downwards than that of the cloud core region. With time advancement, the
dissipative wavenumber range from the initial condition shows transition towards
smaller wavenumbers indicating a growth in the Kolmogorov micro-scale η with
time, while, at the same time gradually shrinking the inertial sub-range. Moreover,
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Figure 2.6: One dimensional horizontal spectra for Energy: Transient evolution of
(a, b) the transversal spectra of u′

1; (c, d) the transversal spectra of u′
2; and (e, f)

the transversal spectra of u′
3 respectively at the cloud core and at the interface. All

plots correspond to one dimensional spectrum calculated at the middle plane of the
initial cloudy region of the domain and the initial interface mixing layer.

the spectra of different components of velocity fluctuations, the horizontal panels in
Figure 2.6, do not replicate each other during the later instances of the simulation,
resembling an anisotropic evolution of the fluid flow.

In Figure 2.7(a and b), the transient evolution of the water vapor density fluc-
tuations spectra Eρ′

v
(k) and in Figure 2.7(c and d), the temperature fluctuations
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Figure 2.7: One dimensional horizontal spectra for Scalars: Transient evolution of
the spectra of (a, b) the water vapor fluctuations ρ′

v; and (c, d) the temperature
fluctuations T ′ respectively at cloud core and at the interface. All plots correspond
to one dimensional spectrum calculated at the middle plane of the initial cloudy
region of the domain and the initial interface mixing layer.

spectra ET ′(k) in wavenumber space k are presented, which are sampled both at the
cloud core and at the interface. Presence of a mean gradient in the initial scalar
profiles along the vertical direction creates a large variance of that scalar in the
mixing layer (Figure 2.4), which is observed to spread towards the undiluted core
regions with time. The mean gradient in the mixing region is large enough to pro-
duce sufficient variance in the scalars to counter its dissipation and the turbulent
transport. Therefore, a well mixed region can be observed to be created inside the
scalar spectrum which is quickly approaching the k−5/3 Kolmogorov inertial range
[62]. Initially the only source of temperature and density of water vapor variance
inside the undiluted cloudy region is the droplet condensation/evaporation. There-
fore, it can be seen that initially the scalar spectra are not well developed. But
after t/τ0 = 10, the growth of the mixing layer gradually destroys the cloudy core
region, so that, similar scalar spectra like the mixing region is replicated inside the
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cloud core as well. The equations used for computation of the scalar spectra are:

Eρ′
v
(k) = 1

2

[
1

N1

N1−1∑
j=0

| ρ̂′
v(k, xj

2, x3) |2 + 1
N2

N2−1∑
j=0

| ρ̂′
v(xj

1, k, x3) |2
]

ET ′(k) = 1
2

[
1

N1

N1−1∑
j=0

| T̂ ′(k, xj
2, x3) |2 + 1

N2

N2−1∑
j=0

| T̂ ′(xj
1, k, x3) |2

]

where ρ̂′
v and T̂ ′ are the Fourier transform of ρ′

v and T ′ respectively. Since in the
initial condition, no fluctuations are introduced in the scalar quantities, spectra for
the initial conditions are not shown.

2.3.2 Transient Evolution of the Droplet Population
The three simulations of this study are initialized with three different mono-

disperse cloud droplet populations listed in Table 2.2 in the same fluid flow initial
conditions. The droplet populations go through distinct transient evolution accord-
ing to their individual surrounding fluid flow conditions. In general, the droplets
in the cloud core region experience an average condensational growth due to its
supersaturated ambient condition. However, the droplets which are exiting the
cloud core region, tend to evaporate due as a result of subsaturated ambient. A
visualization of the flow along with droplets is shown in Figure 2.8, where enstrophy
(E = |∇ × u|2) of the fluid field across a vertical plane (plane (x3, x1)) is presented
together with the superposition of the cloud droplets around that plane. The thick-
ness of the droplets containing slice is 0.0025 m, and the visualization is produced
after 6 initial eddy (t/τ0 = 6) turnover time. Also, the regions of supersaturation
S field is marked in the red and yellow contour lines. The line at S = 0 marks the
extent of the cloudy region, where condensational growth occurs. In the region with
S ≤ −0.2 beyond the yellow contour line, the droplets would instead experience a
quick evaporation. Although the enstrophy field looks almost similar, some small
differences in the local enstrophy can be observed which is as a consequences of
the cloud droplet feedback term Cd in equations (2.3) and (2.4). As a result, these
terms determine also the buoyancy term B in the momentum balance equation
(2.2). Since the buoyancy is sensitive to the small local fluctuations in the density
of the water vapor ρv and the temperature T , differences in droplet feedback Cd

due to different droplet sizes (equation (2.6)) can result into small differences in the
local fluid velocity, despite the initial fluid flow conditions for the three simulations
are identical. Distribution of enstrophy in Figure 2.8 gradually decreases with the
time, in line with the TKE distribution also decreased as shown in Figure 2.3(a)
and Figure 2.4(a). For visualization of the droplets in Figure 2.8, the droplets are
normalized with their initial size rin (initially normalized size of the droplets are
uniform and equal to 1), and presented as variable size points accounting for the
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Figure 2.8: Visualization: Enstrophy E field across a vertical plane (plane (x3, x1))
is presented in superposition with the supersaturation S field in contour lines and
cloud droplets around that plane (thickness of droplets containing slice is 0.0025 m)
after 6 initial eddy (t/τ0 = 6) turnover time. Colorbar represents magnitude of the
enstrophy in the flow field, red and yellow contour lines represent saturated (S = 0)
and subsaturated (S = −0.2) conditions respectively. The sizes of the droplets are
proportional to r/rin for each population. The panels show the simulations with
the droplet populations of (a) 25 µm; (b) 18 µm; and (c) 6 µm initial radius.
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growth or the reduction in droplet size due to physical processes, such as, conden-
sation or evaporation or collision. Due to much higher condensational growth rate
of the smaller size (6 µm radius) droplet population, the normalized size of the
presented droplets are bigger in Figure 2.8(c) than the other two populations in
Figure 2.8(a and b). Since the time lapse of the presented data in this figure is
small compared to the total simulation duration, the cloud droplets do not show
wide range of size distribution, but rather stay close to their initial radius.

Due to differences in the cloud droplet Stokes number St as shown in Figure
2.3(d), droplets show different responses to the local enstrophy field. In Figure
2.8(a), the droplets of initial 25 µm mono-disperse distribution are seen to prefer-
entially concentrate away from the regions of higher enstrophy. These population
is often forming string like patterns and clustering in the areas of lower enstrophy
[158]. However, the gradual reduction in the average Stokes number with time
reduces this tendency to cluster. While the gravitational settling which is domi-
nant on the larger droplet population and the droplet size broadening reduce the
correlation between the droplet concentration and the local strain. A similar, but
much milder tendency can also be observed in Figure 2.8(b) for the simulation with
initial 18 µm mono-disperse droplet population. On contrary, a higher uniform
concentration can be seen in Figure 2.8(c) for the droplet population with initial 6
µm radius, which are not significantly influenced by the local enstrophy and gravity
due to almost tracer like behavior.

At the same time, the droplets also undergo gravitational sedimentation ac-
cording to their individual mass. This settlement is only partially counterbalanced
by the turbulence. The relative importance of sedimentation is controlled by the
dimensionless settling parameter Sv [147]. Since uη decays as t−(n+1)/4, n = 1.25 in
these present simulations, the importance of gravitational sedimentation grows with
time (see Figure 2.3(d)). Larger droplets of initial 25 µm radius population begin to
gather at the bottom of the domain from the very beginning of the simulation, and
are observed to rarely enter the mixing layer (Figure 2.8(a)). Droplets with initial
18 µm radii have a comparatively slower rate of sedimentation, and are observed
to cross the cloudy region border through the detrainment process (Figure 2.8(b)).
While, on the contrary, smaller droplets (initial 6 µm radius population) do not
show a noticeable rate of sedimentation. They are observed to easily detrain in the
clear air zone (Figure 2.8(c)), where, due to their shorter evaporation time-scale
(proportional to r2/|S|) and much longer residence time (roughly proportional to
L/u′, but can be modified by the droplet settling velocity vp), they can completely
evaporate. Moreover, for the smaller droplet population, the presence of a strong
subsaturation near the bottom boundary and at the clear air region of the do-
main also removed droplets by a complete evaporation of the droplet liquid water
content. This evaporation contributes to cool down the subsaturated layer above
the mixing region, and increases the negative buoyancy [89] and thus enhancing the
mixing process. Whereas, for the larger droplets, after a few initial time-scales, this
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process of detrainment to subsaturated clear air zone and complete evaporation of
the droplets can not be witnessed.
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Figure 2.9: Probability density functions (PDFs): PDFs of (a, b, c) cloud droplet
radius r; (d, e, f) droplet surface area growth rate dr2/dt; and (g, h, i) vertical
component of droplet velocity v3 for 25 µm, 18 µm, and 6 µm initial droplet size
populations respectively.

The above-mentioned distinctive behaviors are reflected in the transient evo-
lution of the normalized probability density functions (PDFs) of the droplet size,
velocity, and growth rate. These are presented in Figure 2.9. Figure 2.9(a-c) present
the evolution of the PDFs for the cloud droplet radius with time. Both the cloud
droplet populations with initial 25 and 18 µm radius show limited broadening of
their sizes due to lesser impact of the condensation/evaporation on these popu-
lations. However, the presence of two secondary peaks, which correspond to the
collisions (Figure 2.9(a and b)), result in droplet size broadening. However, for the
droplet population with initial 6 µm radius, no collisional growth can be observed
for the simulation duration. Whereas, the width of the DSD is observed to be wider
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in Figure 2.9(c) due to both the evaporation and condensation processes, and a cer-
tain number of droplets are observed to evaporate completely. The impact of the
condensational size growth or the evaporative size reduction is more efficient for
the smaller droplets, since the droplet radius growth rate dri/dt is proportional to
r−1

i (see equation (2.9)). The PDFs of dr2
i /dt, which indicates the growth rate in

the droplet surface area, are presented in Figure 2.9(d-f). As dr2
i /dt from the equa-

tion (2.9) is proportional to the local supersaturation S = (φ − 1) conditions, the
simulations of the three initial mono-disperse cloud population should exhibit simi-
lar transient evolution, since the background supersaturation spatial distribution is
similar for the three simulations. However, droplets experience different supersat-
uration conditions due to their different trajectories, which also depends on their
individual sizes and the local fluid flow conditions. Smaller droplets of the initial
6 µm radius do not show the extreme negative tail of dr2

i /dt as observed for larger
droplets in Figure 2.9(d and e). This is because of the complete evaporation of the
droplets from the smaller 6 µm radius population (Figure 2.9(f)). Moreover, since
the subsaturation can result in highly negative dri/dt for the sub-micron droplets
from the initial 6 µm droplet population, and since the numerical time-step for
the sub-micron droplets needs to be very small and their microphysics cannot be
modelled using equation (2.9); the droplets with sizes below 4% (≤ 0.24 µm) are
removed, which is also detailed in the initial setup for the droplets subsection.

Due to the gravity, the vertical component of the cloud droplet velocity v3 ex-
hibits different behaviour compared to the velocity components along the horizontal
directions v1 and v2. Transient evolution of PDFs for v3 is plotted in Figure 2.9(g-i).
During the early stage of evolution, the PDFs of v3 shows wider distribution due
to the presence of TKE inside the domain, which influences the droplet velocity
as well. However, the decay of TKE with time narrows down the spectrum of u3,
and therefore the v3 with time. The gravitational settling is visible in the shift of
the maxima of the PDFs of v3 toward the negative values for the larger droplets.
It was previously observed in Figure 2.8(a) that the cloud droplets of initial 25
µm population are positioned near the bottom boundary of the domain due to the
gravitational acceleration. From Figure 2.9(g), most of the cloud droplets of ini-
tial 25 µm population are observed to have a higher negative v3 during the later
instances of the simulation. Free fall velocity for a 25 µm cloud water droplet is
0.077 m/s. The peak of the PDF of v3 of this population is observed at 0.063 m/s
after the first time-scale, which is implying dominance of gravitational settlement
with velocities close to the free fall condition. Simulation with the initial 18 µm
population (Figure 2.9(h), and 2.8(b)) evidences comparatively a slower rate of set-
tling down than the initial 25 µm population. However, the simulation with initial
6 µm population shows almost a symmetric evolution of v3 around the zero (Figure
2.9(i)), which indicates the negligible effect of the gravitational acceleration on this
cloud droplet population.

The number density of the droplets inside the simulation domain can change
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Figure 2.10: Normalized number density of droplets: Transient evolution in (a) the
number density of total number of cloud droplets Nd(t); (b) the number density of
droplets went through condensational growth Ncond(t); (c) the number density of
droplets undergone evaporative size reduction Nevap(t); and (d) the number density
of droplets with one collision Ncoll(t) as observed for 25 µm, 18 µm, and 6 µm initial
droplet size populations. No collision and coalescence is observed for 6 µm initial
droplet populations.

with time due to collisions, or due to complete evaporation of the liquid water, or
due to the gravitational sedimentation of the droplet out of the domain bottom
boundary. To quantify the relative importance of condensation, evaporation, colli-
sion and gravitational sedimentation; the transient evolution in the number density
of droplets is presented in Figure 2.10. Evolution in number density of all droplets
Nd(t), which is normalized by initial droplet number density Nd(0), is presented in
Figure 2.10(a). Here most significant reduction in total number of droplets can be
observed for the initial 25 µm droplet population, and comparatively less for the
initial 18 µm droplet population, and much lesser for the initial 6 µm droplet popu-
lation. The most active physical process to result in reduction of the total number
of cloud droplets for the initial 25 and 18 µm droplet populations is the gravita-
tional settling and the subsequent removal of the droplets falling below the bottom
boundary of the domain. However, the most active physical process for the initial
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6 µm droplet population, reducing the total number of droplets is its complete
evaporation in the subsaturated region of the domain. In Figure 2.10(b), the time
evolution in the normalized number density of the droplet population remaining
to its initial radius or exhibiting a size growth due to condensational water vapor
deposition Ncond(t)/Nd(0) is presented. rin ≤ ri < 3

√
2rin, where 3

√
2rin correspond

to radius of a droplet after first collision with a similar sized droplet. Although,
the initial 6 µm droplet population did not exhibit any collisional growth, but some
fraction of the population grew more than 3

√
2rin size due to the much higher degree

of condensational growth than the larger populations. Transient evolution in the
normalized number density of the cloud droplets experiencing evaporative size re-
duction Nevap(t)/Nd(0) is presented in Figure 2.10(c). For the initial 25 µm droplet
population, droplets with a radius smaller or equal to 24.5 µm are considered for
counting the number density of the evaporating droplets. ri ≤17.5 µm for the initial
18 µm population and ri ≤5.5 µm for the initial 6 µm population. The effect of the
complete evaporation for the initial 6 µm droplet population is evident from Figure
2.10(b) where the number density of the droplets equal or larger than the initial 6
µm size is observed to decrease with time. But in the Figure 2.10(c), the number
density of the evaporating droplets during the later stage of the simulation is almost
steady. This implies that some physical process is resulting in removal of droplets in
the evaporating range. In Figure 2.9(c), the absence of sub-micron droplets is seen
to happen from 12 to 18 initial eddy turnover time, which also confirms presence
of the complete evaporation of sub-micron droplets for initial 6 µm droplet popu-
lation. The initial 25 and 18 µm droplet population shows a growth in the DSD
due to the occurrence of collision in different size ranges. Figure 2.10(d) presents
normalized number density of the droplets in size ranges corresponding to collision
between two similar sized droplets Ncoll(t)/Nd(0), which is the secondary peaks in
Figure 2.9(a and b). For this transient evolution of the number density of colliding
droplets, the source is the occurrence of collisions, and the sink is the gravitational
sedimentation of the droplets out of the domain. For both the initial 25 and 18
µm droplet population in Figure 2.10(d), during the initial 4 initial eddy turnover
time, the occurrence of collision dominates over the gravitational sedimentation.
However, later the droplets with 1 collision for 25 µm initial droplet population
are removed from the domain very rapidly, whereas, for the 18 µm initial droplet
population, the number of droplets with 1 collision remains almost steady. Occur-
rence of collision in between larger sized droplets, which already have one collision,
to the smaller droplets resulting in droplets with two or more collisions were very
rare, and happened mostly in the case of 25 µm initial droplet population.

Time evolution of the one-point correlations between fluid flow and cloud droplet
B(a, b) = ⟨a′b′⟩/(⟨a′2⟩⟨b′2⟩)1/2, where a and b are respectively the fluid and the
droplet quantities, are presented in Figure 2.11. Since the droplet distribution is not
uniform, for the calculation of these correlation parameters, both the fluctuations
in the cloud droplets and fluid flow quantities are plane averaged in horizontal
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Figure 2.11: Correlation between fluid and droplet:(a, b, c) correlation between
vertical component of fluid velocity fluctuations u′

3 and droplet velocity fluctua-
tions v′

3 ; and (d, e, f) between supersaturation fluctuations S ′ and fluctuations in
liquid water content lwc′. Vertical panels from the left to right present correlation
diagrams for 25 µm, 18 µm, and 6 µm initial droplet size populations respectively.

directions (x1, x2). This is done by considering only grid cells containing cloud
droplets withing its ∆x3 volume and the droplet quantities are averaged to the
corresponding grid points. In the correlation between the fluctuations in the vertical
component of the fluid velocity u′

3 and the droplet velocity v′
3 in Figure 2.11(a-c),

u′
3 and v′

3 are very well correlated for initial 6 µm droplet population, but less
correlated for 18 µm, and much lesser for the 25 µm initial droplet population
during the initial instances. Spurious fluctuations in the correlation parameters are
observed in the interface region, where number of droplet samples are much smaller.
Since the TKE inside the domain during later instances was much smaller, and the
Stokes numbers decrease (Figure 2.3(d)) as well for all the populations, the velocity
fluctuations for both the fluid u′

3 and the droplet v′
3 tend to correlate more with the

time advancement. In Figure 2.11(d-f), the correlation between the supersaturation
fluctuations S ′ and the fluctuations in the liquid water content lwc′ is presented.
Due to the particle clustering and the high fluctuations in the size of the statistical
samples, bezier smoothing has been applied to the correlation in between S ′ and
lwc′. This smoothing significantly modifies the data only in the clear air region of
the domain, where number of droplets are very small. Improved statistics could
be obtained by considering ensemble averaging between different simulations with
independent initial conditions. Since initially inside the undiluted cloudy part of
the domain, S ′ was 0, and gradually the fluctuations picked up, the widening of the
interface mixing region can be witnessed in these correlation plots. With positive
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S ′, the positive lwc′ is observed, which shows highest positive correlation for initial
6 µm droplet population. However, the correlation is less for 18 µm, and much
lesser for the 25 µm initial droplet population. In general, almost no correlation
is observed in between the fluid enstrophy E ′ and the vertical component of the
droplet velocity v′

3. However, for the two larger cloud droplet populations (initial
25 and 18 µm radii), increase in the negative correlation was observed to happen
with time.

In Figure 2.12, time evolution of three sample droplets from the three different
simulations reaching a specific region in the initial clear air portion of the domain
(see the box in the clear air region of panel (a), (c), (e) of Figure 2.12) after
the 3 initial eddy turnover time (t/τ0 = 3) is presented. These droplets were
transported due to the detrainment of the cloudy air to the subsaturated clear air
region from the near interface region of the cloudy part of the domain. Due to
subsaturation, only the droplets from the simulations with initial 25 and 18 µm
droplet populations are observed to survive the entire simulation duration. The
impact of the gravitational settlement is observed to be very pronounced for the
larger droplet population, leading to a short residence time in the subsaturated area.
Two out of the three droplets came back to the cloudy supersaturated region of the
domain almost immediately, see Figure 2.12(a). Whereas, the other remaining
droplet was trapped in some eddy to follow a lateral movement inside the clear
air region. In Figure 2.12(b), these droplets are observed not to follow the fluid
velocity exactly, but rather shows a negative v3 indicating stronger influences of
the gravitational forces on these droplets. The sample droplets from the simulation
with initial 18 µm droplet population shows comparatively less influence under
the gravitational forces, and remains entrapped in the eddies inside the clear air
region of the domain (Figure 2.12(c)). Therefore the subsaturated ambient of these
droplets produces a continuous size reduction (Figure 2.12(d)). Whereas, the local
subsaturation played mostly important impact on the samples of the droplets from
the simulation with initial 6 µm droplet population. After being detrained to the
subsaturated clear air region, these droplets cloud not return back to the saturated
cloudy part of the domain due to decay in the TKE inside the domain (Figure
2.12(e)), and eventually were evaporated completely in the middle of the simulation
duration (Figure 2.12(f)).

A comparison in between some laboratory experiment by Chandrakar et al.
(2016) [19] and combined DSDs from our simulations are presented in Figure 2.13.
The normalized DSD in Figure 2.13(a) correspond to the steady state DSD achieved
by a constant rate of aerosol injection inside a humid chamber, where the DSDs
varied according to the presence of number of droplets inside the chamber. Whereas,
in our simulations we follow the transient evolution of three different populations
of mono-disperse droplets. Due to the presence of supersaturation fluctuations and
mixing, we witnessed a transient growth in the DSD by condensation, evaporation
and collision, which varied according to the initial size of the droplet population.
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Figure 2.12: Lagrangian trajectories: A sample of few individual cloud droplet
trajectories. (a, c, e) Visualization of the time evolution of droplet positions; and
(b, d, f) Lagrangian history of the vertical component of droplet velocity v3, fluid
velocity at that droplet position u3, and their normalized droplet radius r/rin up to
the end of simulation duration (t/τ0 = 18) or to the end of the droplet life till being
completely evaporated (panels e and f) are presented. Colorbar for the left panels
represents droplet radius growth rate dr/dt, thus indicating the droplet positions
where condensation or evaporation occur. Size of the droplets are proportional to
normalized droplet radius r/rin.

