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Abstract
A rigorous limit procedure is presented which links nonlocal models involving adhe-
sion or nonlocal chemotaxis to their local counterparts featuring haptotaxis and
classical chemotaxis, respectively. It relies on a novel reformulation of the involved
nonlocalities in terms of integral operators applied directly to the gradients of signal-
dependent quantities. The proposed approach handles both model types in a unified
wayand extends the previousmathematical framework to settings that allow for general
solution-dependent coefficient functions. The previous forms of nonlocal operators are
compared with the new ones introduced in this paper and the advantages of the lat-
ter are highlighted by concrete examples. Numerical simulations in 1D provide an
illustration of some of the theoretical findings.

Keywords Cell–cell and cell–tissue adhesion · Nonlocal and local chemotaxis ·
Haptotaxis · Integro-differential equations · Unified approach · Global existence ·
Rigorous limit behaviour · Weak solutions

Mathematics Subject Classification 35Q92 · 92C17 · 35K55 · 35R09 · 47G20 ·
35B45 · 35D30

1 Introduction

Macroscopic equations and systems describing the evolution of populations in
response to soluble and insoluble environmental cues have been intensively stud-
ied and the palette of such reaction-diffusion-taxis models is continuously expanding.
Models of such form are motivated by problems arising in various contexts, a large
part related to cell migration and proliferation connected to tumor invasion, embryonal
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1252 M. Eckardt et al.

development, wound healing, biofilm formation, insect behavior in response to chem-
ical cues, etc.We refer, e.g. to Bellomo et al. (2015) for a recent review also containing
some deduction methods for taxis equations based on kinetic transport equations.

Apart from such purely local PDE systems with taxis, several spatially nonlocal
models have been introduced over the last two decades and are attracting ever increas-
ing interest. They involve integro-differential operators in one or several terms of the
featured reaction-diffusion-drift equations. Their aim is to characterize interactions
between individuals or signal perception happening not only at a specific location, but
over a whole set (usually a ball) containing (centered at) that location. In the context of
cell populations, for instance, this seems to be amore realisticmodeling assumption, as
cells are able to extend various protrusions (such as lamellipodia, filopodia, cytonemes,
etc.) into their surroundings, which can reach across long distances compared against
cell size, see González-Méndez et al. (2017) and Sáenz-de Santa-María et al. (2017)
and references therein. Moreover, the cells are able to relay signals they perceive and
thus transmit them to cellswithwhich they are not in direct contact, thereby influencing
their motility, see e.g., Eom and Parichy (2017) and Garcia and Parent (2008). Cell–
cell and cell–tissue adhesion are essential for mutual communication, homeostasis,
migration, proliferation, sorting, and many other biological processes. A large variety
of models for adhesive behavior at the cellular level have been developed to account
for the dynamics of focal contacts, e.g. Bell (1978), Bell et al. (1984) and Ward and
Hammer (1993) and to assess their influence on cytoskeleton restructuring and cell
migration, e.g. DiMilla et al. (1991), Dickinson and Tranquillo (1993), Kuusela and
Alt (2008), Uatay (2019). Continuous, spatially nonlocal models involving adhesion
were introduced more recently (Armstrong et al. 2006) and are attracting increasing
interest from the modeling (Bitsouni et al. 2018; Buttenschön et al. 2018; Carrillo
et al. 2019; Domschke et al. 2014; Gerisch and Chaplain 2008; Gerisch and Painter
2010; Murakawa and Togashi 2015; Painter et al. 2010), analytical (Chaplain et al.
2011; Dyson et al. 2013, 2010; Sherratt et al. 2009; Hillen et al. 2018), and numerical
(Gerisch 2010) viewpoints. Yet more recent models (Domschke et al. 2017; Engwer
et al. 2017) also take into account subcellular level dynamics, thus involving further
nonlocalities (besides adhesion), with respect to some structure variable referring to
individual cell state. Thereby, multiscale mathematical settings are obtained, which
lead to challenging problems for analysis and numerics. Another essential aspect of
cellmigration is the directional bias in response to a diffusing signal, commonly termed
chemotaxis. A model of cell migration with finite sensing radius, thus featuring non-
local chemotaxis has been introduced in Othmer and Hillen (2002) and readdressed
in Hillen et al. (2007) from the perspective of well-posedness, long time behaviour,
and patterning. We also refer to Loy and Preziosi (2019) for further spatially nonlocal
models and their formal deduction.

For adhesion and nonlocal chemotaxis models, a gradient of some nondiffusing or
diffusing signal is replaced by a nonlocal integral term. Here we are only interested
in this type of model, and refer to Chen et al. (2020); Eftimie (2018), Kavallaris and
Suzuki (2018) for reviews on settings involving other types of nonlocality. Specifically,
following Armstrong et al. (2006), Gerisch and Chaplain (2008), Hillen et al. (2007)
and Othmer and Hillen (2002), we consider the subsequent systems, whose precise
mathematical formulations will be specified further below:
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Nonlocal and local models for taxis in cell migration… 1253

1. a prototypical nonlocal model for adhesion

∂t cr = ∇ · (Dc(cr , vr )∇cr − crχ(cr , vr )Ar (g(cr , vr ))) + fc(cr , vr ), (1.1a)

∂tvr = fv(cr , vr ), (1.1b)

where

Ar u(x) := 1

r
-
∫

Br
u(x + ξ)

ξ

|ξ | Fr (|ξ |) dξ (1.2)

is referred to as the adhesion velocity, and the function Fr describes how the
magnitude of the interaction force depends on the interaction range |ξ | within the
sensing radius r . We require this function to satisfy

Assumptions 1.1 (Assumptions on Fr )

(i) (r , ρ) �→ Fr (ρ) is continuous and positive in [0, r0]2 for some r0 > 0;

(ii) F0(0) = n + 1.1

The quantity
F(cr , vr ) = crχ(cr , vr )Ar (g(cr , vr ))

is often referred to as the total adhesion flux, possibly scaled by some constant
involving the typical cell size or the sensing radius, see e.g., Armstrong et al.
(2006) and Buttenschön et al. (2018). Here we also include a coefficient χ(cr , vr )
that depends on cell and tissue (extracellular matrix, ECM) densities, which can
be seen as characterizing the sensitivity of cells towards their neighbours and the
surrounding tissue. It will, moreover, help provide in a rather general framework
a unified presentation of this and the subsequent local and nonlocal model classes
for adhesion, haptotactic, and chemotactic behavior of moving cells.
System (1.1) is a simplification of the integro-differential system (4) in Gerisch

and Chaplain (2008). The main difference between the two settings is that in
our case we ignore the so-called matrix-degrading enzymes (MDEs). Instead, we
assume the cells to degrade the tissue directly: this fairly standard simplification
(e.g., Painter et al. 2010) effectively assumes that proteolytic enzymes remain
localised to the cells, and helps simplify the analysis. On the other hand, (1.1)
can also be viewed as a nonlocal version of the haptotaxis model with nonlinear
diffusion:

∂t c = ∇ · (Dc(c, v)∇c − cχ(c, v)∇g(c, v)) + fc(c, v), (1.3a)

∂tv = fv(c, v); (1.3b)

1 In Sect. 3 we will see that this is, indeed, the ’right’ normalisation. If we assume, as in Armstrong et al.
(2006), that this function is a constant involving some viscosity related proportionality, then this choice
provides the value of that constant.
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1254 M. Eckardt et al.

2. a prototypical nonlocal chemotaxis-growth model

∂t cr = ∇ ·
(
Dc(cr , vr )∇cr − crχ(cr , vr )∇̊rvr

)
+ fc(cr , vr ), (1.4a)

∂tvr = DvΔvr + fv(cr , vr ) (1.4b)

with the nonlocal gradient

∇̊r u(x) := n

r
-
∫

Sr
u(x + rξ)ξ dξ.

System (1.4) can be seen as a nonlocal version of the chemotaxis-growth model

∂t c = ∇ · (Dc(c, v)∇c − cχ(c, v)∇v) + fc(c, v), (1.5a)

∂tv = DvΔv + fv(c, v), (1.5b)

whereχ(c, v) is the chemotactic sensitivity function.Asmentioned above, in order
to have a unified description of our systems (1.3) and (1.5) and of their respective
nonlocal counterparts (1.1) and (1.4), we later introduce a more general version
of the nonlocal chemotaxis flux, similar to the above adhesion velocity Ar .

Here and below Br and Sr denote the open r -ball and the r -sphere in R
n , both centred

at the origin, and

-
∫

Br
u(ξ) dξ := 1

|Br |
∫
Br

u(ξ) dξ,

-
∫

Sr
u(ξ) dξ := 1

|Sr |
∫
Sr
u(ξ) dSr (ξ)

are the usual mean values of a function u over Br and Sr , respectively. The nonlocal
systems (1.3) and (1.5) are stated for

t > 0, x ∈ Ω ⊂ R
n .

Unless the spatial domain Ω is the whole R
n , suitable boundary conditions are

required. In the latter case, usually periodicity is assumed, which is not biologically
realistic in general. Still, this offers the easiest way to properly define the output of
the nonlocal operator in the boundary layer where the sensing region is not fully con-
tained in Ω . Very recently various other boundary conditions have been derived and
compared in the context of a single equationmodeling cell–cell adhesion in 1D (Hillen
and Buttenschön 2020).

Few previous works focus on solvability for models with nonlocality in a taxis term.
Some of them deal with single equations that only involve cell–cell adhesion (Dyson
et al. 2010, 2013; Hillen and Buttenschön 2020), others study nonlocal systems of the
sort considered here for two (Hillen et al. 2007) or more components (Engwer et al.
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Nonlocal and local models for taxis in cell migration… 1255

2017). The global solvability and boundedness study in Hillen et al. (2018) is obtained
for the case of a nonlocal operator with integration over a set of sampling directions
being an open, not necessarily strict subset of R

n . The systems studied there include
settings with a third equation for the dynamics of diffusing MDEs. Conditions which
secure uniform boundedness of solutions to such cell–cell and cell–tissue adhesion
models in 1D were elaborated in Sherratt et al. (2009).

Some heuristic analysis via local Taylor expansions was performed in Gerisch and
Chaplain (2008) and Hillen (2007) showing that as r → 0 the outputs Ar u and ∇̊r u,
respectively, converge pointwise to∇u for a fixed and sufficiently smooth u. In Hillen
et al. (2007) it was observed that it would be interesting to study rigorously the limiting
behaviour of solutions of the nonlocal problems involving ∇̊r u. The authors ask in
which sense, if at all, do these solutions converge to solutions of the corresponding
local problem as r → 0. Numerical results appeared to confirm that, in certain cases,
the answer is positive. Still, to the best of our knowledge, no rigorous analytical study
of this issue has as yet been performed. Clearly, any approach based on representations
using Taylor polynomials requires a rather high order regularity of solution compo-
nents and a suitable control on the approximation errors, and that uniformly in r . This
is difficult or even impossible to obtain in most cases, particularly when dealing with
weak solutions. In this work we propose a different approach based on the represen-
tation of the input u in terms of an integral of ∇u over line segments. This leads to a
new description of the nonlocal operators Ar and ∇̊r in terms of nonlocal operators
applied to gradients (see Sect. 3 below). Moreover, it turns out that redefining their
outputs inside the vanishing boundary layer in a suitable way allows one to perform
a rigorous proof of convergence: Under suitable assumptions on the system coeffi-
cients and other parameters, appropriately defined sequences of solutions to nonlocal
problems involving the mentioned modified nonlocal operators converge for r → 0 to
those of the corresponding local models (1.3) and (1.5), respectively. Our convergence
proof is based on estimates on cr and vr which are uniform in r and on a compactness
argument. The twomodels (1.1) and (1.4) are chosen as illustrations, however our idea
can be further applied to other integro-differential systems with similar properties.

The rest of the paper is organised as follows. Section 2 introduces some basic
notations to be used throughout this paper. In Sect. 3 we introduce the aforementioned
adaptations of the nonlocal operatorsAr and ∇̊r and study their limiting properties as
r becomes infinitesimally small. This turns out to be useful for our convergence proof
later. We also establish in Sect. 4 the well-posedness for a certain class of equations
including such operators. In the subsequent Sect. 5 we introduce a couple of nonlocal
models that involve the previously considered averaging operators, prove the global
existence of solutions of the respective systems, and investigate their limit behaviour
as r → 0. Section 6 provides some numerical simulations comparing various nonlocal
and local models considered in this work in the 1D case. Finally, Sect. 7 contains a
discussion of the results and a short outlook on open issues.
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1256 M. Eckardt et al.

2 Basic notations and function spaces

We denote the Lebesgue measure of a set A by |A|. LetΩ ⊂ R
n be a bounded domain

with smooth enough boundary.
For a function w : Ω → R

n we assume, by convention, that

w := 0 in R
n\Ω.

For r > 0 we introduce the following subdomain of Ω

Ωr := {x ∈ Ω : dist(x, ∂Ω) > r}.

Partial derivatives, in both classical and distributional sense, with respect to vari-
ables t and xi , will be denoted respectively by ∂t and ∂xi . Further,∇,∇· andΔ stand for
the spatial gradient, divergence and Laplace operators, respectively. ∂ν is the derivative
with respect to the outward unit normal of ∂Ω .

We assume the reader to be familiar with the definitions and the usual properties
of such spaces as: the standard Lebesgue and Sobolev spaces, spaces of functions
with values in these spaces, and with anisotropic Sobolev spaces. In particular, we
denote by Cw([0, T ]; L2(Ω)) the space of functions u : [0, T ] → L2(Ω) which are
continuous w.r.t. the weak topology of L2(Ω).

