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Abstract: This paper describes a bioinspired neural-network-based approach to solve a coverage
planning problem for a �eet of Unmanned Aerial Vehicles exploring critical areas. The main goal is
to fully cover the map, maintaining a uniform distribution of the �eet on the map, and avoiding colli-
sions between vehicles and other obstacles. This speci�c task is suitable for surveillance applications,
where the uniform distribution of the �eet in the map permits them to reach any position on the
map as fast as possible in emergency scenarios. To solve this problem, a bioinspired neural network
structure is adopted. Speci�cally, the neural network consists of a grid of neurons, where each neuron
has a local cost and has a local connection only with neighbor neurons. The cost of each neuron
in�uences the cost of its neighbors, generating an attractive contribution to unvisited neurons. We
introduce several controls and precautions to minimize the risk of collisions and optimize coverage
planning. Then, preliminary simulations are performed in different scenarios by testing the algorithm
in four maps and with �eets consisting of 3 to 10 vehicles. Results con�rm the ability of the proposed
approach to manage and coordinate the �eet providing the full coverage of the map in every tested
scenario, avoiding collisions between vehicles, and uniformly distributing the �eet on the map.

Keywords: unmanned aerial vehicle (UAV); autonomous navigation; coverage planning;
�eet coordination

1. Introduction
Autonomous exploration with mobile robots is a widespread problem in robotics [1].

Even if this topic has been widely studied since the last decade [2], there are still some
open problems, including coverage planning [3]. The coverage planning problem attracted
the attention of several researchers that studied this problem both with ground [4] and
aerial robots [5]. However, the coverage planning problem becomes even more complex
considering a multi-vehicle scenario, such as a �eet of Unmanned Aerial Vehicles (UAVs).
The use of aerial robots for surveillance and exploration presents several complexities, both
technical and legal. However, it shows considerable potential in terms of the size of areas
monitored and tasks performed in a limited time.

Recent critical events, such as the earthquake in L’Aquila (Italy), the explosion in
Tripoli (Lybia), and the hurricanes and typhoons in Asia, have shown how UAVs could be
useful to provide surveillance, monitoring, and search and rescue applications. Thanks
to their responsiveness and unique top-down point of view in urban environments, they
have the potential of optimizing the search and rescue operations and, thus, saved lives [6].
Therefore, the importance of a fast and autonomous exploration approach with UAVs plays
an essential role for those entities involved in surveillance and safety.

One of the �rst contributions on control and coordination of a �eet of autonomous
robots was introduced in [7], whereas the author presents a method for multi-vehicle
coordination using an incremental and distributed plan-merging process. Hence, after this
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work, plenty of studies have been conducted for the state-of-the-art. In [8], the authors
investigate the coverage planning problem using a �eet of autonomous robots for precision
farming using a distributed strategy but neglecting obstacle avoidance between vehicles
and other obstacles. In a similar scenario in [9], the coverage problem is solved by opti-
mizing the power consumption. Other similar works [10,11] focus on the coordination of a
�eet of UAVs by using Particle Swarm Optimization (PSO) to perform target tracking and
obstacle avoidance. Recently, in [12], a cooperative path planning optimization is proposed
to minimize the traveling distance. Works presented in [13�16] show different solutions to
this problem with different approaches, but the assumed scenarios are simpli�ed and very
far from the real-world scenario.

An interesting approach was proposed in [17] introducing a preliminary model for
�eet coordination in urban environments considering a distribution of docking stations.
Another approach proposed in [18] solves the coverage planning problem by de�ning a
series of waypoints for UAVs to explore maps. Instead, in [19], the authors propose an
optimal solution based on a genetic algorithm solving the coverage planning problem,
but considering a limited and �xed number of UAVs that is a strong limitation for a
�exible coverage application. Differently, the work in [20] presents a solution to cover
and explore areas affected by disasters. In this case, the coverage problem is simpli�ed
because the algorithm assigns a speci�c portion of the area to be monitored by each vehicle.
Moreover, Ref. [21] investigates cooperative coverage techniques by splitting the operative
area into cells for agricultural purposes without considering the presence of obstacles.
Recently, the authors in [22] proposed the same approach again for monitoring wild�res
zones. The work presented in [23] describes an alternative approach for robot exploration
based on gradient optimization. The search is optimized to reach speci�c objectives, but not
to explore and cover an entire area.