Due to the simulation setup of initial value problem in our simulations and presence
of mixing in between the clear air and the cloudy region of the domain, a steady
state condition could not be achieved.
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Figure 2.13: Comparison of the probability density functions (PDFs) of droplet
size distribution (DSD):(a) PDF of cloud droplets for a laboratory simulation at
steady state condition (droplet injection rate=droplet removal rate) [19]; and (b)
a combined graph of PDFs of the three simulation runs of this study at the end of
the simulation runs.

2.3.3 Impact of Stratification Stability on Cloud Droplets
A series of follow-up simulations are conducted to investigate the impact of the

stable, unstable or neutrally stratified airflow conditions on the transient evolution
of the initial mono-disperse cloud droplet populations. The simulation domain
configuration models the transient inhomogeneous mixing in the cloud top interface,
where a volume of the cloudy region and a above-lying volume of clear air region,
separated by an initial interface is simulated. Similar to the previous section, the
initial airflow conditions for the flow velocity are introduced to be the same for all
these 9 simulations as in Table 2.3, with a similar turbulent kinetic energy ratio
Ecloud/Eair of 20 and an initial rms of velocity fluctuations u′ inside the cloudy
volume to be 0.194 m s−1. The sizes of the simulation domains for all these cases
are larger compared to the previous simulations. These domains have 512 grid
nodes both in the horizontal directions x1 and x2, while contains 1024 grid nodes in
the vertical x3 direction. The simulation grid size ∆x is 0.001 m, which makes the
simulation domain size Lx1 ×Lx2 ×Lx3 equal to 0.512×0.512×1.024 m3. The initial
conditions for the density of the water vapor ρv and the temperature T , however,
are varied from one simulation to another. These variations in the initial scalar
profiles are used to create (a) three different initial stability conditions according
to the initial T profiles and to create (b) three different initial supersaturation
conditions inside the simulation domains as detailed in Table 2.3.
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Table 2.3: Details of the stratified simulation runs

Quantity

IDs Type RHcloud RHair

STBL-110-60 Stable 110% 60%
USTBL-110-60 Unstable 110% 60%
NUTRL-110-60 Neutral 110% 60%
STBL-110-40 Stable 110% 40%
USTBL-110-40 Unstable 110% 40%
NUTRL-110-40 Neutral 110% 40%
STBL-105-85 Stable 105% 85%
USTBL-105-85 Unstable 105% 85%
NUTRL-105-85 Neutral 105% 85%

For the stably stratified airflow condition (STBL), a vertical temperature gra-
dient Γ = ∆T/Lx3 of 3.82 K m−1 is introduced in the three stable stratification
simulations. This temperature gradient models a vertically stable stratification
profile with a temperature difference of 4 K in between the cloud and the clear
region of the domain, where the cloudy volume is colder than the clear air. In
case of the unstably stratified airflow condition (USTBL), the vertical temperature
gradient Γ is −3.82 K m−1, which models the cloudy volume to be warmer than
the above-lying clear air, and therefore, a unstable stratification condition is cre-
ated. The neutral stratification simulations (NUTRL) have a vertical temperature
gradient Γ = −6.5 × 10−3 K m−1 according to the standard atmospheric lapse rate,
where the cloudy region of the simulation domain is modeled to be slightly warmer
than the clear air region.

The initial condition for the supersaturation is introduced to create three differ-
ent supersaturation gradients across the cloud and the clear air interface. The
strong supersaturation gradient models initially 10% supersaturation condition
(RHcloud=110%) in the cloudy volume, while the clear air volume has initially 60%
subsaturation (RHair=40%). The moderate supersaturation gradient has the same
10% initial supersaturation condition in the cloudy volume, but a 40% subsatura-
tion (RHair=60%) in the initial clear air region. The mild supersaturation gradient
models the cloudy volume with a 5% supersaturation condition (RHcloud=105%)
and the clear air region is 15% subsaturated (RHair=85%). It must be noted that
although there are three simulations for each the strong, moderate and the mild
supersaturation gradients, the initial condition for the density of the water va-
por changes from one simulation to the other. This is due to the change in the
initial stratified airflow conditions which changes the respective temperatures of
the cloudy and the clear air regions of the domain, and therefore the respective
saturated water vapor density which defines the relative humidity conditions.
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Figure 2.14: PDFs of cloud droplet radius r for various stable (STBL), unstable
(USTBL) or neutrally (NUTRL) stratified airflow conditions at the end of the
simulation duration t =4.536 s for various initial supersaturation conditions.

The initial conditions for the cloud droplets are the same for all the 9 simula-
tions. A mono-disperse cloud droplet population of initial 20 µm radius is seeded
randomly in the initial cloudy volume of the simulation domain for each simula-
tion. The numbers of initial droplets in each simulation are around 3.353 × 106,
which have a liquid water content of 0.84 g m−3 in the initial cloudy volume of the
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simulation domain. Such liquid water content can be observed in the atmospheric
clouds [131, 65]. All these simulations are conducted for a total duration of 4.536 s,
which is achieved with a total of 3.6 × 104 time steps for each simulation with a
uniform time step ∆t = 1.26 × 10−4 s. In this section, only the statistics of the
cloud droplet population at the end of the simulation duration will be reported,
that is, at the transient evolution time of 4.536 s.

Figure 2.14 shows the probability density functions (PDFs) of droplet size dis-
tribution (DSD) for the nine simulated cases with various types of stratified airflow
and the different initial conditions for the supersaturation across the interface at
the end of the simulation duration t =4.536 s. In the left panel, Figure 2.14(a,c,e),
the nine simulation are organized according to the different initial supersatura-
tion gradient for each plot. Figure 2.14(a) presents the PDF (r) for initially 10%
supersaturation condition in the clouds (RHcloud=110%) and 60% subsaturation
in the air (RHair=40%) simulations. This is the largest simulated supersatura-
tion gradient. Figure 2.14(c) presents the PDF (r) for initially RHcloud=110% and
RHair=60% simulations, which creates a moderate supersaturation gradient across
the mixing interface. While the Figure 2.14(e) presents the PDF (r) for initially
RHcloud=105% and RHair=85% conditions, which creates a mild supersaturation
gradient.

In each plot of this left panel of Figure 2.14, PDF (r) for all the stable, unstable
or neutrally stratified airflow conditions are plotted for a specific initial supersatu-
ration condition. It is seen that the unstably stratified airflow condition results in
highest widening in the DSD, while the stable condition in the initial temperature
profile shows lowest widening in the DSD. As previously mentioned, the unstably
stratified temperature profile in the vertical direction amplifies the vertical motion
across the initial interface [40], and the resulting fluctuations of ρv and T produce
buoyancy fluctuations (equation (2.5)) in the gradually widening mixing interface
and increase the mixing rate. As a result, both these physical processes introduce
energy into the vertical motion (equation (2.2)) and results in higher rate of mixing
and supersaturation fluctuations. Therefore, the droplets in the interface region ex-
periences a wide range of supersaturation condition, which is reflected in the wide
broadening of the DSD. The stably stratified airflow condition, whereas, inhibits
the mixing across the initial interface [40] although there exist a strong gradient
in the initial turbulent kinetic energy condition. As a result, DSDs for the stably
stratified airflow conditions are the narrowest one. The neutrally stratified airflow
condition, on the other hand, shows a moderate DSD broadening in between the
limits of the stable and the unstable PDFs of droplet radius, due to its quasi-stable
condition. Whereas, concerning the impact of the initial supersaturation gradient,
it is clearly seen in the left panel of Figure 2.14, that the strongest gradient would
result in higher droplet size broadening, than the moderate and the milder gradients
across the initial interface.

It must be noted in the Figure 2.14, that the PDF (r) of the droplets shows both
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its evolution 1.) in the gradually widening interface in between the cloudy and the
clear air volume which mostly results in evaporative size reduction of the droplets,
resulting in the size range below 20 µm and 2.) in the supersaturated cloud core,
which is gradually shrinking in size due to the widening of the initial interface,
and mostly results in a condensational growth of the cloud droplets as seen in
the size range just above 20 µm, before the secondary peaks in the PDFs. These
secondary peaks, whereas, represent the droplets which are formed due to collision
of two nearly 20 µm radii droplets. These droplets with one collision history also
go through 1.) evaporation, if some of them stays in the subsaturated ambient of
the interface or gets detrained to the clear air zone, as well as 2.) condensational
growth in the cloud core, as can be seen in the PDFs. There are also a few more
smaller peaks above a radius of 28 µm, which represent a very small fraction of
droplets which have seen 2 collisions.

In contrast to the left panel, the right panel of Figure 2.14 is organized from the
top to bottom according to the unstable, then neutral and then stably stratified
airflow conditions, while each plot contains the DSDs for different initial super-
saturation gradients. As previously described, the highest amount of widening is
visible for the unstable stratification case for all the initial supersaturation gra-
dients. While the neutral stratification profile shows a moderate widening in the
DSDs and the stable stratification profile results in the narrowest droplet size broad-
ening. Besides the impact of the initial supersaturation gradient, which results in
higher amount of broadening in the droplet size, if the supersaturation gradient is
higher; one can also observe in Figure 2.14(b,d) that due to the difference in the
initial cloudy volume supersaturation condition, the droplets in the cloud core grow
bigger for the RHcloud = 110% cases than the RHcloud = 105% cases. This phe-
nomenon, however, is different for the stable stratification case in Figure 2.14(e,f)
where a fraction of the droplets grows larger with the condensation of water vapor
than its size in the unstable or the neutral case for the same initial supersatu-
ration gradient. Since, the stable stratification inhibits mixing, it is most likely
that the droplets experience a similar supersaturated ambient longer for the stable
case than the neutral or the unstable stratification conditions. One may assume
this is the reason. However, quantitatively finding the reason behind the higher
sizes of the cloud droplets for the stable stratification condition would need further
investigation.

2.4 Summary and Conclusions
In this chapter, the understanding regarding the growth of the inertial cloud

droplets in the transient mixing of cloud top horizontal interface is extended by
inclusion of the impact of gravitational sedimentation and the impact of collision on
the cloud water droplets, along with the condensational/evaporative growth/shrink
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in size. Three different mono-disperse initial cloud water droplet populations of
radii 25 µm, 18 µm, and 6 µm have been simulated with the same initial background
airflow conditions. This configuration of flow simulation represents a transient
mixing in between a warm cloud top and above-lying clear air ambient. A transient
initial value problem is simulated in this chapter, where the TKE inside the domain
was initialized following the infield measurements of the TKE spectra in the ranges
of the inertial sub-range and the dissipation range. The in-cloud measurements of
the temperature and the water vapor density is replicated in the initial conditions
of the same quantities. However, no fluctuations of the temperature or the density
of water vapor are introduced in the initial conditions. The mixing in between the
cloudy and the clear air regions of the domain produces the fluctuations in the scalar
quantities, such as, temperature, density of water vapor. Therefore, fluctuations
are also achieved on the saturation ratio. The entrainment of the subsaturated clear
air inside the cloudy region and the detrainment of the supersaturated cloudy air
is observed to happen during this transient mixing phenomenon. These processes
widened the initial interface thicknesses for the kinetic energy as well as the scalars.
Initial isotropic homogeneous turbulence inside the cloudy and the clear air region
of the simulation domain gradually becomes anisotropic due to mixing. This was
evident from the transient growth of the correlation scales.

Depending on the initial size of the droplet population, they are observed to un-
dergo different transients, although they were initialized with the same background
flow condition. This study attempts to investigate the differences in between the
cloud droplet growth in the size gap from 15 µm to 40 µm of radius, and for the
droplets smaller than 15 µm of radius. It is observed that the small 6 µm radius
droplets do not grow by collision, but droplets inside the size gap grow significantly
by droplet droplet collision and coalescence. The mixing produces a size broaden-
ing of the initial mono-disperse population due to the supersaturation fluctuations.
These local supersaturation fluctuations are more influential for the smaller popula-
tion. In the larger droplet populations of both the 25 µm and 18 µm radii, collisional
growth becomes important. Multiple collisions have occurred in between the dif-
ferent sizes of the droplets. Since the flow is decaying with time, the gravitational
settling becomes more and more important for the larger population as the simula-
tion evolves, leading to a gradual removal of the falling droplets from the simulation
domain. Therefore, these larger droplet populations show higher decorrelation in
their vertical velocity from that of the fluid velocity. Droplets from both the 25 µm
and 18 µm initial size population are observed to be removed from the simulation
domain due to gravitational sedimentation. On the contrary, the reduction in to-
tal droplet count for the 6 µm initial size population happened mostly due to the
complete evaporation of the sub-micron sized droplets of this population. These
droplets were very sensitive to local subsaturation due their very small size. This
smaller droplet population has a small Stokes number, which makes them follow
the fluid velocity almost perfectly. Also due to a very small settling parameter due
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to negligible terminal velocity of these smaller population, they are not observed
to sediment. With the decay in the TKE, these droplets are observed to remain
dispersed in the domain with very negligible vertical velocity/sedimentation.

In order to find the impact of the stable, unstable or neutrally stratified airflow
conditions on the transient evolution of the initial mono-disperse cloud droplet pop-
ulations, 9 simulations are conducted with the same initial mono-disperse 20 µm
radius droplet populations in the same initial flow conditions for the gradient of tur-
bulent kinetic energy across the interface. However, the initial temperature and the
density of water vapor conditions are varied to create three different initial strati-
fication profiles and three different initial supersaturation profiles. The initial su-
persaturation conditions are varied as strong (RHcloud = 110% and RHair = 40%),
moderate (RHcloud = 110% and RHair = 60%) and mild (RHcloud = 105% and
RHair = 85%). The probability distribution of the droplet sizes shows that the
widening in the initial droplet size increases with the increase in the supersatu-
ration gradient between the cloud and the clear air. Whereas, the temperature
stratification profile has significant influence on the droplet size broadening. The
unstably stratified airflow conditions result in increased mixing across the initial
interface, which widens the droplet size distribution at the highest amount for all
the supersaturation gradients. On the contrary, the stably stratified conditions in-
hibit the mixing across the interface, and therefore, are observed to result in least
droplet size broadening. The neutrally stratified condition, whereas, produces a
moderate broadening in between the limits of the droplet size ranges observed for
the stable and the unstably stratified airflow conditions.

End of Chapter 2
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Chapter 3

Fluid Flow and Scalar Transport
in the Wake of a Sphere

A part of this chapter is already published in Bhowmick, T., Wang, Y., Iovieno,
M., Bagheri, G. and Bodenschatz, E. (2020), “Population Distribution in the Wake
of a Sphere”, Symmetry, volume 12, issue 9, article number 1498 [10]. In this chap-
ter, a comprehensive numerical study on the details of the momentum and scalar
transport in the wake of a sphere will be presented using a population density
distribution approach for the steady axisymmetric and oblique wake regimes. De-
scriptive statistics regarding the spatial structure of the fluid and scalar transport in
the wake is of primary importance, when the extent of the wake with certain prop-
erties needs to be quantified. Investigation of the supersaturation in the wake of
precipitating cloud hydrometeors, which is investigated by Bhowmick et al. (2020)
[11] and Krayer et al. (2020) [72], have important implications for cloud life cy-
cle. Such studies would requires for example a detailed analysis of the transported
scalar population in the wake. In order to quantify the extent of the supersaturated
volume in the wake of a cloud droplet, where aerosols can grow by the deposition
of the excess water vapor in the supersaturated wake and can be activated due to
sufficiently long exposure to supersaturation in the droplet wake [11]; one needs to
know about the details of the scalar population in the wake with a quantification
on the scalar transport and its population distribution. In this Chapter, the details
of the numerical setup and the details of the momentum and scalar transport in
the wake of a sphere for the various steady axisymmetric and oblique wake regimes
will be presented. An introduction to the numerical methods and computational
details are described in Section 3.1 and 3.2. Results are presented and discussed in
Section 3.3, which includes visualization of the structure of the wake for both the
fluid and the scalar transport for various steady axisymmetric and oblique wake
Reynolds numbers. A new approach, the population density distribution, is used
for the detailed quantification of the transport phenomena in the wake. A summary
and conclusions of this chapter is given in Section 3.4.
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3.1 Details of the Physical Model
In this section, an overview of the physical model, and the derived dimensionless

equations and the relevant dimensionless parameters are presented.

3.1.1 Equations for Solving the Fluid Flow
The physical model considers the flow which develops past a sphere, that is

placed in incompressible viscous fluid with velocity u∞ = (u∞,0,0), pressure p∞,
and a constant density ρ. Together with the balances of mass and momentum, also
the transport of passive scalars is considered, that are any contaminants present
in low concentration so that they do not influence the flow. Such dynamics is
described in an Eulerian framework by an advection–diffusion (AD) equation. The
equations in the physical form are written as:

∇ · u = 0 (3.1)
∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u (3.2)

∂θ

∂t
+ u · ∇θ = κθ∇2θ (3.3)

where ∂/∂t is the temporal derivative, ρ0 is reference mass density of air at reference
ambient temperature T∞ and pressure p∞, ∇p is the pressure gradient, ν is the
kinematic viscosity and κθ is the scalar diffusivity of the scalar θ.

If dp is the diameter of the particle/sphere, θp and θ∞ are the scalar concentra-
tion on the surface of the sphere and in the external flow respectively, the problem
can be suitably made dimensionless by using dp, u∞ and θp − θ∞ as scales, and
therefore by defining the dimensionless position, time, velocity, pressure, and scalar
concentration as,

x∗ = x
dp

, t∗ = tu∞

dp

, u∗ = u
u∞

, p∗ = p − p∞

ρu2
∞

, θ∗ = θ − θ∞

θp − θ∞
.

3.1.2 Dimensionless Equations for Solving the Flow Field
Therefore, the dimensionless incompressible Navier-Stokes (NS) equations and

the one-way coupled AD equation for the scalar are,

∇∗ · u∗ = 0, (3.4)
∂u∗

∂t∗ + u∗ · ∇∗u∗ = −∇∗p∗ + 1
Re

∇∗2u∗, (3.5)
∂θ∗

∂t∗ + u∗ · ∇∗θ∗ = 1
Re Sc

∇∗2θ∗, (3.6)
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where Re = u∞dp/ν is the Reynolds number and Sc = ν/κθ is the Schmidt number,
the ratio between the kinematic viscosity and the scalar diffusivity κθ. These equa-
tions are complemented by uniform flow boundary conditions far from the sphere
(u∗ → (1,0,0), θ∗ → 0) and no slip boundary conditions on the surface of the sphere
with a constant scalar concentration (u∗ = 0, θ∗ = 1). Since only the dimensionless
variables will be used throughout the rest of this chapter, ∗ will be dropped from
the dimensionless variables for the sake of simplicity.

3.2 Details of the Numerical Method in DNS
In this section, the details of the numerical methods, choices of lattices for the

fluid velocity and the transported scalars, and the details of the simulation setup
and validation are presented.

3.2.1 The Lattice Boltzmann Method
These governing equations are numerically solved with the lattice Boltzmann

method (LBM) [136, 74]. A code is developed based on the open-source library, Pal-
abos [83]. The discretized Lattice-Boltzmann equation (LBE) solves the discrete-
velocity distribution function f(x, t) for the velocity distribution of a fictitious fluid
particle population. The LBE approximates the continuum problem [74, 98]. In
LBM, the particle distribution function f(x, t) is governed by:

fi(x + ci∆t, t + ∆t) = fi(x, t) + Ωi(x, t),

Ωi(x, t) = −∆t

τ
(fi(x, t) − f eq

i (x, t)). (3.7)

Here i is the direction/index of the individual velocity components of the discrete-
velocity set c, which defines the structure of lattice. x and t are the location of
a lattice node and the time respectively. Here a fluid particle population fi(x, t)
moves to a neighbouring point x + ci∆t with the velocity ci at the next time step
t + ∆t. The collision operator Ωi(x, t) models the redistribution of the particle
populations at each lattice node. In this study, the Bhatnagar-Gross-Krook (BGK)
collision operator [117] is considered, with which the population fi(x, t) relaxes to-
wards its equilibrium state f eq

i (x, t) according to the relaxation time scale τ defined
below, which determines the speed of this equilibration process for the fluid particle
distribution function [74]. f eq

i (x, t) and τ are defined as:

f eq
i (x, t) = wiρ(1 + ci · u

c2
s

+ (ci · u)2

2c4
s

+ u · u
2c2

s

),

ν = c2
s(τ − ∆t

2 ).
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Here wi is the weight, cs is the speed of sound. The macroscopic quantities, such as
the density ρ and velocity u are moments of fi(x, t), according to ρ = ∑

i fi(x, t) =∑
i f eq

i (x, t) and ρu = ∑
i cifi(x, t) = ∑

i cif
eq
i (x, t) respectively.

The one-way coupling between the fluid momentum ρu and the scalar concen-
tration θ is solved by another LBM equation similar to equation (3.7), but with a
distribution function gi(x, t) for the scalar. To recover the AD equation, the equi-
librium distribution function geq

i (x, t) [47] and the relaxation time scale τg, which
determines the speed of the equilibration process for the scalar distribution function
[74], are used as,

geq
i (x, t) = wiθ(1 + ci · u

c2
s

),

κθ = c2
s(τg − ∆t

2 ).

The scalar concentration θ is calculated according to θ = ∑
i gi(x, t) = ∑

i geq
i (x, t).