Throughout the paper 〈·, ·〉X∗,X denotes a duality paring between a space X and
its dual X∗.

Finally, we make the following useful convention: For all indices i , the quantity
Ci denotes a positive constant or, alternatively, a positive function of its arguments.
Moreover, unless explicitly stated, these constants do not depend upon r .

3 OperatorsAr and ∇̊r and averages of∇
In this section we study the applications of the non-local operatorsAr and ∇̊r to fixed,
i.e. independent of r , functions u. Our focus is on the limiting behaviour as r → 0.
Formal Taylor expansions performed in Gerisch and Chaplain (2008), Hillen et al.
(2007) anticipate that the limit is the gradient operator in both cases. This we prove
here rigorously under rather mild regularity assumptions on u. To be more precise,
we replace Ar and ∇̊r by certain integral operators Tr and Sr (see (3.2) and (3.7)
below) applied to ∇u and show that these operators are pointwise approximations of
the identity operator in the L p spaces.

We start with the operatorAr . For r ∈ (0, r0], u ∈ C1(Ω), and x ∈ Ωr we compute
that

Ar u(x) = 1

r
-
∫

Br
u(x + ξ)

ξ

|ξ | Fr (|ξ |) dξ

= 1

r
-
∫

Br
(u(x + ξ) − u(x))

ξ

|ξ | Fr (|ξ |) dξ
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= 1

r
-
∫

Br

∫ 1

0
(∇u(x + sξ) · ξ) ds

ξ

|ξ | Fr (|ξ |) dξ

= 1

r

∫ 1

0
-
∫

Br
(∇u(x + sξ) · ξ)

ξ

|ξ | Fr (|ξ |) dξ ds

=
∫ 1

0
-
∫

B1
(∇u(x + rsy) · y) y

|y| Fr (r |y|) dyds. (3.1)

Formula (3.1) extends to arbitrary u ∈ W 1,1(Ω) by means of a density argument.
Motivated by (3.1) we introduce the averaging operator

Trw(x) :=
∫ 1

0
-
∫

B1
(w(x + rsy) · y) y

|y| Fr (r |y|) dyds. (3.2)

In Sect. 3.1 we check that Trw(x) is well-defined for all w ∈ (L1(Ω))n and a.a.
x ∈ Ω . In this notation, for all r ∈ (0, r0] and u ∈ W 1,1(Ω) identity (3.1) takes the
form

Ar u = Tr (∇u) a.e. in Ωr .

In the limiting case r = 0 we have that

T0w(x) =
∫ 1

0
-
∫

B1
(w(x) · y) y

|y| F0(0) dyds,

= F0(0)
n∑

i, j=1

wi (x)e j -
∫

B1

yi y j
|y| dy

= F0(0)
n∑

i, j=1

wi (x)e jδi j -
∫

B1

y2i
|y| dy

= F0(0)
n∑

i=1

wi (x)ei -
∫

B1

y2i
|y| dy

= F0(0)
n∑

i=1

wi (x)ei
1

n
-
∫

B1

|y|2
|y| dy

= F0(0)
1

n
-
∫

B1
|y| dy w(x)

= w(x). (3.3)

In the final step we used Assumptions 1.1(ii) which says that F0(0) = n + 1 (this
explains our choice) and the trivial identity

-
∫

B1
|y| dy = n

n + 1
. (3.4)
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1258 M. Eckardt et al.

Thus, we have just proved the following lemma:

Lemma 3.1 (Adhesion velocity vs. Tr ) Let u ∈ W 1,1(Ω). Then it holds that

Ar u = Tr (∇u) a.e. in Ωr for r ∈ (0, r0]. (3.5)

Moreover, if F0(0) = n + 1, then

∇u = T0(∇u) in Ω. (3.6)

In a very similar manner one can establish a representation for ∇̊r . For this purpose
we define the averaging operator

Srw(x) := n
∫ 1

0
-
∫

S1
(w(x + rsy) · y)y dS1(y)ds for r ∈ (0, r0]. (3.7)

The corresponding result then reads:

Lemma 3.2 (Non-local gradient vs. Sr ) Let u ∈ W 1,1(Ω). Then it holds that

∇̊r u = Sr (∇u) a.e. in Ωr for r ∈ (0, r0], (3.8)

∇u = S0(∇u) a.e. in Ω. (3.9)

The proof of Lemma 3.2 is very similar to that of Lemma 3.1 and we omit it here.
Next, we observe that identity (3.5) was established for Ωr . In the boundary layer

Ω\Ωr the definition (1.2) of the adhesion velocity allows various extensions. For
example, one could keep (1.2) by assuming (as done, e.g., in Engwer et al. (2017))
that u := 0 in R

n\Ω . An alternative would be to average over the part of the r -ball
that lies inside the domain. Let us have a closer look at the first option (the second can
be handled similarly). Consider the following example:

Example 3.3 (Ar vs. Tr (∇·) in 1D) Let Ω = (−1, 1), r0 = 1, Fr ≡ 2, and u ≡ 1. In
this case, u′ ≡ 0, hence

Tr (u′) ≡ 0 ≡ u′.

For Ar one readily computes by assuming u = 0 in R\(−1, 1) that for x ∈ (−1, 1)

Ar u(x) =2

r

1

2r

∫
(−1−x,1−x)∩(−r ,r)

sign(ξ) dξ

=

⎧⎪⎨
⎪⎩

1
r2

(−1 + r − x) in [−1,−1 + r ],
0 in (−1 + r , 1 − r) = Ωr ,
1
r2

(1 − r − x) in [1 − r , 1],
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so that

‖Ar u‖L1(−1,1) = ‖Ar u‖L1(Ω\Ωr )

= 1

r2

∫ −1+r

−1
|−1 + r − x | dx + 1

r2

∫ 1

1−r
|1 − r − x | dx

=1,

although

|Ω\Ωr | = 2r →
r→0

0.

Thus,

Ar u →
r→0

0 ≡ u′

in the measure but not in L1(Ω).

Example 3.3 supports our idea to average ∇u instead of u itself. The same applies
to ∇̊r u vs. Sr (∇u).

Averaging w.r.t. y ∈ B1 and then also w.r.t. s ∈ (0, 1) might appear superfluous
in the definition of the operator Tr . The following example compares the effect of Tr
with that of an operator which averages w.r.t. to y only.

Example 3.4 Let Ω = R
n , n ≥ 2, and r > 0, Fr ≡ n + 1. In this case

Trw(x) := (n + 1)
∫ 1

0
-
∫

B1
(w(x + rsy) · y) y

|y| dyds.

Consider also the operator

T̃rw(x) := (n + 1) -
∫

B1
(w(x + r y) · y) y

|y| dy.

It is easy to see that both operators arewell-defined, linear, continuous, and self-adjoint
in the space L2(Rn). Moreover, they map the dense subspace C0(R

n; R
n) into itself.

This suggests the following natural extension to (C0(R
n; R

n))∗:

〈Trμ, ϕ〉(C0(Rn;Rn))∗,C0(Rn;Rn) :=〈μ, Trϕ〉(C0(Rn;Rn))∗,C0(Rn;Rn),

〈T̃rμ, ϕ〉(C0(Rn;Rn))∗,C0(Rn;Rn) :=〈μ, T̃rϕ〉(C0(Rn;Rn))∗,C0(Rn;Rn).

Let, for instance,

w := δ0e1,

123



1260 M. Eckardt et al.

δ0 and e1 mean the usual Dirac delta and the vector (1, 0, . . . , 0), respectively. One
readily computes that

T̃r (δ0e1)(x) = n + 1

|Br | χBr (x)
x1
r

x

|x | ,

whereas

Tr (δ0e1)(x) = n + 1

|Br |
∫ 1

0
s−n−1χBrs (x) ds

x1
r

x

|x |
= n + 1

n|Br |
((

r

|x |
)n

− 1

)
+
x1
r

x

|x | .

For n ≥ 2, the operator Tr retains the singularity at the origin, however making it less
concentrated, while T̃r eliminates that singularity entirely and produces instead jump
discontinuities all over Sr .

3.1 Properties of the averaging operatorsTr andSr

In this section we collect some properties of the averaging operators Tr and Sr .

Lemma 3.5 (Properties of Tr ) Let Fr satisfy Assumptions 1.1 and let r ∈ (0, r0]. Then:
(i) Tr is a well-defined continuous linear operator in (L p(Ω))n for all p ∈ [1,∞].

The corresponding operator norm satisfies

‖Tr‖L((L p(Ω))n) ≤ C1(r , p), (3.10)

where

C1(r , p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n

1∫
0

ρn−1+p∗
(Fr (rρ))p

∗
dρ

) 1
p∗

for p ∈ (1,∞], p∗ = p
p−1 ,

max
ρ∈[0,1] ρFr (rρ) for p = 1.

(ii) Let p, p∗ ∈ [1,∞] be such that p∗ = p
p−1 . For all w1 ∈ (L p(Ω))n and

w2 ∈
(
L p∗

(Ω)
)n

it holds:

∫
Ω

(Trw1(x) · w2(x)) dx =
∫

Ω

(w1(x) · Trw2(x)) dx . (3.11)

(iii) Let p ∈ [1,∞). For all w ∈ (L p(Ω))n it holds that

Trw →
r→0

T0w = w in (L p(Ω))n . (3.12)
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(iv) For p = 2 it holds that

‖Tr‖L((L2(Ω))n) →
r→0

1. (3.13)

Remark 3.6 Due to the assumptions on Fr we have in the limit that

C1(r , p) →
r→0

C2(p) :=
⎧⎨
⎩ (n + 1)

(
n

n+p∗
) 1

p∗ for p ∈ (1,∞]\{2}, p∗ = p
p−1 ,

n + 1 for p = 1.
(3.14)

Proof of Lemma 3.5 (i) Sincew is measurable and ρ �→ Fr (ρ), (x, s, y) �→ x+rsy,
(y, z) �→ (z · y) y

|y| are continuous, we have that

(x, y, s) �→ (w(x + rsy) · y) y

|y| Fr (r |y|)

is well-defined a.e. in Ω × B1 × (0, 1) and is measurable. Let p ∈ (1,∞) and
p∗ = p

p−1 . Using Hölder’s inequality, Fubini’s theorem, and our convention that
w vanishes outside Ω , we deduce for all w ∈ (L p(Ω))n that

‖Trw‖p
(L p(Ω))n

=
∫

Ω

∣∣∣∣
∫ 1

0
-
∫

B1
(w(x + rsy) · y) y

|y| Fr (r |y|) dyds
∣∣∣∣
p

dx

≤
∫

Ω

∫ 1

0
-
∫

B1
|w(x + rsy)|p dy

(
-
∫

B1
(|y|Fr (r |y|))p∗

dy

) p
p∗

dsdx

= C p
1 (r , p)

∫ 1

0
-
∫

B1

∫
Ω

|w(x + rsy)|p dxdyds,

≤ C p
1 (r , p)

∫ 1

0
-
∫

B1

∫
Ω

|w(z)|p dzdyds
= C p

1 (r , p)‖w‖p
(L p(Ω))n .

This implies that for all p ∈ (1,∞) operator Tr is well-defined in (L p(Ω))n

and satisfies (3.10). It is also clearly linear. Taken together we then have that
Tr ∈ L((L p(Ω))n) and (3.10) holds. The cases p = 1 and p = ∞ can be treated
similarly.

(ii) Let w1 ∈ (L p(Ω))n and w2 ∈
(
L p∗

(Ω)
)n

. We compute by using Fubini’s

theorem, the symmetry of B1, and simple variable transformations that
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∫
Ω

(Trw1(x) · w2(x)) dx

=
∫

Ω

∫ 1

0
-
∫

B1
(w1(x + rsy) · y) y

|y| Fr (r |y|) dyds · w2(x) dx

=
∫ 1

0
-
∫

B1
|y|Fr (r |y|)

·
∫

Ω

(
w1(x + rsy) · y

|y|
) (

w2(x) · y

|y|
)

dx dy ds

=
∫ 1

0
-
∫

B1
|y|Fr (r |y|)

·
∫

Ω∩(−rsy+Ω)

(
w1(x + rsy) · y

|y|
)(

w2(x) · y

|y|
)

dx dy ds (3.15)

=
∫ 1

0
-
∫

B1
|y|Fr (r |y|)

·
∫

(rsy+Ω)∩Ω

(
w1(z) · y

|y|
) (

w2(z − rsy) · y

|y|
)

dzdyds

=
∫ 1

0
-
∫

B1
|y|Fr (r |y|)

·
∫

(−rsy+Ω)∩Ω

(
w1(z) · y

|y|
) (

w2(z + rsy) · y

|y|
)

dzdyds. (3.16)

Thereby we used our convention that each function defined in Ω is assumed to be
prolonged by zero outside Ω . Comparing (3.15) and (3.16) we obtain (3.11).

(iii) We apply the Banach–Steinhaus theorem. Due to (i) and (3.14), {Tr }r∈(0,r0] is
a family of uniformly bounded linear operators in the Banach space (L p(Ω))n .
Thus, as Cc(Ω; R

n) is dense in (L p(Ω))n for p < ∞, we only need to check
(3.12) for w ∈ Cc(Ω; R

n). But for such w we can directly pass to the limit under
the integral and thus obtain using (3.3) and the dominated convergence theorem
that

Trw →
r→0

T0w = w for all x ∈ Ω and in (L p(Ω))n .