Recently, cooperative coverage planning is solved using a reinforcement learning
approach. In [24], the authors present a promising solution. Anyway, due to the high
complexity of the proposed approach, the analyzed scenario is simpli�ed considering
simple maps and a �eet of three agents. A more complex scenario is tackled in [25] using a
Deep Reinforcement Learning-based approach in complex maps, but only considering a
single agent.

Current Work
In this work, we propose a novel approach to solve the coverage planning problem.

Speci�cally, we solve three sub-problems simultaneously: (i) coordinate a �eet of UAVs
avoiding collisions between vehicles and other obstacles in the map, (ii) displace uniformly
the �eet of UAV in the map, and (iii) fully cover the area by de�ning a sequence of targets.
Unlike other works for the state-of-the-art, our approach is not limited to cover a speci�c
area but evaluates a further constraint maintaining a uniform distribution of the �eet on the
map. This feature is mandatory for surveillance applications, where the responsiveness of
the �eet to reach any position on the map is an essential element for surveillance purposes.
The uniform displacement of UAVs allows them to reach any position on the map as fast
as possible. Furthermore, the algorithm is �exible and adaptable to a �eet with non-�xed
dimensions. In fact, in our preliminary simulations, we use �eets consisting of 3 to 10 UAVs.

The proposed algorithm differs from most of the works previously mentioned for
its focus on aerial surveillance applications. Speci�cally, the algorithm is designed for
rotary-wing UAVs with high maneuverability and reduced �ight speed. Nevertheless,
the algorithm is �exible for more applications, considering different operational conditions
and con�gurations for mobile robots.

Hence, to validate the proposed method, the algorithm is tested performing some
preliminary simulations using MATLAB (Natick, MA, USA) and, then, using the Robotic
Operating System (ROS) framework to execute a simulation in a more realistic virtual
environment performed with Software In The Loop (SITL) and Gazebo frameworks.
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We organized the paper as follows. Section 2 describes the analyzed coverage planning
problem. In Section 3, we present the proposed approach with the mathematical model
and the pseudocode. Section 4 shows the preliminary simulations and the numerical
results, as well as the realistic simulation, performed using ROS, SITL, and Gazebo. Hence,
in Section 5, we draw our conclusions.

2. Assumptions, Notation, and Problem Description
In this section, we describe the coverage planning problem considered in this work,

de�ning the notation used and detailing the assumption considered.
As de�ned in the previous section, this work aims to solve a coverage planning

problem to explore and monitor a speci�c area with a �eet of UAVs. Speci�cally, the goal
is to cover the entire map using a �eet of UAVs maintaining, at the same time, a uniform
distribution of the �eet on the map, as well as avoiding collision between vehicles and
other obstacles.

First of all, in this work, we consider the following assumptions:
� The map is known as a priori. As a consequence, the dimension of the search space

(i.e., the map) and the displacement of obstacles are known;
� The dimension of the �eet is always set before the coverage planning task starts.

Anyway, the proposed approach is tested in different scenarios with �eets consisting
of 3 to 10 vehicles;

� The map is considered fully covered when at least 99% of the map is visited.
The search space used by the algorithm to search for a solution is de�ned by a grid

map with dimension N �M. Hence, we assume a �eet of UAVs consisting of D UAVs
de�ned by the set Z. We denoted each UAV with zi 2 Z with i from 0 to D� 1. All UAVs
have the same con�guration and the same �eld of the view (FOV) with dimension CS.
The �eld of view is assumed as a constant parameter, without considering the variation of
FOV caused by �ight attitude.

In particular, in this work, we analyze four different environments with increasing
complexity (called Field1, Field2, Field3, and Field4) in terms of the density of obstacles
and their distribution in the map. These maps do not represent a real area. However,
as shown in Figure 1, they have features similar to a realistic urban environment. In real
applications, maps can be reconstructed using satellite or aerial imagery [26,27].

Figure 1. Example of a reconstruction of a simpli�ed two-dimensional map starting from a
urban image.

In most of the scenarios assumed in this work, the initial starting condition is with all
the UAVs positioned in the upper left corner of the map, as shown in Figure 2.

This initial con�guration is set to have the same initial condition in each simulation
as well as to simulate a more realistic condition where the entire �eet is deployed from
a circumscribed starting zone. An initial con�guration with UAVs already uniformly
distributed in the map would have some bene�ts on the performance of the coverage
planning since it is an optimal starting condition obtaining a full coverage of the map in
less time with fewer moves.
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Figure 2. The initial con�guration of the �eet of UAVs. This initial condition is assumed in most of
the simulations performed in this work.