3.2.2 Choices of Lattices
In the lattice Boltzmann method, different lattices are developed to recover

the governing equations, for e.g. to recover the incompressible Naiver-Stokes (NS)
equations considered in this chapter. In Figure 3.1, the choices of the velocity sets
for the three dimensional flow is shown. For the three dimensional flows, D3Q15,
D3Q19 and D3Q27 are the common choices of lattices. Theoretically, the more
discrete speeds (Q-), the more accurate the lattice is. At the same time, comparison
on those lattices can also be found in literature. For example, the analysis by
Safi et al. (2017) [125] shows that qualitatively all the three lattices give similar
result on the recovered macroscopic quantities of the NS equations. However, they
conclude that “the D3Q19 stencil provides the required isotropy at a reasonable
extra cost compared to D3Q15, while the D3Q27 stencil asks for more than 50%
longer simulation times and no noticeable accuracy improvement upon the D3Q19
stencil”. In the simulation of natural convection heat transfer, Nor Azwadi and
Syahrullail (2009) [106] compared the D3Q15 and D3Q19 lattices, and concluded
that the D3Q15 lattice show some discrepancy with the NS solution (Table 1 in
that paper) for higher Rayleigh number and prone to instability, but D3Q19 lattice
was in good agreement with NS solutions and computationally stable. On the other
hand, comparison of the D3Q19 and D3Q27 lattices produce almost identical results
as extensively described by Opadrishta (2016) [108] and also by Safi et al. (2017)
[125], among others. Therefore, the D3Q19 and D3Q27 lattices will produce almost
indistinguishable moments of the discrete velocity sets and therefore, equivalent
population distribution functions at the steady Reynolds numbers of our study.
Considering that the D3Q19 needs less discrete speeds and thus is more efficient
than the D3Q27 lattice, we chose the D3Q19 lattice for simulating the flow field
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in our simulations which have one rest-velocity and 18 non-rest velocities at each
lattice node. Moreover, since the non-linear momentum advection corrections are
not very significant in the steady axisymmetric or oblique wake flows, D3Q19 lattice
is a better choice than the D3Q27 lattice [133].

Figure 3.1: Source: Krüger et al (2017) [74]. The D3Q15, D3Q19 and D3Q27
velocity sets are shown here. The cube denoted by solid lines has edge length of
2∆x. The velocities with length |ci| = 1,

√
2,

√
3 are shown in black, darker grey

and lighter grey colors respectively. Rest velocity vectors c0 = 0 are not shown.

In order to solve the transported scalars in this study, the D3Q7 advection-
diffusion lattice is chosen. Since only the zeroth and the first order moments of
gi(x, t) are used to recover the AD equation from the LBM equation, a D3Q7
lattice, which has a rest velocity and six velocities along the main lattice axes, is a
good compromise for solving the scalar fields [74].
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Figure 3.2: Sketch of the computational domain used in the simulations. The centre
of the sphere is in the origin of the coordinate system. The flow moves from the left
to the right in the picture. Two streamlines at Re = 200 are shown as an example.

3.2.3 Details of the Simulation Setup and Validation
The sphere is set in the origin of the reference frame, and the dimensionless

domain is [−5,20]dp × [−3.5,3.5]dp × [−3.5,3.5]dp in size (5 diameters upstream,
20 diameters downstream and 7 diameters in the transversal directions) as shown
in Figure 3.2. The domain is discretized with a uniform Cartesian mesh with a
grid size equal to 1/32 of the sphere diameter. Dirichlet and Neumann boundary
conditions are considered for the inlet and outlet boundaries, respectively. For
the lateral boundaries in transversal directions, periodic boundary conditions are
applied. A second order extrapolation scheme, proposed by Guo et al. (2002) [48],
is adopted for the curved boundary of the sphere.

The numerical setup is validated by comparing the drag coefficient, the length
of the recirculating zone and the angle of separation with the existing research for
the fluid velocity field. Mesh independence test is performed with different mesh
spatial resolutions, including dp/24, dp/32, dp/40 and dp/48, which is shown in the
Figure 3.3. In Figure 3.3(a), a box plot of the drag coefficient, CD is produced
for each simulation run with different resolutions in a simulation domain size of
[−5,35]dp × [−5,5]dp × [−5,5]dp for the Re = 200 simulation. It can be seen that the
drag coefficients show negligible difference for the grid size of dp/32 and lower. A
comparison on the length of the recirculating zone LW and the angle of separation
is presented in Figure 3.3(b) for the different mesh resolutions, which again have
shown negligible difference for the grid size of dp/32 and lower, with maximum
variation in the length of the recirculating zone, which is up to 0.7%. Therefore,
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Figure 3.3: Mesh independence test: (a) Drag coefficient CD and (b) the wake
length LW normalized with sphere diameter dp, and the angle of separation for
various spatial resolutions of the mesh at Re = 200, together with existing research
[23, 22, 66, 142].

the dp/32 grid size is chosen for conducting the following domain size independence
tests.
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Figure 3.4: Domain lateral extent independence test: (a) Drag coefficient CD and
(b) the wake length LW normalized with sphere diameter dp, and the angle of
separation for various lateral extents of the domain, while keeping the streamwise
extent fixed at [−5,35]dp and with a constant spatial resolutions of dp/32 at Re =
200, in comparison to the existing research [23, 22, 66, 142].

The domain size independence tests are conducted for various transversal/lateral
and the streamwise extents of the domain, from [−5,35]dp × [−5,5]dp × [−5,5]dp to
[−5,35]dp×[−3.5,3.5]dp×[−3.5,3.5]dp (changing the transversal/lateral extent), and
from [−5,35]dp×[−3.5,3.5]dp×[−3.5,3.5]dp to [−5,20]dp×[−3.5,3.5]dp×[−3.5,3.5]dp

(changing the streamwise extent) with grid size dp/32. Figure 3.4 presents the
domain lateral extent independence tests, where the lateral extent of the domain is
varied from [−5,5]dp×[−5,5]dp to [−3.5,3.5]dp×[−3.5,3.5]dp keeping the streamwise
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extent a constant at [−5,35]dp in length. In the plot of CD in Figure 3.4(a), almost
no variation is visible, which proves the transversal extent independence in the
computation of the drag coefficient for a domain with lateral extent of [−3.5,3.5]dp×
[−3.5,3.5]dp or higher. The plot of LW and the angle of separation in Figure 3.4(b)
also shows almost negligible differences in these validation quantities. The domains
have shown a variation which forms a saw tooth like structure, indicating that
the variation in these values are just a numerical artefact. The variation in the
length of the recirculating zone, which is up to 0.71%, is the highest out of all these
validation quantities. In Figure 3.5, the domain streamwise extent independence
test is conducted by varying the streamwise extent from [−5,35]dp to [−5,20]dp,
keeping the lateral extent fixed at [−3.5,3.5]dp × [−3.5,3.5]dp and the grid size fixed
at dp/32. The CD in Figure 3.5(a), and the LW and the angle of separation in
Figure 3.5(b) present almost no differences in these validation quantities. One
point to be noted is that we use a uniform Cartesian mesh which does not fit
the spherical surface of the object boundary, which result in some but very minor
variation in the length of the recirculating zone and in the angle of separation from
the observations by the previous researches, such as Tomboulides and Orszag (2000)
[142], or Johnson and Patel (1999) [66]. All these previous research used a object’s
curved boundary fitting mesh, which resolves the boundary layer flow with very
fine details and provides an exact quantification on the angle of separation. The
angle of separation, however, can not be achieved precisely in the presented uniform
Cartesian mesh. This variation, however, does not not influence the structure of
the fluid and the scalar transport in the wake of the sphere, which is presented
below.
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Figure 3.5: Domain streamwise extent independence test: (a) Drag coefficient CD

and (b) the wake length LW normalized with sphere diameter dp, and the angle of
separation for various streamwise extents of the domain, while keeping the transver-
sal/lateral extent fixed at [−3.5,3.5]dp × [−3.5,3.5]dp and with a constant spatial
resolutions of dp/32 at Re = 200, in comparison to the existing research [23, 22,
66, 142].
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In Figure 3.6(a), the drag coefficient CD obtained from our simulation is com-
pared with the empirical equations (equations (3.8) and (3.9)) of Clift et al. (1978)
[23] and with the numerical results of Johnson and Patel (1999) [66]. The drag co-
efficient deviates from the empirical equations maximum at Re = 25, with relative
error 3.5%, which is further reduced with higher Re, e.g. less than 1% at Re = 200.
Figure 3.6(b) presents the results of the normalized wake length LW along with the
numerical results of Johnson and Patel (1999) [66], Tomboulides and Orszag (2000)
[142], and experimental data of Taneda (1956) [139], which reported transition to
unsteady wake for Re ≥ 130.
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Figure 3.6: (a) Drag coefficient CD and (b) the wake length LW normalized with
sphere diameter dp for various steady axisymmetric and oblique Re with existing
research [23, 66, 142, 139].

The scalar field is validated by comparing the normalized scalar profiles with
other numerical simulations. In Figure 3.7, the numerical results of this present
study is compared with the numerical results of Chouippe et al. (2019) [20] for
various wake regimes. For the steady axisymmetric and the oblique wake regimes in
Figure 3.7(a,b), which are investigated in this chapter, the numerical method used
in this study is able to capture the dynamical evolution with sufficient accuracy.
However, it must be noted that the numerical method used by Chouippe et al.
(2019) is spectral/spectral-element method on a cylindrical domain, and a body
fitting spectral-element mesh is used for their study. Moreover, a Galileo number
Ga = ugdp/ν (where ug =

√
|(ρp/ρ − 1)g|dp is the velocity scale dependent on the

particle/fluid density ratio ρp/ρ, the gravitational acceleration g and the sphere
diameter dp) is used, which is proportional to the Reynolds number Re, as Ga =√

3CD/4Re. Due to the differences in the coordinate system and in the sampling
plane and due to the oscillating nature of the Re = 300/Ga = 200 flow in Figure
3.7(c), the distant parts of the scalar contours of the present study do not appear
to match well with the results of Chouippe et al. (2019).
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3 – Fluid Flow and Scalar Transport in the Wake of a Sphere

Figure 3.7: Validation of the scalar θ distribution: (a) Steady axisymmetric Re =
200/Ga = 150, (b) steady oblique Re = 235/Ga = 170 and (c) unsteady oscillating
Re = 300/Ga = 200 scalar contours plots for scalar diffusivity of Sc = 0.72 by
Chouippe et al. (2019) [20] in black lines is compared with the results of the
present study with Sc = 0.71 in the red lines. The contour lines for the θ are
plotted at magnitudes of 0.2, 0.35, 0.45, 0.6, 0.7, 0.8 and 0.9, ascending from the
ambient towards the sphere.

In Figure 3.8, the scalar θ contours are compared for the used dp/32 grid size
and the highest simulated resolution of dp/48 grid size. It can be seen that the
highest variation in the scalar contour profiles shows a maximum of 2 lattice node
difference for the grid size of dp/32. Similarly, the highest difference in the scalar
contour profiles for the steady axisymmetric regime in Figure 3.7(a) is 2 lattice
nodes from the temperature profiles of Chouippe et al. (2019) [20] at a similar
scalar diffusivity of Sc = 0.7.
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Figure 3.8: Comparison of scalar θ contours at magnitudes of 0.2, 0.35, 0.45, 0.6,
0.7, 0.8 and 0.9, ascending from the ambient towards the sphere, for the grid size of
dp/32 in black and for the grid size of dp/48 in red colors. The black dots represent
the lattice nodes for the grid size of dp/32, while the pink dots are the lattice nodes
at grid size of dp/48.

CD = 24
Re

(1 + 0.1935 · Re0.6305),

if 20 ≤ Re ≤ 260. (3.8)
log10 CD = 1.6435 − 1.1242 · log10 Re + 0.1558 · (log10 Re)2,

if 260 ≤ Re ≤ 1500. (3.9)

3.3 Wake Structure at Steady Reynolds Numbers

3.3.1 Spatial Structure of the Fluid Flow
Our work focuses on the wake behind a wet sphere in the steady axisymmetric

regime (0 ≤ Re ≤ 220) and the steady oblique regime (225 ≤ Re ≤ 285). The
difference in the overall features of these regimes can be appreciated from Figure
3.9, which visualizes the streamwise velocity u in color together with the contours of
two advected scalar fields θ1 in black and θ2 in white of different scalar diffusivities
in two perpendicular planes (z, x) and (y, x) passing through the center of sphere
in parallel to the incoming flow. The Schmidt numbers for the scalars are 0.71
and 0.61, respectively, which correspond to the diffusivities of temperature and
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Figure 3.9: Spatial distribution of the dimensionless streamwise component of fluid
velocity u in color and the contour lines of a scalar θ1 in black (Sc = 0.71) and
another scalar θ2 in white (Sc = 0.61) for various steady axisymmetric and oblique
Re. The visualization is across two central orthogonal planes (z, x) and (y, x)
passing through the center of the sphere with an extent of [−1.5,1.5]dp along the
horizontal axes and [−1.5,7.5]dp along the vertical x axis. Contour lines for θ1 and
θ2 are plotted at magnitudes of 0.2, 0.35, 0.45, 0.6, 0.7, 0.8 and 0.9, ascending from
the ambient towards the sphere.

water vapor in the air. The increase in Re features the thinning of the boundary
layer, as well as a shrinking in the lateral extent of the wake and a stretching in
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the streamwise direction as in Figure 3.9 up to Re = 220. In the oblique regime,
a tilt from the centerline (y = z = 0) along the (y, x) plane is observed, which
is symmetric along (z, x) plane, see also [66, 20]. This tilt in the oblique regime
increases with Re until the wake becomes unstable and starts shedding vortices at
Re ≥ 290. The apparent decrease in the streamwise length of the wake in the top
panel of Figure 3.9 from Re = 225 to 275 is attributed to the tilting of the wake.
The transport of any scalar θ is described by the same equation (3.6). The only
difference lays in their Schmidt numbers, which govern their relative diffusivities.
The different diffusivities govern the profiles of the scalars at the intermediate values
of the dimensionless concentration, which shows difference in the external part away
from the sphere boundary and in the far wake (for θ ∼ 0.2 to 0.4), as shown in
Figure 3.9. In Figure 3.9, the white contour lines (θ2 with Sc = 0.61) have wider
spread in the boundary layer region than the black contour lines (θ1 with Sc = 0.71),
which shows that θ1 has higher gradient than θ2 due to larger diffusivity coefficient.
However, at the far wake region downstream, one can see a different behavior.
Due to low diffusivity, the white contour lines (θ2 with Sc = 0.61) smooths to the
ambient concentration earlier than the black ones (θ1 with Sc = 0.71). However the
impact of diffusivity coefficients on scalar distribution profile needs to be verified
with studies involing scalars with larger differences in diffusivities.

In Figure 3.10 and 3.11, detailed pictures on the spatial distribution of the
streamlines, velocity contours and the scalar contours for two different diffusivities
(θ1 with Sc = 0.71 and θ2 with Sc = 0.61) are presented for various steady axisym-
metric Re, varying from 25 to 200 with an increment of Re = 25 for each presented
case. Since the wake structure is symmetric by the centerline (y = z = 0), any
orthogonal plane passing through the center of the sphere (x = y = z = 0) would
produce identical two dimensional wake profiles like the Figure 3.10 and 3.11. As
elaborated for the previous Figure 3.9, the gradual thinning in the boundary layer
for both the fluid flow and the scalars can be well appreciated in Figure 3.10 and
3.11. The change in the length of the recirculating zone is well visible, where the
recirculating eddies are observed to be elongated streamwise with an increment in
Re. The corresponding change in the angle of separation is also visible from the
streamlines. The lateral thinning of the wake structure, which prevails both in the
structure of the flow velocity and also in the scalars, is explained in details with the
contours plots for both the magnitudes of the velocity on the top panels and for the
scalars in the bottom panels of Figure 3.10 and 3.11. It can further be seen that
the wedge shaped downstream profile in the scalar wake does not happen unless Re
is around 125 and higher as in Figure 3.11. For the Re >= 125, the scalars show
lower diffusivity and transport along the centerline (y = z = 0) due to the gradual
strengthening in the recirculating eddies, while towards the centers of these eddies,
the scalars show a higher diffusivity and transport.

Figure 3.12 presents a visualization of flow transition from the steady axisym-
metric wake at Re = 150 to the beginning of the oblique wake at Re = 225, and
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Figure 3.10: Detailed steady axisymmetric flow structure from Re = 25 to 100.
In the top panel, the spatial distribution of the streamlines is presented in color,
according to the dimensionless streamwise component of fluid velocity u. The black
contour lines on the top of these streamlines are the velocity magnitudes at 0.2,
0.35, 0.45, 0.6, 0.7, 0.8 and 0.9 values, ascending from the sphere towards the
ambient free flow. In the bottom panel, the spatial distribution of the scalar θ1
with Sc = 0.71 is presented in color, and the scalar θ2 with Sc = 0.61 is presented
as contour lines. The contour lines of θ2 are plotted at magnitudes of 0.2, 0.35,
0.45, 0.6, 0.7, 0.8 and 0.9, ascending from the ambient towards the sphere. The
visualization is across the central orthogonal plane with an extent of [−1.5,1.5]dp

along the horizontal axes and [−1.5,7.5]dp along the vertical x axis.
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Figure 3.11: Detailed steady axisymmetric flow structure from Re = 125 to 200.
For details see the caption of Figure 3.10.

then the fully developed oblique wake structure at Re = 285. The two dimensional
structure of the steady axisymmetric wake transforms into three dimensional com-
plex vortices in the recirculating zone, which starts around Re = 225. However,
although the three dimensional structure of the Re = 225 wake can be well appre-
ciated, obliqueness is rarely visible, as also seen in Figure 3.9. The streamlines of
the Re = 285 wake in Figure 3.12 however, is very complex, which shows a typical
continuity between the different vortices, as also seen by Johnson and Patel (1999)
[66]. The recirculating streamlines start to entrain from the edge of a vortex and
reach the core, and then exit this first vortex and enter the second vortex at its
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Figure 3.12: Streamlines at Re = 150, 225 and 285 colored according to the dimen-
sionless streamwise component of fluid velocity u.

center. In this second vortex, the streamlines start to move gradually towards the
edge of the vortex and finally go out of the recirculating zone by making a large
cross-over around the first vortex. Therefore, one vortex feeding to another vortex
is well seen in the oblique wake regime.

In order to provide a detailed description of the flow field, a population density
approach is used. For any variable, such as the longitudinal velocity component u,
its population density distribution N(u) at a u0 magnitude is defined as N(u0) =
dVu(u0)/du, where Vu(u0) is the volume of the region in which u is lower that
u0. The distribution of u is shown in Figure 3.13 for three different Reynolds
numbers (Re = 75, 175 and 275). Figure 3.13(a) and (b) present the contour
lines of u = 0.95 in solid lines and of pressure p = 0 in dashed thin lines across
the (z, x) and (y, x) orthogonal planes respectively. The domain is divided into
two main parts: an upstream zone where the flow approaches the sphere and a
downstream zone dominated by the presence of the wake. The dotted horizontal
black line in panels (a) and (b) of Figure 3.13, located at x = −0.325, intersects
the sphere where the dimensionless pressure p changes sign and distinguishes the
two zones. The velocity component u in the upstream zone (p ≥ 0) does not show
significant changes with Re, but the above mentioned lateral thinning is visible
in the downstream zone, which has mostly negative p. Tilting is also observed in
Figure 3.13(b) for Re = 275.

Figure 3.13(c) and (d) present the population density distribution N(u) of the
longitudinal velocity component u in these two zones, computed along the entire
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Figure 3.13: Distribution of the dimensionless streamwise velocity component u for
various Re. u = 0.95 contours are drawn in solid lines along with p = 0 pressure
contours in dashed thin lines along the orthogonal (a) (z, x) and (b) (y, x) planes.
A horizontal dotted line at x = −0.325 is drawn to divide the upstream spatial
structure of u from the downstream one. Normalized population density function
N∗(u) = N(u)/A (A is the area of the orthogonal plane) for the u sample population
across the orthogonal (z, x) and (y, x) planes are plotted respectively in (c) and (d).
N∗(u) for the upstream, downstream and the entire planes are respectively plotted
as the bottom, middle and the top sets of curves. A scale difference is created by
amplifying the N∗(u) of the downstream and the entire domain 30 and 900 times
respectively. Sample extent in (a,b) is [−3,3]dp along the horizontal and [−3,11]dp

along the vertical axes, whereas, in (c,d) it is [−3.5,3.5]dp along the horizontal and
[−5,20]dp along the vertical axes.

orthogonal (z, x) and (y, x) planes of the computational domain, respectively. The
distribution has been determined by dividing the range of u in 1000 bins, a resolu-
tion which allows for a smooth sample distribution while preserving its trend. In
the upstream zone (bottom sets of curves in Figure 3.13(c,d)), N(u) shows a sharp
decrease in the population density as u decreases from the external ambient value
of 1 towards the no-slip zero boundary condition at the sphere surface following a
Lorentzian function, given in equation (3.10). Some sample population with u ≥ 1
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is also observed which resembles the region of highest velocity magnitudes near the
p ∼ 0 contour line. In order to create a visible scale separation, the N(u) of the
downstream zone is shifted for the middle set of curves in Figure 3.13(c,d). The
negative values of velocity identify the recirculation zone behind the sphere. A
large extent of the simulated wake can be well fitted by a Lorentzian distribution.
The crescent like trend right after the ambient u = 1 is a result of the finite size
of the simulation domain. Similar to the N(u) of the upstream zone, some sample
population with u ≥ 1 is also observed in this downstream distribution, which are
also coming from the p ∼ 0 region. N(u) of the entire plane is shifted for the top
sets of curves in Figure 3.13(c,d) with an amplification of its original magnitudes.
As plotted in the insets, the two highest peaks at u ∼ 1 of the entire plane are the
individual contributions from both the upstream and the downstream populations.