(iv) Here we make use of the Fourier transform, which we denote by the hat symbol.
A straightforward calculation shows that

T̂rw = Φr ŵ,

where

Φr (ξ) :=
∫ 1

0
-
∫

B1

yyT

|y| Fr (r |y|)eirsy·ξ dyds. (3.17)
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Combining (3.17) with the Plancherel theorem and using our convention that w

vanishes outside Ω , we can estimate as follows:

‖Tr‖L((L2(Ω))n) = sup
‖w‖

(L2(Ω))n=1
‖Trw‖(L2(Ω))n

≤ sup
‖w‖

(L2(Ω))n=1
‖̂Trw‖(L2(Rn))n

≤ ‖|Φr |2‖L∞(Rn) sup
‖w‖

(L2(Ω))n=1
‖ŵ‖(L2(Rn))n

= ‖|Φr |2‖L∞(Rn) sup
‖w‖

(L2(Ω))n=1
‖w‖(L2(Ω))n

= ‖|Φr |2‖L∞(Rn). (3.18)

Here |M |2 denotes the spectral norm of a matrix M ∈ R
n×n . Further, observe that

Φr (Oξ) = OΦr (ξ)OT for all orthogonal O ∈ R
n×n and ξ ∈ R

n . (3.19)

Consequently, denoting by e1 the first canonical vector of R
n and appropriately

constructing an orthogonal matrix O in order for Oξ = |ξ |e1 to hold, we obtain
that

|Φr (ξ)|2 = |Φr (|ξ |e1)|2 for all ξ ∈ R
n . (3.20)

Since

Φr (|ξ |e1) =
∫ 1

0
-
∫

B1

yyT

|y| Fr (r |y|)eirs|ξ |y1 dyds (3.21)

is a diagonal matrix, its spectral norm is given by the spectral radius. Estimating
the right-hand side of (3.21) we then conclude that

|Φr (|ξ |e1)|2 ≤ 1

n
-
∫

B1
|y|Fr (r |y|) dy →

r→0
1 for all ξ ∈ R

n (3.22)

due to F0(0) = n + 1 and (3.4). Combining (3.18),(3.22) and (3.20) we arrive at

lim sup
r→0

‖Tr‖L((L2(Ω))n) ≤ 1. (3.23)

Finally, the pointwise convergence (3.12) and the Banach–Steinhaus theorem
imply that

lim inf
r→0

‖Tr‖L((L2(Ω))n) ≥ 1,

concluding the proof.
��
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A similar result holds for Sr :
Lemma 3.7 (Operator Sr ) Let r ∈ [0, r0]. Then:
(i) Sr is a well-defined continuous linear operator in (L p(Ω))n for all p ∈ [1,∞].

The corresponding operator norm satisfies

‖Sr‖L((L p(Ω))n) ≤ n. (3.24)

(ii) Let p, p∗ ∈ [1,∞] be such that p∗ = p
p−1 . For all w1 ∈ (L p(Ω))n and

w2 ∈
(
L p∗

(Ω)
)n

it holds:

∫
Ω

(Srw1(x) · w2(x)) dx =
∫

Ω

(w1(x) · Srw2(x)) dx .

(iii) Let p ∈ [1,∞). For all w ∈ (L p(Ω))n it holds that

Srw →
r→0

S0w = w in (L p(Ω))n .

(iv) For p = 2 it holds that

‖Sr‖L((L2(Ω))n) →
r→0

1.

Proof The proof almost repeats that of Lemma 3.5. Therefore, we only check (3.24)
and omit further details. Let p ∈ [1,∞) and p∗ = p

p−1 . Using Hölder’s inequality,
Fubini’s theorem, and our convention that w vanishes outside Ω we deduce for all
w ∈ (L p(Ω))n that

‖Srw‖p
(L p(Ω))n = n p

∫
Ω

∣∣∣∣
∫ 1

0
-
∫

S1
(w(x + rsy) · y)y dS1(y)ds

∣∣∣∣
p

dx

≤ n p
∫

Ω

∫ 1

0
-
∫

S1
|w(x + rsy)|p dS1(y)dsdx

= n p
∫ 1

0
-
∫

S1

∫
Ω

|w(x + rsy)|p dxdS1(y)ds,

≤ n p
∫ 1

0
-
∫

S1

∫
Ω

|w(z)|p dzdS1(y)ds
= n p‖w‖p

(L p(Ω))n ,

which means that

‖Sr‖L((L p(Ω))n) ≤ n. (3.25)

The proof in the case p = ∞ follows the same steps, or, alternatively, one passes to
the limit as p → ∞ in (3.25). ��
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Remark 3.8 The constants in (3.10) for any n ≥ 1 and in (3.24) for n ≥ 2 are not
necessarily optimal. For p �= 2 it remains open whether or not

lim inf
r→0

‖Tr‖L((L p(Ω))n) = 1,

lim inf
r→0

‖Sr‖L((L p(Ω))n) = 1.

The answer may depend upon Ω and p.

4 Well-posedness for a class of evolution equations involving Tr orSr

In this section we establish the existence and uniqueness of solutions to a certain class
of single evolution equations involving Tr or Sr . This result is an important ingredient
for our analysis of nonlocal systems in Sect. 5. Thus, we consider the following initial
boundary value problem:

∂t cr = ∇ · (a1∇cr − a2Gε(Rr (a3∇cr ))) + f in (0, T ) × Ω, (4.1a)

(a1∇cr − a2Rr (a3∇cr )) · ν = 0 in (0, T ) × ∂Ω, (4.1b)

cr (0, ·) = c0 in Ω. (4.1c)

Here

Rr ∈ {Tr ,Sr },

and for ε ≥ 0 we set

Gε : R
n → R

n, x �→ x

1 + ε|x | . (4.2)

A standard calculation shows that Gε is globally Lipschitz with a Lipschitz
constant 1.

Remark 4.1 Observe that for ε = 0 equation (4.1a) is linear, whereas for ε > 0 the
nonlocal part of the flux is a priori bounded. The latter helps us to construct nonnegative
solutions in Sect. 5.

We make the following assumptions:

a1, a2, a3 ∈ L∞(0, T ; L∞(Ω)), (4.3)

a1 > 0 and a−1
1 ∈ L∞(0, T ; L∞(Ω)), (4.4)∥∥∥∥a− 1

2
1 a2

∥∥∥∥
L∞(0,T ;L∞(Ω))

∥∥∥∥a− 1
2

1 a3

∥∥∥∥
L∞(0,T ;L∞(Ω))

‖Rr‖L((L2(Ω))n) < 1, (4.5)

f ∈ L2(0, T ; (H1(Ω))∗), (4.6)

c0 ∈ L2(Ω). (4.7)
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To shorten the notation, we introduce a pair of constants

αr := ‖a−1
1 ‖−1

L∞(0,T ;L∞(Ω))

·
(
1 −

∥∥∥∥a− 1
2

1 a2

∥∥∥∥
L∞(0,T ;L∞(Ω))

∥∥∥∥a− 1
2

1 a3

∥∥∥∥
L∞(0,T ;L∞(Ω))

‖Rr‖L((L2(Ω))n)

)
,

Mr := ‖a1‖L∞(0,T ;L∞(Ω))

+ ‖a2‖L∞(0,T ;L∞(Ω))‖a3‖L∞(0,T ;L∞(Ω)) ‖Rr‖L((L2(Ω))n) .

Due to assumptions (4.3)–(4.5) it is clear that

0 <αr , Mr< ∞.

We introduce a family of operators

〈M(t, u), ϕ〉(H1(Ω))∗,H1(Ω)

:=
∫

Ω

a1(t, ·)∇u · ∇ϕ dx −
∫

Ω

a2(t, ·)Gε(Rr (a3(t, ·)∇u)) · ∇ϕ dx,

〈M(u), ϕ〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

:=
∫ T

0
〈M(t, u), ϕ(t)〉(H1(Ω))∗,H1(Ω) dt .

Lemma 4.2 Let (4.3)–(4.5) be satisfied. Then:

(i) For a.a. t ∈ [0, T ] the operator

M(t, ·) : H1(Ω) → (H1(Ω))∗

is well-defined, monotone, hemicontinuous, and satisfies the bounds

〈M(t, u), u〉(H1(Ω))∗,H1(Ω) ≥ αr ||∇u||2
(L2(Ω))n

, (4.8)

||M(t, u)||(H1(Ω))∗ ≤ Mr ||∇u||(L2(Ω))n (4.9)

for all u ∈ H1(Ω). Moreover, for all u ∈ H1(Ω) the function M(·, u) is
measurable.

(ii) The operator

M : L2(0, T ; H1(Ω)) → L2(0, T ; (H1(Ω))∗)

is well-defined, monotone, hemicontinuous, and satisfies the bounds

〈M(u), u〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω)) ≥ αr ||∇u||2L2(0,T ;(L2(Ω))n)
,

||M(u)||L2(0,T ;(H1(Ω))∗) ≤ Mr ||∇u||L2(0,T ;(L2(Ω))n)

for all u ∈ L2(0, T ; H1(Ω)).
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Proof The assumptions on the coefficients ai together with the Lipschitz continuity
of Gε readily imply that for a.a. t ∈ [0, T ] the operator M(t, ·) is well-defined and
satisfies (4.9). Moreover, due to (4.3) and Gε Lipschitz, it is also clear that M(·, u) :
[0, T ] → (H1(Ω))∗ is measurable on [0, T ] for all u ∈ H1(Ω), whereas for a.a. t
the mapping λ �→ 〈M(t, u + λv),w〉(H1(Ω))∗,H1(Ω) is continuous on R, the latter
meaning that M(t, ·) is hemicontinuous. Using Hölder’s inequality, the fact that Gε

is Lipschitz with Lipschitz constant 1, the assumptions on the ai ’s, and the properties
of Rr , we compute that

〈M(t, u) − M(t, v), u − v〉(H1(Ω))∗,H1(Ω)

=
∫

Ω

∇(u − v) · a1(t, ·)∇(u − v) dx

−
∫

Ω

(Gε(Rr (a3(t, ·)∇u)) − Gε(Rr (a3(t, ·)∇v))) · a2(t, ·)∇(u − v) dx

≥
∥∥∥∥a

1
2
1 ∇(u − v)

∥∥∥∥
2

(L2(Ω))n

−
∫

Ω

∣∣∣∣Rr

(
a

− 1
2

1 a3(t, ·)
(
a

1
2
1 ∇(u − v)

))∣∣∣∣
∣∣∣∣a− 1

2
1 a2(t, ·)

(
a

1
2
1 ∇(u − v)

)∣∣∣∣ dx

≥
(
1 −

∥∥∥∥a− 1
2

1 a2

∥∥∥∥
L∞(0,T ;L∞(Ω))

∥∥∥∥a− 1
2

1 a3

∥∥∥∥
L∞(0,T ;L∞(Ω))

‖Rr‖L((L2(Ω))n)

)

·
∥∥∥∥a

1
2
1 ∇(u − v)

∥∥∥∥
2

(L2(Ω))n

≥ αr ‖∇(u − v)‖2
(L2(Ω))n

(4.10)

for u, v ∈ H1(Ω), which proves monotonicity. Further, taking v = 0 in (4.10) and
using M(t, 0) = 0 yields (4.8). Part (i) is thus proved. A proof of (ii) can be done
similarly; we omit further details. ��

Using the properties of the averaging operators proved in Sect. 3.1 we can define
weak solutions to (4.1) in a manner very similar to that for the classical, purely local
case (i.e., when a2 ≡ 0):

Definition 4.3 Let (4.3)–(4.7) hold. We call the function cr : [0, T ]×Ω → R a weak
solution of (4.1) if:

(i) cr ∈ L2(0, T ; H1(Ω)) ∩ C([0, T ]; L2(Ω)), ∂t cr ∈ L2(0, T ; (H1(Ω))∗);
(ii) cr satisfies (4.1a)–(4.1b) in the following sense: for all ϕ ∈ H1(Ω) and a.a.

t ∈ (0, T )

〈∂t cr , ϕ〉(H1(Ω))∗,H1(Ω)

= −
∫

Ω

a1∇cr · ∇ϕ dx

+
∫

Ω

a2Gε(Rr (a3∇cr )) · ∇ϕ dx + 〈 f , ϕ〉(H1(Ω))∗,H1(Ω); (4.11)
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(iii) cr (0, ·) = c0 in L2(Ω).

Using standard theory one readily proves the following existence result:

Lemma 4.4 Let (4.3)–(4.7) hold. Then there exists a unique weak solution to (4.1) in
terms of Definition 4.3. The solution satisfies the following estimates:

‖cr‖2C([0,T ];L2(Ω))
+ αr‖∇cr‖2L2(0,T ;(L2(Ω))n)

≤ C3(αr , T )
(
‖c0‖2L2(Ω)

+ ‖ f ‖2L2(0,T ;(H1(Ω))∗)

)
, (4.12)

‖∂t cr‖2L2(0,T ;(H1(Ω))∗) ≤ C4(αr , Mr , T )
(
‖c0‖2L2(Ω)

+ ‖ f ‖2L2(0,T ;(H1(Ω))∗)

)
.