3. Proposed Approach
In this section, we present the proposed approach to provide cooperative coverage

planning with a �eet of UAVs. The proposed method uses a bio-inspired neural network,
inspired by the method proposed for the �rst time in [28]. The neural network is displaced
as a grid of neurons, whereby the dynamics of each neuron depends on the proximity
of unvisited neurons and, as a consequence, unvisited areas. Unlike traditional neural
network approaches, this method does not require a training phase, since it is based on
the propagation of neuron dynamics from unvisited areas in all the map, to guide vehicles
toward unexplored locations.

However, the proposed approach differs from the original method proposed in [28].
First, in our work, the dynamics of each neuron are subject to unvisited areas, the presence
of obstacles, and the position of each UAV of the �eet. Moreover, the dynamics of an unvis-
ited neuron are not propagated to all neurons (i.e., to the entire map), but the propagation
is guided toward UAVs avoiding evaluating useless neurons in the grid map and, as a
consequence, reducing the time complexity.

Recalling the problem de�ned in Section 2, the method refers to a grid map that
corresponds to the neural network, whereby each element of the map is a neuron. Each
neuron has only local connections with neighbors, as depicted in Figure 3c.

As de�ned in Section 2, each UAV has a �eld of view with dimension CS. Therefore,
the distance between neurons is de�ned as CS/2 + 1 to cover all the area around the
selected neuron. Therefore, as shown in Figure 3c, the adjacent neuron in the grid is
CS/2 + 1 away.

The main idea of the proposed approach is to de�ne a sequence of movement on
the map. Speci�cally, at each time step t, a UAV zi, is located on a position de�ned by
the neuron xzi

n . Then, the algorithm de�nes a move toward an adjacent neuron xzi
n+1 that

maximises a function f (x)

xzi
n+1 =arg max

xnb2X(xzi
n )

f (xnb) (1)

subject to s(xzi
n , xzi

n+1) /2 O (2)

s(xzi
n , xzi

n+1) \ s(x
zj
n , x

zj
n+1) = ˘ 8 0 � i > D ^ i 6= j (3)

xzi
n+1 6= x

zj
n+1 8 0 � i > D ^ i 6= j (4)

with X(xzi
n ) is the set of neighbor neurons of the neuron xzi

n where the drone zi is located.
Practically, the neighbor neurons are the eight neurons of Figure 3c.
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(a)

(b) (c)

Figure 3. In (a) an example of the cooperative coverage planning performed in this work. In (b), the
square Field of View (FOV) of the UAV assumed in this work. In (c), a small bio-inspired neuronal
network grid as de�ned in our approach.

The constraints (2), (3) and (4) provide the collision avoidance. Specifically, Equation (2)
provides the obstacle avoidance by checking if the motion segment s(�) from the current
neuron to the next one is outside the obstacle set O containing all the elements of the map
that cause a collision with obstacles. Equation (3) veri�es if there is an intersection between
the segment computed by the UAV zi and other segments already computed for other
UAVs of the �eet. On the other hand, Equation (4) checks if the neuron xn+1 is not already
selected by other UAVs. Moreover, as shown in Figure 4, the segment s(�) evaluates a
safety corridor-wide dlim to take into consideration the occupation of the vehicle during
the motion, as well as a safety distance.

Hence, the function f (x) is de�ned as follows:

f (x) = C[x] +
davg

dmax
wmd +

vrdist
vrmax

wvr + (1�
Dq
p

) (5)

consisting of four main elements that consider an attractive cost toward uncovered areas
(C[x]), the mean distance between UAVs ( davg

dmax
wmd), the standard deviation of the distri-
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bution of the �eet ( vrdist
vrmax

wvr), and the cumulative turn angle (1� Dq
p ). These elements are

detailed in the following paragraphs.

Figure 4. Graphical representation of the safety corridor assumed in the collision avoidance constraint.
In our simulations, we use dlim = 4 m.