The Lorentzian or Cauchy-Lorentz distribution y(u; A, uc, b, y0) is a single peak
bell-shaped curve, defined as

y(u; A, uc, b, y0) = y0 + 2 A

πb

b2

4(u − uc)2 + b2 , (3.10)

where y(u; A, uc, b, y0) is the population density of samples of variable u, A is its
integral over all possible values of u, uc is the position of its maximum where y takes
the value 2A/(πb), with b being the width between its half maximums. Parameter
y0 is just an offset value, which allows for a non zero asymptotic limit of the Cauchy-
Lorentz distribution. In the distribution of u, Figure 3.13(c,d), a Lorentzian trend
is observed in the intermediate range, which corresponds to the boundary layer and
to the region external to the wake. An increase in N(u) is observed with increasing
Reynolds numbers, indicating an increase in the dimensionless kinetic energy in this
region. The out of plane tilting induced by the oblique wake at Re = 275 produces
small spikes on top of an overall Lorentzian trend of the sample population along
the (y, x) plane, as seen in Figure 3.13(d). However, the oblique wake regime retains
a symmetric structure along the (z, x) plane in our simulations in Figure 3.13(c)
but the out of plane tilting impacts the sample population. Therefore, N(u) in
Figure 3.13(c) for Re = 275 only indicates a lower yet a smooth Lorentzian trend.

The existence of such a trend in the distribution of a variable indicates the exis-
tence of a matching region where the variable shows an algebraic variation from the
values in the wake to the values in the external ambient. If the flow is axisymmetric
and the flow structures are elongated in the streamwise direction, this variation is
in the radial direction proportional to (y2+z2)−1 (inverse of the square of the lateral
distance from the axis). This algebraic matching region is not only present in the
longitudinal velocity field, but also in the associated pressure field and in the pas-
sively transported scalars. In case of a purely diffusive scalar transport by a heated
sphere, the one dimensional radial temperature profile decreases proportional to
r−1 (r being the radial distance) away from the sphere surface. The temperature
population in this case, therefore, would show a Lorentzian trend proportional to
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the T −2 (T being the dimensionless temperature). Since in our low Re studies,
the u · ∇θ term in the NS equation is negligible outside the recirculating zone, the
sample population shows almost a purely diffusive behavior. Therefore, this scalar
distribution behavior is manifested as the Lorentzian trend proportional to θ−2 in
the density distribution of the scalar θ population, which will be discussed later.

Figure 3.14: Distribution of the pressure p and velocity component v for various
Re. Spatial distribution of v in color along with the contour lines of p at 0.1, 0.05,
0.0, -0.05, -0.1 magnitudes respectively in red, orange, white, cyan, and blue solid
lines along the orthogonal (y, x) plane for the axisymmetric Re = 175 in (a) and
for the oblique Re = 275 in (b). Normalized population density of pressure N∗(p)
across the entire orthogonal (y, x) central plane is plotted in (c), whereas N∗(v) is
plotted in (d). The sample extent is similar to Figure 3.13.

Figure 3.14 presents the spatial distribution of the pressure p and the transversal
component of velocity v along the orthogonal (y, x) plane for various Re. In the
axisymmetric regime, in Figure 3.14(a), the modulus of v is symmetric across the
y = 0 plane but not the v. Similarly the modulus of w is also symmetric across
the z = 0 plane in the axisymmetric regime, but not w. Complexity arises in
the oblique regime, as neither p nor the modulus of v remains symmetric in the
Figure 3.14(b). This is also seen in the population density distribution of v in
Figure 3.14(d), where the positive magnitudes of v show dominance similar to
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Figure 3.14(b). The transversal components of velocity v and w, however, do not
show a Lorentzian distribution in its number density. It can be seen in Figure
3.14(a,b) that the population of v for the similar magnitudes is present in three
different locations which resulted in non-Lorentzian evolution in the number density
of the v and w (shown in Figure 3.14(c) for v). In contrast to v, the positive
and negative magnitudes of p are rather concentrated near the sphere respectively
in the upstream and the downstream zones as in Figure 3.14(a,b). Similar to
Figure 3.13(c,d), the N(p) of the upstream zone (p ≥ 0 population) does not show
significant variability with Re and exhibits a Lorentzian distribution. The N(p) of
the downstream zone however shows local peaks at around p = −0.1, which marks
the discontinuity in the sample population in Figure 3.14(a,b).
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Figure 3.15: Three dimensional spatial structure of velocity components, v and w.
The surface contours of w = −0.06 and 0.06 are plotted respectively in cyan and
yellow in (a), and v = −0.06 and 0.06 contours are plotted respectively in blue and
red in (b). (c) and (d) present both the v and w contours for the oblique Re = 275
and axisymmetric Re = 175 flow fields respectively.

A three dimensional spatial structure of the velocity components v and w for the
oblique Re = 275 and the axisymmetric Re = 175 cases are shown in Figure 3.15,
where the complexity in the oblique wake flow structure can be appreciated. The
previously mentioned symmetry in the modulus of v and w is confirmed in Figure
3.15(d) for the steady axisymmetric flow with Re = 175; and the three different
zones with similar magnitudes of v and w, both positive and negative, can also be
seen. The transition to a complex flow structure for the steady oblique Re = 275
case is seen in Figure 3.15(a-c), where the spatial distributions of v and w show
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differences. Despite the structural differences, both the v and w populations are
symmetric along the (z, x) planes but non-symmetric along the (y, x) planes, which
is typical of the steady oblique regime.

3.3.2 Spatial Structure of the Transported Scalars
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Figure 3.16: Spatial evolution of the normalized population density of scalar N∗(θ1)
along the (z, x) plane is presented in (a) and along the (y, x) plane in (b). Evolution
N∗(θ2) along the (z, x) plane is plotted in (c) and along the (y, x) plane in (d).
These orthogonal planes pass through the center of the sphere and extends to the
entire simulated domain of [−3.5,3.5]dp in the horizontal y, z, and [−5,20]dp in the
streamwise x directions.

Figure 3.16 presents the population density distribution of the scalar fields N(θ1)
and N(θ2) across two central orthogonal planes (z, x) and (y, x) (similar to the pre-
vious Figures). Since the boundary conditions for the dimensionless scalars have a
zero value in the ambient and a unit value on the sphere surface, their population
density distribution shows the highest population around zero in Figure 3.16, fol-
lowed by a domain induced crescent zone, and then a Lorentzian distribution in the
intermediate values gradually approaching the surface unit value. The Lorentzian
trend is again visible in the scalar population density, due to the similitude of
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the advection-diffusion equation for the scalars to the dynamics of momentum in
regions with small pressure gradients. In the upstream region, the behaviour of
velocity and scalars is very different due to the strong pressure gradient, while in
the downstream region the difference is much milder. A closer look to the density
distributions in the insets show that the steady axisymmetric cases do not show
a well distinguishable difference in the number density at different scalar magni-
tudes with the increase in Re, but only the threshold magnitude for the start of
the Lorentzian trend increases. The shift in the threshold of Lorentzian trend is
attributed due to the finite and a similar size of the simulation domain for all the
Re cases and due to the shrink in the lateral extent of the wake but a stretch in the
streamwise direction with increasing Re. The similar Lorentzian trend however for
different Re indicates that the integral of the scalar concentration does not signifi-
cantly change irrespective of its Re in an infinitely large domain. The decrease in
the sample population for the oblique cases in the left panel of Figure 3.16 for the
orthogonal (z, x) plane is however due to the out of plane tilt of the wake which
reduces the sample population. Whereas in the right panel for the orthogonal (y, x)
plane, a step-wise perturbation on top of an overall Lorentzian trend is seen in the
oblique wake regime as a result of its tilt in this plane.

In order to understand further the descriptive statistics of the transported fluid
and the scalar populations in the steady wake of the sphere, a comparison in the
quartiles of the population is presented in Figure 3.17. Since the ambient population
dilutes such statistics, the sampling volume is chosen to confine near the wake zone
with a volume of [−1,10]dp × [−1,1]dp × [−1,1]dp. All the quartiles for the flow and
the scalars are normalized with its value at the Re = 25. For example, the Q3 of ũ
is the ratio of the Q3 of u and the Q3 of u for Re = 25. The plots of ũ, θ̃1 and θ̃2 in
Figure 3.17(a,c,d) do not show a minimum, since the minimum of these quantities
goes to zero. From Figure 3.17(a), it is seen that the quartiles increases with the
Re. This is in line with the thinning of the boundary layer, the shrinking of the
wake in the lateral extent, and an elongation in the streamwise extent with Re,
which increases the fluid velocity inside the sampling volume with an increment
in Re. The change from the steady axisymmetric to the steady oblique regime is
only witnessed in the trend of the maximum of ũ in Figure 3.17(a). In regards to
the other quantities in Figure 3.17(b,c,d), overall a decrease is observed in all the
quartiles. This is also typical since the ambient magnitudes for all these quantities
are zero, which increase in number density inside the sample volume when Re
increases. Therefore, for the θ̃1 and θ̃2 quartiles in Figure 3.17(c,d), the ambient
flow is observed to play a higher amount of influence in the sample populations
with the increment in Re.

Figure 3.18 presents the spatial distribution of the convective scalar flux Q̇ in
the streamwise direction x. Q̇ is a product between θ and u. Spatial distribution of
Q̇ along the orthogonal (y, x) plane in Figure 3.18(a,b) is someway different from
the other flow quantities, since it shows highest positive Q̇ in the boundary layers
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Figure 3.17: Evolution of the fluid and scalar quantities for various steady Re in
a [−1,10]dp × [−1,1]dp × [−1,1]dp sampling volume. The box plot quantities, such
as, minimum, Q1, median, Q3, and maximum, are presented for the streamwise
component of fluid velocity u, pressure p and the scalars θ1 and θ2. A normalization
(∼) is done on each quantity by its magnitude at Re = 25, so that all the quantities
are 1.0 at the Re = 25.

and a negative Q̇ in the recirculating zone due to negative u. The non-symmetric
spatial structure of the oblique (Re = 275) scalar flux is visible in Figure 3.18(b).
The population density distribution N(Q̇) along the orthogonal (z, x) and (y, x)
planes shows a different structure as expected. A Lorentzian trend is observed for
a few limited sample populations, for example, for the samples between the white
and pink contour lines in Figure 3.18(a) and (b) respectively for Re = 175 and
275. These two contour lines correspond to the Q̇ magnitudes from Figure 3.18(d)
marking the beginning and the end of the Lorentzian trend for each individual Re.
Overall an increase in the sample population of Q̇ is observed with increasing Re
within the zone with Lorentzian distribution. This indicates the expected increase
in the dimensionless convective transport with higher Re.
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Figure 3.18: Spatial distribution of convective scalar flux Q̇ = u · θ1 for various
Re. Spatial distribution of Q̇ in color along the orthogonal (y, x) plane for the
axisymmetric Re = 175 in (a) and for the oblique Re = 275 in (b). The white
contour lines represent Q̇ = 0.069 in (a) and Q̇ = 0.077 in (b), while the pink
contour lines are at Q̇ = 0.11 in (a) and Q̇ = 0.096 in (b) respectively. Normalized
population density of convective scalar flux N∗(Q̇) across the entire orthogonal
(z, x) and (y, x) central planes are plotted respectively in (c) and (d). The sample
extent is similar to Figure 3.13.

3.4 Summary and Conclusions
A detailed numerical analysis on the spatial structure of the wake flow using

population density distribution is presented for the various Reynolds number in
the steady wake regime. The incompressible Navier-Stokes equation is solved for
the flow velocity and the one-way coupled advection-diffusion equations are solved
for the scalars using the Lattice Boltzmann Method (LBM). The spatial evolution
of various flow quantities, such as, longitudinal velocity component u, pressure p,
passive scalar θ, convective scalar flux Q̇ in the wake of the steady axisymmetric
regime (Re ≤ 220) and the oblique regime (225 ≤ Re ≤ 285) using a population
distribution function N , shows a Lorentzian distribution which is proportional to
the inverse of the square of the flow quantity (for example, N(p) ∝ p−2). This
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Lorentzian trend exhibits an algebraic decay in the number density of popula-
tions with different magnitudes of fluid quantities from the external ambient to the
boundary layer in the wake and dominates the spatial distribution of the flow quan-
tities outside the recirculating region. However, the transversal components of fluid
velocity, v and w, show a different spatial distribution, which is not attributable to
a Lorentzian one. Transition to the oblique wake regime at Re ≥ 225 in our simu-
lations shows a complex three dimensional spatial evolution of the flow quantities,
which also shows a Lorentzian trend. The population density distribution for the
longitudinal velocity component u, shows an increase in its number density with
increasing Re, evidencing an increase in the dimensionless kinetic energy. Whereas
the number density of the scalar populations remains the same for various steady
axisymmetric Re. This feature however changes in case of the convective scalar
flux, where an increase is observed in its number density with the increase in Re.

Descriptive statistics in the form of population density distribution of the fluid
velocity and the transported scalar quantities in the wake of a sphere is important
for understanding the transport and local reaction processes in specific regions of the
wake. This will be used in the next Chapter 4 for understanding the microphysics
of precipitating large cloud hydrometeors and the cloud aerosol interactions in the
wake of such hydrometeors. However, this approach should also find applications
in engineering flows e.g. in which droplets interact with their environment.

End of Chapter 3
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Chapter 4

Aerosol Activation by
Precipitating Hydrometeors

A part of this chapter is already published in Bhowmick, T., Wang, Y., Iovieno,
M., Bagheri, G. and Bodenschatz, E. (2020), “Supersaturation in the Wake of a
Precipitating Hydrometeor and Its Impact on Aerosol Activation”, Geophysical Re-
search Letters, volume 47, issue 22, article number e2020GL091179 [11]. Whether
the large precipitating cloud hydrometeors activate cloud aerosols in its wake, and
how does such activation happen and whether this process impacts the cloud life
cycle, are the three open scientific questions which are investigated in this chap-
ter. An in-depth and comprehensive numerical study is conducted for this purpose,
which varies over a wide range of parameter space relevant for the atmospheric cloud
conditions. The influences of the ambient humidity and the ambient/hydrometeor
temperatures on the supersaturation within the wake for different sizes and phases
of spherical hydrometeors are investigated. Then, with the Lagrangian tracking
of aerosols as passive tracers around such sedimenting hydrometeors, the residence
time and the supersaturation experienced by individual aerosols as a function of the
governing parameters are also quantified. Finally, these results are used to approx-
imate the likelihood and the significance of heterogeneous wake-induced nucleation
in the atmospheric clouds. An adaptation of the numerical methods and computa-
tional details from the Chapter 3 are described in Section 4.1 along with the basic
underlying hypothesis. Results are presented and discussed in Section 4.2, which
includes the visualization and quantification of the wake-induced supersaturation
behind cloud hydrometeors varying over a large range of parameter space. Then
a quantitative investigation is conducted using the Lagrangian tracers to compute
the residence time and the supersaturation experience of each aerosols for the same
range of parameters. Based on the quantitative results, in section 4.3, whether and
when an aerosol can activate in the wake-induced supersaturation is approximated
and its impact on the cloud life cycle is assessed. A summary and conclusions is
provided in Section 4.4.
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4.1 Basic Hypothesis and Numerical Details
In this section, an overview of the basic hypothesis is detailed, which are im-

portant for the selection of the physical model and the numerical setup for the
simulations. Furthermore, an adaptation of the numerical methods from the Chap-
ter 3 section 3.2 is also presented for understanding the aerosol activation in the
wake of the precipitating hydrometeors.

4.1.1 Hypothesis on Hydrometeor Size and Temperature
In a supersaturated or subsaturated ambient, a hydrometeor changes its size

due to evaporation/condensation. The mass change of a spherical hydrometeor due
water vapor diffusion on its surface is given as:

dmp

dt
= 4πr2

pρw
drp

dt
=
∫

p
κv∇ρv · n dσ, (4.1)

where, mp is the mass of the hydrometeor, rp is its radius, ρw is the density of liquid
water, κv is the diffusivity of water vapor in air, ρv is the density of water vapor, n
is the unit normal vector to the hydrometeor surface, and the integral is over the
surface p of the hydrometeor and dσ is the infinitesimal surface area.

The evaporation/condensation of water vapor leads to the absorption/release of
the latent heat due to phase change. Therefore, the enthalpy of the hydrometeor
changes according to the following equation:

mpcp,w
dTp

dt
= −L

dmp

dt
+ cp,w(Tp − T0)

dmp

dt
+
∫

p
λT ∇T · n dσ, (4.2)

where, cp,w is the specific heat of water at constant pressure, Tp is the hydrome-
teor surface temperature, L is the latent heat for phase change, T0 is a reference
temperature (here assumed to be 0 ◦C), λT = κρacp,a is the thermal conductivity
of air, κ is the thermal diffusivity, ρa is the density of air, cp,a is the specific heat
of air at constant pressure. The first term on the right hand side of the equa-
tion (4.2) represents the heat released or absorbed by the water undergoing phase
change. The second term represents the change in the hydrometeor enthalpy due
to its size variation. And the third term is due to the diffusive heat transfer. Since
our aim is to estimate the timescales of the hydrometeor size and temperature
variation, one can ignore the second term in the right hand side by considering
L ≫ cp,w(Tp − T0). The remaining two terms will be called mpcp,w(dTp/dt)L and
mpcp,w(dTp/dt)Q̇, respectively for the latent and diffusive heat transfer in the pro-
cess of condensation/evaporation of water mass.

One can evaluate the diffusion of water vapor and heat (the last terms in equa-
tions (4.1) and (4.2)) from a precipitating hydrometeor, from its dimensionless
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Reynolds Re, Prandtl Pr, Schmidt Sc, and Nußelt Nu numbers,

Re = dp Up

ν
, Pr = ν

κ
, Sc = ν

κv

, Nu = Q̇

4πλT (T∞ − Tp)rp

.

Here, dp is the hydrometeor diameter, ν is the kinematic viscosity, Up is the terminal
velocity and Q̇ is the convective heat flux at the hydrometeor surface. In the range
of the simulated Reynolds and Prandtl numbers of this chapter, the Nu can be
estimated from the empirical equations in Michaelides (2006) [96] as:

Nu(Re, Pr) = 1 + 0.752
(

1 + 1
Re Pr

)1/3
Re0.472Pr1/3.

Therefore, that one can write the heat flux as:

Q̇ ≃
∫

p
λT ∇T · n dσ = 4πNu(Re, Pr)λT (T∞ − Tp)rp. (4.3)

Since both temperature and water vapor are governed by the same passive scalar
equations (4.13) and (4.14), the only difference lays in their diffusivities, i.e. Pr is
replace by Sc. Since Pr ∼ Sc, one can use the same correlation between the vapor
mass flow and Reynolds number, so that:

dmp

dt
=
∫

p
κv∇ρv · n dσ ≃ 4πNu(Re, Sc)κv(ρv,∞ − ρv,p)rp, (4.4)

where, ρv,p is the saturated vapor density at the hydrometeor surface at temperature
Tp. And the T∞ and ρv,∞ are the ambient temperature and ambient water vapor
density respectively.

Therefore, the timescale τR for changes in the size and the timescales τQ̇ and τL

of the surface temperature change due to the convective heat transfer and due to
the latent heat release/absorption can be estimated as:

τR ∼ rp

drp/dt
∼

ρwr2
p

Nu(Re, Sc)κv(ρv,∞ − ρv,p) , (4.5)

τQ̇ ∼ Tp − T∞

(dTp/dt)Q̇

∼
ρwcp,wr2

p

3Nu(Re, Pr)λT

, (4.6)

τL ∼ Tp − T∞

(dTp/dt)L

∼
ρwcp,w(Tp − T∞)r2

p

3Nu(Re, Sc)Lκv(ρv,∞ − ρv,p) . (4.7)

These scale should be compared with the pass-through time τA of an aerosol
around the hydrometeor, which is given by:

τA ∼ πrp

Uavg

∼ 2πrp

Up

. (4.8)
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Figure 4.1: Evolution of various normalized timescales (normalized with τA) with
respect to the hydrometeor Re, considering water droplets are settling down at its
terminal velocity.

This gives a measure of the time span in which an aerosol interacts with the vapor
and temperature fields, that are perturbed by the hydrometeor. The ratios τR/τA,
τQ̇/τA and τL/τA depend on the Reynolds, Prandtl and Schmidt numbers, and the
ratios of the density and specific heats only.

The evolution of these timescales in Figure 4.1 shows such ratios as a func-
tion of the Reynolds number. The atmospheric conditions are represented with
Pr = 0.71, Sc = 0.61, ρw = 103 kg m−3, κv = 2.394 × 10−5 m2 s−1, λT = 2.44 ×
10−2 J K−1 m−1 s−1, L = 2.5 × 106 J kg−1, cp,w = 4217.6 J kg−1 K−1 [9]. The velocity
Up of the hydrometeor is chosen to match the asymptotic free fall velocity, given by
the equilibrium between its weight and the drag. For this timescale analysis, the
cloud droplets of size up to 1 mm is chosen, which is the typical size of large rain
drops [116]. Therefore, the resulting Reynolds numbers is up to around 300. For
this timescale analysis, a water hydrometeor with a surface temperature Tp equal
to 10 ◦C is considered in an ambient with a temperature T∞ equal to 0 ◦C and with
an ambient relative humidity equal to 80% with respect to the liquid water phase.

It can be seen that all the timescales are several order of magnitude larger than
τA, so that the variation of the hydrometeor size and temperature is negligible
during the pass-through time of an aerosol. It should also be noticed that this
conclusion does not change for the trapping of the ‘lucky’ aerosols in the super-
saturated wake, which will be discussed later in this chapter. This is due to the
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fact that their residence time is in the order of 102τA, while τR, τQ̇ and τL are all
in excess of 103τA. This implies that it is possible to neglect the variation of the
hydrometeor diameter and its surface temperature in the solution of the Navier-
Stokes equations together with the one-way coupled advection-diffusion equations
for the temperature and the density of water vapor.