(4.13)

Proof The existence of a unique weak solution to (4.1) is a direct consequence of
Lemma 4.2(i) and the standard theory of evolution equationswithmonotone operators,
see, e.g. Showalter (1997), Chapter III Proposition 4.1). It remains to check the bounds
(4.12), and (4.13). Taking ϕ := cr in the weak formulation (4.11) and using (Temam
2001, Chapter III Lemma 1.2), (4.8), and the Young inequality, we obtain that

1

2

d

dt
‖cr‖2L2(Ω)

≤ −αr‖∇cr‖2(L2(Ω))n
+ ‖cr‖H1(Ω)‖ f ‖(H1(Ω))∗

= −αr‖cr‖2H1(Ω)
+ αr‖cr‖2L2(Ω)

+ ‖cr‖H1(Ω)‖ f ‖(H1(Ω))∗

≤ −1

2
αr‖cr‖2H1(Ω)

+ αr‖cr‖2L2(Ω)
+ 1

2
α−1
r ‖ f ‖2

(H1(Ω))∗ ,

which yields (4.12) due to the Gronwall lemma. Finally, using (4.9), we obtain from
the weak formulation (4.11) that

‖∂t cr‖2L2(0,T ;(H1(Ω))∗) ≤2M2
r ‖∇cr‖2L2(0,T ;(L2(Ω))n)

+ 2‖ f ‖2L2(0,T ;(H1(Ω))∗).

Together with (4.12) this implies (4.13). ��

5 Nonlocal models involving averaging operators Tr andSr

In this section we study the following model IBVP:

∂t cr = ∇ · (Dc(cr , vr )∇cr − crχ(cr , vr )Rr (∇g(cr , vr ))) + fc(cr , vr ) in R
+ × Ω,

(5.1a)

∂tvr = DvΔvr + fv(cr , vr ) in R
+ × Ω,

(5.1b)

Dc(cr , vr )∂νcr − crχ(cr , vr )Rr (∇g(cr , vr )) · ν = Dv∂νvr = 0 in R
+ × ∂Ω,

(5.1c)

cr (0, ·) = c0, vr (0, ·) = v0 in Ω. (5.1d)
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Here, as in the previous section, Rr stands for any of the two averaging operators:

Rr ∈ {Tr ,Sr }.

We assume that the diffusion coefficient Dv is either a positive number, or it is zero.
Equations (5.1a)–(5.1b) are closely related to (1.1) and (1.4) in Sect. 1, the differ-

ence being that the terms involving the adhesion velocity/non-local gradient are now
replaced by those including the averaging operators Tr /Sr from Sect. 3. Our motiva-
tion for introducing this change is twofold. First of all, due to (3.5) and (3.8) it affects
the points in the boundary layer Ω\Ωr , at the most. On the other hand, Example 3.3
indicates that including, e.g., Ar can lead to limits with unexpected blow-ups on the
boundary of Ω .

System (5.1) is a non-local version of the hapto-/chemotaxis system

∂t c = ∇ · (Dc(c, v)∇c − cχ(c, v)∇g(c, v)) + fc(c, v) in R
+ × Ω, (5.2a)

∂tv = DvΔv + fv(c, v) in R
+ × Ω, (5.2b)

Dc(c, v)∂νcr − cχ(c, v)∂νg(c, v) = Dv∂νv = 0 in R
+ × ∂Ω, (5.2c)

c(0, ·) = c0, v(0, ·) = v0 in Ω. (5.2d)

In this case, the actual diffusion and haptotactic sensitivity coefficients are

D̃c(c, v) = Dc(c, v) − cχ(c, v)∂cg(c, v),

χ̃(c, v) = χ(c, v)∂vg(c, v),

so that in the classical formulation (5.2a) takes the form

∂t c = ∇ · (
D̃c(c, v)∇c − cχ̃ (c, v)∇v

) + fc(c, v). in R
+ × Ω.

The main goal of this section is to establish, under suitable assumptions on the system
coefficients which are introduced in Sect. 5.1, a rigorous convergence as r → 0 of
solutions of the nonlocal model family (5.1) to those of the local model (5.2), see
Theorem 5.8. This is accomplished in the final Sect. 5.4. Since we are dealing here
with a new type of nonlocal system, we establish for (5.1) the existence of nonnegative
solutions in Sects. 5.2, and 5.3.

5.1 Problem setting andmain result of the section

We begin with several general assumptions about the coefficients of system (5.1).

Assumptions 5.1 Let Dv ∈ R
+
0 , Dc, χ ∈ Cb(R

+
0 × R

+
0 ), and g, fc, fv ∈ C1(R+

0 ×
R

+
0 ):

C5 ≤ Dc ≤ C6 in R
+
0 × R

+
0 for some C5,C6 > 0,

∇(c,v)g, ∇(c,v) fv ∈ (L∞(R+
0 × R

+
0 ))2,
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fc(0, ·) ≡ 0,

fv(·, 0) ≡ 0.

Assume that the coefficients satisfy the following bounds:

C12 := sup
c,v≥0

c|χ(c, v)| < ∞, (5.3)

C13 := sup
c,v≥0

|∂cg(c, v)| < ∞. (5.4)

Further, we assume that the initial values satisfy

0 ≤ c0 ∈ L2(Ω),

0 ≤ v0 ∈ H1(Ω). (5.5)

Remark 5.2 If Dv > 0, then assumption (5.5) can be replaced by a weaker one, such
as

v0 ∈ L2(Ω).

We keep (5.5) in order to simplify the exposition.

In addition, we will later choose one of the following assumptions on fc and the
nonlocal operator:

Assumptions 5.3 (Further assumptions on fc)One of the following conditions holds:

(a)

∇(c,v) fc ∈ (
L∞(R+

0 × R
+
0 )

)2

(b) there exists s ≥ 0 such that

| fc(c, v)| ≤ C7(1 + |c|s) in R
+
0 × R

+
0 for some C7 ≥ 0,

c fc(c, v) ≤ C8 − C9c
s+1 in R

+
0 × R

+
0 for some C8 ≥ 0, C9 > 0. (5.6)

Assumptions 5.4 (Assumptions on Rr ) One of the following holds:

(a) for a given fixed r ∈ (0, r0]

C10(‖Rr‖) := 1 − C12C13

C5
‖Rr‖L((L2(Ω))n) > 0

(b)

C11 := C12C13

C5
< 1. (5.7)
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Example 5.5 Let

Dv = 0,

Fr (ρ) := (n + 1)e−rρ,

g(c, v) := Sccc + Scvv

1 + c + v
for some constants Scc, Scv > 0,

Dc(c, v) := 1 + c

1 + c + v
,

χ(c, v) := b

1 + c + v
, b > 0,

fc(c, v) := μc
c

1 + c2
(Kc − c − ηcv) for some constants Kc, ηc > 0, μc>0,

fv(c, v) := μvv(Kv − v) − λvv
c

1 + c
for some constants Kv, λv > 0, μv ≥ 0,

and assume that

0 ≤ v0 ≤ Kv.

Then, it holds a priori that

0 ≤ v ≤ Kv

for any v which solves (5.1b). Therefore it suffices to consider the coefficient functions
in R

+
0 × [0, Kv].

For Dc it holds on R
+
0 × [0, Kv] that

Dc(c, v) ≥ 1 + c

1 + c + Kv

≥ 1

1 + Kv

=: C5

and

Dc(c, v) ≤ 1 =: C6.

Moreover, ∇(c,v)g, ∇(c,v) fv ∈ (L∞(R+
0 × R

+
0 ))2, due to

C13 = sup
c,v≥0

|∂cg(c, v)| = max
0≤v≤Kv

max
c≥0

|Scc(1 + v) − Scvv|
(1 + c + v)2

= max

{
Scc,

∣∣∣∣ Scc
1 + Kv

− ScvKv

(1 + Kv)2

∣∣∣∣
}

,

sup
c,v≥0

|∂vg(c, v)| = max
0≤v≤Kv

max
c≥0

|Scv(1 + c) − Sccc|
(1 + c + v)2
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= max
c≥0

|Scv(1 + c) − Sccc|
(1 + c)2

< ∞,

sup
c,v≥0

|∂c fv(c, v)| = λvKv

and

sup
c,v≥0

|∂v fv(c, v)| = sup
c,v≥0

∣∣∣∣μv(Kv − 2v) − λv

c

1 + c

∣∣∣∣ < ∞.

For C7:=μc(Kc + 1 + ηcKv), C8:=μc(Kc + 1) and C9:=μc we can estimate on
R

+
0 × R

+
0 that

| fc(c, v)| ≤ C7,

c fc(c, v) ≤ μc

(
Kc + c

1 + c2
− c

)
≤ C8 − C9c.

Further,

C12 = sup
c≥0

bc

1 + c
= b

holds.
Thus, Assumptions 5.1, 5.3(b) and 5.4 (b) are fulfilled if

(1 + Kv)bmax

{
Scc,

∣∣∣∣ Scc
1 + Kv

− ScvKv

(1 + Kv)2

∣∣∣∣
}

< 1.

This choice of coefficient functions can be used to describe a population of cancer
cells which interact among themselves and with the surrounding extracellular matrix
(ECM) tissue. Both interaction types are due to adhesion, whether to other cells (cell–
cell adhesion) or to the matrix (cell–matrix adhesion). The interaction force Fr (ρ)

is taken to diminish with increasing interaction range ρ and/or of the sensing radius
r : cells too far apart/out of reach hardly interact in a direct way. Function g(c, v)

characterises effective interactions. Here the coefficients Scc and Scv represent cell–
cell and cell–matrix adhesion strengths, respectively. Our choice of g accounts for
some adhesiveness limitation imposed by high local cell and tissue densities. It is
motivated by the fact that overcrowding may preclude further adhesive bonds, e.g. due
to saturation of receptors. The diffusion coefficient Dc(c, v) is chosen to be everywhere
positive and increase with a growing population density, thus enhancing diffusivity
under population pressure, but, further, limited by excessive cell–tissue interaction.
The latter also applies to the choice of the sensitivity function χ . Indeed, there is
evidence that tight packing of cells andECM limits diffusivity and the advective effects
of haptotaxis (Lu et al. 2012). Thereby the constant b > 0 is assumed to be rather
small. Finally, fc and fv describe growth of cells and tissue limited by concurrence
for resources.
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Next, we introduce weak-strong solutions to our problem. The definition is as
follows:

Definition 5.6 Let Assumptions 5.1 hold. Let r ∈ [0, r0]. We call a pair of functions
(cr , vr ) : R

+
0 ×Ω → R

+
0 ×R

+
0 a global weak-strong solution of (5.1) if for all T > 0:

(i) cr ∈ L2(0, T ; H1(Ω)) ∩ Cw([0, T ]; L2(Ω)), ∂t cr ∈ L1(0, T ; (W 1,∞(Ω))∗);
(ii) vr ∈ C([0, T ]; H1(Ω)), ∂tvr ∈ L2(0, T ; L2(Ω)), Dvvr ∈ L2(0, T ; H2(Ω));
(iii) fc(cr , vr ) ∈ L1(0, T ; L1(Ω)), fv(cr , vr ) ∈ L2(0, T ; L2(Ω));
(iv) (cr , vr ) satisfies (5.1) in the following weak-strong sense: for all ϕ ∈ C1(Ω) and

a.a. t ∈ (0, T )

〈∂t cr , ϕ〉(W 1,∞(Ω))∗,W 1,∞(Ω)

= −
∫

Ω

(Dc(cr , vr )∇cr − crχ(cr , vr )Rr (∇g(cr , vr ))) · ∇ϕ dx

+
∫

Ω

fc(cr , vr )ϕ dx, (5.8a)

cr (0, ·) = c0 in L2(Ω), (5.8b)

and

∂tvr = DvΔvr + fv(cr , vr ) a.e. in (0, T ) × Ω, (5.8c)

Dv∂νvr = 0 a.e. in (0, T ) × ∂Ω, (5.8d)

vr (0, ·) = v0 in H1(Ω). (5.8e)

Remark 5.7 Observe that for r = 0 we obtain a corresponding solution definition for
the local system (5.2).

Our main result now reads:

Theorem 5.8 Let Assumptions 1.1, 5.1, 5.3, and 5.4(b) hold. Then, there exists a
sequence rm → 0 as m → ∞ and solutions (crm , vrm ) and (c, v) in terms of Defini-
tion 5.6 corresponding to r = rm and r = 0, respectively, s.t.

crm →
m→∞ c in L2(0, T ; L2(Ω)),

vrm →
m→∞ v in L2(0, T ; L2(Ω)).

This Theorem is proved in Sect. 5.4.

Notation 5.9 Dependencies upon such parameters as the space dimension n, domain
Ω , function c, the norms of the initial data c0 and v0, norms and bounds for the
coefficient functions are mostly not indicated in an explicit way.
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5.2 Global existence of solutions to (5.1): the case of fc Lipschitz

In this subsection we address the existence of solutions to the nonlocal model (5.1)
for the case when fc satisfies Assumptions 5.3(a). The main result of the subsection
is as follows:

Theorem 5.10 Let Assumptions 1.1, 5.1, and 5.3(a) hold and let r satisfy Assump-
tion 5.4(a). Then there exists a global weak-strong solution to (5.1) in terms of
Definition 5.6 with ∂t cr ∈ L2(0, T ; (H1(Ω))∗).