The �rst element C[�] is a cost-map matrix with the same dimension of the map
containing the attractive costs due to uncovered areas. Speci�cally, C[x] represents the cost
in correspondence with the neuron x. We compute the attractive contribution for each
uncovered neurons and, then, is propagated toward UAVs. Therefore, we compute the
attractive cost at the uncovered neuron as follows:

C[xn] = C[xn] +
kxn � xck2

dmax
Bk. (6)

The norm kx� xck2 is the Euclidean distance between the current neuron x and the
neuron xc that corresponds to the closest UAV. The term dmax is the maximum admissible
distance in the map, i.e., the maximum diagonal of the map:

dmax =
p

N2 + M2. (7)

This normalization considers the maximum distance in the neural grid and allows us
to manage the weights of Equation (6) more ef�ciently.

In this phase, it is essential to evaluate each neuron once. For this purpose, the param-
eter Bk is used to de�ne the cost, assigned only if a �ag g(x) ensures that the neuron is not
already evaluated, i.e., if g(x) is equal to 0. Hence:

(
Bk = 1 if g(x) = 0
Bk = 0 , otherwise.

(8)

With Equations (6) and (7), we de�ne a normalized decreasing contribution that prop-
agates from each unvisited neuron toward the closest UAV xc, through the shortest neuron
chain. Then, we propagate this cost to neighbor neurons. Speci�cally, the propagation
is only toward selected neurons. In this propagation, we consider the distance between
each neighbor neurons and the closest UAV. Hence, given a generic neuron xk, the cost is
propagated toward the neuron xk+1 with the following logic:

xk+1 = arg min
xnb2X(xk)

kxnb � xck2 (9)

with xnb being a neighbor neuron and X(xk) being the set of neighbors of the neuron xk.
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The propagation continues until it reaches the selected neuron that corresponds to an
obstacle or the closest UAV. Speci�cally, this last condition is satis�ed if a neuron is inside
the �eld of view of the UAV.

The computation of the attractive contribution and its propagation is computed for
each uncovered neuron, similarly to [29]. The propagation is continuously repeated at
every time step for each uncovered neuron in the map to obtain a complete and ef�cient
cost-map used to de�ne the next waypoint for each UAV.

The second term of Equation (5) considers the mean distance davg between the neuron
x and the position of other UAVs (excluded the current one), normalized with the maximum
distance dmax, and multiplied by the weighting factor wmd.

The third term of Equation (5) evaluates the standard deviation of the respective
distances between UAVs. This term is essential in order to avoid high concentrations of
units in any area of the map. Again, a maximum value (vrmax =

q
d2

avg/(D� 1)) is used
to normalize this term, and its respective weight is multiplied: (vrdist/vrmax)wvr, where
vrd is the standard deviation of the distances evaluated in davg.

The fourth term of Equation (5) is de�ned to penalize the excessive turns of UAVs.
(Dq = jqt+1 � qtj) and represents the variation of the yaw angle of the UAV considering the
orientation estimated at the next step and the current one. This parameter in�uences the
energy consumption and, then, the autonomy of the UAV.

Pseudocode
To better clarify the various steps of the algorithm, in this section, we detailed the

pseudocode. Algorithm 1 de�nes the main part of the proposed approach. First, we
initialize the map, the initial position of the �eet, and all the variables. Hence, the algorithm
runs until the UAVs cover 99% of the map (line 2). It should be noted that, after the map
is covered, this algorithm can be executed again by setting the map as uncovered and
covering it again. For simplicity, we report the pseudocode of visiting the map only once.
In line 3, the cost-map is computed by using Equations (6)�(8). The computation of the
cost-map will be detailed later, when the Algorithm 2 is described. Then, for each UAV
of the �eet, the function f (x) is computed by considering the neuron corresponding with
the UAV position (line 5), and the best adjacent neuron is selected (line 6) as a candidate
for the next move. After all, UAVs are evaluated, and all UAVs are moved simultaneously
(line 8). If the �eet does not cover the map again, the algorithm ends (line 10).

Algorithm 1 The main algorithm

1: Initialize()
2: while Covered area < 99% do
3: ComputeCostmap()
4: for each zuav 2 Z do
5: Compute f (x)
6: Select best adjacent neuron
7: end for
8: Move()
9: end while

10: return

Algorithm 1 omits some details to facilitate its understanding. In particular, we always
check that trajectories do not intersect obstacles or other UAVs. Furthermore, a check does
not allow the drone to return to the previous position to avoid an endless loop.