4.1.2 Impact of Buoyancy on Momentum Balance
The relative significance of the buoyancy force in the momentum balance equa-

tion is governed by another non-dimensional number, the Richardson number Ri,
which can be decomposed into two parts as reported by Chouippe et al. (2019)
[20]: a temperature Richardson number RiT and a vapor density Richardson num-
ber Riρv , defined as

RiT = Tp − T∞

T∞ + 273.15
1

ρp/ρf − 1 , (4.9)

Riρv = ρv,p − ρv,∞

ρf

Mp − Mf

Mp

1
ρp/ρf − 1 . (4.10)

Here ρp is the density of the hydrometeors which is water in this case, and ρf is
the density of the ambient fluid which is air in this case. Mp is the molar mass of
the constituent fluid of the hydrometeor which is water in our case, and Mf is the
molar mass of the fluid which is air.

For the assumed 10oC temperature difference as specified previously, and for
the ambient at a 20% subsaturation condition, one gets RiT = O(10−5) and
Riρv = O(10−6). Therefore, the buoyancy force B = g Ri ≃ O(10−5)g, which
leaves negligible impact on the momentum balance equation (see also Kotouč et al.
(2009) [70] and Chouippe et al. (2019) [20] for details).

4.1.3 Equations for Solving the Flow Field
The flow around a falling spherical hydrometeor is resolved numerically. Since

the timescales of temperature and size variation of the hydrometeor are much larger
than the flow timescales, the temperature and the radius of the hydrometeor are
assumed constant. Therefore, the hydrometeor is modeled in our setup as a sphere
of constant diameter dp at temperature Tp. While the ambient air is flowing around
it at the terminal velocity Up of the hydrometeor. The deformation in the shape of
the hydrometeor is also ignored in our simulations as a result of the aerodynamic
forces, which do not deform the cloud droplets of ∼ 1 mm size range significantly
[116]. If one uses dp as a length scale, Up as a velocity scale, and the differences
in the temperature and the vapor density between the sphere and its surroundings
as a scale for the variations in the temperature and the water vapor density, one
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obtains the following dimensionless quantities:

x∗ = x
dp

, t∗ = tUp

dp

, u∗ = u
Up

, T ∗ = T − T∞

Tp − T∞
, ρ∗

v = ρv − ρv,∞

ρv,p − ρv,∞
.

The dimensionless incompressible Navier-Stokes equations and the one-way cou-
pled Advection-Diffusion (AD) equations for the temperature and water vapor den-
sity are, therefore (see also the Section 3.2 in Chapter 3 for details):

∇ · u = 0, (4.11)
∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, , (4.12)
∂T

∂t
+ u · ∇T = 1

Re Pr
∇2T, (4.13)

∂ρv

∂t
+ u · ∇ρv = 1

Re Sc
∇2ρv. (4.14)

The ∗ symbol has been omitted from all dimensionless variables for the sake of
clarity. Here p is the dimensionless pressure (p − p∞)/ρaU2

p , Re = Updp/ν is the
Reynolds number (with ν being the kinematic viscosity of air), Pr = ν/κ is the
Prandtl number (with κ being the thermal diffusivity of air), Sc = ν/κv is the
Schmidt number (with κv being the water vapor diffusivity). Neither the buoyancy
feedback nor the influence of the temperature, the water vapor density and the
humid air on the wake [70] are considered, as this is also modeled by Krayer et al.
(2020) [72].

These model equations are solved with the lattice Boltzmann method (LBM)
[136, 74, 141], which is implemented by the open-source LBM library Palabos [83],
using the BGK collision operator [117]. For solving the fluid velocity field, the
D3Q19 lattice is chosen because non-linear momentum advection corrections are
not very significant for steady axisymmetric or oblique wake flows [133] with low
Reynolds number. The scalar fields T and ρv are resolved with the D3Q7 lattice,
since only the zeroth and the first moments of the discrete scalar concentrations
at the lattice nodes are important for recovering the AD equations from the LBM
equation [74].

The reference frame has its origin in the center of the spherical hydrometeor.
Three-dimensional computational domain extends 5 diameters upstream and 20
diameters downstream, while in the transversal directions it is 7 diameters wide,
i.e. the domain is [−5,20]dp × [−3.5,3.5]dp × [−3.5,3.5]dp in size. The domain is
discretized with a uniform Cartesian mesh with a grid size equal to dp/32 (i.e. for
each length of dp, 32 lattices are assigned in each direction). Tests in Chapter 3
have shown the mesh and domain independence for the flow around the hydrom-
eteor. Dirichlet and Neumann conditions are considered for the inlet and outlet
boundaries, respectively. For the lateral boundaries in transversal directions, pe-
riodic boundary conditions are applied. The surface of the hydrometeor is no-slip
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at zero velocity and with a constant T and ρv at a fixed temperature (T = ρv = 1
in dimensionless form). According to the Maxwell diffusion model, the vapor den-
sity ρv adjacent to the solid or liquid surface layer of the hydrometeor is always
saturated at the hydrometeor surface temperature Tp. The empirical equations of
Huang (2018) [57] are used to determine the saturated vapor density ρvs(T ),

ρvs(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Rv(T + 273.15)
exp(34.494 − 4924.99/(T + 237.1))

(T + 105)1.57 , if T > 0 ◦C
1

Rv(T + 273.15)
exp(43.494 − 6545.8/(T + 278))

(T + 868)2 . if T ≤ 0 ◦C

(4.15)

A second order extrapolation scheme [48] is adopted for the boundary conditions
on the curved boundary of the hydrometeor. The numerical setup was validated by
comparing the drag coefficient, the length of the recirculating zone and the angle
of separation with existing researches, e.g. [66], for the fluid velocity field, as de-
tailed in Chapter 3. For example, the drag coefficient deviates from the empirical
equations [23] the maximum at Re = 25, which is 3.5%, and is reduced with higher
Re, so that at Re = 200 it is less than 1% . The temperature field was validated by
comparing the normalized temperature profiles with similar Pr simulation results,
e.g. [20], for various Re. Equations (4.15) are used to reconstruct the supersatura-
tion field S = RH − 1 = ρv/ρvs(T ) − 1 around the sphere from the solution of the
AD equations.

4.2 Supersaturation in the Wake and Its Impact
The flow at different Reynolds numbers in the steady axisymmetric wake (0 ≤

Re ≤ 220) and in the steady oblique wake (225 ≤ Re ≤ 285) (see [66], and [142]),
with Pr = 0.71 and Sc = 0.61 according to the values of the atmospheric standard
conditions [100, 96] is analyzed. In the case of a liquid hydrometeor of density
103 kg m−3, this corresponds to a particle with a diameter between 3 × 10−4 m and
1.03 × 10−3 m falling with terminal velocities between 1.21 m s−1 and 4.03 m s−1.
The ambient relative humidity RH∞ is varied from nearly saturated (RH∞ ∼ 100%)
within the cloud [128] to a highly subsaturated in the open atmosphere [115]. The
supersaturation S = RH −1 = ρv/ρvs(T )−1 is computed with respect to the water
phase when T > 0 ◦C and with respect to the ice phase when T ≤ 0 ◦C by using
the empirical equations (4.15) for liquid and frozen hydrometeors respectively [57].

One can identify each simulations with a defined nomenclature, like for example,
‘LC 0 15 90’. Here the first letter indicates the hydrometeor phase (L liquid or I
ice), the second letter indicates the sign of the temperature difference between the
hydrometeor and the ambient (W warmer hydrometeor or C colder hydrometeor),
and the three following numbers give the hydrometeor temperature Tp (in degrees
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Figure 4.2: Mesh independence test: (a) Normalized supersaturated volume V ∗
S =

VS/(πd3
p/6) and the supersaturation maximum Smax, and (b) the total number of

lattice nodes and the computational time for the various spatial resolutions of the
mesh at Re = 200 for the thermodynamics setup of ‘LW 4 19 90’. ‘LW 4 19 90’
represents a (L) liquid but (W) warmer hydrometeor with a surface temperature
(4) Tp = 4 ◦C in an ambient at T∞ = −15 ◦C, which gives a (19) ∆T = 19 ◦C of
temperature difference. And the (60) indicates the ambient RH condition RH∞ =
60% with respect to the ice phase.

Celsius), the modulus of Tp − T∞ referred as ∆T (in degrees Celsius) and the
ambient relative humidity RH∞ (in %). Thus, ‘LC 0 15 90’ is a liquid hydrometeor
colder than the ambient, with a surface temperature of 0 ◦C in an ambient air with
a temperature of 15 ◦C and a relative humidity equal to 90%.

Figure 4.2(a) presents the mesh independence test considering the supersatura-
tion parameters, such as, the supersaturated volume VS, which is the measure of the
volume with S > 0 and the maximum supersaturation Smax, which are computed
with respect to the ice phase in this case of ‘LW 4 19 90’, obtained with different
mesh spatial resolutions, including dp/24, dp/32, dp/40 and dp/48, in a simulation
domain size of [−5,35]dp × [−5,5]dp × [−5,5]dp for the Re = 200 simulation. A
comparison in the total number of lattice nodes and the computational time is also
provided in Figure 4.2(b). It can be seen that the VS and the Smax show negligible
difference for the grid size of dp/32 and lower, with a variation up to 1% for the
VS and up to 4% for the Smax. Therefore, considering a non-linear increase in the
computational load due to the higher resolution with respect to the negligible gain
in the accuracy, the resolution with dp/32 grid size is chosen for this study.

Figure 4.3 presents the domain lateral extent independence test, where the
lateral extent of the domain is varied from [−5,5]dp × [−5,5]dp to [−3.5,3.5]dp ×
[−3.5,3.5]dp keeping the streamwise extent a constant at [−5,35]dp in length. In
the plot of VS and Smax in Figure 4.3(a), a negligible variation up to 1.7% is
visible, which proves that the transversal extent independence in the computation
of the supersaturaion quantities for a domain with lateral extent of [−3.5,3.5]dp ×
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Figure 4.3: Domain lateral extent independence test: (a) Normalized supersatu-
rated volume V ∗

S = VS/(πd3
p/6) and the supersaturation maximum Smax, and (b)

the total number of lattice nodes and the computational time for the various lateral
extents of the domain, while keeping the streamwise extent fixed at [−5,35]dp and
with a constant spatial resolutions of dp/32 at Re = 200. The thermodynamic
condition of the domain is the same like in Figure 4.2.

[−3.5,3.5]dp or higher. In Figure 4.3(b), the comparison on the computational
load indicates that there is almost a linear increase in the computational time
requirement for each ∆t. Since, the gain in the accuracy with wider domain is not
significant, a domain with [−3.5,3.5]dp × [−3.5,3.5]dp lateral extent is chosen for
the next stage of the streamwise extent independence test.
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Figure 4.4: Domain streamwise extent independence test: (a) Normalized super-
saturated volume V ∗

S = VS/(πd3
p/6) and the supersaturation maximum Smax, and

(b) the total number of lattice nodes and the computational time for the various
streamwise extents of the domain, while keeping the transversal/lateral extent fixed
at [−3.5,3.5]dp × [−3.5,3.5]dp and with a constant spatial resolutions of dp/32 at
Re = 200. The thermodynamic condition of the domain is the same like in Figure
4.2.
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Figure 4.4 presents the domain streamwise extent independence test by vary-
ing the streamwise extent from [−5,35]dp to [−5,20]dp, while keeping the lateral
extent fixed at [−3.5,3.5]dp × [−3.5,3.5]dp and the grid size fixed at dp/32. In the
Figure 4.4(a), the axes for the VS and the Smax are kept the same like in Figure
4.3(a). Here it can be seen, that the longer streamwise extent in the domain do
not change the results in the supersaturation quantities at all. In Figure 4.4(b),
it further can be seen that there is some increase in the computational load for
the longer domain. However, since there is not any significant improvement in the
computation of the supersaturation quantities with the longer/wider/fine resolu-
tion domain with respect to the inherent computational cost, the domain with the
[−5,20]dp × [−3.5,3.5]dp × [−3.5,3.5]dp extent with a grid size of dp/32 is chosen for
this study.

4.2.1 Structure of Hydrometeor Wake Supersaturation
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Figure 4.5: Spatial distribution of the supersaturation S in the wake of (L) liq-
uid (W) warm droplets at (15) 15 ◦C temperature and with a (15) ∆T = 15 ◦C
temperature difference from the ambient which have (95) 95% relative humidity
condition. The visualization is across the central orthogonal plane (y, x) passing
through the center of the sphere with an extent of [-1.5,1.5]dp along the horizontal
and [-1.5,7.5]dp along the vertical axes.

Figure 4.5 presents the spatial distribution of S for various Re in the ‘LW 15 15
95’ thermodynamic condition. This temperature difference can be observed during
precipitation from a deep convective cloud containing various phases of hydromete-
ors [156]. A supersaturated volume in the wake of the sphere is observed for various
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Re in Figure 4.5, resembling that various sizes of spheres precipitating at their free
fall velocities can produce supersaturation in their wake. Special distribution of S
in Figure 4.5 shows that the highest magnitudes of the supersaturation is rather
concentrated near the rear stagnation zone of the hydrometeor, inside the recir-
culating region of the wake. Similar to the previously detailed flow quantities, an
increase in Re results in a shrink in the lateral extent of the supersaturated region,
but simultaneously stretch it in the downstream direction. Tilt in the wake of the
oblique Re also creates an oblique supersaturated volume as shown in Figure 4.5.
It is however observed that despite a change in the supersaturated volume with Re,
the supersaturation maximum obtained in the wake remains almost independent of
Re for the same thermodynamic condition.

In Figure 4.6, the population density distribution of supersaturation N(S) for
the sample population combined along the two central orthogonal planes (z, x) and
(y, x) in the wake of the frozen (I) hydrometeors are presented for the Re = 175
case. Supersaturation is computed with respect to the ice phase for these ≤ 0 ◦C
temperatures. The top two panels, Figure 4.6(a,b), present the N(S) for the frozen
warmer (IW) hydrometeors than the ambient, which shows a larger supersaturated
volume VS as well as the supersaturation maximum Smax than the bottom two
panels, Figure 4.6(c,d), which represent frozen colder (IC) hydrometeors. VS =∫ Smax

S0
N(S)dS is an integral of N(S), where a three dimensional supersaturated

population distribution is considered. To avoid numerical round-off errors around
the surface of the hydrometeor, where S = 0 as the surface is just saturated, the
supersaturation threshold S0 is defined as 1 × 10−4, with Smax being the maximum
supersaturation obtained in a simulation. Colors are the same in the top and
the bottom panels for the cases of a specific ∆T and RH∞ condition. The peak at
S = 0.0 is due to the numerical artifact that the entire volume of the hydrometeor is
modeled with saturated condition. Similar to the statistics of other fluid quantities,
S sample populations evolve following a Lorentzian function (unless it is influenced
by the simulation domain extent). In a fixed RH∞ = 90% condition, as in Figure
4.6(a,c), the larger temperature differences ∆T produces larger VS in the wake and
the Smax within it, and shows that ∆T = 5 ◦C does not produce any VS. In a fixed
∆T = 15 ◦C condition in Figure 4.6(b,d) instead, a larger VS is obtained when RH∞
approaches a nearly saturation condition.

In order to understand why warmer hydrometeors produce larger VS and Smax

for the same phase, ∆T and RH∞, one needs to consider the physical processes
influencing the saturation condition in the wake. Firstly, a hydrometeor warmer
than the ambient diffuses heat in the wake and hence increases the temperature
in it, while the colder droplet does the opposite. This results in an increase in
the saturation vapor pressure for the warmer hydrometeors in its wake, while a
decrease for the colder ones. However the second process, which is the diffusion of
water vapor, plays a dominant role for the warmer hydrometeors when the mini-
mum ∆T condition that is required to produce some Vs is satisfied. With higher
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Figure 4.6: Normalized Population density distribution for supersaturation N∗(S)
for Re = 175 considering frozen ice spheres in various thermodynamic conditions.
N∗(S) for various (IW) frozen warm spheres with various ∆T but RH∞ = 90%
is presented in (a); and with a constant ∆T = 15 ◦C but variable RH∞ is shown
in (b). Similar N∗(S) for various (IC) frozen cold spheres with various ∆T but
RH∞ = 90% is presented in (c); and with a constant ∆T = 15 ◦C but variable RH∞
is shown in (d). The samples are from both the central orthogonal (z, x) and (y, x)
planes with an extent of [-3.5,3.5]dp in horizontal and [-5,20]dp in vertical directions,
and the population density distributions are normalized with the cumulative area
of the sample planes.

∆T , the warm hydrometeor becomes the source for the diffusion of water vapor
which diffuses more when the gradient between the ambient and the hydrometeor
surface water vapor density increases exponentially with an increase in temperature
gradient. Due to the dominance of water vapor diffusion for the warmer hydrome-
teor case, supersaturated volume is produced despite the simultaneously warming
in the wake. From equations (4.15), one can deduce that the change in the satu-
rated water vapor density dρvs for dT change in the temperature, is proportional
to exp(dT/T2). Therefore, an increase in the ∆T for the warmer hydrometeor case
produces an exponential increase in the gradient of the water vapor density, facil-
itating higher amount of water vapor diffusion from the warmer hydrometeor in
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form of the evaporation of liquid water. Whereas for the colder hydrometeor case,
cooling in the wake is the only process facilitating a growth in supersaturation while
due to a lower water vapor density at the hydrometeor surface than the ambient,
the colder hydrometeor condenses water vapor on it as a sink. An interplay of
these two processes reduces the VS production potential of a colder hydrometeor
compared to the warmer one.
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Figure 4.7: Normalized Population density distribution for supersaturation N∗(S)
for Re = 175 considering liquid droplets in various thermodynamic conditions.
N∗(S) for various (LW) liquid warm droplets with various ∆T but RH∞ = 90%
is presented in (a); and with a constant ∆T = 15 ◦C but variable RH∞ is shown
in (b). Similar N∗(S) for various (LC) liquid cold droplets with various ∆T but
RH∞ = 90% is presented in (c); and with a constant ∆T = 15 ◦C but variable
RH∞ is shown in (d). The samples are from the same planes as in Figure 4.6.

Figure 4.7 presents the population density function of supersaturation N(S)
for the sample population in the wake of the liquid (L) water droplets for the
same Re = 175 case. An overall comparison between the Figure 4.6 and Figure 4.7
evidences that the VS and Smax produced with respect to the ice phase for the same
∆T and RH∞ is larger in Figure 4.6 than it is in the Figure 4.7 with respect to
the water phase. Since the saturation vapor pressure with respect to the ice phase
at temperatures of < 0 ◦C is lower than it is with respect to the water phase, VS
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and Smax is higher. This indicates that growth of a particle at < 0 ◦C temperature
is favored higher by the deposition of ice than water in a supersaturated < 0 ◦C
ambient. Similar to Figure 4.7, the liquid water droplets also produces larger VS

and Smax when it is warmer than the ambient in comparison to the cooler droplets.
In case of a colder droplet than the ambient, even a ∆T of 10 ◦C did not produce
any VS in Figure 4.7(c) in contrast to the Figure 4.6(c).

Figure 4.8(a) shows an example of a visualization of the supersaturation field
at Re = 275 in an ambient relative humidity of 90% with respect to ice phase for
a warm hydrometeor (IW 0 15 90). High supersaturation is clearly visible in the
boundary layer of the hydrometeor and in the near wake, as well as, in the large
region downstream of the hydrometeor. In this oblique regime, some streamlines
pass through the wake’s vortices, a feature consistent with the results of [66] for the
oblique wake vortex structures. The overall distribution of supersaturation in the
entire three dimensional domain above a supersaturation threshold of S0 > 1 × 10−4

is shown in Figure 4.8(b). The statistics of the bright colored supersaturated region
in Figure 4.8(a) shows the evolution in the number density of the S population
following a Lorentzian trend, similar to Chapter 3 which is ∝ S−2 in Figure 4.8(b).
The trend of S−2 ceases around S ≥ 0.13, which is the highest magnitude of
S reached within the boundary layer and in the recirculating zone behind the
hydrometeor in Figure 4.8(a). N(S) decreases slightly with increasing Reynolds
number, which implies a reduction in the volume of the supersaturated region with
respect to the hydrometeor volume, due to gradual thinning of the boundary layer
and a correlated shrinking of the lateral extent of the wake. Although a volumetric
change in VS is observed with different Re, the magnitudes of Smax remain almost
constant for a specific thermodynamic state, independent of Re.

The evolution of VS as a function of Re and other thermodynamic parameters
is shown in Figure 4.9(a) for exemplary cases presenting a temperature difference
∆T of 15 ◦C and RH∞ = 95%. In general, a frozen hydrometeor (solid lines)
produces a significantly larger supersaturated region than a liquid hydrometeor
(dashed lines). This is partly due to the lower magnitude of the saturation vapor
pressure in the ice phase compared to its magnitude in the liquid water phase at
temperatures of < 0 ◦C (e.g., 13.7% lower at −15 ◦C). The evolution of VS, as
shown in Figure 4.9(a), with respect to the hydrometeor phase and its warmer
or colder state also applies to all other ∆T and RH∞, as detailed later. Figure
4.9(a) also shows that warmer liquid droplets, as for example, ‘LW 15 15 95’ in
T∞ = 0 ◦C produce almost 2.3 − 2.5 times larger VS than ice hydrometeors like
’IC -15 15 95’. This is generally true also for other ∆T and RH∞. This signifies
that the warmer hydrometeors produce larger VS than the colder ones for similar
T∞, ∆T and RH∞. This phenomenon can be further explained by analytically
solving the normalized T and ρv equations, presented below, for the Re ∼ 0. It
is further observed that a minimum of ∆T = 4 − 10 ◦C is necessary to produce
VS ∼ O(1) × πd3

p/6, which are merely thin supersaturated boundary layers around
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Figure 4.8: Spatial distribution of S. (a) Contours of S in two orthogonal cen-
tral planes and complex streamlines for Re = 275. Only the region near the hy-
drometeor is plotted, while the entire two dimensional domain along the orthog-
onal (x, y) plane is in the inset. (b) Normalized sample population distribution
N∗(S) = N(S)/(πd3

p/6) for various magnitudes of supersaturation (S > 0) over the
entire three dimensional domain for the case ‘IW 0 15 90’ for the Re = 100, 200
and 275. ‘IW 0 15 90’ represents an (I) frozen but (W) warmer hydrometeor with
(0) Tp = 0 ◦C in an ambient at T∞ = −15 ◦C, which gives (15) ∆T = 15 ◦C and
(90) RH∞ = 90% with respect to the (I) ice phase.

the hydrometeor. For hydrometeors that are colder than the ambient, ∆T needs
to be at least 6 − 12 ◦C to produce a similar volume of VS.