Sincewe aimat constructing nonnegative solutions, it turns out to be helpful to consider
first the following family of approximating problems:

∂t crε = ∇ ·
(
Dc(crε, vrε)∇crε − crεχ(crε, vrε)

(
Gε(Rr (∂cg(crε, vrε)∇crε))

+Gε(Rr (∂vg(crε, vrε)∇vrε))
))

+ fc(crε, vrε) in R
+ × Ω,

(5.9a)

∂tvrε = DvΔvrε + fv(crε, vrε) in R
+ × Ω,

(5.9b)

Dc(crε, vrε)∇crε − crεχ(crε, vrε)
(
Gε(Rr (∂cg(crε, vrε)∇crε))

+ Gε(Rr (∂vg(crε, vrε)∇vrε))
)

· ν = Dv∂νvrε = 0 in R
+ × ∂Ω,

(5.9c)

crε(0, ·) = c0, vrε(0, ·) = v0 in Ω, (5.9d)

where Gε was defined in (4.2). In order to obtain existence for the original problem,
i.e., for ε = 0, we first prove existence of nonnegative solutions for the cases when
ε, Dc > 0. This corresponds to a chemotaxis problem with a nonlocal flux-limited
drift. Weak-strong solutions to (5.9) are understood as in Definition 5.6, with the
obvious modification of the weak formulation, which now reads:

〈∂t crε, ϕ〉(H1(Ω))∗,H1(Ω)

= −
∫

Ω

Dc(crε, vrε)∇crε · ∇ϕ dx

+
∫

Ω

crεχ(crε, vrε)Gε(Rr (∂cg(crε, vrε)∇crε)) · ∇ϕ dx

+
∫

Ω

crεχ(crε, vrε)Gε(Rr (∂vg(crε, vrε)∇vrε)) · ∇ϕ + fc(crε, vrε)ϕ dx . (5.10)

Lemma 5.11 Let Assumptions of Theorem 5.10 be satisfied. Assume further that

ε, Dv > 0.
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Then there exists a global weak-strong solution to (5.9) with

∂t crε ∈ L2(0, T ; (H1(Ω))∗).

Proof To begin with, we extend the coefficients: for c < 0

(Dc, χ)(c, v) := (Dc, χ)(−c, v), fc(c, v) := − fc(−c, v),

g(c, v) := 2g(0, v) − g(−c, v), fv(c, v) := 2 fv(0, v) − fv(−c, v).

These coefficients still satisfy Assumptions 5.1, 5.3(a), and 5.4(a) if we consider all
suprema over c ∈ R instead of c ∈ R

+
0 .

Our approach to proving existence is based on the classical Leray-Schauder prin-
ciple (Zeidler 1986, Chapter 6, §6.8, Theorem 6.A). In order to apply this theorem we
first ’freeze’ crε in the system coefficients of (5.9), replacing it by c̄rε. Correspond-
ingly, we obtain the following weak formulation in place of (5.10): For all ϕ ∈ H1(Ω)

and a.a. t > 0

〈∂t crε, ϕ〉(H1(Ω))∗,H1(Ω)

= −
∫

Ω

Dc(c̄rε, vrε)∇crε · ∇ϕ dx

+
∫

Ω

c̄rεχ(c̄rε, vrε)Gε(Rr (∂cg(c̄rε, vrε)∇crε)) · ∇ϕ dx

+
∫

Ω

c̄rεχ(c̄rε, vrε)Gε(Rr (∂vg(c̄rε, vrε)∇vrε)) · ∇ϕ + fc(c̄rε, vrε)ϕ dx,

(5.11a)

crε(0, ·) = c0 in L2(Ω) (5.11b)

and

∂tvrε = DvΔvrε + fv(c̄rε, vrε) a.e. in (0, T ) × Ω, (5.11c)

Dv∂νvrε = 0 a.e. in (0, T ) × ∂Ω, (5.11d)

vrε(0, ·) = v0 in H1(Ω). (5.11e)

Let T > 0 and let c̄rε ∈ L2(0, T ; L2(Ω)). Since fv is assumed to be Lipschitz,
we can make use of the standard theory (Ladyzhenskaya et al. 1968) which implies
that the semilinear parabolic initial boundary value problem (5.11c)–(5.11e) pos-
sesses a unique global strong solution 0 ≤ vrε ∈ L2(0, T ; H2(Ω)) with ∂tvrε ∈
L2(0, T ; L2(Ω)), and satisfying the estimate

‖vrε‖2L∞(0,T ;H1(Ω))
+ ‖vrε‖2L2(0,T ;H2(Ω))

+ ‖∂tvrε‖2L2(0,T ;L2(Ω))

≤ C14(T )
(
‖v0‖2H1(Ω)

+ ‖c̄rε‖2L2(0,T ;L2(Ω))

)
. (5.12)
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Here and further in the proof we omit the dependence of constants upon Dv . Set

a1 := Dc(c̄rε, vrε), a2 := c̄rεχ(c̄rε, vrε), a3 := ∂cg(c̄rε, vrε),

〈 f , ϕ〉(H1(Ω))∗,H1(Ω)

:=
∫

Ω

c̄rεχ(c̄rε, vrε)Gε(Rr (∂vg(c̄rε, vrε)∇vrε)) · ∇ϕ + fc(c̄rε, vrε)ϕ dx .

Due to our assumptions about Dc, χ, g, and fc, these coefficients ai and f satisfy
the requirements of Lemma 4.2. Consequently, there exists a unique global weak
solution crε to problem (4.1)with these coefficients.We estimate for the corresponding
constants αr and Mr introduced in Lemma 4.2:

αr ≥ C5C10(r) =: C15(r), (5.13)

Mr ≤ C6 + C12C13 ‖Rr‖L((L2(Ω))n) =: C16(r), (5.14)

and, due to (5.12),

‖ f ‖L2(0,T ;(H1(Ω))∗)
≤ ‖∇vrε‖L2(0,T ;(L2(Ω))n)||∂vg||L∞(R+

0 ×R
+
0 ) ‖Rr‖L(L2(Ω))n) C12

+ ‖∂c fc‖L∞(R+
0 ×R

+
0 )

(‖vrε‖L2(0,T ;L2(Ω)) + ‖c̄rε‖L2(0,T ;L2(Ω))

)
≤C17(r ,T )

(
1 + ‖c̄rε‖L2(0,T ;L2(Ω))

)
. (5.15)

Combining (4.12)–(4.13) and (5.13)–(5.15), we obtain the following bounds for crε :

‖crε‖2C([0,T ];L2(Ω))
+ αr‖∇crε‖2L2(0,T ;L2(Ω))

≤ C18(r ,T )
(
1 + ‖c̄rε‖2L2(0,T ;L2(Ω))

)
, (5.16)

‖∂t crε‖2L2(0,T ;(H1(Ω))∗) ≤ C19(r ,T )
(
1 + ‖c̄rε‖2L2(0,T ;L2(Ω))

)
. (5.17)

Now consider the mapping

Φ : c̄rε �→ crε.

Thanks to (5.16) and (5.17), Φ is well-defined in L2(0, T ; L2(Ω)) and

Φ : L2(0, T ; L2(Ω)) → {u ∈ L2(0, T ; H1(Ω)) : ∂t u ∈ L2(0, T ; (H1(Ω))∗)}
maps bounded sets on bounded sets. (5.18)

Due to the Lions–Aubin lemma, (5.18) implies that

Φ : L2(0, T ; L2(Ω)) → L2(0, T ; L2(Ω)) (5.19)

maps bounded sets on precompact sets. (5.20)
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Next, we verify that Φ is closed in L2(0, T ; L2(Ω)). Consider a sequence

{c̄rεm} ⊂ L2(0, T ; L2(Ω))

s.t.

c̄rεm →
m→∞ c̄rε in L2(0, T ; L2(Ω)), (5.21)

Φ(c̄rεm) =:crεm →
m→∞ crε in L2(0, T ; L2(Ω)). (5.22)

We need to check that

Φ(c̄rε) = crε.

Due to (5.21) we have (by switching to a subsequence, if necessary) that

c̄rεm →
m→∞ c̄rε a.e. (5.23)

Further, (5.18) and (5.22) together with the Banach–Alaoglu theorem imply that

crεm ⇀
m→∞crε in L2(0, T ; H1(Ω)), (5.24)

∂t crεm ⇀
m→∞∂t crε in L2(0, T ; (H1(Ω))∗). (5.25)

By the definition of Φ we have that c̄rεm and crεm satisfy: for all ϕ ∈ H1(Ω) and a.a.
t ∈ (0, T )

〈∂t crεm, ϕ〉(H1(Ω))∗,H1(Ω)

= −
∫

Ω

Dc(c̄rεm, vrεm)∇crεm · ∇ϕ dx

+
∫

Ω

c̄rεmχ(c̄rεm, vrεm)Gε(Rr (∂cg(c̄rεm, vrεm)∇crεm)) · ∇ϕ) dx

+
∫

Ω

c̄rεmχ(c̄rεm, vrεm)Gε(Rr (∂vg(c̄rεm, vrεm)∇vrεm)) · ∇ϕ

+ fc(c̄rεm, vrεm)ϕ dx, (5.26a)

crεm(0, ·) = c0 in L2(Ω) (5.26b)

and

∂tvrεm = DvΔvrεm + fv(c̄rεm, vrεm) a.e. in (0, T ) × Ω, (5.26c)

Dv∂νvrεm = 0 a.e. in (0, T ) × ∂Ω, (5.26d)

vrεm(0, ·) = v0 in H1(Ω). (5.26e)
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From (5.12) and (5.21) we conclude that the sequence {vrεm} is uniformly bounded
in L2(0, T ; H2(Ω)) and ∂tvrεm ∈ L2(0, T ; (L2(Ω)). Hence the Lions-Aubin lemma
and the Banach–Alaoglu theorem imply that there exists vrε s.t. (after switching to a
subsequence, if necessary)

vrεm ⇀
m→∞vrε in L2(0, T ; H2(Ω)),

∂tvrεm ⇀
m→∞∂tvrε in L2(0, T ; L2(Ω)),

vrεm →
m→∞ vrε in L2(0, T ; H1(Ω)) and a.e. in (0, T ) × Ω, (5.27)

and this vrε satisfies equation (5.11c) for c̄rε as well as the initial and boundary
conditions in the required sense.

Further, due to (5.24), and (5.25) we have in the usual way that

crεm(t, ·) ⇀
m→∞crε(t, ·) in L2(Ω) for all t > 0. (5.28)

In particular,

crεm(0, ·) = c0,

i.e. the initial condition is satisfied.
It remains now to pass to the limit in (5.26a). For this purpose we use the Minty–

Browder method. To shorten the notation, we introduce for m ∈ N ∪ {∞}

〈Mm(u), ϕ〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

:=
∫ T

0

∫
Ω

Dc(c̄rεm, vrεm)∇u · ∇ϕ

− Gε(Rr (∂cg(c̄rεm, vrεm)∇u))c̄rεmχ(c̄rεm, vrεm) · ∇ϕ dxdt,

〈 fm, ϕ〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

:=
∫ T

0

∫
Ω

c̄rεχ(c̄rεm, vrεm)Gε(Rr (∂vg(c̄rεm, vrεm)∇vrεm)) · ∇ψ

+ fc(c̄rεm, vrεm)ψ dxdt,

where

c̄rε∞ := c̄rε, v̄rε∞ := v̄rε.

Due to Lemma 4.2(ii) and (5.14) each operator Mm is monotone, hemicontinuous,
and satisfies

||Mm(crεm)||L2(0,T ;(H1(Ω))∗) ≤ C16(r)‖crεm‖L2(0,T ;H1(Ω)) ≤ C20(r).
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Consequently, there is η ∈ L2(0, T ; (H1(Ω))∗) s.t.

Mm(crεm)⇀η in L2(0, T ; (H1(Ω))∗). (5.29)

Next, from (5.23) and (5.27) we conclude using the boundedness and continuity of
functions Gε,∇g,∇ fc, and (c, v) �→ cχ(c, v) over R × R

+
0 and of operator Rr in

L2(Ω) and the dominated convergence theorem that

fm →
m→∞ f∞ in L2(0, T ; (H1(Ω))∗). (5.30)

A similar argument yields

Mm(w) →
m→∞ M∞(w), in L2(0, T ; (H1(Ω))∗)

so that due to (5.24) and the compensated compactness

〈Mm(w), crεm〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

→
m→∞〈M∞(w), crε〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω)).

Observe that the weak formulation (5.26a) is equivalent to

∂t crεm = −Mm(crεm) + fm in (H1(Ω))∗. (5.31)

Combining (5.25), (5.29), and (5.30) we can pass to the weak limit in (5.31) and obtain

∂t crε = −η + f∞ in (H1(Ω))∗. (5.32)

For w ∈ L2(0, T ; H1(Ω)) and m ∈ N we have due to the monotonicity of Mm that

Xm := 〈Mm(crεm) − Mm(w), crεm − w〉(H1(Ω))∗,H1(Ω) ≥ 0. (5.33)

Moreover, setting ϕ = crεm in (5.26) and inserting the obtained term into the definition
of Xm , we conclude that

Xm = −〈Mm(crεm), w〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

− 〈Mm(w), crεm − w〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

+ 1

2
‖c0‖2L2(Ω)

− 1

2
‖crεm(T )‖2L2(Ω)

+ 〈 fm, crεm〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω)). (5.34)
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Combining (5.28) for t = T , (5.29), (5.33), (5.34), (5.22), and (5.24), we obtain

0 ≤ lim sup
m→∞

Xm

≤ −〈η,w〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

− 〈M∞(w), crε − w〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

+ 1

2
‖c0‖2L2(Ω)

− 1

2
‖crε(T )‖2L2(Ω)

+ 〈 f∞, crε〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω)).