As previously noted, Algorithm 2 describes in detail the Compute Cost-map (CC)
function as it is one of the most signi�cant phases of the proposed algorithm. First, the cost-
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map is cleared at each time step (line 2) since all the attractive contributions in the cost-map
should be computed considering the updated scenario and, then, considering the areas not
already covered. Then, we compute the attractive cost for each uncovered neuron (from
lines 2 to 10). The attractive cost is computed using Equation (6) and evaluating the closest
UAV (lines 3, 4). Hence, the cost is propagated toward the closest UAV (from lines 5 to
9) and the propagation is stopped only if the next neuron is an obstacle (xk 6= �1) or the
closest UAV is reached, i.e., if xk /2 v(zc) with v(z) is the �eld of view of the UAV z. After
the best neuron for propagation is selected (line 6), the attractive cost is computed (line 7),
and the propagation phase continues (line 8). With this logic, the cost-map continuously
attracts UAVs toward uncovered areas. Figure 5 reports an example of a cost-map that
dynamically changes during the exploration.

Figure 5. Dynamic evolution of the cost-map during the coverage of Field 4. The negative value �1
corresponds to neurons occupied by an obstacle. The initial condition is determined as in Figure 2.
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Algorithm 2 The ComputeCostmap() function

1: ClearCostmap()
2: for each uncovered neuron xk do
3: Find the closest UAV zc 2 Z to xk

4: Compute C(xk)
5: while xk 6= �1 or xk /2 v(zc) do
6: Select the best xk+1

7: Compute C[xk+1]
8: xk = xk+1

9: end while
10: end for
11: return

4. Simulations
4.1. Assumptions

Before explaining the results obtained with preliminary simulations with MATLAB
and, then, using ROS and Gazebo frameworks, we de�ne the assumptions considered
during the implementation of the proposed approach:
� The positions of all UAVs are always known; therefore, the cost-map C, the mean

distance davg, the standard deviation of distances between vehicles vrdist, and Dq
contributions can be computed by the centralized coordination unit at each time step;

� The UAVs are �ying at a �xed �ight altitude, and their �eld of view is constant and
de�ned as shown in Figure 3b;

� The �eet starts from the upper-left corner of the map. The UAVs are in a compacted
formation, as shown in Figure 2. This assumption is valid for most of the simulations,
except for the simulations of Figures 6 and 7, in which, for simplicity, the �eet is
already distributed on the map;

� We always assume a known map. However, the proposed approach can be used also
in unknown environments requiring obstacle detection with sensors to update the
map during the exploration.

4.2. Preliminary Simulations
First of all, to show and demonstrate how the proposed approach works, we test

the proposed algorithm in different scenarios (from Field 1 to Field 4 maps) and with a
�eet composed of a different number of UAVs. Only in these tests, to have a graphically
more understandable result, we de�ne a different initial condition, with the UAVs already
distributed in the map and not in the upper left as de�ned in the assumptions.

Speci�cally, Figure 6 shows how the proposed approach works in different scenarios.
Notably, increasing the environment complexity makes it more complex to coordinate the
�eet for maintaining a uniform distribution. On the other hand, a higher percentage of
obstacles involves a lower number of locations to be visited, requiring a lower number
of moves. The layout of the obstacles has a signi�cant in�uence on the coordination of
the �eet.

Moreover, as anticipated, the algorithm is also tested evaluating �eets consisting of 3
up to 10 UAVs. The results are shown in Figure 7 in the Field 4 map, i.e., the most complex
scenario. The �eet of three UAVs takes more moves to fully cover the map than larger
�eets. Moreover, with a smaller �eet, it is easier to maintain a uniform distribution on the
map, especially in complex environments.

In the following paragraphs, we analyze the performances of the proposed approach
in terms of number of moves to cover at least the 99% of the area, and the distribution



Information 2021, 12, 51 10 of 17

of the �eet in the map, evaluated taking into account the maximum distance between
obstacle-free neurons and the closest UAV.

Figure 6. Temporal evolution of the �eet performing the coverage task with �ve UAVs. From the top, the complexity of
maps is increased incrementally.

Figure 7. Temporal evolution of the �eet performing the coverage task in the Field4 map. Simulations are performed with a
�eet composed of 4, 7, and 10 UAVs.
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4.3. Tuning Parameters
In the proposed coverage planning problem strategy, there are two main features of

the coverage that can be optimized. The �rst one is the coverage capacity, i.e., the number
of moves required by the �eet to cover the 99% of the map. The second one is the ability of
the UAVs to maintain a uniform distribution in the map, evaluated using the maximum
distance between obstacle-free locations in the map and the closest UAV. This distance is
denoted as �Max UAV - free point dist" in Figures 8 and 9.