Figure 4.10 presents the extent of the supersaturated volume VS for all the sim-
ulated Reynolds number Re, temperature difference ∆T , ambient humidity RH∞,
and hydrometeor phase ((I) frozen or (L) liquid), and (W) warmer or (C) colder
hydrometeor setup than the ambient. The left panel shows the extent of the su-
persaturated volume VS with respect to the ice phase for the freezing temperatures
below up to −15 ◦C. The right panel presents the similar evolution but for positive
temperatures up to 15 ◦C with respect to the water phase. The simulation results
(dots) of VS in Figure 4.10 agree very well with the fitting model C0(1 + C1Reα),
which are lines in this figure. The values of the fitting coefficients C0, C1 and α
for each case can be found in Table 4.1. It should be noticed also that this fitting
cannot be extended to Re → 0 because the simulated supersaturated volume has
a finite limit, which is discussed below.

In the limit of vanishing Reynolds number Re → 0, convection is negligible and
therefore the distribution of the scalars is governed by diffusion. One can solve the
diffusion equations for the temperature T and the water vapor density ρv as an
analytical function of the radial distance r from the center of the hydrometeor (see
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Figure 4.9: The evolution of supersaturation in the wake. (a) The supersaturated
volume V ∗

S = VS/(πd3
p/6) is plotted against different Re, considering both (I) frozen

and (L) liquid hydrometeors with both (W) warmer or (C) colder temperature
than the ambient, while maintaining ∆T = 15 ◦C and RH∞ = 95%. The dots
are simulation results, while the lines correspond to the C0(1 + C1Reα) fitting
model. Solid dots/lines represent frozen hydrometeors and the empty dots/dashed
lines represent liquid hydrometeors, with red and blue color for warmer and colder
hydrometeors respectively. (b) Supersaturation maximum Smax for different values
of Tp and T∞ varying from −15 to 15 ◦C for Re = 285 keeping RH∞ = 95%. Black
contour lines are drawn for each 0.1 increase in Smax.

also Baker (1991) [7]),

T − T∞

Tp − T∞
= rp

r
, (4.16)

ρv − ρv,∞

ρv,p − ρv,∞
= rp

r
. (4.17)

The consequent supersaturation field in Figure 4.11 presents the analytical so-
lution of S for different ambient relative humidity and a fixed ambient temperature
equal to T∞ = 0 ◦C. This analytical solution verifies the nature of the supersatura-
tion in the wake of a hydrometeor as seen in the the simulation results. In this case
also, the warmer liquid droplets like ‘LW 15 15 RH∞’ produce larger VS than the
colder frozen hydrometeors as ‘IC -15 15 RH∞’ for various RH∞ conditions. More-
over, even without any convection (i.e. without relevant Prandtl Pr or Schmidt
Sc numbers), supersaturation would happen around a stationary hydrometeor with
presence of higher ∆T and gradient of water vapor.

In all Re >> 0 cases, the supersatured volume can be fitted by the following
scaling function (goodness of fit 99.8%) for the whole range of the Reynolds number,
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Figure 4.10: Evolution of the supersaturated volume V ∗
S = VS/(πd3

p/6) against
various Re: (a) (I) frozen and (b) (L) liquid hydrometeors for various RH∞ values
but keeping ∆T = 15 ◦C. (c) (I) frozen and (d) (L) liquid hydrometeors for various
∆T values but keeping RH∞ = 95%. Both (W) warmer in solid dots/lines and
(C) colder hydrometeors in empty dots/dashed lines are considered with respect
to the ambient. Dots are simulation results while lines correspond to fitting model
C0(1 + C1Reα). Tp in abbreviated legends of (c,d) represent cases where T∞ = 0 ◦C
and Tp varies according to ∆T . Changing parameters are boldfaced in the legends.

despite the change in the wake structure around Re = 220.

VS = C0(1 + C1Reα) (4.18)

The fitting coefficient C0 represents an asymptotic value, which depends on the
thermodynamic parameters of the ambient and the hydrometeor , i.e., ∆T , RH∞,
(I) ice or (L) liquid, (W) warm or (C) colder temperature than the ambient. The
coefficient C1 and the exponent α show a minor sensitivity to the thermodynamic
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Table 4.1: C0, C1 and α for various thermodynamic conditions.

Simulation setup C0 C1 α
IW 0 15 60 2.2199 11.9851 0.6132
IW 0 15 70 3.932 12.3555 0.6563
IW 0 15 80 7.5023 12.4841 0.6223
IW 0 15 85 12.1885 12.6701 0.6093
IW 0 15 90 25.0411 12.814 0.5986
IW 0 9 95 8.8808 13.661 0.6155
IW 0 12 95 27.3538 13.2627 0.5426
IC -15 15 90 4.04226 10.263 0.7301
IC -15 15 95 13.6526 9.8533 0.618
IC -9 9 95 2.8984 10.5247 0.8073
IC -12 12 95 6.9673 9.5231 0.6641

LW 15 15 80 2.23164 12.5049 0.5953
LW 15 15 85 4.04434 12.7813 0.6399
LW 15 15 90 7.96581 13.0352 0.6192
LW 15 15 95 27.1115 13.29 0.5962
LW 9 9 95 3.6999 14.1781 0.6184
LW 12 12 95 11.1848 13.5777 0.6095
LC 0 15 95 6.1379 9.6301 0.6853
LC 0 12 95 3.3626 10.2981 0.7875

parameters, as, C1 is between 10−13 and α is −0.63±0.02 for our simulations. The
data only deviates significantly when the supersaturated region is not completely
within the computational domain (e.g., the case of warmer ice hydrometeors at
higher Reynolds number and in almost saturated ambient) and thus considered as a
numerical artifact. One can observed that the Re−0.63 scaling of the supersaturated
volume closely follows the scaling of the drag coefficient with the Reynolds number
in the investigated range of Re [23]. Thus the decrease in VS follows the dynamics
of the wake, as also Figure 4.8(a) suggests. This aspect requires, however, further
quantitative investigation.

Figure 4.9(b) shows the development of the maximum supersaturation Smax

over a wide range of hydrometeor temperature Tp and ambient temperature T∞ at
a fixed Reynolds number Re = 285 and an ambient relative humidity RH∞ = 95%
for both (I) frozen and (L) liquid hydrometeors with both (W) warmer or (C) colder
temperature than the ambient. The diagonal in white dashed line corresponds to
Tp = T∞ and divides the plane into the colder hydrometeor case (top left) and the
warmer hydrometeor case (bottom right). The temperature difference ∆T plays a
crucial role, since Smax increases almost exponentially with it at constant RH∞.
Similar to VS, warmer hydrometeors generally produce a higher supersaturation
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Figure 4.11: Analytical solution of S at Re ∼ 0 resembling a purely diffusive
process. The evolution of S as a function of the normalized radial distance r/dp is
presented (a) for various RH∞ setup keeping ∆T = 15 ◦C, and (b) for various ∆T
setup keeping RH∞ = 95% considering both (I) icy frozen and (L) water phased
hydrometeors for both (W) warmer and (C) colder temperatures than the ambient.
The ambient temperature is kept constant at T∞ = 0 ◦C.

maximum than colder hydrometeors at the same ∆T , regardless of their frozen or
liquid state. The only exception happens in a nearly saturated ambient at T∞ =
0 ◦C, because the warmer hydrometeor is a liquid one while the colder one is frozen.
In addition, Smax evolves almost independently of Re for various thermodynamic
conditions.

Figure 4.12 presents the details of the dependence of the maximum supersat-
uration Smax from Re, ∆T , RH∞, considering both (I) frozen and (L) liquid hy-
drometeors with both (W) warmer or (C) cooler temperatures than the ambient.
Smax is almost independent of Re for a specific thermodynamic condition.

4.2.2 Cloud Aerosols in the Wake-Induced Supersaturation
Atmospheric aerosols, which can be activated as CCN or INP, behave as passive

tracers due to their negligible Stokes number. The momentum relaxation time of
a small particle moving in a fluid, which is the time necessary for a particle to
reach its asymptotic velocity, is normally referred to as the Stokes timescale. It is
proportional to the square of the size of the particle, i.e. τa = (2/9)ρar2

a/µ for a
small spherical particle, where ρa and ra are the density and radius of the particle
respectively and µ is the viscosity of air. The terminal asymptotic velocity relative
to the fluid is then va = τag, with g the gravity acceleration. When the Stokes
timescale is much smaller of the carrier flow timescale and the asymptotic relative
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Figure 4.12: Evolution of supersaturation maximum Smax for various Re, consid-
ering (a) various RH∞ keeping ∆T = 15 ◦C, and (b) various values of ∆T while
keeping RH∞ = 95%. Both (I) frozen and (L) liquid hydrometeors with both (W)
warmer or (C) cooler temperatures than the ambient are considered. Solid line and
dashed lines resemble the data of Re = 285 case, while, the dots clustered together
around the Re = 285 case are the results for other axisymmetric or oblique Re. Tp

in (b) denotes variation in hydrometeor temperature, such that T∞ remains 0 ◦C
for a specific ∆T .

velocity is much smaller than the flow velocity, a particle tends to move as a fluid
element. This is the typical situation of a particle with a small inertia. When
these conditions are satisfied, particles can be treated as passive tracers. The latter
condition is usually described in terms of the Stokes number, defined as the ratio
between the particle relaxation time and the flow timescale. It had been verified
that inertial effect begin to have a role only when the Stokes number is higher than
0.1 (see, e.g. Boffetta et al. (2007) [17]). This is the situation of aerosols: their very
small size and inertia make them to have a negligible terminal (settling) velocity
relative to the air (of the order of 10−7 m/s) and a very small relaxation time (of the
order of 10−8 s), so that the time necessary to adapt to changes in the air velocity
is very small, much smaller than the flow timescale. In this specific problem, the
timescale of the air flow around the falling hydrometeor is given by τ = d/u∞, so
that the Stokes number is τa/τ ∼ 10−5 ≪ 1 and va/u∞ ∼ 10−7 ≪ 1. In general,
the smallest dynamically active scale in a turbulent cloud is the Kolmogorov micro-
scale, which has much larger time scale than the aerosol response time (typically
around 10−1 to 10−2 s). Therefore even globally inside a cloud, aerosols behave
as passive tracers following the turbulent flow field. In our previous publication,
Bhowmick and Iovieno (2019) [9], it can be seen that even 6 µm radius droplets,
much larger than aerosols, behave almost as passive tracers.
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Figure 4.13: The residence time τ ∗
S = τS/(dp/Up) of a tracer within the supersat-

urated zone and the maximum supersaturation Smax experienced by a tracer are
plotted as a function of the initial radial distance r∗ = r/dp from the hydrometeor
center line (y = z = 0). The evolution of τ ∗

S within the S > 1 × 10−4 zone is plotted
for Re = 200 in (a) and for Re = 285 in (b), while Smax is plotted for Re = 200 in
(c) and for Re = 285 in (d). Various hydrometeor phases and RH∞ conditions are
considered keeping ∆T = 15 ◦C and T∞ = 0 ◦C. Solid and empty dots represent
the liquid warm and frozen cold hydrometeor conditions, respectively. In (e), two
example tracer trajectories for Re = 285 are shown, colored according to the in-
stantaneous S it experiences in an ‘IW 0 15 95’ setup, resulting in τ ∗

S = 151 s (left)
and τ ∗

S = 145.4 s (right).
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To understand the possible role of the supersaturated hydrometeor wake on
the aerosol activation, the trajectories of passive tracers injected upstream of the
hydrometeor are analyzed. Since only tracers starting their motion near the center
line y = z = 0 can enter the supersaturated regions, two injection patterns are
used: a coarse pattern where 2601 tracers are injected uniformly over an area of
[1.5dp × 1.5dp] and a fine pattern where 1681 tracers are injected uniformly over an
area of [0.2dp × 0.2dp] in the inlet around the hydrometeor center line. An adaptive
Runge-Kutta 4-5 method is used for time integration of the trajectories. Velocity,
temperature and vapor density at the tracer position are obtained by tri-linear
interpolation.

The possibility of an aerosol being activated as a CCN depends both on the
instantaneous supersaturation it experiences and on the time it spends in highly
supersaturated regions (residence time), so that it reaches a critical size that pre-
vents its complete evaporation/sublimation according to the Köhler curve [126].
The activation of an aerosol as an INP depends on many physical and chemical
parameters but, even for initiations of the INPs, a sufficient long residence time in
a supersaturated region is required. Moreover, the activated CCNs can also grow to
be INPs, through immersion freezing or contact freezing or homogeneous freezing of
the liquid water [55]. In Figure 4.13, therefore, the residence time τS that a tracer
spends within the supersaturated wake in panels (a) and (b), and Smax that it sees
in (c) and (d) as a function of the initial radial distance r of the tracer from the hy-
drometeor center line for axisymmetric (Re = 200) and oblique (Re = 285) wakes
are plotted respectively. The different structure of the wake creates clearly visible
differences in the supersaturation experienced by the tracers. The tracers, which
stay for the longer time in the supersaturated region of axisymmetric Re = 200
wake, are introduced near the center line as shown in Figure 4.13(a), so that they
move through the supersaturated boundary layer and along the border of the wake.
However, no tracers could enter the closed recirculating region, resulting τS at most
in the order of 101dp/Up for Re = 200.

In the oblique wake regime of Re = 285, shown exemplary in Figure 4.13(b),
tracers injected far from the axis show no significant qualitative difference in τS

and they experience lower Smax in Figure 4.13(d) for a short time. However, ‘lucky
tracers’ injected near the center line can enter the near wake vortical region and
therefore remain trapped in the supersaturated recirculating zone for a longer time
before moving downstream. This increases τS by a factor between 2.5 to 9 with
respect to the bulk of the tracers injected from the same radial distance in the
symmetric or oblique wake regimes. One can quantify the extent of the injection
region of lucky tracers with τS ≥ 102dp/Up, which is confined to a radial distance
of r/dp ≤ 0.09.

The capture frontal area AF , as shown in the schematic Figure 4.14, is defined
as the asymptotic area of origin of the trajectories of the entrained “lucky” aerosols
out of all the finely introduced aerosols (i.e., the intersection of a plane normal to
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the asymptotic velocity with the trajectories of the “lucky” aerosols). The ‘capture
efficiency’ E, which is defined as the ratio between the total frontal area AF of the
tracers with τS ≥ 102dp/Up and the frontal area of the hydrometeor πd2

p/4, is about
5 × 10−3 for Re = 285, while it is almost zero in the steady axisymmetric regime.

capture area: origin
of "lucky" particles trajectories

hydrometeor
cross section

supersaturated
region "lucky" aerosol

particle (τS>102dp/Up)

other aerosol
particle (zero or short  τS)

Figure 4.14: A schematic diagram on the definition of capture frontal area AF .

The scatter in Figure 4.13(b) for Re = 285, which produces petal-like patterns
at low r/dp, is due to the lack of axial symmetry in the oblique wake regime.
The larger extent of the supersaturated region generated by a warmer hydrometeor
(solid dots) compared to a colder hydrometeor (empty dots) for the same ∆T and
RH∞ is also visible in Figure 4.13. This is evident from the lower decay of τS and
Smax with r/dp for warmer hydrometeors.

The mechanism allowing long residence times in the case of an oblique wake
can be inferred from Figure 4.13(e), which shows two sample tracer trajectories
with r/dp = 0.078 and 0.066, respectively, each of which enter the vortical oblique
wake region at Re = 285. The colors of the trajectories represent the instantaneous
supersaturation that the tracers experience. Such lucky tracers, introduced very
near the hydrometeor center line, experience a sudden maximum of supersaturation
S ∼ 20%, for a short time as they move through the boundary layer on the front
of the sphere. Then the supersaturation gradually decreases along the trajectory
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to about 10%. Later, when the tracer is entrained within the recirculating oblique
wake zone, it experiences higher supersaturation again, but for a longer time due
to the low velocity and complex three dimensional flow structures of this region.
However, such entrainment phenomenon is only observed when the wake loses its
symmetry, i.e. in the oblique wake regime from Re = 225 in our simulations.

4.3 Aerosol Activation in Wake Supersaturation

4.3.1 Rate of Aerosol Entrainment in Oblique Wake
The extent of the supersaturated volume, the maximum supersaturation and the

residence time of an aerosol in the supersaturated wake of precipitating hydrome-
teors provide important insights on aerosol activation in the atmosphere. For the
aerosol entrainment in the wake, the precipitating hydrometeor has to generate
an oblique wake, which occurs for a precipitating spherical raindrop when the di-
ameter is at least 1 mm. Since raindrops exceeding a diameter of 2 to 3 mm are
very rare and occur mostly in thunderstorms [116], and also to satisfy the need for
higher temperature difference; it is evident that wake-induced supersaturation can
happen mainly in deep convective clouds with fully glaciated, mixed phased as well
as various liquid phase hydrometeors due to a large temperature variation [156].
From the results of the previous section, the entertainment rate of ‘lucky aerosols’,
which enter per unit time into the frontal capture area AF of a hydrometeor and
thus experience a long residence time inside the supersaturated wake, is estimated
as

N = NaUpAF = NaUpEπd2
p/4.

Here E is the capture efficacy, which is about 5 × 10−3 for Re = 285 and
almost zero in the steady axisymmetric regime. Na is the typical aerosol con-
centration, which varies from O(108) to O(109)m−3 within the continental clouds,
and from O(107) to O(108)m−3 within the remote marine clouds [116]. Therefore,
O(100)s−1 ≤ N ≤ O(101)s−1 aerosols in continental clouds and O(10−1)s−1 ≤ N ≤
O(100)s−1 aerosols in remote marine clouds experience a higher residence time and
higher supersaturation in the wake when a raindrop of at least 1 mm diameter set-
tles at its terminal velocity (Re ≃ 285). Measurements of the number density of
raindrops above 1 mm show a wide variability, which can be estimated to be in
the range of O(101) − O(102) drops per cubic meter [150, 1]. This leads to an
entrainment rate of aerosols in the drop wakes between O(100) and O(103)m−3 s−1.
Since the capture efficiency E increases with the Reynolds number (here the E of
Re = 285 is used), this could be considered a conservative estimate.
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4.3.2 Aerosol Activating Potential of Wake Supersatura-
tion

The critical supersaturation required for the activation of aerosols as a CCN is
achieved by solving the Köhler equation for its chemical compositions and size [126,
93, 87]. Since the critical supersaturation needed for the heterogeneous nucleation
of common atmospheric aerosols rarely exceed 1−2% in a uniform environment, we
may estimate the aerosol growth during its residence time within the supersaturated
wake by considering the average supersaturation, which is much higher than 2%
for a temperature difference of 15 ◦C between the hydrometeor and the ambient.

The order of magnitude of the total vapor mass inside the supersaturated wake
region can be estimated as

mv =
∫

VS

ρvdV =
∫

VS

ρvs(1 + S)dV ∼ ρvs(Tm)(1 + Sm)VS,

where VS is the superaturated volume, ρvs(Tm) is the density of saturated vapor at
the mean temperature Tm, and Sm is the mean supersaturation within VS. This
mass is available for condensation on the trapped ‘lucky’ aerosol particles.

The condensational growth on an aerosol particle with an initial radius of r0 in
a supersaturated ambient of S can be described by the following equation approx-
imately (see the book by Pruppacher and Klett (2010) [116], Chapter 13),

dr

dt
≃ C

S

r
,

where r is the instantaneous radius of the forming droplet and the coefficient C is
given by C ≃ κvρvs/ρw (as usual, ρw is the liquid water density). By assuming that
the mean ambient conditions seen by an aerosol does not change significantly (see
discussion in section 4.1.1), one may integrate this equation to estimate that, after
having spent its residence time τS within VS, its size becomes

r2 ∼ r2
0 + 2CSmτS. (4.19)

The activation of the trapped aerosol as a condensation nucleus depletes the
vapor mass of the supersaturated wake. The change in the vapor mass due to
condensation on a single trapped aerosol is therefore

∆mv = 4
3πρw(r3 − r3

0) ≃ 4
3πρwr3

0

[
(1 + 2CSmr−2

0 τS)3/2 − 1
]

. (4.20)

Therefore, the ratio between the amount of condensed mass on an aerosol and
the total available vapor mass within the supersaturated region is of the order of

∆mv

mv

∼ 4π

3
r3

0
VS

ρw

ρvs(Tm)
(1 + 2CSmr−2

0 τS)3/2 − 1
1 + Sm

. (4.21)

97



4 – Aerosol Activation by Precipitating Hydrometeors

One can express this ratio as a function of the two dimensionless quantities used
in this chapter, the dimensionless supersaturated volume V ∗

S and the dimensionless
residence time τ ∗

S:
V ∗

S = VS

πd3
p/6 , τ ∗

S = τS

dp/Up

,

where, πd3
p/6 = 4πr3

p/3 is the volume of the hydrometeor (dp = 2rp is its diameter)
and Up is its settling velocity. Therefore, Equation (4.21) can be simply rewritten
as

∆mv

mv

∼ 1
V ∗

S

r3
0

r3
p

ρw

ρvs(Tm)

⎡⎣(1 + 2CSmdp

r2
0Up

τ ∗
S

)3/2

− 1
⎤⎦ 1

1 + Sm

. (4.22)

One can consider a few extreme cases among our simulations, which show that
the residence time of the ‘lucky’ aerosols is long enough to allow the condensational
growth which can overcome the supersaturation barrier of the Köhler curves [93]
and the vapor mass present inside the supersaturated wake can support such a
growth. Here below are the results.