As crε satisfies (5.32), it follows from the last inequality that

0 ≤ 〈η − M∞(w), crε − w〉L2(0,T ;(H1(Ω))∗),L2(0,T ;H1(Ω))

holds for all w ∈ L2(0, T ; H1(Ω)).
Since M∞ is monotone and hemicontinuous, Minty’s lemma implies that it is

maximal monotone. Consequently, η = M∞(crε).
Altogether, we conclude that (crε, vrε) satisfies (5.11) for c̄rε, meaning that

Φ(c̄rε) = crε holds, i.e. Φ is a closed operator. Together with (5.20), this implies
that

Φ : L2(0, T ; L2(Ω)) → L2(0, T ; L2(Ω)) is a compact operator. (5.35)

Since we aim to apply the Leray–Schauder principle (Zeidler 1986, Chapter 6, §6.8,
Theorem 6.A), it is necessary to consider for λ ∈ (0, 1) the system which corresponds
to cr = λΦ(cr ). The corresponding weak-strong formulation reads:

〈∂t crε, ϕ〉(H1(Ω))∗,H1(Ω)

= −
∫

Ω

Dc(crε, vrε)∇crε · ∇ϕ dx

+
∫

Ω

crεχ(crε, vrε)λGε(λ
−1Rr (∂cg(crε, vrε)∇crε)) · ∇ϕ dx

+ λ

∫
Ω

Gε(Rr (∂vg(crε, vrε)∇vrε)) · crεχ(crε, vrε)∇ϕ + fc(crε, vrε)ϕ dx,

(5.36a)

crε(0, ·) = λc0 in L2(Ω) (5.36b)

and

∂tvrε = DvΔvrε + fv(crε, vrε) a.e. in (0, T ) × Ω, (5.36c)

Dv∂νvrε = 0 a.e. in (0, T ) × ∂Ω, (5.36d)

vrε(0, ·) = v0 in H1(Ω). (5.36e)

Taking ϕ := crε in (5.36) and estimating the right-hand side by using Assump-
tions 5.1, and 5.4(a), the Hölder inequality, and the fact that |Gε(x)| ≤ |x |, we obtain
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that

1

2

d

dt
||crε||2L2(Ω)

≤ −C5C10(‖Rr‖) ‖∇crε‖2(L2(Ω))n

+ λC12||∂vg||L∞(R+
0 ×R

+
0 )‖Rr‖L((L2(Ω))n) ‖∇crε‖(L2(Ω))n ||∇vrε||(L2(Ω))n

+ λ‖∂c fc‖L∞(R+
0 ×R

+
0 )||crε||2L2(Ω)

≤ −C5C10(‖Rr‖) ‖∇crε‖2(L2(Ω))n

+ C12||∂vg||L∞(R+
0 ×R

+
0 )‖Rr‖L((L2(Ω))n) ‖∇crε‖(L2(Ω))n ||∇vrε||(L2(Ω))n

+ ‖∂c fc‖L∞(R+
0 ×R

+
0 )||vrε||2L2(Ω)

holds for a.e. t ∈ (0, T ). Further, performing estimates similar to the proof of Theo-
rem 5.13 below and using (5.12), we conclude that the set

{
cr ∈ L2(0, T ; L2(Ω)) : cr = λΦ(cr ) for λ ∈ (0, 1)

}

is uniformly bounded. Consequently, for all ε ∈ (0, 1) the Leray-Schauder principle
implies thatΦ has a fixed point crε , which togetherwith the corresponding vrε , satisfies
(5.9) in the weak-strong sense on the interval [0, T ]. Since T > 0 was arbitrary, the
standard prolongation argument yields the existence of a global solution.

It remains to check that crε is nonnegative. Taking ϕ := −(crε)− = min{crε, 0}
in (5.10) and using fc(0, ·) ≡ 0, the boundedness of Gε, Dc, ∂c fc, and (c, v) �→
cχ(c, v), along with the Hölder and Young inequalities, yields

1

2

d

dt
‖(crε)−‖2L2(Ω)

= −
∫

Ω

Dc(−(crε)−, vrε) |∇(crε)−|2 dx

−
∫

Ω

Gε(Rr (∂cg(crε, vrε)∇crε)) · (crε)−χ(−(crε)−, vrε)∇(crε)− dx

−
∫

Ω

Gε(Rr (∂vg(crε, vrε)∇vrε)) · (crε)−χ(−(crε)−, vrε)∇(crε)− dx

+
∫

Ω

fc(−(crε)−, vrε)(crε)− dx

≤ −C5‖∇(crε)−‖2
(L2(Ω))n

+ 2

ε
C12‖(crε)−‖L2(Ω)‖∇(crε)−‖(L2(Ω))n

+ ‖∂c fc‖L∞(R+
0 ×R

+
0 )‖(crε)−‖2L2(Ω)

≤ C21‖(crε)−‖2L2(Ω)
.

Since crε(0, ·) = c0 ≥ 0, the Gronwall inequality implies that (crε)− = 0, i.e. that
crε ≥ 0. ��
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Remark 5.12 Observe that crε cannot be replaced by −(crε)− inside the nonlocal
operator. This is why we introduced the flux-limitation.

Now we are ready to prove Theorem 5.10.

Proof of Theorem 5.10 We start with the case

Dv > 0.

Lemma 5.11 gives the existence of solutions (crε, vrε) to (5.9). Setting ϕ = crε in
(5.10), using the facts that fc is Lipschitz and |Gε(x)| ≤ |x |, we can estimate similarly
to Theorem 5.13 below and obtain upper bounds of the form (5.41)–(5.47), which are
independent from ε (with p = q = 2 there). Applying the Lions-Aubin lemma and
the Banach–Alaoglu theorem, we conclude the existence of a pair of nonnegative
functions cr and vr having the regularity stated in Definition 5.6 and such that for a
sequence εm →

m→∞ 0 it holds that

crεm →
m→∞ cr in L2(0, T ; L2(Ω)) and a.e. in (0, T ) × Ω, (5.37)

vrεm →
m→∞ vr in L2(0, T ; H1(Ω)) and a.e. in (0, T ) × Ω, (5.38)

crεm ⇀
m→∞cr in L2(0, T ; H1(Ω)). (5.39)

Consider an arbitrary measurable set E ⊂ (0, T )×Ω . Using Gε(x)− x = −ε
x |x |

1+ε|x | ,
we can estimate for every component i ∈ {1, . . . , n}:

∣∣∣∣
∫
E

(
Gεm (Rr (∂cg(crεm , vrεm )∇crεm )) − Rr (∂cg(crεm , vrεm )∇crεm )

)
i dx dt

∣∣∣∣
≤ εm

∫ T

0

∫
Ω

∣∣Rr (∂cg(crεm , vrεm )∇crεm
∣∣2 dx dt

≤ εm‖Rr‖L((L2(Ω))n)C13‖∇crεm‖2L2(0,T ;(L2(Ω))n)
,

where the last term tends to 0 as εm →
m→∞ 0. As the term inside the integral is moreover

bounded in L2(0, T ; L2(Ω)) by a constant independent from εm , we conclude by using
a result from Evans (1990, p. 6) that in L2(0, T ; (L2(Ω))n)

Gεm (Rr (∂cg(crεm , vrεm )∇crεm )) − Rr (∂cg(crεm , vrεm )∇crεm ) ⇀
m→∞0.

From this and the boundedness of ‖∇crεm‖L2(0,T ;(L2(Ω))n), (5.37)–(5.39), Lemmas 3.5
or 3.7(i) and (ii), respectively, the fact that |Gε(x)| ≤ |x |, the continuity of ∂cg, χ ,
(5.3), (5.4), compensated compactness, the dominated convergence theorem, and the
Hölder inequality, we obtain that for all ψ ∈ L2(0, T ; H1(Ω)) it holds that

∫ T

0

∫
Ω

Gεm (Rr (∂cg(crεm , vrεm )∇crεm )) · crεmχ(crεm , vrεm )∇ψ dx dt
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→
m→∞

∫ T

0

∫
Ω

Rr (∂cg(cr , vr )∇cr ) · crχ(cr , vr )∇ψ dx dt .

The convergence to the remaining terms in (5.8a) and the rest of (5.8) can be obtained
in a way either completely analogous or very similar to the corresponding parts of the
proof of Lemma 5.11.

In order to prove existence for the case

Dv = 0

consider a family of solutions (crDv , vr Dv ) corresponding to Dv ∈ (0, 1). Estimating
similarly to the proof ofTheorem5.13belowandperforming a standard limit procedure
based on theBanach–Alaoglu theorem, the dominated convergence theorem, the Lions
lemma (Lions 1969, Lemma 1.3), and the compensated compactness, one readily
obtains a solution (cr0, vr0) for Dv = 0 in the sense of Definition 5.6. Observe that
this time the gradient of v-component enters linearly, so that no strong convergence is
required. We omit further details. ��

5.3 Global existence of solutions to (5.1): the case of fc dissipative

In this subsection we provide an extension of the existence Theorem 5.10 from
Sect. 5.2:

Theorem 5.13 Let Assumptions 1.1, 5.1, and 5.3(b) hold and let r satisfy Assump-
tions 5.4(a). Set2

q := min

{
2,

s + 1

s

}
, q∗ := q

q − 1
. (5.40)

Then there exists a global weak-strong solution to (5.1) in terms of Definition 5.6, with
∂t cr ∈ Lq(0, T ; (W 1,q∗

(Ω))∗) and satisfying the following estimates: For all T > 0

||cr ||L∞(0,T ;L2(Ω)) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.41)

||∇cr ||L2(0,T ;(L2(Ω))n) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.42)

||∂t cr ||Lq (0,T ;(W 1,q∗
(Ω))∗) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.43)

||vr ||L∞(0,T ;L2(Ω)) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.44)

||∇vr ||L∞(0,T ;(L2(Ω))n) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.45)

||∂tvr ||L2(0,T ;L2(Ω)) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.46)

‖ fc(cr , vr )‖Lq (0,T ;Lq (Ω)) ≤ C22(T , ‖Rr‖L((L2(Ω))n)), (5.47)

‖ fv(cr , vr )‖L2(0,T ;L2(Ω)) ≤ C22(T , ‖Rr‖L((L2(Ω))n)). (5.48)

Proof For k ∈ N set

fck(c, v) := fc(c, v)ηk(c),

2 As usual, here and below the expression s+1
s means infinity if s = 0.
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where ηk is a cut-off function:

ηk ∈ C∞
0 (Bk(0)) with ηk ≡ 1 in Bk−1(0) and 0 ≤ ηk ≤ 1. (5.49)

Since fck is Lipschitz, Theorem 5.10 implies the existence of a solution (crk, vrk)
in terms of Definition 5.6 with ∂t crk ∈ L2(0, T ; (H1(Ω))∗), which corresponds to
fc = fck . Our next aim is to prove that (crk, vrk) satisfies the same bounds as in the
statement of the Theorem with some constant C22(T , ‖Rr‖L((L2(Ω))n)) which does
not depend upon k.

Set

C23(‖Rr‖) := ‖Rr‖L((L2(Ω))n).

Taking ϕ := crk in (5.8a) written for crk and using Assumptions 5.1, 5.3(b), 5.4(a)
and the Hölder and Young inequalities, we compute

1

2

d

dt
‖crk‖2L2(Ω)

=
∫

Ω

(
− (Dc(crk, vrk)∇crk − crkχ(crk, vrk)Rr (∇g(crk, vrk))) · ∇crk

+ crk fck(crk, vrk)
)
dx

≤ −C5 ‖∇crk‖2(L2(Ω))n
+ C12 ‖∇crk‖L2(Ω) ‖Rr (∇g(crk, vrk))‖(L2(Ω))n

+
∫

Ω

(C8 − C9c
1+s
rk )ηk(crk) dx

≤ −C5 ‖∇crk‖2(L2(Ω))n
+ C12C23(‖Rr‖) ‖∇crk‖(L2(Ω))n ‖∇g(crk, vrk)‖(L2(Ω))n

+ C24 − C9

∫
Ω

c1+s
rk ηk(crk) dx

≤ −C5 ‖∇crk‖2(L2(Ω))n

+ C12C23(‖Rr‖) ‖∇crk‖(L2(Ω))n ‖∂cg(crk, vrk)∇crk‖(L2(Ω))n

+ C12C23(‖Rr‖) ‖∇crk‖(L2(Ω))n ‖∂vg(crk, vrk)∇vrk‖(L2(Ω))n + C24

− C9

∫
Ω

c1+s
rk ηk(crk) dx

≤ −C5C10(‖Rr‖) ‖∇crk‖2(L2(Ω))n

+ C12C23(‖Rr‖) ‖∂vg‖L∞(R+
0 ×R

+
0 ) ‖∇crk‖(L2(Ω))n ‖∇vrk‖(L2(Ω))n

+ C24 − C9

∫
Ω

c1+s
rk ηk(crk) dx

≤ −2C25(‖Rr‖) ‖∇crk‖2(L2(Ω))n
+ C26(‖Rr‖) ‖∇vrk‖2(L2(Ω))n

+ C24

− C9

∫
Ω

c1+s
rk ηk(crk) dx . (5.50)
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Next, we estimate vrk . If Dv > 0, then standard theory (Ladyzhenskaya et al. 1968)
yields that for all 0 < t ≤ T

‖vrk‖2L∞(0,t;H1(Ω))
+ ‖vrk‖2L2(0,t;H2(Ω))

+ ‖∂tvrk‖2L2(0,t;L2(Ω))

≤ C27(T )
(
‖v0‖2H1(Ω)

+ ‖crk‖2L2(0,t;L2(Ω))

)
. (5.51)

Here and further in the proof we omit the dependence of constants upon Dv . If Dv = 0,
then we get the ODE

∂tvrk = fv(crk, vrk). (5.52)

Hence, the assumptions on fv and the solution components together with the chain
rule imply that

∂tvrk ∈L2(0, T ; H1(Ω)).