Figure 8. Results obtained after the �eet’s uniform distribution optimization shown in Figure 10.

Figure 9. Results obtained after the �eet’s coverage optimization shown in Figure 11.

The behavior of the proposed approach can be balanced by tuning the coverage
capacity of the uniform distribution of the �eet by determining the weighting factors wmd
and wvr de�ned in Equation (5). To identify how to tune these factors, an extensive set of
simulations is performed. All combinations of parameters are evaluated (with a step of
0.1), and the best values are reported in the plots of Figures 10 and 11, by optimizing the
distribution of the �eet and the coverage capacity, respectively. Each test is performed until
the coverage of the 99% of the map is provided.
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Figure 10. Weight parameters (wmd and wvr) tuning to optimize the uniform distribution of the UAVs
in the map (with CS = 30 m). The tuning is performed for all of the four maps shown in Figure 6.

Figure 11. Weight parameters (wmd and wvr) tuning to optimize the �eet moves needed to cover the
99% of the map (with CS = 30 m). The tuning is performed for all four maps shown in Figure 6.

4.4. Collected Results
The best set of parameters de�ned in the previous paragraph are used to provide the

�nal results. Figures 8 and 9 show the results optimizing both the distribution of the �eet
and the coverage capacity. The results are evaluated in terms of moves needed to fully
cover the area and the so-called Max UAV-free point dist which represents the maximum
distance between an obstacle-free location in the map and the nearest UAV. Speci�cally,
this feature is adopted to evaluate the uniform distribution of the �eet on the map.

Analyzing the obtained results, we can af�rm that, with larger �eets (around 10 units),
there is no substantial difference in both scenarios, i.e., optimizing the coverage capacity
and the uniform distribution in the map. The results converge towards similar values,
except for the most complex environment (Field 4), where the optimization of the coverage
capacity has a strong effect.



Information 2021, 12, 51 13 of 17

On the contrary, with smaller �eets, the optimization changes the �eet behavior a lot,
especially considering the Field 4 scenario. Figure 9 shows how the moves required to
cover the area in the most complex map have peak values lower than those in Figure 8,
where, instead, the same bene�cial effect is notable for the parameter related to the uni-
form distribution.

Moreover, we want to highlight the results of the simulation performed in the Field 3
map and reported in Figure 9, in which there is a non-optimal behavior of the �eet com-
posed of three UAVs, with a bad performance in terms of uniform distribution without
having a particular bene�t on the coverage parameter that remains quite similar to the
result of Figure 8. However, this bad behavior disappears for all of the other simulations
with different maps and different �eet dimensions.

Overall, it is notable that the effect of tuning generates an improvement in the respec-
tive performances. However, the best choice of those parameters is related to the type of
application that should be conducted.

4.5. Computational Time
One of the main advantages of the proposed approach is the short computational

time required to compute the target for each UAV of the �eet. As shown in Figure 12,
the computational time varies from 2 s to 0.1 s, without considering the initialization that
requires an additional computational time. However, the computational time is a short
value considering the hardware used to perform the simulation (4-core 2.80 GHz). This
time can be drastically reduced using high-performance computers.

Figure 12. The computational time required to perform the most complex simulation, i.e., with a �eet
of 10 UAVs in the Field 4. Excluding the initialization phase, the computational time varies between
2 s and 0.1 s.

As depicted in Figure 12, the computational time decreases during the exploration
due to the decreasing number of attractive contributions to be assigned, as described in
Algorithm 2. Once all the map is visited, the coverage planning task is repeated cyclically.

The target position computed for each UAV is always at a distance that depends
on CS, as shown in Figure 3. As a consequence, the shortest move is dmin = CS

2 + 1
and, considering a constant cruise speed, we can de�ne the maximum cruise speed vmax
admissible to be sure that the algorithm is always able to compute the next targets. Then,

v � vmax =
dmin

max(Tcomp)
, (10)

with v the cruise speed of the UAV.
Considering the simulated scenario, we have CS = 30 m and, then, dmin = 16 m.