Case 1a: Aerosol of r0 = 10 nm in ‘LW 15 15 95’ wake

From simulation results of Re = 285: Tm = 2.2 ◦C, Sm = 2.75%, V ∗
S ∼ 39.2 and

lucky particles have τ ∗
s ∼ 150. Therefore, considering,

ρvs(Tm) ∼ 5.63 × 10−3 kg m−3

ρw ∼ 1 × 103 kg m−3

κv ∼ 2.394 × 10−5 m2 s−1

r0 ∼ 1 × 10−8 m
dp ∼ 1 × 10−3 m
Up ∼ 4 m s−1

one gets,

r ∼ 5.27 × 10−7 m Final radius of the nucleated aerosol
mv ∼ 1.19 × 10−10 kg Total vapor mass inside supersaturated wake
∆mv ∼ 6.14 × 10−16 kg Condensed mass on the aerosol during τS

∆mv/mv ≃ 5.18 × 10−6 Ratio of the condensed vapor to the total vapor

Case 1b: Aerosol of r0 = 100 nm in ‘LW 15 15 95’ wake

Based on the previous parameters of Case 1a, one gets,
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r ∼ 5.37 × 10−7 m Final radius of the nucleated aerosol
mv ∼ 1.19 × 10−10 kg Total vapor mass inside supersaturated wake
∆mv ∼ 6.43 × 10−16 kg Condensed mass on the aerosol during τS

∆mv/mv ≃ 5.42 × 10−6 Ratio of the condensed vapor to the total vapor

Case 2a: Aerosol of r0 = 10 nm in ‘IW 0 15 90’ wake

From simulation results of Re = 285: Tm = −12.68 ◦C, Sm = 5.11%, V ∗
S ∼ 35.6

and lucky particles have τ ∗
s ∼ 150. Therefore, considering,

ρvs(Tm) ∼ 1.7 × 10−3 kg m−3

ρw ∼ 1 × 103 kg m−3

κv ∼ 2.394 × 10−5 m2 s−1

r0 ∼ 1 × 10−8 m
dp ∼ 1 × 10−3 m
Up ∼ 4 m s−1

one gets,

r ∼ 3.95 × 10−7 m Final radius of the nucleated aerosol
mv ∼ 3.41 × 10−11 kg Total vapor mass inside supersaturated wake
∆mv ∼ 2.58 × 10−16 kg Condensed mass on the aerosol during τS

∆mv/mv ≃ 7.56 × 10−6 Ratio of the condensed vapor to the total vapor

Case 2b: Aerosol of r0 = 100 nm in ‘IW 0 15 90’ wake

Based on the previous parameters of Case 2a, one gets,

r ∼ 4.07 × 10−7 m Final radius of the nucleated aerosol
mv ∼ 3.41 × 10−11 kg Total vapor mass inside supersaturated wake
∆mv ∼ 2.79 × 10−16 kg Condensed mass on the aerosol during τS

∆mv/mv ≃ 8.17 × 10−6 Ratio of the condensed vapor to the total vapor

Therefore, inside such a supersaturated wake, an aerosol can grow well above
its critical radius by deposition of water vapor and therefore be activated as a
CCN. During a convective precipitation process of typically 20 minutes, O(103) −
O(106)m−3 new aerosols can therefore be activated in the wake of the precipitating
hydrometeors, which replenish the activated particle concentration in clouds that
typically vary in O(108) − O(109)m−3 [124, 59]. The cloud ambient temperature
considered in this study is between −15 ◦C to 15 ◦C, a range where the concentra-
tion of INPs is much smaller than the concentration of CCNs inside the clouds [111,
55]. Moreover, since we have shown that warmer hydrometeors produce a larger
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supersaturated volume than the colder hydrometeors, CCN activation will likely
dominate over direct INP nucleation. However, considering the deduced entrain-
ment rate of the aerosols in the wake of the hydrometeors, it is expected that also
at lower cloud temperatures (≤ 20 ◦C where a significant concentration of INPs are
detected [102]), still a significant fraction of cloud aerosols may activate in the wake
initially as CCNs (depending on the temperature, supersaturation, aerosol chem-
ical composition, and other physical parameters) and then part of such activated
CCNs may produce INPs through condensation or immersion freezing [102], or by
contact freezing [55], which cannot be inferred from this study because we cannot
distinguish between CCN and INP activation.

On the other hand, some CCNs may grow into supercooled cloud droplets that
are also detected at very low cloud temperatures [54] at which homogeneous freez-
ing is observed in the laboratory experiments. Therefore, from this study, the
relative importance of secondary aerosol activation as INPs can not be estimated
due to the vast parameter space influencing it. However, we have obtained a quan-
tification on the rate of aerosol entrainment in the wake-induced supersaturation
and its activation potential as CCNs. It should be noted that this rate of acti-
vation of aerosols, either as CCNs or both as CCNs and INPs altogether during
the process of convective precipitation, is comparable with the experiments of [101]
on secondary ice production during the growth of a graupel by rime splintering,
and the in field measurements of ice particle production rate by [50], and the in
cloud measurements of secondary ice particles by [51]. Whereas, an explicit rate
of CCN production inside the clouds is not found that the results from this study
can be compared to. For an explicit quantification of wake-induced nucleation, a
detailed microphysical study is required taking into account the full details of the
changing atmospheric conditions and the particle evolution while falling through
the convective clouds. In addition, the effects of other influencing factors, such as
cloud free stream turbulence [6], strong convective motions like central updraft or
entrainment induced mixing [46, 103, 9], or strong downdraft during precipitation
[151] may further influence this nucleation and activation rate, which needs to be
carefully investigated.

4.4 Summary and Conclusions
In this chapter a detailed analysis of the supersaturation field and aerosol ac-

tivation around a spherical hydrometeor, which settles at its terminal velocity, for
different atmospheric conditions is presented. The Navier-Stokes equation for the
flow velocity and the one-way coupled advection-diffusion equations for tempera-
ture and density of water vapor are solved with the lattice Boltzmann method. The
supersaturated volume VS in the wake of steady axisymmetric regime (Re ≤ 220)
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and oblique regime (225 ≤ Re ≤ 285) shows a Re−0.63 decrease for the same ther-
modynamic conditions. Whereas, VS is very sensitive to the temperature difference
∆T between the hydrometeor and the ambient and its relative humidity condition
RH∞, so that VS at constant ∆T increases as RH∞ increases, which means that a
small amount of vapor diffusion from a warmer hydrometeor or cooling by a colder
hydrometeor can easily supersaturate an almost saturated wake volume. However,
when RH∞ is fixed, ∆T plays a crucial role in VS, since without an adequate ∆T
a negligible supersaturated volume is generated. In addition, persistently warmer
hydrometeors than the ambient produced larger VS than the colder ones. The
supersaturation maximum Smax behaves qualitatively similar to VS.

Lagrangian tracking of aerosols as passive tracers shows how the complex flow
pattern of the oblique wake allows some lucky aerosols to be entrained within the
recirculating wake, resulting in a higher residence time within the highly super-
saturated vortical zone. Quantitatively within the supersaturated oblique wake of
Re = 285, about 158 of finely introduced 977 tracers at a radial distance up to
r/dp = 0.09 showed residence time grater than 102dp/Up. Importantly, it is found
that such a long residence time within the highly supersaturated wake not only
exposes the aerosols to a higher level of supersaturation compared to its nucleation
barrier, but also provides enough time for the growth by deposition of water va-
por to exceed its critical size, and therefore to be activated potentially as a CCN
and sometimes possibly as an INP. The frontal area of these lucky tracers enter-
ing the vortical but highly supersaturated oblique wake has a capture efficiency of
∼ 5 × 10−3 with respect to the hydrometeor frontal area at Re = 285. Our analysis
shows that wake-induced nucleation of aerosols during a convective precipitation
of 20 minutes can generate O(103) − O(106)m−3 new CCNs and some fraction as
INPs, which is in order of magnitude comparable to other secondary ice production
mechanisms, and thus contribute to the life cycle of clouds.

End of Chapter 4
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Chapter 5

Conclusions

In this thesis, various open scientific questions regarding the dynamical pro-
cesses inside atmospheric clouds are investigated. The atmospheric clouds play
a significant role in the evolution of weather and climate by impacting the en-
ergy and the hydrological cycle, incoming and outgoing solar radiations, and the
local/global precipitation. However, there still exists many scientific questions re-
garding the initiation and the interactions in between the cloud particles themselves
and with the in-cloud dynamical processes. In order to understand the growth of
the inertial cloud droplets in the cloud edge mixing through the interface, which
is an important process controlling the life cycle of the clouds, in the Chapter 2
a detailed investigation on the condensational/collisional growth of cloud droplets
is presented using the pseudo-spectral direct numerical simulations. The initiation
of the cloud particles/hydrometeors inside mature clouds is also a vast area of re-
search, where the processes behind the activation or initiation of the cloud aerosols
are also required to be investigated and parameterized. In the Chapter 3 of this
thesis, a detailed investigation is conducted to understand the transport of fluid and
scalar quantities in the wake of the large precipitating cloud hydrometeors using
the direct numerical simulations, with application of the lattice Boltzmann method.
Then in the Chapter 4, the methodology for the investigation of scalar transport in
the wake of the hydrometeors is extended to understand the parameter space of the
wake-induced supersaturation behind large precipitating hydrometeors. A detailed
quantitative analysis on the Lagrangian trajectories of the aerosols is detailed also
in the Chapter 4 to find the aerosol activation potential of these wake-induced su-
persauration behind the precipitating hydrometeors, and to investigate whether,
this process can produce new particles at such an extent, which is important for
the cloud life cycle. The detailed conclusions of the chapters are given below.

In the Chapter 2, the understanding regarding the growth of the inertial cloud
droplets in the transient mixing of horizontal cloud top interface is extended by the
inclusion of gravitational sedimentation and a collision module for droplet-droplet
collision together with the condensational/evaporative growth/shrink in size. Three
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different mono-disperse initial cloud water droplet populations (25, 18 and 6 µm
initial radius) have been simulated with the same initial background airflow condi-
tions. A transient initial value problem is simulated, where the turbulent kinetic
energy TKE inside the domain was initialized following the infield measurements
of the TKE spectra in the ranges of the inertial sub-range and the dissipation
range. The in-cloud measurements of the temperature and the water vapor density
is replicated in the initial conditions of the same quantities. Although initialized
with the same background flow condition, the droplet population are observed to
undergo different transients, depending on their initial size. This chapter elaborates
the differences in between the cloud droplet growth in the size gap from 15 µm to
40 µm of radius, and for the droplets smaller than 15 µm of radius. The results
show that the small 6 µm radius droplets do not grow by collision. However, in
the larger droplet populations of both the 25 µm and 18 µm radii, the collisional
growth becomes important. Multiple collisions have occurred in between the dif-
ferent sizes of the droplets. The mixing in the cloud top and the adjacent clear air
interface produced a size broadening of the initial mono-disperse population due to
the supersaturation fluctuations. These local supersaturation fluctuations are more
influential for the smaller population. Since the flow was decaying with time, the
gravitational settling became more and more important for the larger population as
the simulation evolved, leading to a gradual removal of the falling droplets from the
simulation domain. On the contrary, the reduction in total droplet count for the 6
µm initial size population happened mostly due to the complete evaporation of the
sub-micron sized droplets of this population. These droplets were very sensitive to
local subsaturation due their very small size.

In order to find the impact of the stable, unstable or neutrally stratified airflow
conditions on the transient evolution of the initial mono-disperse cloud droplet pop-
ulations, 9 simulations are conducted with the same initial mono-disperse 20 µm
radius droplet populations in the same initial flow conditions for the gradient of tur-
bulent kinetic energy across the interface. However, the initial temperature and the
density of water vapor conditions are varied to create three different initial strati-
fication profiles and three different initial supersaturation profiles. The initial su-
persaturation conditions are varied as strong (RHcloud = 110% and RHair = 40%),
moderate (RHcloud = 110% and RHair = 60%) and mild (RHcloud = 105% and
RHair = 85%). The probability distribution of the droplet sizes shows that the
widening in the initial droplet size increases with the increase in the supersatu-
ration gradient between the cloud and the clear air. Whereas, the temperature
stratification profile has significant influence on the droplet size broadening. The
unstably stratified airflow conditions result in increased mixing across the initial
interface, which widens the droplet size distribution at the highest amount for all
the supersaturation gradients. On the contrary, the stably stratified conditions in-
hibit the mixing across the interface, and therefore, are observed to result in the
least broadening in the droplet size distribution. The neutrally stratified condition,
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whereas, produces a moderate broadening in between the limits of the droplet size
ranges observed for the stable and the unstably stratified airflow conditions.

It must be noted that vertical extents of the simulated domains are 0.5 m and
1 m, which is one order of magnitude smaller than the actual cloud interface ob-
served by the in-cloud measurements. Whereas, the initial interface region of the
simulation domain is 6 × 10−3 m, which is ∼ 103 times smaller than the actual cloud
interfaces. Therefore, the numerical simulations at present is far from simulating
actual cloud interfaces. However, numerical simulations still give important insights
on the dynamical and thermodynamical evolution of the cloud droplets, that are
important for understanding the cloud behavior. To extend this research, stud-
ies using the direct numerical simulations with various initial polydisperse droplet
population representative of the in-cloud droplet measurements are foreseen. This
will help to understand the process of rapid broadening of the droplets inside the
size gap due to collisional growth. Similar to cloud top interfaces, simulations are
foreseen to study the droplet dynamics in the horizontal cloud interfaces where
gravitational force and buoyancy plays a different role on cloud droplet evolution.
Also an innovative model in the simulation setup for such interface mixing simu-
lations must be introduced to take care of the removal of the larger size droplets
from the lower boundary of the domain due to the gravitational settling, in order to
avoid the reduction of droplet samples near the lower domain boundary. A further
analysis could also introduce a constant rate of TKE inflow inside both the cloudy
region as well as the clear air region of the domain, so that the total TKE inside
the simulation domain remains a constant, which could be used to simulate the
precipitating clouds.

On the other hand, to understand the transport of the fluids and scalars in the
wake of the cloud hydrometeors, a detailed numerical analysis is presented in the
Chapter 3 on the spatial structure of the wake flow. A novel population density
distribution approach is presented for the various Reynolds number in the steady
wake regime. The incompressible Navier-Stokes equation is solved for the flow
velocity and the one-way coupled advection-diffusion equations are solved for the
scalars using the lattice Boltzmann method. The spatial evolution of various flow
quantities, such as, longitudinal velocity component u, pressure p, passive scalar θ,
convective scalar flux Q̇ in the wake of the steady axisymmetric regime (Re ≤ 220)
and the oblique regime (225 ≤ Re ≤ 285) using a population distribution function
N , shows a Lorentzian distribution which is proportional to the inverse of the square
of the flow quantity (for example, N(Q̇) ∝ Q̇−2). This Lorentzian trend exhibits
an algebraic decay in the number density of populations with different magnitudes
of fluid quantities from the external ambient to the boundary layer in the wake and
dominates the spatial distribution of the flow quantities outside the recirculating
region. Transition to the oblique wake regime at Re ≥ 225 in the simulations
shows a complex three dimensional spatial evolution of the flow quantities, which
also shows an overall Lorentzian trend. The population density distribution for
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the longitudinal velocity component u, shows an increase in its number density
with the increasing Re, evidencing an increase in the dimensionless kinetic energy.
Whereas the number density of the scalar populations remains the same for various
Re, which produces a steady axisymmetric wake. This feature however changes
in case of the convective scalar flux, where an increase is observed in its number
density with the increase in Re.

Descriptive statistics in the form of population density distribution of the fluid
velocity and the transported scalar quantities in the wake of a sphere is important
for understanding the transport and local reaction processes in specific regions of
the wake. This is used in the Chapter 4 for understanding the microphysics of cloud
droplets and aerosol interactions. A detailed analysis of the supersaturation field
and aerosol activation around a spherical hydrometeor, which settles at its terminal
velocity, for different atmospheric conditions is presented in the Chapter 4. The
supersaturated volume VS in the wake of a hydrometeor in the steady axisymmetric
regime (Re ≤ 220) and the oblique regime (225 ≤ Re ≤ 285) showed a Re−0.63

decrease for the same thermodynamic conditions. VS is seen to be very sensitive
to the temperature difference ∆T between the hydrometeor and the ambient and
its relative humidity condition RH∞, so that VS at constant ∆T increases as RH∞
increases. However, when RH∞ is fixed, ∆T plays a crucial role in VS, since without
an adequate ∆T a negligible supersaturated volume is generated. In addition, the
warmer hydrometeors are observed to produce larger VS than the colder ones.

The Lagrangian tracking of aerosols is also reported in the Chapter 4 to show
how the complex flow pattern of the oblique wake allows some lucky aerosols to
entrain within the recirculating wake. This phenomena resulted in a higher res-
idence time for the entrained aerosols within the highly supersaturated vortical
zone. Quantitatively within the supersaturated oblique wake of Re = 285, about
158 of finely introduced 977 tracers at a radial distance up to r/dp = 0.09 showed
residence time grater than 102dp/Up. Importantly, it is also estimated that such
a long residence time within the highly supersaturated wake not only exposes the
aerosols to a higher level of supersaturation compared to its nucleation barrier,
but also provides enough time for the growth of the aerosol by deposition of water
vapor to exceed its critical size, and therefore to be activated as a CCN and also
sometimes as an INP, depending on various parameters. It is approximated that
the wake-induced nucleation of aerosols during a convective precipitation of 20 min-
utes can generate O(103) − O(106)m−3 potentially new CCNs and possibly some
fraction of aerosols can activate as INPs or become ice particles from the activated
CCNs. This is in order of magnitude comparable to other secondary ice production
mechanisms [51], and thus contribute to the life cycle of clouds.

To extend this research, direct numerical simulations with a comprehensive
and integral incorporation of different interconnected physical and chemical in-
cloud processes contributing to the activation of aerosols must be conducted. To
quantify the impact of this wake-induced aerosol activation process on the life
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cycle of a cloud, a rigorously intensive investigation should be conducted with the
consideration of the chemical composition of the aerosols and its microphysical
growth, together with the presence of the in-cloud turbulence and the models of
the cloud scale updrafts.

End of Chapter 5
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Appendix A

The Point Particle Model and the
Dimensionless Parameters

The content of this appendix is adapted from the notes on the pseudo-spectral
direct numerical simulations code (Iovieno, M., Personal Communication, Decem-
ber 11, 2017). In this physical model, the cloud droplets are considered as point-
particles, with variable mass as one of its attributes. This simplification avoids the
necessity to solve the details of the fluid flow around each single droplet, which
makes this approach feasible for the simulations of more than a few droplets. How-
ever, there are justifications associated to it. 1.) One has to assume that the sizes of
the particles are much smaller than the smallest flow scale which is the Kolmogorov
scale in a turbulent flow. In this study, the diameter of the cloud droplets are in µm
range, while the Kolmogorov scale is in mm range, and therefore it is justified to
use the point-particles model. 2.) Also the concentration of the particles must be
small in the ambient fluid, so that one particle does not interact directly with an-
other neighboring particle. This means that the regions perturbed by the different
particles do not overlap, so that each particle does not directly see the perturbation
in the flow, which is induced by other particles. Basically, as shown in the Fig-
ure A.1, in case of a volume fraction of the particles ≤ 10−6 of the ambient fluid,
the point-particles with one-way coupling is a valid model according to Elghobashi
(1991) [31] for any range of particle Stokes number St, where fluids only perturb
the particle trajectories but particles give negligible feedback to fluid. Whereas,
for a volume fraction ≤ 10−3 but > 10−6, one should consider point-particles with
two-way coupling, where particles modify the structure of the turbulent flow field
[33]. As shown in Figure A.1, in this regime, the particles can enhance kinetic en-
ergy production or dissipation, depending on its St. For a volume fraction > 10−3,
one should consider four-way coupling [31], where not only the feedback from the
particles to the fluid counts, but also the particle to particle interaction should also
be considered.
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Figure A.1: Source: Elghobashi (1991) [31]. Various particle and fluid interaction
regimes, depending on the volume fraction of the particles Φp, distance between the
centers of the neighboring particles S, particle diameter d, particle response time
τp, Kolmogorov time scale τK and the large eddy turnover time τe. This notation
system is from the Elghobashi (1991) article [31] and only used for this figure.
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A.1 Equation on the Diffusive Growth of Cloud
Droplets

In order to find an equation for the diffusive growth of a cloud droplet, let us
consider a water droplet to have a radius rp(t) and a temperature Tp(t), which
changes over time t. Also let us assume that the ambient around this droplet is
supersaturated at temperature T∞ and have a density of water vapor ρv,∞. Since
that droplet has a radius much smaller than the Kolmogorov microscale η, one can
assume that the droplet sees a uniform environment. If the difference of velocity
between the droplet and the surrounding air is negligible (which is true for the µm
size droplets with negligible Stokes number St with respect to the cloudy ambient),
one can write the energy balance equation and the water vapor transport equations
in a frame moving with the droplet and the surrounding air is still, as:

∂T

∂t
= κ∇2T, where

⎧⎨⎩T = Tp(t), when r = rp(t)
T = T∞, when r → ∞

∂ρv

∂t
= κv∇2ρv, where

⎧⎨⎩ρv = ρvs(Tp(t)), when r = rp(t)
ρv = ρv,∞, when r → ∞.