Computing the gradient on both sides of (5.52), multiplying by ∇vrk throughout,
integrating over Ω , and using Assumptions 5.1 and the Young inequality, we obtain
that

1

2

d

dt
‖∇vrk‖2(L2(Ω))n

=
∫

Ω

(
∂v fv(crk, vrk)|∇vrk |2 + ∂c fv(crk, vrk)∇crk · ∇vrk

)
dx

≤ ‖∂v fv‖L∞(R+
0 ×R

+
0 ) ‖∇vrk‖2(L2(Ω))n

+ ‖∂c fv‖L∞(R+
0 ×R

+
0 ) ‖∇crk‖(L2(Ω))n‖∇vrk‖(L2(Ω))n

≤ C28‖∇vrk‖2(L2(Ω))n
+ C29 ‖∇crk‖2(L2(Ω))n

. (5.53)

Applying the Gronwall inequality to (5.53) yields

‖∇vrk‖2L∞(0,t;L2(Ω))
≤C30(T )

(
‖∇v0‖2L2(Ω)

+ ‖∇crk‖2L2(0,t;L2(Ω))

)
. (5.54)

Multiplying (5.52) by vrk we obtain in a similar fashion that

‖vrk‖2L∞(0,t;L2(Ω))
≤C30(T )

(
‖v0‖2L2(Ω)

+ ‖crk‖2L2(0,t;L2(Ω))

)
. (5.55)

Adding (5.54) and (5.55) together yields

‖vrk‖2L∞(0,t;H1(Ω))
≤C30(T )

(
‖v0‖2H1(Ω)

+ ‖crk‖2L2(0,t;H1(Ω))

)
. (5.56)

Estimating the right-hand side of (5.52) by using (5.55) implies

‖∂tvrk‖2L2(0,T ;L2(Ω))
≤C30(T )

(
‖v0‖2L2(Ω)

+ ‖crk‖2L2(0,T ;L2(Ω))

)
. (5.57)
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Further, combining (5.50) with (5.51) if Dv > 0 and with (5.56) if Dv = 0 and using
the Gronwall inequality yields for crk the same estimates as (5.41) and (5.42), and the
estimate ∫ T

0

∫
Ω

c1+s
rk ηk(crk) dxdt ≤ C31(T , ‖Rr‖). (5.58)

From (5.6) and (5.58), the embedding of Lebesgue spaces, and ηk ∈ [0, 1]we conclude
that

‖ fck(crk, vrk)‖Lq (0,T ;Lq (Ω)) ≤ C32(T ) + C33||csrkηk(crk)||L s+1
s (0,T ;L s+1

s (Ω))

≤ C32(T ) + C33

(∫ T

0

∫
Ω

c1+s
rk ηk(crk) dx dt

) s
s+1

≤ C34(‖Rr‖, T ).

so that (5.47) holds for fck(crk, vrk). Combining (5.41) and (5.42) for crk with (5.51)
or (5.56) and (5.57) (depending on the sign of Dv) and using the equation for vrk
yields such bounds as (5.44)–(5.46) and (5.48) for crk and vrk . Finally, combining
Assumptions 5.1 with bounds on ∇crk,∇vrk , and fck(crk, vrk), the weak formulation
(5.8a), and estimating in a standard way yields (5.43) for ∂t crk .

Since (crk, vrk) satisfy (5.41)–(5.48) uniformly in k, a standard limit procedure
based on theBanach–Alaoglu theorem, the dominated convergence theorem, the Lions
lemma, and the compensated compactness yields the existence of a weak-strong solu-
tion (cr , vr ) to (5.8) which satisfies (5.41)–(5.48). ��

5.4 Limiting behaviour of the nonlocal model (5.1) as r → 0

In this subsection we finally prove our main result concerning convergence for r → 0.

Proof of Theorem 5.8 Due to (5.7) and Lemma 3.5 (3.5) or 3.7 (3.5), respectively, there
exists a sequence rm → 0 as m → ∞ such that

sup
m∈N

∥∥Rrm

∥∥
L((L2(Ω))n)

<
1

C11
.

Since for each such rm theAssumptions 5.4(a) are satisfied, Theorem5.13 is applicable
and yields the existence of solutions (crm , vrm )which satisfy (5.41)–(5.48). Replacing
‖Rr‖ by C11 in C22(T , ‖Rr‖L((L2(Ω))n)) makes the constant in (5.41)–(5.48) inde-
pendent of m. Using the Lions-Aubin lemma and the Banach–Alaoglu theorem we
conclude (by possibly switching to a subsequence) that

crm →
m→∞ c, vrm →

m→∞ v in L2(0, T ; L2(Ω)), a.e. in (0, T ) × Ω (5.59)

crm ⇀
m→∞c, vrm ⇀

m→∞v in L2(0, T ; H1(Ω)). (5.60)

Using standard arguments based on the Banach–Alaoglu theorem, the dominated con-
vergence theorem, the Lions lemma, and assumptions on χ and g we conclude from
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(5.59) and (5.60) that

crmχ(crm , vrm ) →
m→∞ cχ(c, v) in L2(0, T ; L2(Ω)), (5.61)

g(crm , vrm ) ⇀
m→∞g(c, v) in L2(0, T ; H1(Ω)). (5.62)

Observe that for any ψ ∈ L∞(0, T ;W 1,∞(Ω)) the following estimate holds:

∫ T

0

∫
Ω

∣∣Rrm (crmχ(crm , vrm )∇ψ) − cχ(c, v)∇ψ
∣∣2 dx dt (5.63)

≤ 2

(∫ T

0

∫
Ω

∣∣Rrm (crmχ(crm , vrm )∇ψ) − Rrm (cχ(c, v)∇ψ)
∣∣2 dx dt

+
∫ T

0

∫
Ω

∣∣Rrm (cχ(c, v)∇ψ) − cχ(c, v)∇ψ
∣∣2 dx dt

)
. (5.64)

Now, using (5.61) together with Lemma 3.5(i) and (iii) and (3.6) or (3.7)(i) and (iii)
and (3.9), respectively, we conclude that the right hand side of (5.64) tends to zero,
hence

Rrm (crmχ(crm , vrm )∇ψ) →
m→∞ cχ(c, v)∇ψ in L2(0, T ; (L2(Ω))n). (5.65)

Thus, using Lemma 3.5(ii) or Lemma 3.7(ii), respectively, and compensated compact-
ness, we obtain from (5.62) and (5.65) that

∫ T

0

∫
Ω

crmχ(crm , vrm )Rrm (∇g(crm , vrm )) · ∇ψ dx dt

=
∫ T

0

∫
Ω

∇g(crm , vrm ) · Rrm (crmχ(crm , vrm )∇ψ) dxdt

→
m→∞

∫ T

0

∫
Ω

∇g(c, v) · cχ(c, v)∇ψ dxdt .

The convergence in the remaining terms, equations, and conditions follows by means
of a standard limit procedure based on the Banach–Alaoglu theorem, the dominated
convergence theorem, the Lions lemma, and the compensated compactness. We omit
these details. ��

6 Numerical simulations in 1D

We perform numerical simulations to investigate on the one hand the effect of differ-
ences between hitherto choices of nonlocal operators and our novel ones proposed in
Sect. 3, and on the other hand convergence between nonlocal and local formulations.
For compactness, our current study restricts to the prototypical nonlocal model for cel-
lular adhesion (1.1), its reformulation as (5.1), and the corresponding localmodel (5.2).
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Thus, for (5.1) we take the operator formRr = Tr , with Tr as in (3.2). These models
can be interpreted in the context of a population of cells invading an adhesion-laden
ECM/tissue environment and, with this in mind, we initially concentrate cells at the
centre of a one-dimensional domainΩ = [0, L] and impose an initially homogeneous
ECM. Specifically, we set for the ECM

v0(x) = 1, x ∈ Ω (6.1)

and consider for the cell population a Gaussian-shaped aggregate

c0(x) = exp
(
−α(x − xc)

2
)

, x ∈ Ω, (6.2)

where we set xc = L/2 or xc = 0.
The numerical scheme follows that described in Gerisch (2010), which we refer to

for details. Briefly, a Method of Lines approach is invoked whereby equations are first
discretised in space (in conservative form, via a finite volume method) to yield a high-
dimensional systemofODEs,which are subsequently integrated in time.Discretisation
of advective terms follows a third order upwinding scheme, augmented by flux limiting
to preserve positivity of solutions and the resulting scheme is (approximately) second-
order accurate in space. Time integration has been performed with standard Matlab
ODE solvers: our default is “ode45” with absolute and relative error tolerances set at
10−6, but simulations have been compared for varying space discretisation step, ODE
solver, and error tolerances. To measure the difference between two distinct solutions
over time we define a distance function as follows:

d(u1(x, t), u2(x, t))(t) = -
∫

Ω

|u1(x, t) − u2(x, t)| dx ,

where u1 and u2 denote the two solutions that are being compared.

6.1 Comparison of nonlocal operator representations

We first explore the correspondence between forms of nonlocal operator representa-
tion: we choose the prototypical nonlocal model for cell/matrix adhesion (1.1) and its
reformulation (5.1), therefore taking for the latter the operator formRr = Tr with Tr
as in (3.2). In what follows, solutions to (1.1) are denoted cA and vA and those for (5.1)
denoted cT and vT . For simplicity we restrict in this section to a minimalist formula-
tion in which Dc = constant, χ = 1, fc = 0. Cell–matrix interactions are defined by
g(c, v) = Sccc + Scvv and fv(c, v) = −μcv, where Scc and Scv respectively repre-
sent cell-to-cell and cell-to-matrix adhesion strengths and fv simplistically describes
(direct) proteolytic degradation of matrix by cells parametrised by degradation rate μ.

Figure 1 shows the computed solutions under (a–c) negligible cell–cell adhesion
(Scc = 0) and (d-f) moderate cell–cell adhesion (Scc = Scv/4). The equivalence of the
two formulations is revealed through the negligible difference between solutions, with
the distance magnitude attributable to the subtly distinct numerical implementation.
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Fig. 1 Comparison between nonlocal formulations (1.1) and (5.1). a–b Cell and matrix densities for the
models (1.1) and (5.1) at t = 2.5 and t = 5. c Difference between the solutions. For these simulations
we take α = 10, r = 1, Dc = 0.01, χ = 1, Fr = 2, fc = 0 and fv(c, v) = −cv, along with a–c
g(c, v) = 10v, d–f g(c, v) = 2.5c + 10v

Both simulations describe an invasion/infiltration process, inwhichmatrix degradation
by the cells generates an adhesive gradient that pulls cells into the acellular surround-
ings. The impact of cell–cell adhesion is manifested in the compaction of cells at the
leading edge into a tight aggregate.

However, as pointed out in Sect. 3, differences in the nonlocal formulations can
emerge in the vicinity of boundaries. To highlight this we consider an equivalent
formulation to Fig. 1a–c, but with the cells initially placed at the left boundary [xc = 0
in (6.2)], e.g. suggesting a tumor mass which is concentrated there and whose cells
are expected to detach and migrate into the considered 1D domain, travelling from
left to right. As stated earlier we impose zero-flux boundary conditions at x = 0 (and
x = L), and further suppose c = v = 0 and ∇c = ∇v in the extradomain region
(R\Ω). Representative simulations are shown in Fig. 2. They are in agreement with
our observation in Example 3.3. Indeed, for this scenario, in the prototypical nonlocal
model (1.1)–(1.2) there is a very large adhesion velocity modulus at x = 0; the cells
are crowdedwithin the tumormass and their mutual interactions aremaintained during
the invasion process in a sufficiently strong manner to ensure a collective shift of the
still concentrated cell aggregate, with a correspondingly strong tissue degradation in
its wake. In the reformulation (5.1)–(3.2), rather, the adhesion magnitude at x = 0
is for the same initial condition much lower - suggesting a tumor whose cells are
readier to detach and migrate individually. This results in a more diffusive spread,
with accordingly less degradation of tissue, and with cell mass remaining available
at the original site over a larger time span. The latter scenario is different from the
former one, but it seems nevertheless reasonable, as a tumor mass would very often
not move as a whole from its original location to another in a relatively short time;

123



1290 M. Eckardt et al.

Fig. 2 a–cComparison between nonlocal formulations (1.1) and (5.1) near boundaries.Model as in Fig. 1a–
c, but with the cells initially concentrated at the boundary. d, f Comparison of the two forms of nonlocal
operator corresponding to the simulations represented in (a–c). The operators are practically identical
sufficiently far from the boundary, but can diverge significantly for distances < r from the boundaries

moreover, the active cells in a sufficiently large tumor (releasing substantial amounts
of acidity) are known to preferentially adopt a migratory phenotype and perform EMT
(epithelial-mesenchymal transition), see e.g.,Gupta (2015), Peppicelli et al. (2014) and
Prieto-García et al. (2017),which supports the ideaof cellsmoving in a looseway rather
than in compact, highly aggregated assemblies.3 As such, our simulations suggest that,
within this particular function- and parameter setting, choosing the adhesion operator
in the form (1.2) instead of (3.2) might possibly overestimate the tumor invasion speed
and associated healthy tissue degradation, thereby predicting a spatially concentrated
tumor and neglecting regions with lower cell densities which can nevertheless trigger
tumor recurrence if untreated.

6.2 Comparison between nonlocal and local formulation

Having compared together the original, (1.1), and the new, (5.1), nonlocal formula-
tions, we next consider the extent to which their dynamics can be captured by the
classical local formulation (5.2). Note that for nonlocal model simulations we will
restrict to the original formulation (1.1), so that we can avail ourselves of an already
well-established efficient (in terms of computational time) numerical scheme (Gerisch
2010). Here we use cL and vL to denote solutions to the local formulation and cAr and
vAr to denote solutions to the nonlocal model with sensing radius r . We remark that
a large number of related local and nonlocal models have been numerically studied
to describe the invasion-type process considered here (e.g. Perumpanani et al. 1996;
Anderson et al. 2000; Gerisch and Chaplain 2008; Painter et al. 2010): here the specific

3 Unless environmental influences dictate conversion to a collective type of motion.
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focus is to explore the convergence of nonlocal to local form as r → 0, which, as far
as we are aware, has not been systematically investigated.