Considering the maximum computational time of 2 s and applying Equation (10), we
should maintain a constant cruise speed lower than about 8 m/s. Hence, even with the
current performances, the developed approach is suitable for real applications. In fact,
by analyzing the scenario used for the simulation, the developed algorithm can continu-
ously compute the next target for each UAV. However, this speed constraint can be changed
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by increasing the �eld of view (e.g., changing the camera or increasing the �ight altitude)
or using hardware with higher performances.

4.6. Realistic Simulations
As anticipated, the proposed approach is tested and validated with a more realistic

simulation using Robot Operating System (ROS), Gazebo simulator, and Software In The
Loop (SITL).

ROS is an open-source meta-operating system for robotic systems [30]. Practically,
ROS is a standard for robot programming and offers a general-purpose robotics library for
robotic applications.

Gazebo is an open-source multi-robot simulator fully compatible with ROS [31] able
to simulate robots, sensors, and rigid body dynamics.

In particular, we based the simulation on the framework proposed in the PX4 �ight
stack [32]. Speci�cally, PX4 is an open-source �ight control software for drones and other
autonomous vehicles. The PX4 autopilot is used to control UAVs simulated with Gazebo
using the SITL framework [33], where SITL allows PX4 to be executed without using
any hardware.

Practically, instead of exchange data with a real drone platform, the PX4 Autopilot
controls the UAV simulated in Gazebo, which executes control commands and provides
sensor data from simulated sensors. Hence, we control the UAV offboard using ROS and
the mavros package, enabling the communication between ROS and the PX4 autopilot
via MAVLink.

In particular, in each simulation, we use the centralized architecture illustrated in
Figure 13. We de�ned a ROS environment for each UAV of the �eet by allocating all the ROS
nodes to simulate and control the UAV. Hence, we present a centralized ROS environment
able to manage and coordinate the �eet of drones using the proposed coverage planning
methodology. The proposed algorithm receives the poses from all the UAVs in the �eet
and, using the proposed method, determines the sequence of goals for each UAV providing
the coverage planning.

Figure 13. ROS general architecture of a multi-robot system, similar to the one presented in [34]. In this case, we show a
�eet con�guration with two UAVs; for larger �eets, the logic is the same.

The realistic simulations using ROS/Gazebo/SIT are shown in Figure 14.
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Figure 14. Top and side view of the simulation performed using ROS/Gazebo/SITL in the Field 2 map and using a �eet
of four UAVs. From the top, three steps at different simulation time are reported. The �eet is coordinate using the ROS
architecture of Figure 13.

5. Conclusions and Further Developments
In this paper, we present an innovative approach to solve the coverage planning

problem with a �eet of UAVs. The proposed solution is based on a bioinspired neural
network approach in which the dynamics of neurons depend on unvisited areas, the pres-
ence of obstacles in the map, and the position of UAVs in the map. As result, the neural
network guides UAVs to fully cover the map and, at the same time, maintaining a uniform
distribution of the �eet in the map. The results obtained in simulations show that the
proposed strategy can manage a �eet composed of 3 to up to 10 units of good performances,
as well as in complex maps.

The proposed solution wants to de�ne a promising approach to coordinate a �eet
of UAVs for surveillance or search and rescue purposes in urban areas. The uniform
distribution of the UAVs in the map improves the responsiveness of the �eet to reach
any position on the map as fast as possible. This feature is essential for surveillance
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and monitoring applications, in which, in case of emergency, a vehicle needs to reach a
speci�c location.

Moreover, by tuning ad-hoc the algorithm and disabling the possibility of hovering, it
is possible to exploit the proposed approach for �xed-wing aircraft. Anyway, it requires an
adaptation of parameters and assumptions, since, generally, �xed-wing aircraft involve a
large �eld of view and a greater cruise velocity.

Future works will include the development of the proposed approach to be used for
real-world scenarios. One of the essential aspects that must be taken into account is the
bidirectional communication between the UAVs and the server. In fact, in the current work,
we have assumed an ideal communication channel, not affected by delays or disconnections.
Moreover, the proposed approach should be extended to be used in an unknown area,
requiring the obstacle detection using on-board sensors and, then, updating the map and,
as a consequence, the grid neural network.
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The following abbreviations are used in this manuscript:

CS Covered square side (in meters) of the �eld of view
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SITL Software In The Loop
ROS Robot Operating System
UAV Unmanned Aircraft System
D Number of Units
FOV Field Of View
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