Here, r is the radial distance from the center of the droplet and ρvs(Tp) is the
density of saturated water vapor at the surface of the droplet which is considered
to be saturated at temperature Tp according the Maxwell diffusion model (also
described in the Chapter 4). κ and κv are the thermal diffusivity and the water
vapor diffusivity of air respectively.

Since the characteristic time of diffusion on scales of order rp is much smaller
than the characteristic time of the droplet growth by the condensation of water
vapor, the ambient temperature and vapor density fields adjust almost instan-
taneously to the size/temperature variations of the droplet. Therefore, one can
consider a quasi–steady evolution in the temperature and vapor density fields, as:

∇2T = 0, where

⎧⎨⎩T = Tp(t), when r = rp(t)
T = T∞, when r → ∞

∇2ρv = 0, where

⎧⎨⎩ρv = ρvs(Tp(t)), when r = rp(t)
ρv = ρv,∞, when r → ∞.

The solutions of these equations can be written as:

T (r, t) − T∞

Tp(t) − T∞
= rp(t)

r
,

ρv(r, t) − ρv,∞

ρvs(Tp(t)) − ρv,∞
= rp(t)

r
.
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Now, if we consider the mass flux around the droplet as dmp/dt, it should be
equal to the change in the liquid water content of this droplet and will be equal to
the vapor mass flow with the ambient. Therefore, one can write:

dmp

dt
= 4πr2

pρL
drp

dt
= 4πr2κv

∂ρv

∂r

⇒ r2
p

drp

dt
= κv

ρL

∂ρv
r2

∂r
.

Here, ρL is the density of liquid water. After integrating this equation from r → ∞
to r = rp, one gets:

r2
p

drp

dt
= κv

ρL

(ρv,∞ − ρvs(Tp))rp

⇒ rp
drp

dt
= κv

ρL

(ρv,∞ − ρvs(Tp)). (A.1)

Now one has to consider the variation in the internal energy of the droplet,
which is contributed due to the conductive heat flow through the droplet surface
and the latent heat release by the condensating vapor. Therefore, considering the
conductive heat flux as λT ∂T/∂r and the latent heat release equal to the latent
heat for the phase change L times the amount of the condensating mass on the
droplet, one can write:

mpcp,w
dTp

dt
= 4πr2

(
λT

∂T

∂r
+ Lκv

∂ρv

∂r

)
.

Here, cp,w is the specific heat of water at constant pressure, L is the latent heat
for phase change, λT = κρacp,a is the thermal conductivity of air, κ is the thermal
diffusivity, ρa is the density of air, cp,a is the specific heat of air at constant pressure.
Now considering the thermal capacity of the droplet very small (the left hand side),
compared to the latent heat release term in the right hand size, one can write:

λT
∂T

∂r
+ Lκv

∂ρv

∂r
= 0.

After integrating this equation from r → ∞ to r = rp, one gets:

λT (T∞ − Tp) 1
rp

= −Lκv(ρv,∞ − ρvs(Tp)) 1
rp

⇒ (Tp − T∞) = Lκv

λT

(ρv,∞ − ρvs(Tp)).

We need to find a derivation for (ρv,∞ − ρvs(T∞)) so that one can write the
Equation A.1 as a function of the ambient relative humidity φ∞ = ρv,∞/ρvs(T∞).

112



A.1 – Equation on the Diffusive Growth of Cloud Droplets

In order to do this, the Clausius-Clapeyron equation will be used to find an ap-
proximate solution of ρvs(T∞). If the partial pressure of the saturated water vapor
in the air is pvs(Tp), exerted due to the density of saturated water vapor ρvs(Tp) at
the Tp temperature of the droplet, one can write from the ideal gas law that:

ρvs(Tp) = pvs(Tp)
RvTp

,

where, Rv is the specific gas constant for water vapor. According to the Clausius-
Clapeyron equation, the saturated vapor pressure pvs is only a function of the
temperature, and the tangent of the pressure-temperature diagram can be deduced
as:

dpvs

dT
= L

T∆v
≃ Lρvs

T
= Lpvs

RvT 2 .

Here, ∆v is the specific volume change due to the phase transition, which is ap-
proximated as 1/ρvs.

In order to find an equation for ρvs(T∞), one can linearize the partial vapor
pressure pvs(T∞) considering that (Tp − T∞)/T∞ << 1. Therefore, one can write:

pvs(Tp) ≃ pvs(T∞) + dpvs

dT

⏐⏐⏐⏐
T∞

(Tp − T∞)

= pvs(T∞) + Lpvs(T∞)
RvT 2

∞
(Tp − T∞)

⇒ ρvs(Tp) = pvs(Tp)
RvTp

≃ pvs(Tp)
RvT∞

= 1
RvT∞

[
pvs(T∞) + Lpvs(T∞)

RvT 2
∞

(Tp − T∞)
]

= ρvs(T∞) + Lρvs(T∞)
RvT 2

∞
(Tp − T∞)

= ρvs(T∞) + Lρvs(T∞)
RvT 2

∞

Lκv

λT

(ρv,∞ − ρvs(Tp))

⇒ ρvs(Tp) =
[
ρvs(T∞) + Lρvs(T∞)

RvT 2
∞

Lκv

λT

ρv,∞

](
1 + L2ρvs(T∞)

RvT 2
∞

κv

λT

)−1

Therefore, using the Clausius-Clapeyron equation, one can approximate that:

(ρv,∞ − ρvs(Tp)) = ρv,∞ −
[
ρvs(T∞) + Lρvs(T∞)

RvT 2
∞

Lκv

λT

ρv,∞

](
1 + L2ρvs(T∞)

RvT 2
∞

κv

λT

)−1

=
[
ρv,∞ + Lρvs(T∞)

RvT 2
∞

Lκv

λT

ρv,∞ − ρvs(T∞) − Lρvs(T∞)
RvT 2

∞

Lκv

λT

ρv,∞

](
1 + L2ρvs(T∞)

RvT 2
∞

κv

λT

)−1
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Therefore, one gets a derivation for (ρv,∞−ρvs(Tp)) as a function of (ρv,∞−ρvs(T∞)):

(ρv,∞ − ρvs(Tp)) = (ρv,∞ − ρvs(T∞))
(

1 + L2ρvs(T∞)
RvT 2

∞

κv

λT

)−1

.

Therefore, the Equation A.1, can be re-written as:

rp
drp

dt
= κv

ρvs(T∞)
ρL

(
ρv,∞

ρvs(T∞) − 1
)(

1 + L2ρvs(T∞)
RvT 2

∞

κv

λT

)−1

⇒ rp
drp

dt
= C(φ∞ − 1) (A.2)

where, C = κv
ρvs(T∞)

ρL

(
1 + L2ρvs(T∞)

RvT 2
∞

κv

λT

)−1

and, φ∞ = ρv,∞

ρvs(T∞) , is the ambient relative humidity.

A.2 The Navier-Stokes Equations with Boussi-
nesq approximation

Boussinesq approximation is applicable only in the case of natural convection,
when the modulus of density variation ∆ρ/ρ0 is negligible (∆ρ/ρ0 << 1) [145, 86].
The Navier-Stokes (NS) equations for the motion of the compressibe fluid is written
as:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ ·
(

µ
(
∇u + (∇u)T

)
− 2

3µ (∇ · u) I
)

+ ρg, (A.3)

where, I is the identity matrix. This NS equations are complemented with the
continuity equation, as:

1
ρ

Dρ

Dt
+ ∇ · u = 0 (A.4)

According to the Boussinesq approximation, the variation in density is only
considered when it is multiplied with the gravitational acceleration. Therefore,
in the continuity equation, the density variation term is neglected, considering it
is negligible than the ∇ · u. Also the −2/3µ(∇ · u)I term is also zero for the
incompressible fluid, and the diffusion term ∇ · (µ(∇u + (∇u)T )) turns into µ∇2u.
As a result, the continuity and the NS equations for the incompressible fluid motion
are written as:

∇ · u = 0, (A.5)

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ∇2u + (ρ0 + ∆ρ) g, (A.6)
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where, the density variation ∆ρ, which is defined in the equation A.12 for humid
air, is only used in the buoyancy term in multiplication with g. Whereas, for
the all other terms, instead of ρ = ρ0 + ∆ρ, only ρ0 is considered. Considering the
hydrostatic pressure is ρ0gh, where h is the elevation of the air parcle, the −∇p+ρ0g
is replaced with only −∇p, where p is the atmospheric pressure at the elevation of
the air parcel. Therefore, by considering that the buoyancy term B = −∆ρ/ρ0 and
the kinamatic viscosity ν = µ/ρ0, one can write the NS equations as:

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u − Bg (A.7)

A.3 The Buoyancy Term in the Navier-Stokes
equations

Here the state of equation for humid air is presented. If ρ is the humid air
density, p is its pressure, M is the molar mass, and q is the mixing ratio, then:

ρ = ρa + ρv = pa

RaT
+ pv

RvT

= p − pv

RaT
+ pv

RvT
= p

RaT
− pv

RaT
+ pv

RvT

= p

RaT

[
1 − pv

p

(
1 − Ra

Rv

)]
. (A.8)

Where, ρa is the density of the dry air, ρv is the density of the water vapor, pa and
pv are respectively the partial pressure due to dry air and the water vapor, Ra and
Rv are respectively the gas constants for the dry air and the water vapor.

Now considering that q = ρv/ρa, Ra = R/Ma, Rv = R/Mv (where Ma and
Mv are the molar mass of the dry air and water vapor/water respectively, and R
is the universal gas constant), pa = ρaRaT and pv = ρvRvT , one gets:

pv

p
≃ pv

pa

= ρvRv

ρaRa

= ρv

ρa

Ma

Mv

= q
Ma

Mv

,

which is replaced in the equation A.8. Therefore, one gets:

ρ = p

RaT

[
1 − q

Ma

Mv

(
1 − Mv

Ma

)]
= p

RaT

[
1 − q

(Ma

Mv

− 1
)]

= p

RaT
[1 − qϵ] . (A.9)

Here ϵ = Ma/Mv − 1 = Rv/Ra − 1 = 0.608 is the constant defined above. The
equation A.9 is the state of equation for humid air.
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If one take partial derivative of ρ with respect to T and q, it is:

∂ρ

∂T
= − p

RaT 2 [1 − qϵ] = − ρ

T
(A.10)

∂ρ

∂q
= p

RaT
(−ϵ) = −ρ

ϵ

1 − qϵ
≃ −qϵ (A.11)

The buoyancy B term models the impact of density variation as −∆ρ/ρ0 ac-
cording to the Boussinesq approximation. In this approximation, any variations in
the fluid properties are ignored, but only the density variation is considered when
it is multiplied with the gravitational acceleration g [145]. The variation in ρ is
considered due to the fluctuations in T and ρv, as ρ(T, ρv) or ρ(T, q). Therefore,
the Taylor expansion of ∆ρ is:

∆ρ = ∂ρ

∂T

⏐⏐⏐⏐
0
∆T + ∂ρ

∂q

⏐⏐⏐⏐
0
∆q

= −ρ0

T0
∆T + (−ρ0ϵ)∆q

∆ρ

ρ0
= −

[
∆T

T0
+ ϵ (q − q0)

]
(A.12)

B = −∆ρ

ρ0
= T − T0

T0
+ ϵ

ρv − ρv,e

ρ0
.

Here, ρ0 and T0 are the reference air density and reference air temperature respec-
tively. While q0 = ρv,e/ρ0 is the reference mixing ratio, where ρv,e is the reference
density of the water vapor which is the saturated density of water vapor at T0, later
mentioned as ρvs(T0).
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A.4 The Vaillancourt model
The numerical model used in the Chapter 2 is the standard model, which is

described by Vaillancourt et al. (2001) [148], and is later used by almost all the
recent numerical simulation on the cloud microphysics of the cloud droplets [77, 78,
110, 43, 80]. In the following, along with the dimensional model, the dimension-
less/normalized equations are also deduced which are used in the numerical code.
For the solution of the fluid flow, the Vaillancourt model considers the Navier-
Stokes (NS) equations for the humid air, coupled with the Lagrangian tracking of
every cloud droplets.

A.4.1 The Governing Equations for Fluid Flow
The air phase equation use a Boussinesq-like approximation for the fluid veloc-

ity u = (u1, u2, u3) and include the equations for the temperature T and the vapor
density ρv which are essentially considered the active scalars. The governing equa-
tions for the airflow representing the cloudy air as the carrier fluid are presented
below.

∇ · u = 0, (A.13)
∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u − Bg, (A.14)

∂T

∂t
+ u · ∇T = κ∇2T + L

ρ0cp

Cd, (A.15)

∂ρv

∂t
+ u · ∇ρv = κv∇2ρv − Cd. (A.16)

Here, ρ0 is reference mass density of air at temperature T0 and pressure p0, ∇p is
the pressure gradient, ν is the kinematic viscosity, g = (0,0, −g) is the gravitational
acceleration, κ is the thermal diffusivity of air, L is the latent heat for condensation
of water vapor, cp is the specific heat at constant pressure, and κv is the water vapor
diffusivity.

The ‘source’ terms in the temperature (enthalpy) and humidity equations are:

Cd = condensation rate (condensating mass per unit time and volume),
B = buoyancy term, i.e. Bg is the buoyancy force per unit mass.

The B term includes the effects of 1.) temperature perturbation, 2.) perturbation
in the density of the water vapor, and 3.) the drag of the droplets on the flow.
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These feedback terms are expressed as:

Cd = 1
V

∑
i

dmi

dt
= 1

V

∑
i

4πρLr2
i

dri

dt

B = T − T0

T0
+ ϵ

ρv − ρv,e

ρ0

where, the sum in Cd is only on all particles within the (small) volume V (in practice
a computational grid cell). T0 is the reference temperature, ρv,e is the reference
density of the water vapor, ϵ = Rv/Ra − 1 = 0.608 is a constant dependent on
the gas constants Rv and Ra of the water vapor and the air respectively, ρL is the
density of liquid water, and ri is the radius of the i-th cloud droplet.

A.4.2 The Point Particle Equations
The governing equations for the cloud droplets in the ambient cloudy air are

presented below. The equations for the i-th particle are:

dxi

dt
= vi, (A.17)

dvi

dt
= −vi − u(xi, t)

τi

+ g, (A.18)

dri

dt
= C

φ(xi, t) − 1
ri

, φ(xi, t) = ρv(xi, t)
ρvs(T )(xi, t) , (A.19)

where xi is the droplet position, vi is the droplet velocity, φ is the local relative
humidity, ρvs is the density of saturation vapor. Coefficient τi is the is the response
time for the i-th droplet, which is:

τi = 2
9

ρL

ρ0

r2
i

ν
. (A.20)

Therefore, τi changes if the droplet grows or evaporates. And the C is a model
coefficient, actually a function for the flow around the particle and it is defined as:

C = κv
ρvs(T0)

ρL

(
1 + L2ρvs(T0)

RvT 2
0

κv

λT

)−1

, (A.21)

where λT is the thermal conductivity of the air.
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A.5 The Dimensionless equations
In order to non-dimensionalize the physical model, various reference quantities

are introduced. A reference length LR, and a reference velocity UR is chosen, from
which the reference time TR = LR/UR is deduced. The reference thermodynamic
quantities are T0, p0 and ρ0, respectively for the temperature, pressure and the
density of the ambient. The reference quantity in the density of water vapor ρv,e

for the ambient is chosen to be the saturated vapor density at ambient temperature
T0; that is ρv,e = ρvs(T0). An index ‘0’ will refer to the ambient reference condi-
tions, unless specified as something different. Therefore, here are the dimensionless
quantities:

x̃ = x
LR

, ũ = u
UR

and analogously ṽ = v
UR

,

T̃ = T − T0

T0
, p̃ = p − p0

ρ0U2
R

, r̃ = r

LR

, ρ̃v = ρv

ρvs(T0)
.

Therefore the equations (A.13-A.16) will become:
∇̃ · ũ = 0, (A.22)

∂ũ
∂t̃

+ ũ · ∇̃ũ = −∇̃p̃ + ν

URLR

∇̃2ũ + gLR

U2
R

B̃ez, (A.23)

∂T̃

∂t̃
+ ũ · ∇̃T̃ = κ

URLR

∇̃2T̃ + L

cpT0

ρL

ρ0
C̃d, (A.24)

∂ρ̃v

∂t̃
+ ũ · ∇̃ρ̃v = κv

URLR

∇̃2ρ̃v − ρL

ρvs(T0)
C̃d. (A.25)

Here the dimensionless buoyancy term B̃, condensation rate C̃d and the unit vector
ez are written as:

B̃ = T̃ + ϵ
ρvs(T0)

ρ0
(ρ̃v − 1) ,

C̃d = 1
Ṽ

∑
i

4πr̃2
i

dr̃i

dt̃
,

ez = (0,0,1).
Also the dimensionless equations for each particle will become:

dx̃i

dt̃
= ṽi, (A.26)

dṽi

dt̃
= − ṽi − ũ(x̃i, t̃)

τ̃i

− gLR

U2
R

ez, (A.27)

dr̃i

dt̃
= C

URLR

φ(x̃i, t̃) − 1
r̃i

, φ(x̃i, t̃) = ρ̃v(x̃i, t̃)
ρ̃vs(T̃ )(x̃i, t̃)

. (A.28)

Here τ̃i = τi/TR is the dimensionless particle response time.
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A.6 The Dimensionless parameters
Therefore, in the set of the dimensionless equations A.22 - A.28, the following

dimensionless parameter are found which govern the dynamical evolution:

Re = URLR

ν
Reynolds number (convection/diffusion)

Pr = ν

κ
Prandtl number (momentum diffusivity/heat diffusivity)

Sc = ν

κv

vapor Schmidt number (momentum diffusivity/
vapor mass diffusivity)

αa = ρL

ρ0
ratio between liquid water density and air density

αv = ρL

ρvs(T0)
ratio between liquid water density and vapor density

αav = ρvs(T0)
ρ0

= αa

αv

ratio between vapor density and air density

αF = gLR

U2
R

∼weight/inertia (∼ proportional to inverse Froude number)

β = L

cpT0
a sort of inverse Sfefan number (condensation latent heat/

air enthalphy)

One can rewrite the dimensionless equations A.22 - A.28 with the dimensionless
parameters defined before. Therefore the model equations, by dropping the tildes˜
for the dimensionless forms will be:

∇ · u = 0, (A.29)
∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + αF Bez, (A.30)
∂T

∂t
+ u · ∇T = 1

Re Pr
∇2T − βαaCd, (A.31)

∂ρv

∂t
+ u · ∇ρv = 1

Re Sc
∇2ρv − αvCd. (A.32)

The source terms are:

B = T + ϵαav(ρv − 1)

Cd = 1
V

∑
i

4πr2
i

dri

dt
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And the dimensionless droplet equations are:

dxi

dt
= vi, (A.33)

dvi

dt
= −vi − u(xi, t)

τ̃i

− αF ez, (A.34)

dri

dt
= C∗

φ(xi, t) − 1
ri

, φ(xi, t) = ρv(xi, t)
ρvs(T )(xi, t) (A.35)

The new term C∗, which depends on the conditions around each droplet, is given
by:

C∗ = C

URLR

= κv

URLR

ρvs(T0)
ρL

(
1 + L2ρvs(T0)

RvT 2
0

κv

λT

)−1

= ν

URLR

κv

ν

ρvs(T0)
ρL

(
1 + L2ρvs(T0)

RvT 2
0

κv

λT

)−1

= 1
Re

1
αv

· Sc−1
(

1 + L2ρvs(T0)
RvT 2

0

κv

λT

)−1

= 1
Re

1
Sc∗

1
αv

.

In the last line, a ‘modified’ Schmidt number (in line with the ‘modified’ diffu-
sivity by Kumar et al. (2013) [77]) for the water vapor is defined as:

Sc∗ = Sc

(
1 + L2ρvs(T0)

RvT 2
0

κv

λT

)
.

The dimensionless relaxation time of a droplet τ̃i is also another dimensionless
quantity, such that:

τ̃i = τi

TR

= τiUR

LR

= 2
9

ρL

ρ0

r̃2
i L2

R

ν

UR

LR

= 2
9

ρL

ρ0

URLR

ν
r̃2

i

= 2
9αaRe r̃2

i .
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A – The Point Particle Model and the Dimensionless Parameters

Dimensionless saturated water vapor density ρ̃vs at T̃ is also another dimen-
sionless quantity which is approximated by the Clausius-Clapeyron law:

ρ̃vs(T̃ ) = ρvs(T )
ρvs(T0)

= 1
ρvs(T0)

pvs(T )
RvT

= 1
ρvs(T0)

pvs(T0)
RvT

exp
(

L

Rv

( 1
T0

− 1
T

))

= 1
ρvs(T0)

pvs(T0)
RvT0

1
1 + T̃

exp
(

L

RvT0

(
T − T0

T

))

= 1
1 + T̃

exp
(

L

cpT0

cp

Rv

(
T̃

1 + T̃

))

= 1
1 + T̃

exp
(

β
γ

γ − 1

(
T̃

1 + T̃

))
.

Here, γ is the ratio of the specific heat capacities of water vapor at a constant
pressure cp and at a constant volume cv, so that γ ≃ 4/3. And the Rv is the gas
constant for the water vapor, so that cp − cv = Rv.
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