As in the first test we use the initial values (6.1) and (6.2), choosing xc = L/2, α =
10 in the latter, and consider the coefficients and functions as proposed in Example 5.5.
Under these choices the resultant nonlinear diffusion coefficient for the c-equation in
the classical local formulation (compare (5.2a)) becomes

D̃c(c, v) = a2(1 + c)2(1 + c + v)2 − bc(1 + cv)(Scc + (Scc − Scv)v)

(1 + cv)2(1 + c + v)2
. (6.3)

Notably, this potentially becomes negative under an injudicious combination of adhe-
sive strengths Scc, Scv , and of a, b. Likewise, the actual haptotaxis sensitivity function
takes the form

χ̃(c, v) = b
Scv + (Scv − Scc)c

(1 + cv)(1 + c + v)2
. (6.4)

Again, depending on the relationship between Scc and Scv , this can become negative,
which would lead to repellent haptotaxis: cells effectively moving away from regions
with large ECM gradients, a rather unexpected behaviour. This suggests that cell–
tissue adhesions should dominate over cell–cell adhesions,4 as ’usual’ haptotaxis, i.e.
towards the increasing tissue gradient, is known to be an essential component of cell
migration, this applying to several types of cells moving through the ECM (tumor
cells, mesenchymal stem cells, fibroblasts, endothelial cells, etc.) see e.g. Lamalice
et al. (2007), Pickup et al. (2014) and Wen et al. (2015) and references therein.

Simulations are plotted in Fig. 3 where we show cell densities for the local model
(cL ) and nonlocal model under three sensing radii:

cAr=0.1, cAr=0.3, cAr=1.0.

In this first set of simulations we assume negligible cell–cell adhesion (Scc = 0),
which automatically ensures positivity for the diffusion coefficient of the equivalent
local model, D̃c(c, v). We note that matrix renewal is absent (μv = 0) in the left-hand
column and present (μv > 0) in the central column. In the right-hand columnwe show
the greater generality of the results under vastly simplified kinetics, specifically setting
fc(c, v) = 0 and fv(c, v) = −cv (with the other functional forms as in Example 5.5).
Simulations highlight the convergence between local and nonlocal models as r → 0:
for r = 0.1, the solution differences become negligible. However, distinctions emerge
for large r , where we can expect significant discrepancy between the solutions. This
suggests that the local model fails to accurately predict the behaviour in cases where
cells sample over relatively large regions of their local environment.

Next, we extend to include a degree of cell–cell adhesion, setting functions and
parameters as in Fig. 3, except now Scc > 0. Notably this raises the possibility of a
negative diffusion coefficient in the classical formulation and subsequent illposedness.
Solutions under a representative set of parameters are shown in Fig. 4. For t below

4 An analogous behaviour was suggested by the two-scale structured population model with adhesion
introduced in Engwer et al. (2017).
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Fig. 3 Convergence between nonlocal and local/classical formulations under negligible cell–cell adhesion,
Scc = 0, Scv = 10. Functional forms as proposed in Example 5.5, with modifications specified in the
subfigures. a Solutions for r = 0.1, 0.3, 1.0 at a1 t = 2, a2 t = 4 and a3 t = 8; a4 distance between
local/nonlocal solutions as a function of time. For these simulations, we take a = 0.01, b = 1, μc = 0.01,
Kc = 2, ηc = 1, μv = 0, λv = 1. b Solutions for r = 0.1, 0.3, 1.0 at b1 t = 2, b2 t = 4 and b3 t = 8;
(b4) Distance between local/nonlocal solutions as a function of time. Parameters as in a except μv = 1,
Kv = 1. c Solutions for fc = 0 and fv(c, v) = −cv, with the other parameters as in (a)

Fig. 4 Time restricted convergence under moderate cell–cell adhesion, Scc = 2.5, Scv = 10. Top row
shows solutions across the full spatial region ([0, 20]), the bottom row magnifies a relevant portion for
clarity. Solutions to local and nonlocal models under the functional forms proposed in Example 5.5 for
r = 0.01, 0.1, 0.3, 1.0 at a t = 3, b t = 3.5 and c t = 5. In (a) solutions to the local model continue to
exist and we observe convergence between local and nonlocal formulations. In (b, c) the solutions to the
local model are noncomputable. Nonlocal models, however, can destabilise into a pattern of aggregates.
Parameters: a = 0.01, b = 1, μc = 0.01, Kc = 2, ηc = 1, μv = 0, λv = 1 and adhesion parameters as
above
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Fig. 5 Convergence between nonlocal and local/classical formulations under a set of minimalistic linear
functional forms (Dc = 0.01, χ = 1, fc = 0, g(c, v) = Sccc + Scvv, fv(c, v) = −μcv). Negligible
cell–cell adhesion, Scc = 0, Scv = 10: solutions shown at (left) t = 2.5 and (middle) t = 5, with the
distance between solutions to the nonlocal and local model shown in the right panel

some critical time we observe convergence as before, with the nonlocal formulation
converging to solutions of the local model as r → 0. However, continued matrix
degradation further depletes v, with the result that (6.3) can become negative. At this
point (in this case t ≈ 3.2 . . .) the local model becomes illposed and its solutions
become incomputable (implying nonexistence of solutions). However, the nonlocal
formulation appears to preserve wellposedness, consistent with previous theoretical
studies where extending to a nonlocal formulation regularises a singular local model
(e.g. Hillen et al. 2007). Solutions to the nonlocal model instead destabilise into a
quasi-periodic pattern of cell aggregations, maintained through the cell–cell adhesion,
and with a wavelength shrinking as r → 0.

Finally, we remark that convergence of solutions extends beyond the specific func-
tional forms and, as a representative example, we consider a minimalist setting based
on linear/constant forms. Specifically, we set Dc = a (constant), χ = 1, fc = 0,
g(c, v) = Sccc + Scvv and fv(c, v) = −μcv. In this scenario, the diffusion and
haptotaxis coefficients for the classical local formulation (5.2) reduce to

D̃c(c, v) = a − Sccc and χ̃ (c, v) = Scv. (6.5)

Positivity is only guaranteed under appropriate parameter selection. Such a case is
illustrated in Fig. 5 where we assume negligible cell–cell adhesion (Scc = 0). Clearly,
we observe convergence between the nonlocal and local formulations as r → 0.
Inappropriate parameter selection, however, generates backward diffusion in the local
model and solutions are consequently incomputable. In all cases considered in this test
the cells do not reach the boundary region where the difference between the nonlocal
formulations (1.1) and (5.1) can play a role. Thus, we expect the same solution if
reformulation (5.1) is applied instead.

7 Discussion

In thisworkwe provide a rigorous limit procedurewhich links nonlocalmodels involv-
ing adhesion or a nonlocal form of chemotaxis gradient to their local counterparts

123



1294 M. Eckardt et al.

featuring haptotaxis, respectively chemotaxis in the usual sense. As such, our paper
closes a gap in the existing literature. Moreover, it offers a unified treatment of the
two types of models and extends the previous mathematical framework to settings
allowing for more general, solution dependent, coefficient functions (diffusion, tac-
tic sensitivity, adhesion velocity, nonlocal taxis gradient, etc.). Finally, we provide
simulations illustrating some of our theoretical findings in 1D.

Our reformulations in terms of Tr and Sr reveal the tight relationship between the
nonlocal operatorsAr and ∇̊r and the (local) gradient. This suggests that both nonlocal
descriptions (adhesion, chemotaxis) actually encompass the dependence on the signal
gradients rather than on the signal concentration/density itself, which is in line with the
biological phenomenon. Indeed, through their transmembrane elements (e.g. recep-
tors, ion channels etc.) the cells are mainly able to perceive and respond to differences
in the signal at various locations or within more or less confined areas rather than mea-
sure effective signal concentrations. Along with the mentioned solution dependency
of the nonlocal model coefficients, the influence of the gradient possibly reflects into
contributions of the adhesion/nonlocal chemotaxis to the (nonlinear) diffusion in the
local setting obtained through the limiting procedure.

The set Ωr (as introduced in Sect. 2) can be regarded as the ’domain of restricted
sensing’, meaning that there cells a priori sense only what happens inside Ω , the
domain of interest. The measure of this subdomain is a decreasing function of the
sensing radius r . When r → 0 the setΩr tends to cover the whole domainΩ , whereas
as r increases the cells can sense at increasingly larger distances; correspondingly, Ωr

shrinks. For r > diam(Ω) the restricted sensing domain is empty: everywhere in Ω

the cells can perceive signals not only from any point within Ω but potentially also
from the outside. In this paper, however, we look at models with no-flux boundary
conditions. This corresponds, e.g., to the impenetrability of the walls of a Petri dish
or that of comparatively hard barriers limiting the areas populated by migrating cells,
e.g. bones or cartilage material. As a result, the cells in the boundary layer Ω\Ωr

have a much reduced ability to stretch their protrusions outside Ω and thus gain little
information from without. To simplify matters, we assume in this work that there is
no such information or it is insufficient to trigger any change in their behaviour. In the
definitions of Tr and Sr this corresponds to the integrands being set to zero in Ω\Ωr .

It is important to note that for points x ∈ Ω\Ωr the influence of a signal p in a
direction y ∈ S1 is not taken into account by ∇̊r at all if x + r y /∈ Ω . If Sr is used
instead, then its contribution to the average is given by

ỹ := n

(∫ 1

0
χΩ∇ p(x + rsy) ds · y

)
y.

Thus, thanks to integration w.r.t. s, the resulting vector ỹ assembles the impact of
those parts of the segment connecting x and x + r y which are contained in Ω . It is
parallel to y, and it may have the same or the opposite orientation. In particular this
means that although for a certain range of directions large parts of the sensing region
of a cell are actually outside Ω , this may still strongly influence the speed and actual
direction of the drift. The effect of integration w.r.t. s in Tr is less obvious, since in
this case the average w.r.t. y is computed over the ball B1. This already achieves the
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covering of the whole sensing region by allowing a cell to gather information about
the signal not only in any direction y/|y|, but also at any distance less than r . The
additional integration over the path x + rsy, s ∈ [0, 1], appears to mean that cells
at x ∈ Ωr are able to measure the average of the signal gradient all along such line
segment rather than its value directly at the ending point. Indeed, from a biological
viewpoint this description seems to make more sense, as cells do not jump from one
position to another, nor do they send out their protrusions in a discontinuous way
bypassing certain space points along a chosen direction. Averages over cell paths are
then averaged w.r.t. y, which finally determines the direction of population movement.
Example 3.4 indicates that the effect of even an extremely concentrated signal gradient
is mollified by averaging. This agrees with our expectations from using non-locality.
In higher dimensions n ≥ 2, the two-stage averaging in Tr (w.r.t. s and y) produces a
direction field which is smooth away from the concentration point and also weakens
but still keeps the singularity there. In contrast, averaging only w.r.t. y leads instead
to jump discontinuities at a unit distance from the accumulation point. Moreover, we
remark that without integrating w.r.t. s in Tr (∇·) one cannot regain Ar .

The effect observed in Example 3.3 further supports the conjecture that the nonlocal
operators which act directly on the signal gradients might actually be a more appro-
priate modelling tool. While inside the subdomain Ωr there is no difference (recall
Lemmas 3.1 and 3.2), inside the boundary layer Ω\Ωr the limiting behaviour as
r → 0 is qualitatively distinct. Indeed, Example 3.3 shows that using, e.g.,Ar , leads,
for r → 0, to unnatural sharp singularities at the boundary of Ω even in the absence
of signal gradients, whereas this does not happen if Tr is used instead. Simulations in
Sect. 6.1 (see Fig. 2) confirm our theoretical findings and show a substantial difference
between the solutions obtained with the two nonlocal formulations involving (1.2) and
(3.2), respectively. The choice (3.2) is motivated above all from a mathematical view-
point (as it enables a rigorous, well-justified passage to the limit for r → 0), but it
also seems to make sense biologically, as our above comments and the simulations
performed for the particular setting in Sect. 6.1 suggest.

In this work we have only dealt with models that include a nonlocality in the
chemotaxis or cell–cell and/or cell–tissue adhesion terms and assumed the diffusion
to be local. This is in line with most of the previously developed nonlocal models for
cell migration, albeit they usually cover just linear diffusion. If cell–cell adhesion is
present, this means that the cell flux contains the local cell gradient, as well as some
averaging of it. The latter is described in our case by a suitably chosen operator Tr .
A possible model extension could involve a diffusion flux which is also nonlocal and
has a similar form. This would mean that the cell flux is completely devoid of the local
gradient. From the modelling point of view this could be seen as a population pressure
acting5 in a nonlocal manner: each cell is sensing the population mass not only at its
current position, but over a whole region (of radius r ) around that location. This is
actually true in vivo, where cells sample their biological environment by extending
protrusions as far as several cell lengths.While cell–cell adhesions certainly play a role
in this process and contribute to self-diffusion (as in the example handled in Sect. 6.2),

5 Unlike Fick’s classical law which typically connects the flux over the domain boundary with the diffusion
inside the domain.
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there might be yet other ways of interaction by which the cells are able to perceive
smaller or larger aggregates of their own kind. In this context one could think about
replacing the local gradient by a nonlocal operator, e.g. of the form Tr (∇). However,
the analysis of such a model would be considerably more involved and it is to expect
that existence of solutions can be established only under rather restrictive assumptions.
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